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Introduction 
In  an o p t i m u m  control  p roblem we are given a real  o rd ina ry  different ial  

equa t ion  sys tem 
dx  i 
d t  - - / ' ( t ;  x l ' x 2  . . . . .  x"; ul  . . . . .  u'*) i = 1 , 2  . . . . .  n 

which is a m a t h e m a t i c a l  model  of some phys ica l  process. The problem of control  
is to select the  real  funct ions ui(t),  1"= 1, 2 . . . . .  m (control variables)  on an 
in te rva l  of t ime,  to<=t<=t 1, such tha t  the  solut ion x'( t)  moves in a prescr ibed 
manner  on to<=t<=t 1. The qua l i ty  of this  choice is measured  in t e rms  of a 
per formance  index.  F o r  example ,  i t  could be required tha t  the x' (t) move from 
a prescr ibed  ini t ia l  po in t  to a prescr ibed  moving  ta rge t  G'(t) in a min imum 
in te rva l  of t ime by  choosing the  u~(t) from an appropr i a t e  class of controls;  
or i t  could be requi red  t h a t  the  x*(t) move to G'(t) in a finite in te rva l  of t ime 
b y  using u ~(t) in which the energy for control  is to be a minimum.  Usual ly  the  
per formance  is measured  b y  a funct ional  which depends  on the control  var iables  
ui(t) and  the control led  var iables  x ~(t). 

We shall  consider  the  problem of existence of an op t imal  control .  This 
p roblem has been solved for the  case of l inear  different ial  equat ions  in V2], [32, 
[91 , and  for cer ta in  nonl inear  equat ions  in [8]; however,  our t r e a tmen t  includes 
these earl ier  results.  In  Section t ,  Theorems t and  2 s ta te  condit ions such tha t ,  
if there  exists  one al lowable  control  which does the  prescr ibed task,  an op t imal  
control  will exist .  The results  of Section 2 are concerned wi th  es tabl ishing the 
existence of an al lowable control  which accomplishes the  t ask  for var ious  forms 
of the different ia l  equat ion  system. 

1. E x i s t e n c e  of a n  O p t i m a l  Contro l  

Consider the  different ia l  sys tem 

1 ) dx~ d t- = / '  (t, x 1 . . . . .  x", u 1 . . . . .  u") ; i = t ,  2 . . . . .  n 

where* 1' (t, x 1 . . . . .  x", u 1 . . . . .  urn) = [i (t, x, u) toge ther  wi th  

~1~ (t, x, u) ; i, k = t ,  2 . . . . .  n ~x h 

* In vector notat ion x = ( x  I . . . . .  xn) and Ix*[. 
$ = 1  
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are real continuous functions in R 1 •  ~ •  w h e r e / ~  is the real n-dimensional 
number  space and Q is a non-empty compact  subset of R ~. 

For each choice of the function 

u ( 0 - - ( u ' ( 0  . . . . .  u (0) o n  - o o < t 0 < t < t l <  oo,  

as a measurable vector-valued function with a graph in ~ ( R  m, the differential 
system 

1) . ( , )  l'(t, x, (0)  i = t ,  z . . . . .  . 

has a unique absolutely continuous solution, or response, x(0 on a subinterval 
of t o< t< t t ,  with a prescribed initial point x0= x(to). This is the conclusion 
of the .CARATHI~ODORY existence theorem for differential systems [4]. Note tha t  
u (t) is measurable if and only if every component u a (t) . . . . .  u m (t) is a real-valued 
(Lebesgue) measurable function. The response x (t) is continuous, and it has a 
derivative, except on a set of measure zero, such that  the differential system 
I)~(t) is satisfied almost everywhere. If  the finite interval to< t ~ t  t is degenerate 
so to=t ,, then the response is just the single point x(to)~-x o. 

Definition. A control (or steering function) for system t) with prescribed 
non-empty compact set Q ( R  ~ and prescribed initial point xo6 R ~ is a measur- 
able vector-valued function u(t), on a finite interval t o< t< t t ,  with u ( t ) ( Q ,  
such that  the response x(t) with x( to)=x o is also defined in R" on t o < t ~ t  t. 

We shall be interested in those controls such tha t  the response x (t) travels 
from the prescribed initial point xo=  x (to) to a given moving target  G (t). For 
each t on a given finite interval ~o~ t ~  zt, we specify a non-empty compact 
target  set G ( t ) ( R  ~. Moreover, G (t) varies continuously with t. Here we use 
the Hausdorff metric distance between two non-empty compact subsets X and 
Y of R ~ which is the smallest real number  d----d (X, Y) such that  X lies in the 
#neighborhood of Y and Y lies in the #neighborhood of X, c]. [1]. If  G(t) 
is a point for each t, then the target is a continuous curve. If  G (t) is a constant 
compact set, we have the regulator problem where the. target is fixed, c/. [10]. 

Let us give [~ x' . . . . .  x", u ~ . . . . .  u") as a real continuous function on 
R ' x I P x ~  and define the cost functional of a control u(t) on t o< t<t t ,  with 
response x(t), by 

t t  

c(,,,) = f l "  (t, �9 (0, ,, (0) at.  
t., 

If  /~ x, u ) ~ t ,  then C(u)=t t - - to ,  and {he cost of a control is just the time 
duration over which it acts. 

Definition. Given the control problem 

a) ~ i ~ / i ( t , x , u ) ,  i = t , 2  . . . . .  n,  
b) 2 0 ( R  m, 

c) xoE R", 
d) G ( t ) ( R  ~ on T o < t < ~  t, 
e) C(u), the cost functional, 
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as above. Define A = A ( l a ( t ,  x, u) . . . . .  r( t ,  x ,u) ,  Q, xo, G(t)) as the set of all 
controls u(t), on various subintervals to<=t<=t 1 with To~_to~t l<zl ,  such that  

x ( t 0 ) = x  o and x(tl) CG(tx). 

A control  u*(t) in A is called optimal in case 

c(u*) < c(.)  
for every  control u (t) in A. 

We now prove the basic existence theorem for optimal controls. The examples 
following the theorem show tha t  an optimal control need not exist if the hypo-  
theses of Theorem t are not  upheld. 

T h e o r e m  1. Given the control problem 

a) ~ '= / ' ( t ,  x' . . . . .  x", ul . . . . .  um)--#( t ,  x)+h~(t ,  x) uJ / o r  i = t  . . . . .  n a n d  

/ ' = 1 ,  m with g~(t, x), h~(t, x), and Ogi (t, x), Ohm. (t, x), k = l ,  n, con- . . . ,  ~ ~ . . . .  
tinuous on R a •  

b) a non-empty, convex, compact restraint set Q ( R",  

c) the initial point XoE R", 

d) the continuously moving non-empty compact target sa G(t) on the ]inite 
interval v o <= t ~ vl, 

e) the cost/unctional t, 
c(u) = f p(t, x(t), ..(0) dr, 

to 

where/o (t, x, u) = gO (t, x) + h ~ (t, x) u i, and gO (t, x), and h ~ (t, x) are continuous on 
R* • R". 

Assume the set A o/controls with responses traveling ]rom x o to G, as defined 
above, is such that: 

A )  A is non-empty, 

B)  there exists a real bound B <  oo /or all responses x (t) corresponding to A, 
that is, ]x (t)] < B unitormly /or all responses. 

