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Introduction
In an optimum control problem we are given a real ordinary differential
equation system
dx’

AX  — fr(fe 4l 42 . .1 m o
7i Frg; o, 2%, 2% ul, o, u™) 1=1,2,...,n
which is a mathematical model of some physical process. The problem of control
is to select the real functions w/(f), =1, 2, ..., m (control variables) on an

interval of time, {,=<¢{<¢, such that the solution x*(f) moves in a prescribed
manner on {,<{<¢. The quality of this choice is measured in terms of a
performance index. For example, it could be required that the #*(f) move from
a prescribed initial point to a prescribed moving target G'(f) in a minimum
interval of time by choosing the #/(¢) from an appropriate class of controls;
or it could be required that the x*(f) move to G*(f) in a finite interval of time
by wusing #'(f) in which the energy for control is to be a minimum. Usually the
performance is measured by a functional which depends on the control variables
#/(¢) and the controlied variables x* (f).

We shall consider the problem of existence of an optimal control. This
problem has been solved for the case of linear differential equations in [2], [37,
[9], and for certain nonlinear equations in [&]; however, our treatment includes
these earlier results. In Section 1, Theorems 1 and 2 state conditions such that,
if there exists one allowable control which does the prescribed task, an optimal
control will exist. The results of Section 2 are concerned with establishing the
existence of an allowable control which accomplishes the task for various forms
of the differential equation system.

1. Existence of an Optimal Control
Consider the differential system

1) (fz:vt‘_:/'(t'xl’""x"’ulv-”»“m); 1=1,2,...,0
where* f'{t, x, ..., 2", ul, ..., u"‘)Zfi(t, x, %) together with
jﬁ(f’x,u): GLh=1,2,...,n

n
* In vector notation x=(x', ..., 2") and |x|=X |#!|.
1=1
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are real continuous functions in R! x R" x£2, where R* is the real n-dimensional
number space and 2 is a non-empty compact subset of R™.

For each choice of the function
u(t)=(@),...,.u"()) on —o<f{H=ISHh<oo,

as a measurable vector-valued function with a graph in 2CR™, the differential
system
Duey H=f@xul) i=1,2,...,n

has a unique absolutely continuous solution, or response, x{f) on a subinterval
of {,<¢=<t,, with a prescribed initial point xy==x(4). This is the conclusion
of the CARATHEODORY existence theorem for differential systems [4]. Note that
% (¢) is measurable if and only if every component #!(¢), ..., ™ (f) is a real-valued
{Lebesgue) measurable function. The response x(f) is continuous, and it has a
derivative, except on a set of measure zero, such that the differential system
1) 4y is satisfied almost everywhere. If the finite interval #,<¢<¢, is degenerate
so fy=1,, then the response is just the single point x (f)) == x,.

Definition. A control (or steering function) for system 1) with prescribed
non-empty compact set 2 R™ and prescribed initial point x%,€ R" is a measur-
able vector-valued function u(f), on a finite interval {,<¢<#, with «(f) (42,
such that the response x(f) with z(f;)=x, is also defined in R" on {=t<4,.

We shall be interested in those controls such that the response x(¢) travels
from the prescribed initial point x,==x{#,) to a given moving target G(#). For
each ¢ on a given finite interval 1,<{=<1,, we specify a non-empty compact
target set G(f) CR". Moreover, G(f) varies continuously with £. Here we use
the Hausdorff metric distance between two non-empty compact subsets X and
Y of R* which is the smallest real number d=d (X, Y) such that X lies in the
d-neighborhood of Y and Y lies in the d-neighborhood of X, cf. [1]. If G(f)
is a point for each ¢, then the target is a continuous curve. If G(¢) is a constant
compact set, we have the regulator problem where the.target is fixed, cf. [10].

Let us give fo(s, %, ..., 2%, u}, ..., 4™ as a real continuous function on
R!'xR"x£2 and define the cost functional of a control % (#) on {,<¢<¢, with
response x(t), by

Clw) = ,,,f (b %(t), u(®)) dt.

If fo(t, x, u) =1, then C(u)=¢ —1,, and the cost of a control is just the time
duration over which it acts.

Definition. Given the control problem
a) 2E=f(t, x,u), 1=1,2,...,n,

b) QCR",

) %ER",

d) GB)CR* on 1,=it< 1,

e) C(u), the cost functional,
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as above. Define A=A(f1{¢, x, u), ..., *¢, %, u), 2, %, G(t)) as the set of all
controls %(f), on various subintervals £,<¢{<?, with 7,<#<#<r1,, such that
%(ty) =%, and =x(,)EG(,).
A control #*{#) in 4 is called optimal in case
Clu*) = C(n)
for every control «(f) in A4.

We now prove the basic existence theorem for optimal controls. The examples
following the theorem show that an optimal control need not exist if the hypo-
theses of Theorem 1 are not upheld.

Theorem 1. Given the control problem

a) =, ..., 2 ul, ..., w")=g'(t, x)-+hit )W for i=1,...,n and

i i
f=1,...,m with g'(t, x), kK(t, x), and 28 (1, x), ok ¢ x), k=1, ..., n, con-
. xk oxk
tinuous on R1XR",

b) a non-empty, convex, compact restraint set 2 C R™,

c) the initial point x,€ R",

d) the continuously moving nom-empty compact target set G(f) on the finite
interval T,St1< 14,

e) the cost functional t
Clu) = [ (¢, x (1), w(t)) dt,

%
where f°(t, x, u)=g°(¢, x)+ k) (L, x) W, and g°(t, x), and R} (¢, x) are continuous on
R x R".

Assume the set A of controls with responses traveling from x, to G, as defined
above, 1s such that:

A) 4 is non-empty,

B) there exists a real bound B< oo for all responses x(f) corresponding to A,
that is, |x ()| < B uniformly for all responses.

