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Abstract. The variational inequality arising from the one-phase multidimensional Stefan problem is discretized by piecewise- 
linear finite elements in space and by backward-differences in time. Error estimates for the discrete free boundary at each 
time-step are proved. 

1 Introduction 

The aim of this work is to study the rate of  convergence of the discrete free boundaries to the 
continuous one for the multidimensional one-phase Stefan problem. Some results on the convergence 
of  the approximate free boundary are known in the literature in the one-dimensional case (Berger, 
Ciment and Rogers 1979; Jerome 1980; Meyer 1977; Nitsche 1978). Error estimates for the discrete 
free boundaries are given in (Nochetto 1985). 

Our results have been suggested by a similar analysis for elliptic variational inequalities, recently 
given in (Caffarelli 1981 ; Brezzi and Caffarelli 1983). The Stefan problem is written in terms of  a 
parabolic variational inequality which is discretized by piecewise-linear finite elements in space and 
backward-differences in time. We prove that the error between the free boundaries at each time-step 
can be estimated by the square-root of  the L°%distance between the continuous and the discrete 
solution. Such a result rests on the non-negativity of  the time-derivative and on non-degeneracy 
properties of  the continuous and the discrete problems. 

An outline of  the paper is as follows. Section 2 deals with the formulation of  the continuous 
problem in terms of  a variational inequality and with some properties of  the solution. Section 3 
presents the approximate problem. Monotonicity properties of  the discrete solution are proved in 
Section 4, while Section 5 is devoted to the study of the rate of  convergence of  the approximate free 
boundaries. In the Appendix some examples of L°°-error estimates (though non-optimal) for the 
solution are given. 

Let us introduce some notations. # will denote the Lebesgue measure in R N, dist the euclidean 
distance in R N, Uj the j- th component of the vector U e R". Moreover, for any set E C R N, we set 
int (E) = E -  ~E and 

S~ (E) = {x e R u : dist (x, E) < e}, ge > 0. 

2 The continuous problem 

In this section we shall briefly describe the one-phase Stefan problem and its formulation in terms of 
variational inequality. We shall then recall some properties of  the solution which will be useful in the 
following. 
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Let Go and G1 be open bounded domains in R N (N>  1), with Go ¢ G1. Let their boundaries, Fo 
and F~ respectively, be connected C °~ hypersurfaces. Let BR = {Ix[ < R} be a large ball containing 
G1 and set G=G1-Go, O=BR-Go, f 2 e = Q - G ,  Q = f 2 x  ]0, T[ (T< +oe),  and ~,Q=(FoW~BR) 
x [0, T[w f2 x {0}. Suppose that initially G is filled with water and f2 - G  is filled with ice at 0 °C. We 

denote by g = g(x, t) the temperature of the water. We are given the initial temperature 

g(x,O)=Oo(X) if x~G (1.i) 

as well as the temperature along the fixed boundary Fox ]0, T[ 

g(x, t) = tp(x, t) if (x, t) e Co x ]0, T[, (1.ii) 

where go(X) and O(x, t) are given positive functions. We define the water region 

f ( 0 =  {xe ~ g(x, t) > 0}, 

and the free boundary 

t>0 ,  P~= U P(t)×{t},  P=PT 
O < t < z  

r ( 0 ) = r l ,  F(t)=aP(t)-Fo, t>0, C = U F(t)x{t}, F=Fr. 
O<_t<~ 

Let us suppose that the water-ice interface is given by the equation t -= s (x). If,9, s are regular enough, 
then 

g t - A g = 0  in P; (1.iii) 

O(x,t)=O, Vg(x,t)xVs(x)=-I if t=s(x), xeOe; (l.iv) 

s(x)>t, g(x,t)=O if (x,t)EQ-P; (1.v) 

s(x)=O if xeG.  (1.vi) 

The problem of finding, under suitable assumptions on 8o and ~, a regular solution g, s of( l )  is called 
the classical one-phase Stefan problem. The existence of a classical solution for a sufficiently small 
time has been proved by Meirmanov (1981). In order to focus on the difficulties of our approximation 
problem only, we shall assume from now on that 

0o s C°~ (6) ,  So (x) > 0 

0Eco~(ro x [0, T]), ~,(x, t) >0 

So (x) = 0 (x, 0) 

if xeG,  O o = 0 o n F 1 ,  

if (x,t)eFox[O,T], 

if xeFo 

(2) 

and 

3mo, Mo>O'mo<lVOo(X)l<Mo if xeF1. (3) 

Under these assumptions, in (Meirmanov 1981) it is shown that there exists t*, with 0<t*___ T, 
depending only on mo and Mo, such that the problem (1) has a unique solution 0EC2'I(P~.), 
se  C1(~), Vte [0, t'l.. 