Then there exists an optimal control in A. 

Proof. Since A is non-empty  and the corresponding responses are uniformly 
bounded, i n f C ( u ) = m > - - o o  for all uCA.  Either  A is a finite set, in which 
case the theorem is trivially true, or we can select a sequence of controls 

u (k)(t), on t(o k)<=t<=t~ k) f r o m A ,  

with C(u (k)) decreasing monotonical ly  to m. Select a subsequence (without 
changing the notation) such that  

t ( k )  ~ ~ *  o ~ o  and t(x k ~ t ~ ,  monotonically.  
Let us take the case where 

tCok) <= t* <~ t* <= t~ k) for k ----1, 2, 3 . . . .  

and consider the other cases later. Then each u (k) (t) is bounded and measmable  
on the interval  t*<=t~t* and thus belongs to the Hilbert space L2Et*, t*]. We 
assume t* < t*; for if t~' = t*, then m-----0 and xoC G (t*) so every choice of control 
is optimal. 
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A closed ball in Hilbert  space is weakly compact  [5], and  thus we can select 
a fur ther  subsequence u I~l (t) with 

u C*) (t) --~ u*(t) weakly in L 2 ItS, t t ] .  
We next show tha t  

u*(t) on t* ~ t ~_ t t  
belongs to A. 

Now a compact  convex set g 2 ( R "  is precisely the intersection of a finite 
or a countable number  of closed half-spaces, c/. [1]. Let  

a, y i  _+_ b ~_ 0 

be one such closed half-space in R •. Let  M be the subset of ItS, tt] for which 
u*(t) lies in a i y ~ + b < 0 .  

If  M has positive measure, 
t 

t* 

f [aiu*~(t) + b] ~m(t) d t <  0.. 
t: 

where ~0., is the characterist ic function of M, But  
t? t* 

lim f [a, u(k)~(t) + b] cp,. (t)dt = f [a i u*'(t) + b] cp,. (t)dr. 
k"~  e~ t~ t~ 

This is impossible since the left members  are each non-negative.  Thus  M has 
measure zero. Since there are only a countable number  of closed half-spaces 
considered, ui(t) lies in ~ except on a set of measure zero. Redefine u*(t) on 
the exceptional null set of t* ~_ t~ t*  so tha t  u*(t) lies everywhere in ~ .  

Next  consider the response for u*(t) on t * ~ t ~ t t .  The response for 

,,(kl(t) o n  kl < t < kl 

is x (k) (t). Then (using vector notation) 
t 

Select a further  subsequence of controls so tha t  

lira x Ikl(t) ~-- x*(t) weakly on [t*, t*], 

lira g (t, x (k) (t)) = g*(t) weakly on It*, t*], 
k - -~  ~ 

l i m h  (t, x (h) (t)) -~ h*(t) weakly on It*, t*], 
k-...+ oo 

lim h (t, x (k)(t)) u (k)(t) = q~*(t) weakly on [to, tx ]. 

Then, for each fixed t on t*<=t~t*,  
t* 

lim x(~ (t) ---- x 0 +  lim f I~ s, x(~) (s) ) + h (s, x(~)(s))u(k)(s)]ds-+ - 
k - * o . )  l~---~ oo t(~ ) 

t 
l i  

h---~ co t* 
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Thus  

Therefore 

t 

lim x (~) (t) = x 0 + f [g*(s) + 9*(s)] ds. 
k--~ oo to* 

lim x (k) (t) ---- ~ (t) 
k---* oo 

exists, for each fixed 4. Also k(t) is absolutely continuous on * * [to, tx ] and k(t*) = x o. 

Using the Lebesgue convergence theorem [q], we find 

t t 

f ~(s) as = f : ( s )  as. 
to* t,* 

~--- t* so ~(t) x*(t) for almost  all t on [ o, t*]. Changing the definition of x*(t) to  
be precisely ~(t), we now show tha t  x*(t) is the response to the control u*(t). 

Now 
t 

x*(t) = ~0 + ~ im, /Eg  (s, : ,  (s)) + h (s, : ) ( s ) )  .(')(s)] as, 

S O  

t 

x*(t) = xo + :  g (s, : ( s ) )  as + 
t 

+ 2i~ f [h (s, : ) ( s ) )  .(~)(s) - h (s, : ( s ) )  .(~)(s) + 

+ h (s. : ( s ) )  .(~' (s) - h (s, : ( s ) )  .*(s) + h (s, : ( s ) )  .*(s)] as. 

Since u (k) (s) Eg2, which is compact ,  and since h (s, x (k) (s)) -->h (s, x*(s)) almost 
uniformly by  EGOROFF'S theorem [6], we find 

t 

x*(0 = ~o + f [g (s, : ( s ) )  + h(s, : ( s ) )  .*(s)] ds. 
t* 

Therefore x*(t) on t*~t<--_t* is the response to the control u*(t). 
Now 

x(h) (t~ k)) E G (t(1 k)) for each k = l, 2, 3 . . . . .  
S O  

and 

x*(t*) = lim Ix (k) (t*) - -  x (k) (t (k)) + x (k) (t(lk))], 
k- - )  oo ~ 

x*(t*) = lim [X(k~(t(ak))]. 
k---~ oo 

If  x*(t*) were not  in G(t*), then there would exist a neighborhood N of the 
compact  set G(t*), so tha t  x*(t*) is not  in the closure of N. But  G ( t ) ( N  for t 
sufficiently near t*. Thus x(~)(t(,k))EN for large k and yet  x*(t*) is not  in .~. 
This is a contradiction,  and therefore x*(t*)EG(t*), and the control u*(t) on 
t~' __< t < t* belongs to A. 

Now compute  the cost of u*(t). Here 
dk) 

c(.(*,) = f [ :  q. xc,)(0) + h~ (4. x(*)(0) .(";(t)] d t 
t(,k) 
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and 
~t t* 

�9 fh~](t, xtk)(t)) u~k)i(t) dr. lim C(uCk)) = f gO (t, x*(t)) dt + Iknoo ,', 
k - - *  oo  t*s 

Jus t  as above we compute  
lira C(u ~k)) = C(u*) = m.  

k--,-~ oo  

Therefore  u*(t) on to* ~ t_<_ t* is an op t imal  control.  

We re turn  to  the assumpt ion  

o --7 ~o, :I ~ ~x monotonical ly.  

Suppose we do not  have  
t~k~< to* < t* < d h~ 

but  instead,  for example ,  
t~ k)<to* and t~ k ) ~ i * ,  

and the  other  cases can be t rea ted  similarly. E x t e n d  each control  u ck)(t) (at 
least for all large k) to  the in terval  t o*<t~ t*  b y  defining ulk)(t)-----u 0, a cons tan t  
vec tor  in g?, for t~xh)<t~t~. Again define tile weak  limit  in ~ ,  

u*( t )= limu<k)(t) on t * ~ t ~ t * .  
/~---* CO 

We mus t  show tha t  each response 

x(k)(O on t(o k) ~__ t ~ tl k) 

can be ex tended  to  the in terval  t~*)<t<t * using the extended controls. Then  
we shall show t h a t  u*(t) on t*<_t<t*  is in A and is an opt imal  control�9 

I t  is easily seen t ha t  all the  compac t  sets G(t) on ~ o ~ t ~ z ~  lie within one 
sphere, S (0, O) of radius O, centered a t  the origin. Thus,  for (h* --t~ *)) sufficiently 
small,  each x ~*) (t~ h)) lies in S (0, O) and  has an ex tended  response on t~*)~ t ~  t* 
which lies in S(O, 20). Also 

l i m  I x(*l (6  .1) - x (k> ( t f)  I = o .  