Then there exists an optimal control in A.

Proof. Since 4 is non-empty and the corresponding responses are uniformly
bounded, infC{u#)=m> — oo for all u€A. Either A is a finite set, in which
case the theorem is trivially true, or we can select a sequence of controls

u®(t), on H<t<#» from A,
with C(«!®) decreasing monotonically to m. Select a subsequence (without
changing the notation) such that
1P —~1t3 and " —>t¥, monotonically.
Let us take the case where
W< <r<#) for k=1,2,3,...

and consider the other cases later. Then each #* (#) is bounded and measurable
on the interval #f <¢<¢ and thus belongs to the Hilbert space L,[f¥, t¥]. We
assume tg <ff'; for if ¢§ =¢F, then m=0 and x,€ G (t}) so every choice of control
is optimal.
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A closed ball in Hilbert space is weakly compact [§], and thus we can select
a further subsequence ™ (f) with

u® () > u*(f) weaklyin L,[#f,F].
We next show that
u*(f) on =it
belongs to A.
Now a compact convex set 2 R™ is precisely the intersection of a finite
or a countable number of closed half-spaces, cf. [1]. Let

a,y'+b=0

be one such closed half-space in R™. Let M be the subset of [#F, ¢¥] for which
u*() lies in a; y*+5<<0.

If M has positive measure,
t

f[a,- w*(8) -+ b] @, (1) dE < 0.

where g,, is the characteristic function of M+ But

1 o

lim [ [a, 45 (t) + b] gy () 4t = [ [a;**(2) + b] gy 0) dit.
® [+4

k—co

This is impossible since the left members are each non-negative. Thus M has
measure zero. Since there are only a countable number of closed half-spaces
considered, u*(f) lies in £ except on a set of measure zero. Redefine #*(¢) on
the exceptional null set of #f <{<#f so that u*(¢) lies everywhere in Q.

Next consider the response for #*{f) on ff <t<#f. The response for
wP () on Pt
is x* (f). Then (using vector notation)

@ () = xy+ [ ‘[g (s, ®(s)) + A (s, 2 (s)) u®(s)] ds.
1

Select a further subsequence of controls so that

kl_i)rgo 2B (t) = x*(¢) weakly on [#f, tF],
kl_i)nclo g(t, 2™ (1)) = g*(t) weakly on [#f, #f],
kl_i)rg) h(t, x® (@) = h*(2) weakly on [#F, ],
Jim 4 (t, x® (1)) u® () = @*(t) weakly on [fF,4]].

Then, for each fixed ¢ on #f << ¢,

lim x™® () = x, + lim f’o[g (s, xB(s)) + A (s, 2™ (s)) ¥ (s)] ds +

k—»o0 k=00 #A

+ lim f (g (s, ™ (s)) + A (s, 2® (s)) u® (s)] ds.
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Thus
13
lim 2®() = % + [ [g¥(s) + ¢*(5)] ds.
- 00 ;:
Therefore
JLim P () = z()

exists, for each fixed ¢. Also %(¢) is absolutely continuous on [#3, tf] and % (f§) = x,.
Using the Lebesgue convergence theorem [§], we find

so %(f)=x*(f) for almost all ¢# on [¢f, #¥]. Changing the definition of x*(#) to
be precisely %(¢), we now show that x*(f} is the response to the control #*(¢).
Now

x*(t) = xp+ kl_if{.lo t.ft [g (s, x® (s)) + A (s, x® (s)) u® (s)] ds,

SO

xK*() = x -} fg (s, x*(s)) ds +
+ Jim (o 596) 09 — h(s, 209 w0 +

+h(s, x"‘( ) u® (s) — h(s, x*(s)) u*(s) + (s, x*(s)) u*(s)] ds.

Since %™ (s)€L2, which is compact, and since k(s, x® (s)) >& (s, x*(s)) almost
uniformly by EGOROFF’s theorem [6], we find

x*(t) —xo—{—f[g(s x%(s)) + h(s, x*(s)) u*(s)] ds.

Therefore x*(t) on tf <t<1f is the response to the control #*(f).

Now
AW (EM eGe®) foreach k=1,2,3,....
So
a*(tF) = lim [2® (gf) — 2 () 4 2% (19)],
k—>o00
and

2+ () = lim [2® (#4)].

If x*(tf) were not in G(¢#f), then there would exist a neighborhood N of the
compact set G (¢f), so that x*(¢f) is not in the closure of N. But G({) (N for ¢
sufficiently near #f. Thus x® (#¥)€N for large k& and yet x*(t¥) is not in N.
This is a contradiction, and therefore x*(ff)€G(#F¥), and the control «*(#) on
5 <t<t¥ belongs to 4.

Now compute the cost of «*(f). Here

t(k)

C () f[g°( £, 2 t)) + h°( x(")(t)) u(k)i(t)] at
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and
it i
klim C(u®) = [ go(t, x*(t)) d¢ -|-klim TR (2, 2P () w®it) at.
—> 00 t: —> 00 t:

Just as above we compute
klim Cu®) = C(u*) =m.
—> 00

Therefore #*(f) on {§ <t<{¥ is an optimal control.

We return to the assumption
1%, #P >#* monotonically.

Suppose we do not have
W= <g=<d
but instead, for example,
1< and <,

and the other cases can be treated similarly. Extend each control «®(f) (at
least for all large k) to the interval fy <¢<#} by defining #'® (f)=u,, a constant
vector in Q, for ¥ <i<ff. Again define the weak limit in Q,

u*(t) =k1im wB(t) on F<t<¢f.
—> 00
We must show that each response
(@) on P=t<P

can be extended to the interval # << ¥ using the extended controls. Then
we shall show that #*(#) on £ <{<¢# is in 4 and is an optimal control.