If we choose the freezing index function 

t 

u(x,t)=~ O(x,z)dr if (x,t)eQ (4) 
0 

as unknown function, we can consider a formulation of the problem in terms of a variational 
inequality. Setting 

9(x,t)=[! o(x'z)dz if xeFo, t>O 
(5) 

if t = 0  or Ixl---R, 
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f(x)=fOo!X) if xeG (6) 
( - I  if x ~ f2 - G  , 

if 0, s is the classical solution, then (see Duvaut 1973; Friedman and Kinderlehrer 1975) u fulfils 
the following inequality 

u,(v-u)dx+~VuxV(v-u)dx>= S f ( v - u ) d x  a.e. t~]0, T[ 
(2 f2 g? 

Vve W={veHI(Q), v>O in Q, v=a on ~vQ}. (7) 

Moreover {x e f2 :u(x, t) > 0} = P(t) for every t > 0. This suggests the following definition of weak 
solution: 

(P) Find u ~ W such that (7) holds. 

It is well known (see Friedman and Kinderlehrer 1975) that, say, under the assumptions (2), 
problem (P) has a unique solution u, such that 

ut _-> 0 (8) 

and with the further regularity u E L ~ (0, T; W2'P(Y2)), Vp < + ov ; ut ~ L ® (Q) c~ L °~ (0, T; H 1 ((2)); 
moreover u~ is a continuous function (Caffarelli and Friedman 1979). A consequence of the non- 
negativity of ut is the embedding 

P(t) C P(t') Vt' > t > 0. (9) 

Furthermore (see Friedman and Kinderlehrer 1975) we have that 

G-FoCP(t)  Vt>0,  (10) 

which easily implies the following property 

dist(F(t),F1)=c(t)>O Vt>0. (11) 

We can also prove the following result. 

Proposition 1. The set P(t) is connected for every t > 0. 

Proof. Let us suppose that there exists a connected component D of the set P(t) not intersecting G. 
Since u(x, t )=  0 on the boundary of D and the equality ut--Au = - 1  is satisfied in D, hence D = d 0. 

[] 
Finally, Caffarelli (1977) proves that the free boundary F(t) has zero Lebesgue measure, for any 

t > 0. Next, we will state some non-degeneracy properties near the free boundary. They follow from 
similar results for elliptic variational inequalities (Caffarelli 1981), so that they will be proven only in 
the set where Au = 1 + ut => I. However, this will not be restrictive because of the embedding (10). By 
setting 

E(t)=P(t)-G, t>O, E= U E(t) x{t}, 
O < t < T  

A~(t)={x~Qe:O<u(x,t)<e2}, t > 0 ,  

we recall the following properties (Friedman 1982)" 

P1. For any (x , t )EEuF and for any r > 0 ,  ifBr(x)nFa=do, then 

r 2 
sup u (x', t) > 

x '  e E(t)  n B r ( X )  ~ 2 N" 

(12) 

(13) 

(14) 

P2. For any compact domain K C ~C2e with regular boundary ~K, there exist two positive constants 
e(K) and C(K) such that 

I~(A~(t)nK)<=C(K)e Ve_~(K), Vt>0.  (15) 
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Remark 1. For any compact domain K C Qe, there exists a time t(K) > 0, such that At(t) ~ K ~  At(t), 
V0 < t <-_ t(K). So (15) does not give any useful information for small time. Luckily, due to the existence 
of the classical solution over a small time interval, we can prove a result similar to the estimate (15), 
but without dependence on the compact set K. We shall do that in the following lemma. 