Just as above we find t ha t  
l im x (k) (t) = x* (t) 

k----~ c o  

at  each t on to* < t <  t*, and  moreover  x*(t) is the  absolutely cont imious response 
to the  control  u*(t), and x*(t*)= x o. 

Now 
�9 ~ (t?~) ~ r (~i k~) 

and 

Thus  

o r  

l im Ix*(t*) - -  x*(t~k))l = O. 
k--c- c o  

x*(t*) = k---,.oolim x*(t~ k)) =kl~rnoo Ex tk) (t~ k~) --  x c~} (t~ k)) + x*(tf'~)] 

x*(t*) = l im xl~)(tik~). 
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Thus  
x*(t*) E G (t*), 

as required.  Therefore,  u*(t) on t* < t<- - t*  lies in A. 

F ina l ly ,  
ti~) 

C(,~ c~) = f E~ ~ (t, x(k)(0) + h~ (t, x I~ (0) u�91 d t  
tl~ 

approaches  the  l imi t  m as k ~ oo. As above  we compute  

l im C(u Ik)) = C(u*) ~- m, 
k .---~ O0 

and  thus  u*(t) on t*<=t<=t* is an op t ima l  control.  Q.E.D. 

Remarks. Consider A (to), the  subset  of A for which the control  u (t) and  the  
response x(t) in i t ia te  a t  a f ixed t o. If A(t0) is non-empty ,  and  if the  responses 
x(t) for cont ro l  in A(to) are un i formly  bounded,  then  there exists  a control  in 
A(to) which is op t ima l  re la t ive  to A(to). The same applies  to the  set A(t o, tl) (A(to) 
where the  cont ro l  t ime in te rva l  to<=t<=t 1 is fixed. If  the  different ia l  sys tem 
and  the cost  funct ional  in tegrand  are t ime- independent ,  each control  in A has 
the  same response as some control  in A(vo), after  a t ime t rans la t ion .  

If  C ( u ) > m > - - o o  for all controls  u in A, or in A(to), then  one requires  only 
the  uniform bound  Ix(t)]< B for responses x(t) corresponding to controls  u(t) 
with  C(u) near  m. 

Also ]' (t, x, u) need only  be defined and  sat isfy  the  hypotheses  of the  theorem,  
for ro<=t<=zl, x E ~ ( R " ,  and u d . ~ R " ,  where 0 is an open set in R" which 
conta ins  the  ini t ia l  poin t  x o, the  moving ta rge t  G (t), and  all the  responses of A, 
or of A(to), in a compac t  subset .  

The hypothes is  A) of the theorem concerns the  domain  of con t ro l lab i l i ty  for 
the  problem,  as will be discussed in a la te r  section. The hypothes is  B) is sat is-  
fied if 

i = t , 2  . . . . .  

or if 

b/~ (t ,x,u) <o~, i , k = t , ~  n 
~ x k  - '  . . . ,  , 

for some real ~, in ~Zo, vii •  • Thus B) is a lways sat isf ied if gi(t, x) and  
h'/(t, x) are l inear  in x. 

The following examples  i l lus t ra te  ~ituations where the op t imal  control  fails 
to exist  or is not  unique. 

Example 1. 
.x'- - -  ~in 2.'z u, ~ : cos 27~ u,  ~ --  - -  t in R 3. 

The ini t ial  point  i~ (0, 0, 1), and  the ta rge t  is the f ixed point  (0, 0, 0) on the  
t ime in terva l  0 < _ t _< t ~  2. The res t ra in t  set Q is - -  1 _< u_< 1. The cost funct ional  

tt 

i~ ( ' (u ) - - f  ( x 2 + y  2) dr, and we consider the  set of controls  A(0). 
0 
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Each  control  u (t) in A (0) is defined on 0 < t <  t. Consider the cont ro ls  u ckl (t) 
such tha t  

sin 2zt u Ck~ (t) = sin 2~t k t, 

cos 2 ~  u(~) (t) -= cos 2 ~  k t ,  for k = 1 , 2 , 3  . . . . .  

Such piecewise continuous controls are easily constructed.  The corresponding 
responses are 

x(~)(t ) _ t - -cos  2 n k  t ylkl (t) _ sin 2 n k  t z(k)(t) = t - - t .  
2~tk ' 2~tk ' 

Thus  x I~) ( t ) = 0 ,  y~k)(t)=0, z ckl ( t ) = 0 .  The cost for each u tkl (0 is computed  to be 
1 

/ l - - c o s 2 ~ t  k 1 
C(u ~k)) : 2~2 k~ t d t - -  2z# kz .  

0 

Thus 
lira C(uCk~) = O, 

k----~ oo 

and m = 0  is the inf imum for all C(u) with u in A (0). Yet  there is no opt imal  
u*(t) on 0 < t <  t for which the cost is 

X 

c(u*) = f (x*~ + y**) dt = o .  
0 

For such an opt imal  control  u*(t) the response needed is x*( t )=0 ,  y * ( t ) = 0 .  
This implies 

s i n 2 n u * ( t ) = 0  and c o s 2 ~ u * ( t ) = 0  

for almost  all t. But  this is impossible, and  hence there does not  exist an opt imal  
control  for this control  problem. We note tha t  the coefficient functions of the 
differential equat ion are not  linear in u, but  hypotheses  A) and B) of the theorem 
are satisfied. 

Example 2. 
s 3;=u2, ~ = - - t  in R s. 

The initial point  is (0, 0, t), and the target  is the fixed point  (0, 0, 0) on the 
time interval  0_~ t ~ t 1 <= 2. Take.Q as the compact  but  non-convex circle u~ + u~ = t 

ft 
in R ~-. Again take C ( u ) = f  ( x ~ + y  2) dr, and consider the controls A(0i. Using 

0 
the controls u ~ k l = c o s 2 = k t ,  u ~ l = s i n 2 ~ k t ,  k----l, 2 . . . . .  we find i n f C ( u ) = 0  for 
u EA(0). Yet there is no opt imal  control in A(0) which yields a cost of zero. 

E x a m p l e  3. 
= t ,  ~ ; = - - x e  yu  in R z. 

The initial point is (--  1, 0), and the target  is the fixed point  (1, 0) on the t ime 
interval O<--t<_t~<=2. The restraint  set Q is 0<~u<_2. The cost functional  is 

t t 1 
C(u) = f (2 --  y) dt  = f (2 - -  y) dx.  Each  control  u (t) in A (0) ig defined on 0<_ t~< 2 

0 --1 
and yields a response x ( t ) = t - - 1 ,  y (t). 



44 E . B .  L s z  & L. MARKUS: 

Every  response y (t) satisfies the inequalities 

0 = < y ( x ) < - - l n x  2, for x4=0 .  