It is easily seen that all the compact sets G(f) on 7,<¢=<1, lie within one
sphere, S (0, g) of radius g, centered at the origin. Thus, for (£} —#£¥) sufficiently
small, each 2™ (£ lies in S(0, p) and has an extended response on #¥ << s
which lies in 5(0, 2¢). Also

lim |«® () — +® ¢ = 0.
k— o0
Just as above we find that
klim x® () = x*(f)
— 00

at each £ on £§ <¢< ¢, and moreover x*(f) is the absolutely continious response
to the control «*(#), and x*{tg)=x,.

Now
M () G )
and
lim |a*(tF) — x*()] = 0.
k=00
Thus

() = lim (@) = lim [ () — 2 ¢9) + 2]

or
2*(#F) = lim ® (@),
k—co
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Thus
* () G (),

as required. Therefore, #*(¢) on {§ <¢t<t} lies in 4.
Finally,
&
Cu®) = [ [g°(t, x® (£)) + A) (¢, x™ (8)) w®7(2)] dt

8

approaches the limit m as £—oc. As above we compute
Jim C(u®) = C(u*) =m,

and thus #*(¢) on #§ <i<tf is an optimal control. Q.E.D.

Remarks. Consider 4(¢,), the subset of A for which the control % (f) and the
response x(f) initiate at a fixed £,. If A(f,) is non-empty, and if the responses
x(f) for control in A{t,) are uniformly bounded, then there exists a control in
A(t,) which is optimal relative to A(%,). The same applies to the set A%y, &) CA (%)
where the control time interval #,<¢<¢# is fixed. If the differential system
and the cost functional integrand are time-independent, each control in A has
the same response as some control in A(z,), after a time translation.

If C{u)>m>— oo for all controls # in A4, or in A(f,), then one requires only
the uniform bound |x(f)] < B for responses x(¢) corresponding to controls u(f)
with C(u) near m.

Also f* (¢, x, u) need only be defined and satisfy the hypotheses of the theorem,
for 1,<t< 7, x€OCR"*, and ¥ QCR™ where € is an open set in R* which
contains the initial point x,, the moving target G (#), and all the responses of A4,
or of A(t,), in a compact subset.

The hypothesis A} of the theorem concerns the domain of controllability for
the problem, as will be discussed in a later section. The hypothesis B) is satis-
fied if

|1, x,u)| <o, i=1,2,...,n
or if

<o, Lk=1,2,...,m,

o fr
?/k (¢, x, u)
éx

for some real «, in [1,, 1;] X R* xQ. Thus B) is always satisfied if gi(¢, ¥) and
R (¢, x) are linear in x.

The following examples illustrate situations where the optimal control fails
to exist or is not unique.

Example 1.
. f=sin27u, y=cos2mu, Z=—1 in R3

The initial point is (0, 0, 1), and the target is the fixed point (0, 0, 0) on the
time mterval 0= <1, < 2. The restraint set 2is —1 < u#<1. The cost functional
H
s C(u)= [ (x2++?) d¢, and we consider the set of controls 4(0).
0
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Each control #(¢) in A(0) is defined on 0<¢<{1. Consider the controls ™ (f)
such that
sin 2 ™ (f) =sin 2n k¢,

cos2nu® () =cos2mkt, for k=1,2,3,....
Such piecewise continuous controls are easily constructed. The corresponding
responses are
(%) =‘l—0052ﬂkt (k) — sin2n ki ® N —
¥ (9 —p Y () ~—ar ¢ {H=1—¢.

Thus x® (1) =0, y*® (1) =0, 2# (1) =0. The cost for each % (f) is computed to be
1

gy [1—cos2mkt ;1

0

Thus
Jim € (u®) =0,
and m=0 is the infimum for all C(w) with # in A(0). Yet there is no optimal
#u*(f) on 0= t=1 for which the cost is
1
Cu*) = [ (x*2 + y*2) dt =0.
1]
For such an optimal control #*{#) the response needed is x*(f)=0, y*(f)=0.
This implies
sin 2z u*(f) =0 and cos2mu*(t) =0

for almost all £. But this is impossible, and hence there does not exist an optimal
control for this control problem. We note that the coefficient functions of the
differential equation are not linear in #, but hypotheses A) and B) of the theorem
are satisfied.

Example 2,
i=u, Vv=u,, Z=—1 In R3

The initial point is (0, 0, 1), and the target is the fixed point (0, 0, 0) on the
time interval 0=<¢< ¢, < 2. Take 2 as the compact but non-convex circle u?-uf=1

t
in R2 Again take C(u)= [ (x2+ y?)d¢t, and consider the controls A(0). Using

0
the controls #{®=cos 27 kt, u¥ =sin 2nkt, k=1, 2, ..., we find inf C(u) =0 for
uc A(0). Yet there is no optimal control in A(0) which yields a cost of zero.

Example 3.
£=1, y=—2xe"u in R2

The initial point is (— 1, 0), and the target is the fixed point (1, 0) on the time
interval 0=<<¢<{¢, < 2. The restraint set £2 is 0=<#=2. The cost functional is
£ 1
Cu)= [ (2—y) dt=[ (2— y) dx. Each control #(f) in 4(0) i5 defined on 0<¢<2
o 1
and yields a response x(f)=¢—1, y ().
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Every response y(f) satisfies the inequalities
0= y(x) < —Inx? for x=0.

Each continuous response joining (—1, 0) to (1, 0) must lie below the curve
y=—Inx? on some interval.