Lemma 1. There exist two positive constants eo and C such that, for any e__<_ eo and for any t > 0, we 
have 

#(At(t)) < C~. (16) 

Proof. First we shall prove that assertion (16) holds for any t < t*. In fact, since u, ut ~ C 2'1 (fit*) and Ft, 
is regular, we have that 

3e1>0, 3CI>O: #(S~(F(t)))<C~ Ve<el, Vt<t* (17) 

and, by the non-degeneracy property PI, we can prove that 

~e2>O, SC2>O:A~(t)CSc2~(F(t)) Ve<~2, Vt<t*. (18) 

Properties (17) and (18) imply the existence of two positive constants C' and e' such that 

#(A~(t))<C'e Vt<~', Vt<t*. (19) 

Now we show that (16) holds for any t > t*. Setting e3 = c(t*)/2 [where c(t*) is the constant in (11)], we 

have u(x, t*)> 0 in S~(G). Let Umin be the minimum of u(x, t*) on S~(G). By setting K=D-S ,~(G)  
and ~4 =l//u~i,/2, since u, >0,  we obtain 

A~(t)CK Ve<e4, Vt>t*.  (20) 

Then (20) and P2 imply that there exist two positive constants C" and t" [with E" = min (t3, e4)] such 
that 

< " (21) #(A~(t))<C"e Ve=e , Vt>t*.  

Hence (16) follows from (19) and (21) with e0 = m i n  (e', t") and C = max (C', C"). 
[] 

In (Friedman 1982), it is shown that for any compact domain K (f2e, the (N-1)-dimensional  
Hausdorff  measure of F (t) c~ Kis bounded by a constant, for each t > 0. Hence using again (17) and a 
suitable choice of the compact set K in the quoted result, we can prove the following lemma. 

Lemma 2. There exist two positive constants to and C such that, for any e < to and for any t > 0, we 
have 

#(S~(F(t))) < Ce. (22) 
[] 

Moreover if F (t) is locally Lipschitz continuous for any t > O, then there exist two positive constants to 
and C such that 

A~(t) C Sc~(F(t)) Vt <to,  Vt>0.  (23) 

For instance, such a result holds if G~ is star-shaped (Friedman and Kinderlehrer 1975). 

3 The discrete problem 

We discretize problem (P) by backward-differences in time and by piecewise-linear finite elements in 
space. 

Fix an integer m > 1 ; k = Tim will be the time-step; t i = ik, i = 1 , . . . ,  m. 
Let ~h be a collection of simplices z, whose diameters are bounded by h and let {Zh}h be a family of 

decompositions off2 by simplices z. We suppose that {Zh}h is regular and quasi-uniform in the sense of 
Ciarlet (1978). The discrete problem is solved in f2h= U z. For convenience, we suppose that 
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Oh = O (namely, we are considering curvilinear elements at the boundary). Such assumption is 
not restrictive, since we are interested in the behaviour of the free boundaries. Let now the nodes of 
%, {xj}~:l, be numbered as follows" 

{Xj}7~ 1 t h e  nodes lying in G, 

{xj}~k,~+l the nodes lying on F1, 

{xj}~=,,+l the nodes lying in O~, 

{xj}~=,+i the nodes lying on FouOBa. 

Moreover let us suppose that i fa  simplex -c has a node in G, then all of its nodes belong to G. Let us set 

Vh = {Z e C°(O), Zi~ is a polynomial of degree< 1 Vz s %} 

and denote by { ~0j }~= ~ the usual Lagrange basis of Vh. In order to get a diagonal mass-matrix, we use a 
suitable quadrature formula, such as, for instance 

i ~ ,., I~(Z) ~ f (xj), z e'Ch, Xj nodes of "c. t J ) = N + l  xj~ 

Setting (u, V)h = ~ L(UV), we introduce the matrices 

M =  {(~0i, (~l)h}Y,l=l = {mr,}, 

A = {  j" V~oj(x). Vcpt(x)dx}y=~f=~={aj,}, 
£2 

n=M+ka={bj,}. 
For every i >  1, set 

Fi= {~ f (x)cpj(x) dx - Gj}~= 1, 
r~ 

where 
P 

Gj= ~, ajzg(xl, ti), for j = l , . . . , n .  
/ = n + l  

(24) 

A = (2s) 

(26) 

(27) 

The discrete problem we consider reads as follows 

(Ph,k) U ° = 0 

for i = l , . . . , m ,  find Ui~R"  such that 

U ~ => 0 (28i) 

BUi>=kFi+MU i-1 (28ii) 

(BU i _ k F  i _ M U  i- 1) ui 0 (28iii) 