Each continuous response joining ( - -1 ,  0) to (l, 0) must  lie below the curve 
y ~- - -  In x 2 on some interval. 

1 

Thus C ( u ) > f  ( 2 + l n x  *) dx=O for each u(t)EzJ(O). But for u ( t ) = u , = 2 - - e  
- -1  

on 0--< t--< 2, we compute the response x = t - - 1 ,  and 

y(x) = - - I n  [ ~  ( 2 - - ~ ) +  I ] .  

The cost for such a control in LI (0) is 
1 

C(u,) = f { 2 +  In [ ~  ( 2 -  e ) +  t ]}dx.  
- -1  

Thus 
lim C (u~) = O. 
e--->0 

Hence inf C ( u ) = m = 0  for u(t)c/l(o). Therefore there does not exist an optimal 
control in A (0). Here we note that  hypothesis B) of the theorem does not hold. 

E x a m p l e  4. 
~ = t ,  ~ = - - x u  in R ~. 

The initial point is (--  t, 0), and the target  is the fixed point (t, 0) on the time 
interval 0_<t_<6~2.  The restraint set f2 is - - t ~ u < t .  The cost functional 

t 1 1 

is C(u )=  d r =  t ~ - ~ - "  Each control u(t) in A(0) is defined on 0--<t--<2 

0 - -1  

and yields a response x (t) = t - -  1, y (t). 

Every  response y (t) satisfies the inequalities 

--(t--x~) < y ( x ) <  t--x2 on - - l < x - - < l .  
2 ~ = 2 = --  

The two controls u§ l and u_(t)=--1 are each optimal and achieve the 
minimal cost. Here an optimal control in A(0) exists, since the hypotheses of 
Theorem t are satisfied, but it is not unique. 

We close this section with an existence theorem for Lipschitz continuous 
controls, which is valid even if the control u enters the coefficients ](t, x, u) 
in a nonlinear manner. 

Theo rem  2. Given the control problem 

a) ~=]~( t ,x  1, x~,u 1 . . . . .  u ' ~ ) ; i = l  2, nwhere]i(t,x,u) and afi (t,x,u)" 
i, k~- l ,  2 . . . . .  n are continuous in RX x R " x Q ,  

b) a non-empty compact restraint set Q ( R  ~', 

c) the initial point x o E R", 
d) the continuously moving non-empty compact target set G(t)(  R ~ ]or each g 

on the ]inite interval 7:o< t<-- zl, 
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e) the cost junctional 
tt  

c(u) = f p ( t ,  ~(t), u(t)) dr, 
t, 

where ]o (t, x, u) is continuous in R x • R n • 

For a given positive constant A consider the class z l ( L i p A ) ( A  of controls u (t), 
each continuous and satisfying a Lipschitz condition 

lu(t) -- u(t')] ~ A ] t - -  t' I 

/or all pairs t, t" on some interval zo'<to~t, t ' ~ t x ~  T z. Assume 

A)  z] (LipA) is non-empty 

B) there exists a bound B <  oo ]or all responses x(t) corresponding to controls 
o1 A (LipA),  that is, [x(t)i<B uni]ormly /or all responses. Then there exists an 
optimal control u*(t)EzJ(LipA), that is, C(u*)____ C(u) /or all u(t)E A(LipA).  

Proof.  Assume tha t  A(LipA) is Infinite, and define 

infC(u) = m > - -  oo for all u(t) EA(LipA) .  

Select a sequence ul~l(t) on t (~ l~ t~ t  (k) of control  of A(LipA) with C(u tkl) de- 
creasing monotonical ly  towards m as k = t,  2, 3 . . . .  tends to infinity. Select a 
subsequence (still called u (1) (t)) with 

t~ k)-+ to* and t(~ ~) -+ t* monotonical ly.  

Consider first the case where 

t(o ~ < t• < t* _ 6 '~, k = ~, 2, 3 . . . .  , 

and again we omit  the  tr ivial  subcase where * * to = t a .  Using ASCOLI'S theorem [6], 
select a subsequence of these controls such tha t  

lim u {ki (t) = u*(t) 

uniformly on to* ~ t ~  t* and u*(t) is a continuous function satisfying 

[ u * C t ) - u * ( t ' ) i < A [ t - t '  I for to*~t, t'~t~. 

We must  show tha t  u*(t) on to*<t<t* lies in / l (LipA).  The  graph u*(t)C~2, 
since Q is compac t .  

Consider the responses x I~) (t) of u lk) (t) on tr k) ~ t<  t r Here  in vector  nota t ion  

t t 

xl~ (t) - ~p~ (t) = f ! (s, x~ ~ (s}, u~ ~, (s)) a s  - -  f t (s, ~cp~ (s}, ucp~ (s}) as  

for to* ~_ t<__ t* with k and p > k positive integers. Then  

t,* t~* 
I x~k) (t) - -  x Ip) (t) l < f [ ! (s, x ~*1 Cs), u~ k~ Cs)) I d s + f I ! (s, x~P~ Cs), u Ipl (s))] ds + 

t 

+ f I/(s, x (k~ (s), u( ~ (s)) - I (s, x(~)(s), u(p)(s))l ds .  
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T a k e  k so large t h a t  ~* ,tk) _ t~0/,)] .o - -  .o I and  ] t* are v e r y  small  an d  Iutk) (t) - -  u (p) (t) l 
is u n i f o r m l y  small  on t *< t< t* .  Use the  un i fo rm con t inu i t y  of /(t, x, u) in 
~,~t~__ Vl, Ix] ~ B ,  uEQ, and  c o m p u t e  

t 

Ix (a) (t) - x (p~ (t)[ _<_ ~ + [/(s, x (k) (s), u(k) Cs)) - / ( s ,  x(k) Cs), ucp)(s))[ ds  + 
t$ 

t 

+ f [ / (s, x (k) (s), u (p) (s)) - -  / (s, x(~)(s), u(P)(s))[ ds 
t* 

S O  
t 

, , f [ o ,  
I xl~) (t) - x(P) (t)[ < ~- + ~- + ~ -  

t~ 

for  an  a rb i t ra r i ly  small  e >  0. Wr i te  

z (t) ---- Ix (s) (t) - -  x (p) (t) l and  

T h e n  
t 

z(t) < ~ + ~ f z(s) as .  
t* 

This  in tegra l  inequa l i ty  implies 
z(t) <__ c e ~(t*-t*). 

Therefore  CAUCrtY'S cr i ter ion yields 

l im x (k) (t) = x*(t) un i fo rmly  on 
k---~- Oo 

a n d  x*(t) is con t inuous  on t* < t < t * .  
N o w  

t* t 

t* < t < t*, 

x(k, (t) = ~o + f / (s, ~ck)(s), ,,(4)(s)) as + f / (~, ~(k~ (~), .~k)(~)) ds 
tc$) q 

on t* =< t < t~*. Thus  
t 

x*(t) = ~o + f / ( s ,  :(~), ,,*(s)) ds,  
t* 

a n d  x*(t) is the  response to  the  control  u*(t) on t*<_t<_t*. Clearly x*(t*)=x o. 
Also 

x*(t*) = k--.oolim x (k) (t*) = : ! m  Ix  (k) (t~ k)) - -  x (k) (t(1 ~)) + x (k) (/*)] 

S O  

x*(t*) = lira x ok) (tlk)). 
k---~ oo 

Since 
x (k) (t?)) E 6: (tlk)), 

we h a v e  
x*(t*) E G (t*). 