1
Thus C(#)> [ (2+1Inx2) dx=0 for each u(f)€A(0). But for u(f)=u,=2—¢
-1

on 0<{<2, we compute the response x=¢—1, and
— o 1n (¥ 1)
y(x) = —In [

The cost for such a control in 4(0) is
1

C(ue)=f{2—|—ln{(x2;1) (2-s)+1]}dx.

(2——8)—}—1].

-1
Thus
lirra C(u,)=0.

Hence inf C(u) =m=0 for «(¢) € A4(0). Therefore there does not exist an optimal
control in 4(0). Here we note that hypothesis B) of the theorem does not hold.

Example 4.
£=1, y=—zxu in R2

The initial point is (— 1, 0), and the target is the fixed point (1, 0) on the time
interval 0<<¢<¢,<2. The restraint set £ is —1=<u<1. The cost functional
t

1
is C(u):f 1—:y’ dt:f 1ixy"‘ . Each control #(f) in 4(0) is defined on 0=<<¢<2
-1

L]
and yields a response x{f) =¢—1, y(f).

Every response y(f) satisfies the inequalities

‘__(t_xﬂ<y(x)§ 1_2”2 on —1<x<1.
The two controls #,(f)=-+1 and #u_(f)=—1 are each optimal and achieve the
minimal cost. Here an optimal control in A(Q) exists, since the hypotheses of
Theorem 1 are satisfied, but it is not unique.

We close this section with an existence theorem for Lipschitz continuous
controls, which is valid even if the control # enters the coefficients f(¢, x, %)
in a nonlinear manner.

Theorem 2. Given the control problem

a) B=f ..., 2% ul, .., u™);i=1,2,...,nwhere fi(t, x, u) and a—f;(t, x,u);
i, k=1, 2, ..., n are continuous in R X R" xQ, ox

b) a non-empty compact restraint set 2 CR™,

c) the initial point x,€ R",

d) the comtinuously moving non-empty compact target set G(t) CR* for each ¢
on the finite interval Ty,=t<w,,
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e) the cost functional
Cw = [P =), u () dt

where fO(t, x, u) is continuous in R1 X R" xQ.

For a given positive constant A consider the class A(LipA)C A of controls u{t),
each continuous and satisfying a Lipschitz condition

) —uie)| < Al 1|

for all pairs ¢, t' on some interval v, <t, <!, ' <4, <1,. Assume
A) A(LipA) is non-empty
B) there exists a bound B<Coo for all responses x(t) corvesponding to controls

of A(LipA), that is, |x ()| < B uniformly for all responses. Then there exists an
optimal control u*(t)€ A(LipA), that is, C(u*) < C(u) for all u(t)c A(LipA).

Proof. Assume that A(Lip A) is infinite, and define
inf C(u) =m> — oo for all u{t)cA(Lip4).

Select a sequence #® (¢) on M <¢t<#® of control of A(Lip4) with C(u®) de-
creasing monotonically towards m as k=1, 2,3, ... tends to infinity. Select a
subsequence (still called () with

) >ty and ¥ > monotonically.
Consider first the case where

P<y<ty<dh,  k=1,2,3,...,

and again we omit the trivial subcase where f§ =¢f. Using AscoLr’s theorem [6],
select a subsequence of these controls such that

lim ™% () = u*(f)
k00
uniformly on f§ <¢<t¢} and u*(¢) is a continuous function satisfying
|u*(t) —ux(t)| < At —#] for <t <.

We must show that «*(f) on ¢ <¢<t¢f lies in A(Lip4). The graph u*(f) R,
since £ is compact.
Consider the responses ¥ (£) of #® () on ¢! <¢<#*. Here in vector notation
13 13
B () — 2P (8) = [ f(s, xP(s), u® (s)) ds — [ f(s, 22 (s), u(s)) d's
5 o
for t¥ <t< ¥ with k and p> & positive integers. Then

|x® (&) — 2P (¢ |SI [7(s, )¢ s).u<">(s)|ds+f |F(s, 27 (s), u'P (s))] ds +

+f|f (s, 28 (s), u® (5)) — f(s, 2P (s), u® (5))| ds.
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Take % so large that | ——t&")] and |ty —#P| are very small and | ™ () — u?) (1)]
is uniformly small on £ <¢<¢f. Use the uniform continuity of f(¢, x, #) in
1,5t< 7, |#| < B, u€LQ, and compute

|8 (1) — 22 (g)| §§+f|f (s, %8 (), ¥ (s)) — F(s, 2® (s), u)(5))| ds -+

+f|f s, 28 (s), w® (5)) — f(s, #P (), wP)(5))| d's
2
so

]x(k) (t) — % 0= %(s), u(p) )l Ix(k) (s) — x(® (S)I ds,

for an arbitrarily small £>0. Write

2() =|x® (f) — 2 ()| and ‘% (s, Z(s), ulP(s))| < .

Then
£
) Se+afz(s)ds
14

This integral inequality implies
z(f) < g 21,

Therefore CAUuCHY'S criterion yields
Jim x® (f) = x*(¢) uniformly on (¥ <t< 4,
— 00

and x*(f) is continuous on #§ <t< 4.
Now

2B () = %o+ fl:f (s, x®(s), u®(s)) ds + ftf (s, 2% (s), u® (s)) ds
on ff<t<tf. Thus ' o
¥ () = %, +.ff(s, x*(s), u*(s)) ds,

and x*(f) is the response to the control #*(f) on £y <¢<tf. Clearly x*(if) = %,.
Also
2*(tt) = lim 2@ () = lim [2® (1) — 2@ (@) + 2% )]
k—o0 k—>r 00

S0
x*(eF) = lim 2® ().
k— o0
Since
B () € G #P),
we have

x*E)EG ).
Thus #*(f) on t§ <t<t}¥ belongs to A(LipA4). Furthermore
C(u*) =khm Cu®)y=m,

and #*(f) on fy <¢=t¥ is optimal in A(LipA4).
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We return to the assumption that () —#F and #— ¢}, monotonically. Suppose
we have i < ¥ and (Y < #¥, for example. Extend each control u® () to & <t <
by defining «® (¢ =u® (") on P <t<#}. For large k we can also extend the
corresponding responses x* (#) to the interval £ <¢<¢¥. Again

klim w® (f) = u*() uniformly on & <<,
— 0

and u*(f) satisfies a Lipschitz condition with constant 4. As above we show
that lim x5 = x*() uniformly on £ S¢<
— 0
and that x*(#) is the response to u*(f). Also x*(tf) =%, and x*(t¥) G (¢#F). Thus
u*(f) on t§ <t < ¢} belongs to 4(Lip4). Again we compute that #*(¢) on £§ <<t
is optimal in A(Lip4). Q.E.D.