It is well known that this problem has a unique solution (see Glowinski, Lions and Tremoli~res 1981). 
The piecewise-linear function 

U~,k(X)=~ Uj(pj(X)+ ~ 9(Xi, ti) q~j(x) (29) 
j = l  j = n + l  

is the approximation of the exact solution u(-, fl). 
The assumptions on the finite element space and on the quadrature formula allow one to obtain 

these formulas 
P 
~, aj~ = 0 for j =  1 , . . . ,  n, (30) 

l=1 
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#(supp ~oj) for j = l , . . .  ,n, mjz=O Vj+-l. mjj - N+ 1 

From now on, we shall assume that for every h the decomposit ion Zh is of acute-type, that is 

for each z E % and for each vertex xj ~ z the projection of xj on 
the opposite hyperplane falls in the closure of the opposite face (32) 

It is well known that assumption (32) yields 

ajj>O for j = l , . . .  ,n, ajl<O Vj#:I (33) 

so that  the following discrete maximum principle holds (see Ciarlet and Raviart 1973). 

D.M.P. Let Zh be a decomposit ion of acute-type and D be a connected union of simplices of "Oh. Let 
We R p be such that 

(AW)j < 0 for xj ~ int (D); (34) 

then 

max Wj> max Wj. (35) 
X j  ~ OD x j  ~ int (D) 

[] 

Remark2. Since g(x, t) is a positive non-decreasing function in t, by (33) we have Gj<_O for 
j = l , . . . , n ,  and 

Fj+I>F) for j = l , . . . , n .  (36) 

Moreover, for h small enough we have Gj = 0 for j=nG + 1 . . . .  , n, and 

F ) > 0  for j = l , . . . , n ~ ,  Fj<O for j = n ~ + l , . . . , n .  (37) 
[] 

Let us define the discrete positivity set 

p 0 = i n t (  U z), pi={Xef2:U~,k(X)>0} for i=  1 , . . . , m  (38) 
\ / 

and the discrete free boundary 

F i = S p i - F o  for i = 0 , 1 , . . . , m .  (39) 

Also set 

E i=Pi_po  for i = l , . . . , m .  (40) 

Remark 3. There exist two positive constants ho and C such that, for any h < ho, one has 

#(G + pO) <= Ch, (41) 

dist (F1, F °) <_- h. (42) 
[] 

In Section 5, we shall bound the distance between the free boundaries by means of the L~-error 
between u and Uh,k. In order to do that, we will assume that  the time-step k is chosen as a prescribed 
function of h, k = k(h); moreover we assume that there exists a function t/(h) such that 

sup Ilu(ti)--U[,,kl[L®(Q) <tl2(h) 
l~i_~m (43) 

t/(h) = 0, t/"'kh) > 2 ]//~o for h small enough with lira 
h-~0 

[where, here and in the following, 7o will be given by (59)]. 
The error in the free boundary will be estimated precisely in terms of q(h). Some remarks on the 

behaviour of t/(h) itself will be given in the Appendix. 

Computational Mechanics 1 (1986) 

(3a) 
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4 Monotonicity properties of the discrete solution 

For the discrete problem, as well as for the continuous problem, the positivity set has monotonicity 
properties. In fact we shall prove the following theorem. 

Theorem 1. For i=  1 , . . . ,  m, we have 

U~>U} -I for j = l , . . . , n  (44) 

and 

U) >0  for j =  l , . . . , n ~ .  (45) 

Proof The proof is carried out by induction on the time levels. 

Step 1. i=  1. (28.ii) becomes (BU1)j > kFj 1 for j =  1 , . . . ,  n; then the inequality 

bjjUJ > - k  ~ ajtU~ >O for j = l , . . . , n G  (46) 
t:~ j 

follows from (37) and (33); hence (45) holds. 

Step 2. Suppose the property is satisfied for i. Let {xj}j~ N, be the nodes internal to U. By setting 
Di+l= U ~+~- U ~ and by subtracting BU i, (28.ii) yields 

(BDi+I)j>=kFj+I-k(AUi)j for j = l , . . . , n .  (47) 

On the other hand one has by (28.iii) 

(MUf+kAU~)j=kF]+(MU~-I)j for j ~ N  ~. (48) 

Then, (36) and the induction assumption yield 

(BDi+~)j>k(Ujj+~-Fj)+(MDf)j>O for j e N  ~, (49) 

hence the assertion. [] 

Remark4. It is easy to show that U~> U~ -1 f o r j e N  i, for i = 1 , . . .  ,m. 