T h u s  u*(t) on t*<=t<=t* belongs to  A ( L i p A ) .  F u r t h e r m o r e  

C(u*) = lim C(u (k)) = m, 
k ---~. oo  

and  u*(t) on t*<~t~t* is op t imal  in A ( L i p A ) .  
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We re turn  to the  assumption tha t  tto kl--~t* and tck)--~**l ~1, monotonical ly.  Suppose 
we have t(o kl ~ t* and t(, ~J ~ t*, for example.  E x t e n d  each control  u (~1 (t) to t~ kl ~ t ~ t* 
by  defining u I~l ( t ) = u  Ckl (t~ kl) on t~kl~ t ~  t*. For  large k we can also ex tend  the  
corresponding responses x (hI (t) to the interval  t~k)~ t ~  t*. Again 

lira uC kl (t) = u*(t) uniformly on to* _--< t ~ t*, 
k---~ oo 

and u*(t) satisfies a Lipschitz condit ion with constant  A. As above we show 
tha t  

lim xr ---- x*(t) uniformly on to* < t ~  t* 
k--+ o0  

and tha t  x*(t) is the response to u*(t). Also x*( t~ )=  x o and x*(t*)EG (t*), Thus 
u*(t) on to* <_ t ~ t~* belongs to  zl (Lip A). Again we compute  tha t  u*(t) on to* ~ t ~ t* 
is opt imal  in A(LipA).  Q.E.D. 

Remark. The  remarks following Theorem I are also applicable here. 

Corol lary.  Assume the hypotheses of Theorem 2 ]or each Lipschitz constant 
p-~ t, 2, 3, . . . ,  and let u* (t) on t {p}o _~ t _  t{#} be optimal in /1 (Lip p~. In  addition 
a s s u m e  

1) the target G(t) on Vo<__t<_~l is a fixed point G, 

2) for each s > 0 there exists a measurable control u s (t) on too sl ~ t ~  t~ s} in ,4 such 
that C ( u s ) < : m + s  where m =  inf C (u) ]or uE A and also t i s } ~ r l - - e  ]or some , > 0 ,  
independent of s, 

3) there is a unilorm bound l x (t)] < B <  co for all responses x (t) corresponding 
to measurable controls in `4, 

4) for each s > 0 there exists a neighborhood N of G such that each point in N 
can be steered to G by a C x control having a prescribed initial instant to<: r l - - e ,  
a duration < e, and a cost ~ s (this condition is considered in Theorem 4). 
Then 

l i m C ( u $ ) = m = i n f C ( u )  ]or u C A .  
p---~ oo 

Proof.  I t  is clear t ha t  

C(u~) ~ C(uL~ ) p = t ,  2, 3 . . . . .  

so lim C(u~) exists and is not  less than  m. Bu t  given a measurable control  u,(t) 
p - - + o o  

in zJ, there  exists a C ~ control  which approximates  u, (t) almost uniformly so 
tha t  the corresponding response has an end-point  in N. But  then  x o can be 
steered to the target  point  G by  a control  ua( t  ) in A(LipA) for some A > 0 ,  
and with C(uA) arbi t rar i ly  near to m. For  p > A  we thus have 

c(u~) >__ c(u~), 

so lira C(u~)=m, as required. Q.E.D. 
p----} co  

2. Domain of Controllability 
In  this section we investigate the nature  of hypotheses A) of Theorem t.  For  

simplicity we consider the problem of steering an initial point  to a f ixed target  
point,  say the origin. We still maintain tha t  the restraint  set Q is compact ,  
but  in this section we require tha t  the zero vector  is in the interior of Q. 
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Defini t ion.  The domain of controllabil i ty ~ for the differential system 

i ~ = p ( x  ~ . . . . .  x",  u ~ . . . . .  u " )  i = t  . . . . .  n 

for a given restraint  set J2CR ~, consists of the set of all points xoER"  for which 
there exists a measurable control u (t)(~2, defined on some finite interval, steer- 
ing x 0 to the origin* of R". 

T h e o r e m  3. Consider 

i t = p ( x  ~ . . . . .  x"; u ~ . . . . .  u" ) ,  i = t . . . . .  n ,  

where** I t (x ,  u ) C C  1 in  R" • ~ .  A s s u m e  the vector u = 0  is an interior point  o] the 
compact restraint set ~ < R ' .  A s s u m e  

P (0, O) = O, i = t . . . . .  n .  

I]  the ma t r i x  0/~ (0, O) has rank n, then the domain  o] controllability ~ is an 

open connected subset o / R "  containing the origin. 

Proof. If  the origin of R" is an interior point  of if, then it follows from general 
cont inui ty  arguments  tha t  ~r is open and connected. By  cont inui ty  there exists 
a neighborhood N of the origin in ~ such tha t  for any  measurable vector  u (t) 
on - -1  ~ t _ < 1  in N the corresponding solution x(t) initiating at % = 0  will be 
defined in R" for - -  1 =<t<: t .  

Let  
9 ' ( t , u  1 . . . . .  u ~) on - - l ~ t - - < t ,  i = t  . . . . .  n ,  

be the solution of the given differential system for constant  (u 1 . . . . .  u '~) in N 

and with ~0 i (0,, = 0. We shall prove tha t  eJ~-~ (t 0, 0), for some t o < 0, has rank n. 
Hence the differentiable map  

u ~ x = ~o (to, u )  

carries a neighborhood of u o = 0  onto a neighborhood of xo--0.  Then there is 
a neighborhood of Xo=0  which can be steered to the origin in t ime - - t o > 0 ,  
and each required control  is just  a constant .  

Now 

~' - 1 ' (~  (t, ~) ,  u)  v ' ( t ,  o) = o .  
Ot ' " 

~Ve compute  
a ( a r  as aq," of' 
-at x~;,,  s = - a ~  (~'' u) ~,,,-- + ~ (9, u) . 

For  % = 0  write the matr ix  

0 ~  (t, o ) .  z (t) = ~ -  

* This is sometimes referred to as null controllability. 
** That  is, /(x, u)E C o in R" •  D and has a C 1 extension to R" x .Q, where ~ is 

an open set containing g2. 
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Then  

Then  

F o r  a smal l  [to] 

dg 
dt  - -  L (0, O) z + tn (0, 0 ) ,  z (0) = O. 

z(to) = ~*  Ct0, 0) 

has  r a n k  n, s ince /~(0 ,  0) has  r a n k  n. Q.E.D.  

Coro l l a ry .  Consider a linear di]]erential system with real constant coe//icients 

~ = A ' k x k + B ~ u  i i , k = t , . . . , n ;  i = t  . . . . .  m .  

Assume the compact restraint set Q < R  m contains the zero vector in its interior. 
I1 the matrix B has rank n, the do~iain o] controllability ~ is an open connected 
set in R ~ containing the origin. 

A more  diff icult  p rob lem arises when the  cont ro l  has  fewer degrees of f reedom 
t h a n  the  response,  i.e. when m <  n. The  nex t  t heo rem considers  th is  case. 