Remark. The remarks following Theorem 1 are also applicable here.

Corollary. Assume the hypotheses of Theorem 2 for each Lipschitz constant
p=1,2,3,..., and let ul(t) on £ <t<£P be optimal in A(Lip p). In addition
assume

1) the target‘G(t) on Tyt 1, 15 a fixed point G,

2) for each s> 0 there exists a measurable control u (t) on 1 <t<t{ in A such
that C(u,)<m-s where m=infC(u) for ucA and also £ < v, — ¢ for some £>0,
independent of s,

3) there is a uniform bound |x(£)] < B< oo for all responses x(t) corresponding
to measurable conirols in A,

4) for each s> 0 there exists a neighborhood N of G such that each point in N
can be steered to G by a C! control having a prescribed initial instant ty<<7v,— ¢,
a duration Z¢, and a cost <s (this condition is considered in Theorem 4).

Then Jlim Cuf) =m=infCw) for uea.
-0
Proof. It is clear that
C(u;)gc(uz+l) P=1;2)31---1

so lim C(u}) exists and is not less than m. But given a measurable control %, (f)
p—00

in A4, there exists a C* control which approximates #,(f) almost uniformly so
that the corresponding response has an end-point in N. But then x, can be
steered to the target point G by a control #,(¢) in A{(LipA4) for some A>0,
and with C(u,) arbitrarily near to . For p>A we thus have

Cluy) = C(3),

S0 plim C(up)=m, as required. Q.E.D.

2. Domain of Controllability

In this section we investigate the nature of hypotheses A) of Theorem 1. For
simplicity we consider the problem of steering an initial peint to a fixed target
point, say the origin. We still maintain that the restraint set £ is compact,
but in this section we require that the zero vector is in the interior of Q2.
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Definition. The domain of controllability & for the differential system
A 7 7. i=1,...,n

for a given restraint set £2CR™, consists of the set of all points x,€ R” for which
there exists a measurable control # () (£, defined on some finite interval, steer-
ing x, to the origin* of R".

Theorem 3. Consider

F=f, ., 2l ), i=1,...,n,

where** fi(x, u) CCl in R"XQ. Assume the vector wu=0 is an inferior point of the
compact restraint set 2 (R™. Assume

f0,00)=0, i=1,...,n.
If the matrix :—ﬂ’— (0,0) has rank n, then the domain of controllability € is an
Uu
open connected subset of R* containing the origin.

Proof. If the origin of R” is an interior point of &, then it follows from general
continuity arguments that % is open and connected. By continuity there exists
a neighborhood N of the origin in £ such that for any measurable vector # (¢)
on —1=¢{<1 in N the corresponding solution x(f) initiating at x,=0 will be
defined in R" for —1 <651,

Let
¢'t,ut,..., ") on —1=t1=1, 1=1,...,n,

be the solution of the given differential system for constant (u?, ..., ™) in N

and with ¢*(0,. =0. We shall prove that QL; (ty, 0), for some #,<C 0, has rank =.
Hence the differentiable map ou
W =ty %)

carries a neighborhood of #,=0 onto a neighborhood of xy=0. Then there is
a neighborhood of x,=0 which can be steered to the origin in time —/,>0,
and each required control is just a constant.

Now N
2 _f(ptu)u), @t 0)=0..

We compute

P aqo") af gk | of
— - = — , U) ——— — , ") .
ot (auf oxk ( ) oul ouw (@ u)

For u,=0 write the matrix
— o9
z(t) = B (¢, 0).

* This is sometimes referred to as null controliability.
** That is, f(r, u)€C® in R*x 2 and has a C! extension to R"X 2, where Q is
an open set containing .
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Then
& =1(0,0)2+£(0,0), 20 =0
Then
) =[1+ L L+ SR+ Bh
For a small |#y)
2(te) =22 (t5, 0)

has rank #, since f,(0, 0) has rank . Q.E.D.

Corollary. Consider a linear differential system with veal constant coefficients
P=A B L k=1,...,n; j=1,...,m.

Assume the compact restraint set 2 R™ contains the zero vector in ils inferior.
If the matrix B has rank u, the domain of controllabzhty € is an apen connected
set tn R* containing the origin.

A more difficult problem arises when the control has fewer degrees of freedom
than the response, 7.e. when m< #. The next theorem considers this case.

Theorem 4. Constder
=1, ..., 2" ul, ..., u") i=1,...,n

where f(x, u) CC! in R*X$2. Assume the veclor u=0 is an tnfevior point of the
compact restraint set 2 R™. Assume

1) f(0,00=0 i=1,...,n

and
2) there exists a vector vER™ such that Bv lies in no invariant subspace of A
with dimension =n—1, where B=% {0, 0) and A—— (0,0) are real matrices.

Then the domain of controllability € is an open connected subset of R* contain-
ing the origin.