So, by Theorem 1, p i -  1 C pi and, in particular, pO C U, for i = 1 , . . . ,  m. This result guarantees the 
monotonicity of the discrete positivity sets, but does not ensure that, at the first time-step t!, the 
discrete free boundary leaves ~p0. Such a property is proved in the following proposition. 

Proposition 2. For every k, there exists a positive constant h0 such that, for any h < ho, we have U) > 0 
f o r j = n G + l , . . . , n l .  

Proof Setting c = c(k)/2[where c (k) is the constant in (11) and t = k is the first time level], we have 
u (x, k) > umi, > 0 Vx ~ Sc (G). Thus, there exists h0 > 0 such that, for every h < h0, the error estimates 
(43) yield I[u(k) --Hl,k liLaC(O) < Umin, which implies u~,k(xj) > 0 V xj ~ Sc (G). 

[] 
So, by Theorem 1 and Proposition 2, G - F o  C pi for i =  1 , . . . ,  m. 

Finally, we also prove the following property. 

Proposition 3. For any i > 1, the set Pi is connected. 

Proof Let D be a connected component of P~ which does not intersect p0. We note tha t /5  is a 
connected union of simplices of Zh which satisfies the property U~ = 0 Vxj e ~D. In each internal node 
xj to/3,  the inequality 

(A U~)j < 0 (50) 

holds [in fact, if Uj > 0, (50) follows from (28.iii), (37) and (44); if U~ = 0, i. e. xj E ~D - ~ b  is an isolated 
point of the discrete free boundary U, (50) follows from (33)]. Then, by the D.M.P., U~ = 0 Vxj ¢ D, i. e. 
D=d~. [] 
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5 Approximation of the free boundary 

Now we shall prove a non-degeneracy property for the discrete solution which is similar to P1. Due to 
Theorem 1 it will be enough to prove the property outside pO (as in the continuous case). 

Theorem 2. There exist two positive constants 7o and h0 such that, for any i = 1, for any h =< h0, for 
any r>=2h and for any node x , ~ E  i with Br(x,)c~Fl=~P, we have 

sup Uj > ~0 r2. (51) 
xj ~ Br(x.) ~ E i 

Proof. Introduce the function o-* (x)= I x -  x ,  I z and the vectors of its nodal values O * =  {a* (xj)}~=a, 
O* = {o-* (xj)/~= a. Note that  (see Brezzi and Caffarelli 1983) there exist two positive constants 6o, 6~ 
such that  

-6o  ~. q~j(x)dx<(.40*)j<= -6~ ~ q~j(x)dx for j = l , . . . , n .  (52) 
f2 

Let i > 1 and consider the vector 

W i _  Ui I O*. (53) 
- 

i 
Let D be the largest connected union of N-simplices such that x ,  ~ int (D) and int (D) C Br(x,) c~ E .  In 
each internal node x j, the equality 

(B U i)j = kFj + (M U i - 1)j (54) 

holds, hence 

U i _ l _ e i ~  _ ~  
(AW' ) j=F)+ M -k- ]j 26o (AO*)j. (55) 

Then, from (44) and (52), for h sufficiently small we obtain 

3 S q~j(x) d x + l  ~ ~pj(x)dx<O. (A Wi)j < - ~  a (56) 

So, by the D.M.P.,  W i takes its maximum in D on a node x~ of the boundary of D. Since W~, = 0, 
then W~ i > 0, so that U[ > 0 and hence x~ ¢ F t. Since (56) holds in each internal node to U ,  hence there is 
at least one neighbouring node xj to x~ where W)> W]. Therefore it follows that 

dist (x~, ~Br(x,)) < h. (57) 

On the other hand the positivity of ~ also implies 

Ui > ~ O?. (58) 
zoo 1 r 2 

By means of (57) we have O* = ]xz-x,[2 > ( r - h )  2, so that (58) gives Ul i >2~o 4- and (51) follows 
with 

1 (59) 
7 o -  86o" 

[] 

We will now bound the distance between the free boundaries by means of the L~-error estimates 
between u and Uh,k. We shall first prove the following lemma. 