T h e o r e m  4. Consider 

~ = [i(xl . . . . .  x ~, u 1 . . . .  , u ' )  i = t . . . . .  n 

where / (x ,  u ) E C  1 in R*• Assume the vector u = 0  is an interior point o/ the 
compact restraint set ~ (  R '~. Assume 

1) #(o,  o) = o i = t . . . . .  n 
and 

2) there exists a vector v C R  '~ such that By  lies in no invariant subspace o / A  

_ O/ (0, O) are real matrices. with dimension ~ n -  1, where B = (0, O) and A - - - 6 x  

Then the domain o/ controllability ~ is an open connected subset o] R n contain- 
ing the origin. 

Proof.  Consider  a ne ighborhood  N ( Q  of the  origin in R m and  v 1 > 0 such t ha t  
for each measurab le  vec to r  u (t) on - -  , x ~  t ~  31 w i th  u (t) < N the  cor responding  
response x (t) wi th  x (0) = 0 is def ined on - -  Tx~ t ~  v 1. 

We shall  define a fami ly  of controls  in N 

ui(t, ~) = u~(t, ~1 . . . . .  ~ . ) ,  i = 1 . . . . .  m 

on I tl <= vx and  I t[  < e for some e >  O. Take  

where v is the  vec to r  men t ioned  in hypothes i s  2), 

X ( t , h ) = { a  on I r i S h  
0 on  I t l > h ,  

Arch. Rational Mech. Anal., Vol. 8 
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and t 1 is a small number  with O<  1 6 1 < 31. For  convenience we choose this piece- 
wise cont inuous function X(t,  h), but  it would be easy to use a C *~ function 
which almost  uniformly approximates  X(t,  h), for each fixed h. 

Note  u (t, O)=  0 and also 

0u - vx(t, ~t), 

is differentiable except at  t = t l / k .  

Let  
x' (t, ~1 . . . . .  ~,) = x' (t, ~), 

k = t , . . . , n  

i = t , . . . , n  

be the response corresponding to u (t, ~) with 

x~(o,~)=o, i = t  ... . .  n .  

Note  tha t  xi(t, 0 ) = 0 ,  i = l  . . . . .  n, since ]~(0, 0 ) = 0 .  Now x(t,~) is continuous 
in (n + t) variables. Also, for each fixed t, the map 

is a differentiable map  of a neighborhood of the origin of R" into R" with the 
origin fixed. I f  

z~(t) 0 .~  (t, 0) i,  k = t . . . .  n - - - ~  

is non-singular,  for some fixed t<O, then the domain of controllabili ty (g is 
an open connected subset of R" containing the origin, as required. 

Now, in vector  notation,  
t 

x(t, ~) = f / ( x ( s ,  ~), u(s, ~)) ds,  
0 

and so 

o r  

t 

o~ ~ f  (s, o) + B -og 
O 

t 

z (t) = f [A z (s) + B u, (s, 0)1 ds,  
o 

so z(t) is continuous near t = 0 .  Also dz/dt  exists, except at t =  tl/k, k =  t, 2 . . . . .  n. 
The k th column of the matr ix  z(t) satisfies 

t 

z(k,(t)= f[A,(~,(s)+ B~X(s,~)]as 
0 

or k =  t, 2 . . . . .  n, where the subscript k =  t, 2 . . . .  , n designates the column. 
Thus we have 

dz(k)dt - A z ( k ) + B v X ( t ,  t~) k = t , . . ,  n ,  
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with z(k)(O)=O. Bu t  the solution of this linear differential  sys tem is 
t 

z(.,(t)-----da f e - ' a B v X ( x , ~ ) d s  
0 

o r  tx/k 

z(k ) (t) = d a f e -*A B v d s .  
0 

�9 Thus,  for I t l l < l t l < ~ .  

z(1) (t) = e'a [ta I - t'~f. A +  -~." A '  - -  ~ A* + . . . ] B v J 

eta It1 1 (./2)' A 4- (tJ2)' AS 1 Z(2) (t) 2! ---3V-. . . . .  j B v ,  
t ~  

(tl/n) 3 A ~ -- z ( " ) ( t )=e*a[~  I (ta/n)' A 3l . . . ] B y .  

We shall show the linear independence of the vectors (e - ta )  z(1)(t) . . . . .  (e - ta )  zoo (t). 

The  Vandermonde de te rminant  

t~ t ;  . . .  

ta/2 (tl/2)z "'" (tl/2)n =[= 0. 

tlln (tdn)' . . .  (tdn)" 

Thus it is sufficient to show the linear independence of the vectors  

B v + 0 (tl) 

A B v + 0 (tl) 

A2 B v  + O(tx) 

A " - I  B v  +O(t l ) ,  

where l imO( t l )=O.  Since the  vectors  Bv,  A B v  . . . . .  A " - I B v  are l inearly in- 
tt---~O 

dependent ,  we conclude tha t  the  vectors z(a ) (t), z(~)(t) . . . . .  z(,) (t) are independent  
and tha t  the ma t r ix  z (t) is non-singular. Q.E.D. 

Corol lary .  Consider 

~ = f ( x  x . . . . .  x " ,  u 1 . . . . .  u~') ,  i = 1 . . . . .  n 

where / (x, u) E C a in 1~ • and the origin o / R "  is an interior point o / the  compact 
set g2. Assume 

1) t t (0, O) --- O, i = t . . . . .  n,  
2) there exists a vector vE R "  such that B v  lies in no invariant subspace o / A  

with dimension < n - -  t .  
Assume also that 

~ = / t (x a . . . . .  x", 0 . . . . .  o)  i = t . . . . .  n 

is globally asymptotically stable* towards the origin o] R". Then the domain o/ 
controllability ~ is the entire space 1W. 

�9 See reference [12]. 
4* 
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Corollary. Consider 

x,-, + x', . . . .  x , - - l , )  , , . - 1 ,  + . . .  + ao{W, x', . . . .  x'"-") x =  u 

where the coe]]icients a,(x 1, x 2, . . . , x , ) C O  in R" and l u l ~ e ,  /or some e > 0 .  
We write the corresponding/irst order system 

t Xl = X2, . 
S )  x2 =. x3 ,  

~ .  = - a . _ l  (x~ . . . . .  x . )  x .  - . . . .  ao ( x l  . . . . .  x . )  x l  + u .  

I] the system 

X1 ~- X2 ' 

:~ . = - a . _  l ( x l  . . . . .  x . )  x .  - . . . .  ao ( x l  . . . . .  x . )  x l  

is globally asymptotically stable towards the origin, then ]or S)  hypotheses 1) and 2) 
o[ the theorem automatically hold and the domain o/ controllability [or S)  is all R". 

Corollary.  Consider 

.~' = / '  (x 1 . . . . .  x", u ~ . . . . .  ~l~), i = t, 2 . . . . .  n 

where /(x,  u)C C1 /or x C R" and u C U< R". Assume that ]or each point x o E R" 
there exists an interior point u (xo) o/ U such that 

1) l ' (xo,  U ( X o ) ) = o ,  i = t  . . . . .  n 
and 

2) there exists a vector vC R "  such that Bv  lies in no invariant subspace ol 
_ al a/ A ~,ith dimension <=n--  t,  where B --  ~ (Xo, u(xo))  and A = ~ (xo, u (Xo)) are 

real matrices. Then ]or each pair o/points x~ and x 2 o! R" there exists a pieeewise 
continuous controller u(t) on tl <~t<=t ~ in U which steers the response x(t) /tom 
x (tl) = xl to x (tz) • x, .  