Proof. Consider a neighborhood N C 2 of the origin in R” and v, > 0 such that
for each measurable vector #(f) on — 7, <¢=< 7, with % (t) C( N the corresponding
response % () with x{0)=0 is defined on — 7, <t 1.

We shall define a family of controls in N

W E) =u(t&,....E), [=1,...,m
on |¢{| <, and || < e for some £>0. Take
: t
wlt, &) =0 X0 0 &+ X (6 2) ot + X (5 2) 8]
where v is the vector mentioned in hypothesis 2),

X(t k) = 1 on [H=h
"7 o on ¢ >k,

Arch. Rational Mech. Anal., Vol. 8 4
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and ¢ is a small number with 0<|#|< ;. For convenience we choose this piece-
wise continuous function X(¢, ), but it would be easy to use a C* function
which almost uniformly approximates X (¢, 4), for each fixed A.

Note #(¢, 0)=0 and also
ou 7
—=vX|t, 1], =1,...,
oFF v ( ) k=1 ”
is differentiable except at {={,/k.

Let
28, ... E) =208, i=1,...,n

be the response corresponding to # (¢, &) with
20,8 =0, t=1,...,n.

Note that #*(%, 0)=0, 1=1, ..., n, since f*(0, 0)=0. Now x(t, £) is continuous
in (n-1) variables. Also, for each fixed ¢, the map

E—->x(t8

is a differentiable map of a neighborhood of the origin of R* into R" with the

origin fixed. If
ax*
Fra

() = (t 0) 4 k=1,...,n

is non-singular, for some fixed #<C0, then the domain of controllability € is
an open connected subset of R” containing the origin, as required.

Now, in vector notation,

=off(x(s,5),u(s,$))ds,

and so

%(t,o)=f[/1—~(s 0)+B2 5 2 (s, O)Id

[}
or

f[Az s) + Bu,(s,0)] ds,

so z(f) is continuous near ¢ =0. Also dz/d¢ exists, except at t=14/k, k=1,2,...,n
The &** column of the matrix z(f) satisfies

3
2y (B) = f[Az(k)(s)+BvX ]ds
0
or k=1, 2, ..., n, where the subscript 2=1, 2, ..., » designates the column.
Thus we have
fii(’i)——Az(k)—i—BvX( ) k=1,...,n



Optimal control for nonlinear processes 51

with z,,(0)=0. But the solution of this linear differential system is
4

2y (8) =e‘Afe‘“’BvX(x, %)ds
°
or Lk
Z(k)(t) =6“4f6_5AB‘UdS.
0
“Thus, for |4|<|t| <7,

% 3 4
z(l)(t)=e“4[t11~—2—‘!A+3—1!A2—23TA3+---]B'0,

2(2)(t)=e"4[t I — (31/2)2 A + (H;?)s Az—---]Bv,

1
2 2!

2o (1) ;e““ [%I _ (am? + U‘é’!’)s Az — ] By,

2!
We shall show the linear independence of the vectors (¢™*4) 2, (1), ..., (¢™*4) 2.,y (8).
The Vandermonde determinant
4 8 ... #

b2 (2 2" L
tin (En)® .. )"

Thus it is sufficient to show the linear independence of the vectors
Bv+0(ty)
ABv+0(t)
A2Bv +0(t)

A" 1By 1O,

where tlll_rg O(t)=0. Since the vectors Bv, A Bv, ..., A" By are linearly in-
dependent, we conclude that the vectors 2y (?), 2 (#), ..., %) (f) are independent
and that the matrix z(¢) is non-singular. Q.E.D.

Corollary. Consider

=, ..., 2N, u), i=1,...,n

where f(x, u) €Ct in R™ X2 and the origin of R™ is an interior point of the compact
set £. Assume

1) f(0,0)=0, +=1,...,mn,

2) there exists a vector v€ R™ such that Bv lies in no invariant subspace of A
with dimension <n—1.

Assume also that
#=f(,...,%"0,...,0) i=1,...,n
is globally asymptotically stable* towards the origin of R*. Then the domain of
controllability € is the entire space R”,
* See reference [12].
4#
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Corollary. Consider
M pa, (., ) x0T g (o x, AT p =

where the coefficients a,(xy, %y, ..., %,)EC! tn R" and |u|<e, for some £>0.
We write the corresponding first order system

X =2,
S) Fo = s,
Zy=— 0y (%5, 0, %) Xy — - — (X, ..., %,) %+ u.

If the system

X, = X,

By — (X, s %) Xy — s — A (X, o ens %) %y

1s globally asymptotically stable towards the origin, then for S) hypotheses 1) and 2)
of the theovem automatically hold and the domain of controllability for S) is all R*.

Corollary. Consider
D=2t 4", ™), 1=1,2,...,n

where f(x, u) €Ct for xER" and uc UCR™. Assume that for each point x,€ R"
there exists an interior point u(x,) of U such that

1) (%, (%)) =0, i=1,...,n

and
2) there exists a vector v< R™ such that Bv lies in no tnvariant subspace of
oy g . B _8f

A with dimension <n—1, where B = (%o, % (%)) and A = o (%o, % (%)) are

real matrices. Then for each pair of points x, and x, of R" there exists a piecewise
continuous controller u(t) om t,=<t<t, in U which steers the response x(t) from
x(t)=x; to x(fy) = x,.

Proof. In the proof of Theorem 4 we note that there is a neighborhood of the
origin which consists of points that can be steered to the origin by a piecewise
continuous controller in a finite time. Also there is a neighborhood of the origin
consisting of points to which the origin can be steered by a piecewise continuous
controller in a finite time,

The same properties hold for each point ¥ in R", after translating both x
and # as required.

Now let S be the subset of R” consisting of points to which x, can be steered
by a piecewise continuous controller in a finite time interval. Clearly S is both
open and closed in R". Thus S=R" and x, can be steered to x,, as required,
cf. [7]. Q.E.D.