Lemma 3. Set el (h)= 3 ~/(h)/2 ~/)Too. There exists a positive constant h0 such that, for any i >  1 and 
for any h < h0, we have 

f2 _ p i  3 (• _p(t i ))  _S~l(h)(r(t,)). (60) 

Proof. Set e2 (h) = ~/(h)/]/~o and S i = (~ - P(fl)) - S~2(h )(Y (ti)). We shall prove now that U~, = 0 for any 
node x ,  ~S  ~. Obviously we have u(x, f l)=0 if xEB~(h)(x,)c~O, hence from (10) it follows that 
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B~2(h) (X,) n Fa = qb ; finally (43) implies that a2 (h) > 2 h for h small enough. If we suppose that  U~ > 0, 
then Theorem 2 yields 

sup Uj > 7oe22 (h) = ~/2 (h) (61) 

which contradicts the error estimates (43). 
We have proved that  each node of S ~ belongs to f 2 - U .  But a simplex z could exist such that 

int (z) C U with a vertex in S ~. Hence, it is sufficient to remove a further strip of width h from S ~. 
Globally we remove a strip of width el(h) from O - P ( t ~ ) ,  so that (60) holds. 

[] 
Under  the regularity assumptions (2), (3) on the data, we can estimate the measure of the 

symmetric difference P( t  ~) + P~ between the continuous and the discrete positivity set, at each time 
level. 

Theorem 3. There exist two positive constants h0 and C1 such that, for any i > 1 and for any h < ho, we 
have 

p ( p ( t  i) + pi)  < G r  I (h). (62) 

Proof  By (60) we have 

pi _ p (t i) = (f2 - P (ti)) - (f2 - U )  C S~,(h)(F (ti)). (63) 

On the other hand, i fx  e P( t  i) - p i  then U~,k (X) = 0, thus the inequality 0 < u(x, t i) < r/2 (h) follows from 
the error estimates (43). Therefore 

p (t ~) _ pi  C {x e f2 - po : 0 < u (x, t i) < ~/2 (h)}. (64) 

Since (22) implies 

<= eel (h), (65) 

then (16) and (41) imply 

# {x e f2 - p0 : 0 < u (x, t') < q2 (h)} < C~/(h), (66) 

the thesis follows due to (63-66). [] 

Under  the stronger condition that F(t)  is locally Lipschitz continuous for any t > 0, we shall prove 
that, at each time-step the discrete free boundary lies in a ~/(h)-neighborhood of the continuous free 
boundary. 

Theorem 4. There exist two positive constants ho and C2 such that, for any i > 1 and for any h < ho, we 
have 

r c Sc2,(h)(r(/)). (67) 

Proo f  By (64), due to (23) and (42) we have 

p (t i) _ pi C {x e f2 - po : 0 < u (x, t i) < r/2 (h)} C SE3 (h)(r (t i)) (68) 

with e3 (h)= (1/(2 ]/~-0)+ C)rl(h). The thesis follows due to (63) and (68) with Czr/(h)= el (h)+ ~3 (h). 
[] 

Remark  5. Estimates (62) and (67) could be derived by using Proposition 2 instead of properties (41), 
(4)). In this case (64) must  be replaced by 

p ( t  i) _ f i  C An(h)(t i) 
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i i -" Setting, for i = 1 , . . . ,  m, Uh -kAhuh > k f -  u~- 1 and u~, - k A h ~  > k f -  u i-  1, it can be proved (Nitsche 
977) that for any i > 1 

/I u i II (£2) Ck- hZ[lghl u, (75) 

with C independent of  i, h, k; hence 

I[ui-uih[[L,(~)<Ck-lh211gh[~+llui-a-u~-x[[L~(~) <Ck- lh2 i [ l gh [U<Ck-2h2] lgh[  u. (76) 

Concluding, we obtain the estimate 

sup ]lu(t )-u£]lLo(a) <=C(k +h2k- llgh[") (77) 
l < _ i < m  

which gives ~/2 (h) ~ h 2/5 [lg hi u, if k ~ h 4/~. 
A similar error estimate can be obtained when the boundary data is positive [and constant in x]. 
Clearly both (71) and (77) are far from being optimal. Their improvement would immediately 

produce a better estimate for the free boundary error [in terms of powers of  h and k] through (43) 
and (62), (67). 
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