Proof. In  the proof of Theorem 4 we note  tha t  there is a neighborhood of the 
origin which consists of points  tha t  can be steered to the origin by  a piecewise 
cont inuous  controller  in a finite time. Also there is a neighborhood of the origin 
consist ing of points  to which the origin can be steered by  a piecewise cont inuous 

controller  in a finite time. 

The same properties hold for each point  ~ in R", after t rans la t ing  both  x 
and  u as required. 

Now let S be the subset  of R" consisting of points to which xl can be steered 
by  a piecewise cont inuous  controller in a finite t ime interval .  Clearly S is both 
open and  closed in R ". Thus S = R "  and  x 1 can be steered to x~, as required, 

c/. E7]. Q.E.D. 

Remarks. In  the previous corollaries we can replace the hypothesis  tha t  
:~i= ], (x 1 . . . . .  x", u I . . . . .  u '~) be asymptot ica l ly  stable for u ~ ~ 0, i = t . . . . .  m, by  
the hypothesis  tha t  ~ ' = / ' ( x  1 . . . . .  x ", u ~ . . . . .  u ~) be asymptot ica l ly  stable for 
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some appropriate choice of u i =  ui (x a . . . . .  x"). As a particular choice of u j =  ui (x) 
to satisfy the condition of asymptotic stability consider a Lyapunov function 

[aV ,~,  ] V(x) > O, V(x) C C a, with the choice of u C/2 which minimizes [ ~  ! ix, u) . 

If this minimum is negative definite in O<[x ]<oo  for some V(x)>O, with 
V(x)--~oo as Ixl---~oo, then the domain of controllability ~r is all of R ~. 

We next consider the domain of controllability for certain second order 
differential equations 

~ + t(x,:e,u) = o  

which we write as the first order system 

= y ,  ~ = - t ( x , y , u )  
in the phase plane. 

Theorem 5. Consider the di[lerential equation 

~+l(x,~.u) = o  

with [(x, y, u)E C 1 [or all (x, y) and uC Q, where Q is a compact interval containing 
zero as an interior point. Assume 

a) 1(o,o,o) = o 
b) [,(x, y, 0 ) > 0  and ]y(x, y, 0 ) > 0  everywhere 

c) 1 . (o ,o ,o )  # o.  

Then the domain o[ controllability ~ is the entire (x, y)-plane. 

Proof. The system 

= - I (x, y, o) 

( 2  I )" S i n c e t h e e i g e n v a l u e s ~  has the variable Jacobian matrix J = ]~ _ ]y 

have negative real parts for all (x, y), the system is globally asymptotically 
stable to the origin, c]. [12]. However the solutions will not lmach the origin 
in a finite time. 

( 0 t ) 
A ----- _ / ~  (o. o. o) - - /y  (o, o, o) 

and 

,.l: oo,) 
Take v-----t as a t-vector; then 

( o ) and ABv=(--I.(O,O,O)) 
B v = _ l,, (0, O, O) \ /, ," 1, 

are linearly independent. Thus the domain of controllability to the origin is 
an open set. Therefore ~ is the entire (x. y)-plane. Q.E.D. 

Now 
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Corollary. Consider ~ + / (~) + g (x) = u 

where/(y)  and g(x )EC 1/or all (x, y) and [u I ~ , ,  /or some e > 0 .  As'sume 

a)  I (o) = g (o) = o 
b) / ' ( y ) > 0  and g ' ( x ) > 0  everywhere. 

Then the domain o/controllability ~ is the entire (x, y)-plane. 
We now turn from the asymptotically stable case, where the domain of 

controllability ~ is the entire space, to the conditionally unstable saddle-point 
case, where ~ is a strip in the plane. 

L e m m a  1. Consider 

~) ~ + I (~) - g (x) = o 

with t(Y), g(x )EC 1 and l(0)=g(0)--0, l'(y)>0, g'(x)>0 /or all (x, y) in R~. 
Then the solution curve [amily o / ~ )  in the (x, y-~ :c) phase plane is topologically 
equivalent to the solution curve [amily o/the linear equation 

~ + ~ ' - -  x = 0 .  

Proof. Write the equation ~ )  in the phase plane as 

{ ~ = y ,  

~ )  ~ = g (x) - t (y) .  

We seek a homeomorphism of R ~ onto R ~ which carries the solution curves 
(sensed but not parametrized) of ~ )  onto those of 

Z:) { ~ = Y ' .  
y = x - - y .  

In ~ )  the origin is the unique critical point. The variational equation o 
~9 ~) at the origin is 

{ ~ = y ,  

= g'(0) x - r ( 0 )  y ,  

with real eigenv~lues of opposite signs. Thus ~ )  and .~) are topologically equi- 
valent near the origin. 

Thus ~ )  has exactly four solution curves which have the origin as a limit 
point and these approach the origin with the same directions as for ~q~), that  is, 
one of these solutions of ~9 ~) lies, near the origin, in each of the four quadrants. 
Call these solutions of d#), which will be shown to be separatrices in .the sense 
of MARKUS [18], by the numerals I, I I ,  I I I ,  IV corresponding to the quadrants 
in which they approach the origin. By examining ~9 ~) on each of the coordinate 
axes it is easy to see that  each of I, I I ,  I I I ,  IV lies entirely in the corresponding 

" quadrant.  

Along I we have dy g(x)--l(y) 
dx y 

which is bounded from above on each compact x-interval. Hence I is single- 
valued over the entire positive x-axis. A similar argument shows that  I I I  is 
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single-valued over the entire negative x-axis. The separatrices I I  and IV are 
each single-valued over a segment of the x-axis, and they extend to infinity, 
that  is, x2+ y2~->oo on II  and IV. 

Consider a solution curve of S ~ in the plane sector bounded by  separatrices 
II  and I. Here ~ = y > 0  and, in the second quadrant  ~ < 0 .  Thus each solution 
curve in this sector must intersect the first quadrant and must exist in the first 
quadrant for all larger values of x to the right of any such intersection point. 
Hence the solution curves in the sector between II  and I are linearly ordered 
(using the inclusion relation for the regions above the curves), and they form 
a parallel family, as described by  MARKUS [13]. A similar analysis holds for the 
sector between I I I  and IV. 

In the sector bounded by IV and I each solution of ,9 ~) intersects the positive 
x-axis, which thereby serves as a transversal for the solutions in this sector. 
A similar analysis holds in the sector bounded by  II  and III .  

Thus the only separatrices of 5~) are the critical point at the origin and 
the solution curves I, II, III ,  and IV. Therefore by the general theory of separatrix 
configurations [131 we find that  ~ )  is homeomorphic with .Z~), as required. Q.E.D. 

Remark. Call the solution curves II  and IV, leading towards the critical 
point of 5#) with negative slope, the principal separatrices, and call I and I I I  
the minor separatrices of ~9~). The principal separatrices of 5P), together with 
the critical point at the origin, form a topological image of a line in R ~ which 
is single-valued over the entire y-axis. The same holds for the minor separatrices 
of 5:) over the entire x-axis. 