Remarks. In the previous corollaries we can replace the hypothesis that
F=f(x, ..., 2", u}, ..., w™) be asymptotically stable for w =0, j=1, ..., m, by
the hypothesis that #*=f (s, ..., 2", «!, ..., w™) be asymptotically stable for
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some appropriate choice of #/=u/(41, ..., ¥*). As a particular choice of ' =u/ ()
to satisfy the condition of asymptotic stability consider a Lyapunov function
V(x)=0, V(x)€C!, with the choice of #€£ which minimizes [Z—Z f(x, u)]
If this minimum is negative definite in 0<|x|<oo for some V(x)>0, with
V(x)—>o0 as |x|—o0, then the domain of controllability ¥ is all of R".

We next consider the domain of controllability for certain second order
differential equations
E+f{x, %, u)=0

which we write as the first order system

=y, y=—1(x7y %)
in the phase plane.

Theorem 5. Consider the differential equation
T4+ f(x, %, 4)=0

with [ (x, v, u) € C! for all (x, v) and u C 82, where Q2 is a compact interval containing
zero as an interior point. Assume

a) (0,0,0)=0

b) f.(x,5,0)>0 and f,(x, y, 0)>0 everywhere

¢) 1.(0,0,0) 0.
Then the domain of comtrollability € is the entive (x, y)-plane.

Proof. The system

=y
y=-— /(x' ¥, 0)
has the variable Jacobian matrix J =( Of ! ) Since the eigenvalues of J
-t =1

have negative real parts for all (x,y), the system is globally asymptotically
stable to the origin, ¢f. [12]. However the solutions will not reach the origin
in a finite time.

Now

4 =( 0 1 )
- fx(o' 0, O) - fy(OJ 0, 0)

5= e oo)
'—f“(0,0,0)

Take v=1 as a 1-vector; then

Bv:( 0 ) and ABv:(-]‘“(O’O’O))
— 1.,(0,0,0) fed,

are linearly independent. Thus the domain of controllability to the origin is
an open set. Therefore € is the entire (x, y)-plane. Q.E.D.

and
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corollary. Constder %4 /(x-) + g(x) =y

where [(y) and g(x) € C! for all (x, y) and |u|Ze, for some e>0. Assume

a) }(0)=g(0)=0

b) f(y)>0 and g'(x) >0 everywhere.
Then the domain of controllability € is the entive (x, y)-plane.

We now turn from the asymptotically stable case, where the domain of
controllability & is the entire space, to the conditionally unstable saddle-point
case, where € is a strip in the plane.

Lemma 1. Consider
Z) i+f(E)—glx)=0

with f(y), g(x)EC* and f(0)=g(0)=0, F(¥)>0, g'(x)>0 for all (x,y) in RZ
Then the solution curve family of D) in the (x, y=1%) phase plane is topologically
equivalent to the solution curve family of the linear equation

¥+ 4 —x=0.

Proof. Write the equation 2) in the phase plane as

” (227
y=g(x) —1(».

We seek a homeomorphism of R? onto R? which carries the solution curves
(sensed but not parametrized) of %) onto those of

2) {’.‘:y’
y=x—y.

In &) the origin is the unique critical point. The variational equation o
&) at the origin is

{i=%
y=g0 -1y,

with real eigenv®lues of opposite signs. Thus %) and %) are topologically equi-
valent near the origin.

Thus &) has exactly four solution curves which have the origin as a limit
point and these approach the origin with the same directions as for .#), that is,
one of these solutions of &%) lies, near the origin, in each of the four quadrants.
Call these solutions of .#), which will be shown to be separatrices in the sense
of MARkUS [13], by the numerals I, II, III, IV corresponding to the quadrants
in which they approach the origin. By examining %) on each of the coordinate
axes it is easy to see that each of I, II, ITI, IV lies entirely in the corresponding
" quadrant.

A]Ong I we have a"y g(x)_f(y)

dx y

which is bounded from above on each compact x-interval. Hence I is single-
valued over the entire positive x-axis. A similar argument shows that III is
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single-valued over the entire negative x-axis. The separatrices II and IV are
each single-valued over a segment of the x-axis, and they extend to infinity,
that is, 24+ y2->00 on II and IV,

Consider a solution curve of &) in the plane sector bounded by separatrices
IT and I. Here £=y>0 and, in the second quadrant y<<0. Thus each solution
curve in this sector must intersect the first quadrant and must exist in the first
quadrant for all larger values of x to the right of any such intersection point.
Hence the solution curves in the sector between II and I are linearly ordered
(using the inclusion relation for the regions above the curves), and they form
a parallel family, as described by MARKuUs [13]. A similar analysis holds for the
sector between III and IV.

In the sector bounded by IV and I each solution of &) intersects the positive
x-axis, which thereby serves as a transversal for the solutions in this sector.
A similar analysis holds in the sector bounded by II and IIL

Thus the only separatrices of &) are the critical point at the origin and
the solution curves I, I, I1I, and IV. Therefore by the general theory of separatrix
configurations [13] we find that %) is homeomorphic with .#), as required. Q.E.D.

Remark. Call the solution curves II and IV, leading towards the critical
point of &) with negative slope, the principal separatrices, and call I and 1I1
the minor separatrices of ). The principal separatrices of &), together with
the critical point at the origin, form a topological image of a line in R? which
is single-valued over the entire y-axis. The same holds for the minor separatrices
of &) over the entire x-axis.

Lemma 2. Consider the two differential systems

) o

y =g.(x) —F(y)
where [(y) and g, (x)=g(x) +C,, for positive constants C,, are in C' in R2
Assume [(0)=g(0)=0, f(y)>0, g'(x)>0 everywhere in R2, and |g(x)|—>oco as
|#] o0, -

Then each of &£,) and ) is topologically equivalent to the linear system,
in the phase plane (x, y= %)

2) { k=9,

, y=x—9.

The principal separatrices 11, and IV, together with the critical point, of
&) form the topological image of a line which separates the plane in two. At each
fixed ordinate the principal separatrix or critical point of F.) UHes fo the right of
the corresponding principal separatrix or critical point of &£,). The open band
B between the principal separatrices and critical points of &,) and &) is homeo-
morphic to an open band between parallel straight lines in the plane. Also each
minor separairix of F,) intersects the principal separatrices of ¥3) in at most
one point, respectively (see Figure1).

Proof. By Lemma 1 the topological configuration of the solutions of &) or
of &) is that of £). It is clear that the critical point of &) lies to the right of
the critical point of &,), on the x-axis. By the preceeding remark the principal
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separatrices II_ and IV_, together with the critical point of %), form the topo-
logical image of a line which is a single-valued covering of the y-axis. The same
holds for %,). )

Suppose II, and II_ intersect. At the intersection point which is furthest
to the right the slope of II_ is less than that of II,, and this contradicts the
supposition of an intersection. Similarly IV, and IV_ cannot intersect.

Therefore the open band B bounded by the principal separatrices and critical
points of ;) and &) is homeomorphic to the open band between two parallel
straight lines in the plane. In fact, the homeomorphism can be extended to the

closed bands.
Z,

v

Fig. 1

Now on a minor separatrix, say I, , we have x>0 and ¥ > 0. Hence I, intersects
II_ in exactly one point. Similarly III_ intersects IV, in exactly one point. Q.E.D.

Theorem 6. Consider
2) E+1(%) —g(x) =u,

where [(y), g(x)EC for all (x,y) in R2and — C_<u=<C, is the finite real interval
Q with —C_<0<C,. Assume f(0)=g(0)=0, f'(¥)>0, g'(x)>0 in R* and
|g(x)] o0 as |x| —>oco. Then the domain of controllability € in the phase plane
(%, y=1=) is precisely the open topological band B bounded by the principal separa-
trices, and critical points, of the two systems

%) o
y=g(x) £(C) — 1)

Proof. Consider the open quadrilateral Q in R? bounded by I,, IV, and
II_, ITI_. The origin O lies in @, and the solution &,) through 0 must pass
through a point 0, in @ very near III_ before it comes to 0.

Now take an initial point $ in Q. Steer p by the solution of %) until it
almost reaches the intersection of this solution with IT_. Then follow the solution
of &) around the inside of the boundary of Q to the point 0,. Then switch to
the solution of #,) which steers the point to 0.

If p lies in the band B but above the quadrilateral Q, start out along a
solution of &,) until one almost reaches the intersection with II_. Then switch
to a solution of &) and follow this until the point 0, is again reached. Then
follow the solution of &) into 0.
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If p lies in the band B but below the quadrilateral @, start out along a solution
of- %) until one almost reaches IV,. Then follow &,) into Q, and proceed as
above.

Now let Z be a point of R2— B. If Z lies in y>0 and to the right of the
critical point of %), then Z cannot be steered out of this quadrant by a controller
—C_=u({t)=C, and thus Z cannot be steered to 0. Now Z follows a solution
curve of

{i=y,
y=g(x) — f(y) + ()

where &(f)=u(t)+ C_=0 is measurable on some finite time interval. Thus if
Z lies in the open sector bounded by II_ and I_, then Z must lie above a solution
curve of &), and hence, using the parallel structure of the solution curve family
in this sector, we see that Z cannot be steered to 0. If Z lies in the open sector
bounded by IV_ and I_, then Z must enter the half-plane ¥>0 to the right
of the critical point of &), whatever the controller «(f). Therefore, if Z lies to
the right of the closed band B, then Z cannot be steered to the origin 0 by a
measurable controller % (f) with —C_<u($)<C,. A similar argument shows
that if Z lies to the right of the closed band B, it cannot be steered to the origin 0.

By Theorem 4 the domain of controllability € is an open plane set. There-
fore =B. Q.E.D.

Remark. Each initial point in €= B can be steered to the origin 0 using only
the solutions of &,) and % ). It is necessary to use only two switches between
these two systems for each point in € (even though the discussion in the theorem
uses three switches in certain cases).

As a final example consider the van der Pol equation
Etu@t—1)x4+x=0

for a positive constant . In the phase plane this is the system

Lo
y=u(t— 2y —x.

The origin 0 is the unique critical point and is an unstable focus, or node. There
is a unique periodic solutions S, which is orbitally asymptotically stable and
which lies between the abscissas x= +d, (for estimates of d, see [14]).

Theorem 7. Consider the differential system

#) {’?”’
§ =it — (v — w2y — (x — )

for a fixed u>0 and measurable controls u(t) defined on finite intervals with
|u@)| < e, for some £>0. Then the domain of controllability € to the origin 0 is
all R® whenever

e>a,2.
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Proof. For each choice of a constant % on |«| = ¢ the corresponding system %)
has a unique critical point 0,, which is unstable, and a unique periodic solution,
which is orbitally asymptotically stable and which lies between the abscissas
x=utd,.

If the constant u satisfies |u|<d,, then it is easy to see that 0, belongs
to €. If |u|<d, and if ¥ intersects the periodic solution S,, then ¥=R2.

Now if £>>d,/2, we can choose a constant « so |#|<¢ and yet |2u|>d,. Then
€ intersects S,, and hence ¥#=R% Q.E.D.

The work of L. MArRkUs was supported by NSF grant 11287 and OOR contract
DA-11-022-ORD-33609.
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