Le mm a  2. Consider the two di]]erential systems 

{ ~ = y ,  
5P~) ~ = g~(x) - - / ( y )  

where /(y) and g.(x)=g(x)  4-C~, ]or positive constants C., are in C x in R 2. 
Assume /(0)--~g(0)----0, f (y )>O,  g'(x)>O everywhere in R 2, and ]g(x)]--~oo as 
Ixl- oo. 

Then each o~ ~,q'.) and 5:_) is topologically equivalent to the linear system, 
in the phase plane (x, y = ~c) 

{ ~ = y ,  

"~} ~ = x -  y. 

The principal separatrices II~ and IVy, together with the critical point, o/ 
5~) ]orm the topological image o /a  line which separates the plane in two. At  each 
]ixed ordinate the principal separatrix or critical point o] 5P ) lies to the right o/ 
the corresponding principal separatrix or critical point o/ ,9~ The open band 
B between the principal separatrices and critical points o/ ,9~ and 5:_) is homeo- 
morphic to an open band between paralld straight lines in the plane. Also each 
minor separatrix o/ 5#.) intersects the principal separatrices o/ ,9',~) in at most 
one point, respectively (see Figure t). 

Proof. By Lemma t the topological configuration of the solutions of 5#+) or 
of ~_) is that  of .~e). I t  is clear that  the critical point of 5P_) lies to the right of 
the critical point of 5~'§ on the x-axis. By the~ preeeeding remark the principal 
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separatrices II_ and I V ,  together with the critical point of 5r form the topo- 
logical image of a line which is a single-valued covering of the y-axis. The same 
holds for 5~+). 

Suppose II+ and I I  intersect. At the intersection point which is furthest 
to the right the slope of I I  is less than that  of II§ and this contradicts the 
supposition of an intersection. Similarly IV+ and I V  cannot intersect. 

Therefore the open band B bounded by the principal separatrices and critical 
points of ~§ and ~a_) is homeomorphic to the open band between two parallel 
straight lines in the plane. In fact, the homeomorphism can be extended to the 
closed bands. 

~+ B ~- I+ 

I_ 

~§ ~_ .IV+ IV_ 

Fig. t 

Now on a minor separatrix, say I+, we have ~ >  0 and ~ > 0. Hence I+ intersects 
I I  in exactly one point. Similarly I I I  intersects IV+ in exactly one point. Q.E.D. 

T h e o r e m  6. Consider 

2 )  ~ + 1 ( ~ )  - g ( x )  = u ,  

where [ (y), g ( x) C C z/or all ( x, y) in R 2 and --C_ ~ u ~ C+ is the/inite real interval 
32 with - - C _ < 0 < C + .  Assume /(0)----g(0)=0, / ' ( y )>0 ,  g ' (x )>0  in R "~ and 
Ig(x)l-->oo as Ixl--->co. Then the domain o/ controllability ~ in the phase plane 
(x, y---- ~) is precisdy the open topological band B bounded by the principal separa- 
trices, and critical points, o/the two systems 

:~ = g (x) • ( c . )  - t (.y). 

Proof. Consider the open quadrilateral Q in R 2 bounded by I+, IV+ and 
II_, III_.  The origin 0 lies in Q, and the solution 5~§ through 0 must pass 
through a point 0+ in Q very near III_ before it comes to 0. 

Now take an initial point p in Q. Steer p by the solution of 5P+) until it 
almost reaches the intersection of this solution with II_. Then follow the solution 
of ~a) around the inside of the boundary of Q to the point 0§ Then switch to 
the solution of ~a+) which steers the point to 0. 

If p lies in the band B but above the quadrilateral Q, start out along a 
solution of #a+) until one almost reaches the intersection with II_. Then switch 
to a solution of 2~_) and follow this until the point 0§ is again reached. Then 
follow the solution of ,50+) into 0. 
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If  p lies in the band B but  below the quadrilateral Q, s tar t  out along a solution 
of-5~) until one almost reaches IV+. Then follow 5P+) into Q, and proceed as 
above. 

Now l e t Z b e  a point of R 2 - B .  I f Z l i e s i n  y > 0  and to the right of the 
critical point of 5~_), then. Z cannot be steered out of this quadrant  by  a controller 
--C_ ~ u ( t )~  C+ and thus Z cannot be steered to 0. Now Z follows a solution 
curve of 

{ ~-----y, 

= g_(x) - - / ( y )  + e(t) 

where e ( t )= u ( t )+ C_> 0 is measurable on some finite t ime interval. Thus if 
Z lies in the open sector bounded by  II_ and I_, then Z must  lie above a solution 
curve of 5~_), and hence, using the parallel structure of the solution curve family 
in this sector, we see tha t  Z cannot be steered to 0. If  Z lies in the open sector 
bounded by  IV_ and I_, then Z must  enter the half-plane y >  0 to the right 
of the critical point of ~_), whatever the controller u(t). Therefore, if Z lies to 
the right of the closed band ~ then Z cannot be steered to the origin 0 by a 
measurable controller u (t) with - -  C_ <-- u (t) <: C+. A similar argument  shows 
that  if Z lies to the right of the closed band B, it cannot be steered to the origin 0. 

By  Theorem 4 the domain of controllability ~' is an open plane set. There- 
fore ~ = B .  Q.E.D. 

Remark. Each initial point in ~ = B can be steered to the origin 0 using only 
the solutions of .W§ and ~_). I t  is necessary to use only two switches between 
these two systems for each point in ~ (even though the discussion in the theorem 
uses three switches in certain cases). 

As a final example consider the van der Pol equation 

~ +/~(x * -  t) ~ + x = o  

for a positive constant/~.  In the phase plane this is the system 

{ ~ ? = y  

- - ~ ( 1 -  x ~ ) y -  x. 

The origin 0 is the unique critical point and is an unstable focus, or node. There 
is a unique periodic solutions S~ which is orbitally asymptotical ly stable and 
which lies between the abscissas x = - 4 - d r  (for estimates of dv see ~14]). 

Theo rem 7. Consider the differential system 

{ ( x -  u)"] y -  u) 

/Or a fixed / z > 0  and measurable controls u(t) defined on finite intervals with 
]u ( t ) l< , , /o r  some e > 0 .  Then the domain of controllability ~ to the origin 0 is 
all R ~ whenever 

> a,,12. 
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Proof.  For  each choice of a constant  u on l u[ ~ e the corresponding system o~) 
has a unique critical point  0~, which is unstable, and a unique periodic solution, 
which is orbital ly asymptot ica l ly  stable and which lies between the abscissas 
x=~+d~. 

If  the constant  u satisfies ]u I < d ~ ,  then it is easy to see tha t  0~ belongs 
to c~. I f  [u I < d~ and if c~ intersects the periodic solution S~, then ~---- R ~. 

Now if e>d~,/2, we can choose a constant  u so lul < e and yet  ]2u I > d ~ .  Then 
c~ intersects S~, and hence C~=R2. Q.E.D. 

The work of L. MARKUS was supported by NSF grant 11287 and OOR contract 
DA-t  1-022-ORD-3369. 
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