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Abstract. In order to provide a general framework within which the dispersal 
of cells or organisms can be studied, we introduce two stochastic processes 
that model the major modes of dispersal that are observed in nature. In the 
first type of movement, which we call the position jump or kangaroo process, 
the process comprises a sequence of alternating pauses and jumps. The 
duration of  a pause is governed by a waiting time distribution, and the direction 
and distance traveled during a jump is fixed by the kernel of an integral 
operator that governs the spatial redistribution. Under certain assumptions 
concerning the existence of limits as the mean step size goes to zero and the 
frequency of stepping goes to infinity the process is governed by a diffusion 
equation, but other partial differential equations may result under different 
assumptions. The second major type of movement leads to what we call a 
velocity jump process. In this case the motion consists of a sequence o f" runs"  
separated by reorientations, during which a new velocity is chosen. We show 
that under certain assumptions this process leads to a damped wave equation 
called the telegrapher's equation. We derive explicit expressions for the mean 
squared displacement and other experimentally observable quantities. Several 
generalizations, including the incorporation of a resting time between move- 
ments, are also studied. The available data on the motion of cells and other 
organisms is reviewed, and it is shown how the analysis of such data within 
the framework provided here can be carried out. 

Key words: Dispersal - -  Cell movement - -  Random walks - -  Stochastic 
processes 

1. Introduction 

Many theoretical analyses of the dispersal of cells or organisms are based on the 
hypothesis that the movement of the dispersing species can be described as a 
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random walk in which there is no correlation between steps. In an appropriate 
continuum limit the probability that an individual will be found at a given point 
in space at a fixed time satisfies a diffusion equation without drift. As we shall 
see, this process is the simplest example of  what we call the space jump process. 
In order to motivate the generalizations that are introduced in the following 
sections, we discuss the standard approach to this process and to the simplest 
example of  a velocity jump process in this section. A more comprehensive 
discussion of the use of  diffusion processes in modeling spatial dispersal in 
ecology is given in Okubo (1980) and in Levin (1986). 

Consider a one-dimensional uniform lattice, and suppose that there is no 
directional bias in the movement,  by which is meant that the probabilities of a 
step in either direction are the same. The probability that a walker beginning at 
the origin is at site m after N steps is given by 

p ( m, N ) = -Sff 

where ( . )  is the binomial coefficient, which is understood to be zero if ( N  - m)/2 
is not an integer (Chandrasekhar  (1943), Feller (1968)). For large N and m << N 
an application of Stirling's approximation leads to 

~ /  e m2/2N. 2 
p(m, N ) ~  - - ~  

Let x = mzl and N = At, where A is the lattice spacing and h is the rate at which 
steps are taken, and let 

P(x , t )  dx-~p ,At 2Z~" 

Then 

P(x, t) dx = . - - 1  e -x2/2aa~' dx, 
x/2rraA 2t 

and if we let h ~ oo and A ~ 0, while holding hA 2= constant--= 2D, then 

P(x, t) = 1_~ e_X2/4Dt 
x/41rDt 

(1) 

Thus P is the fundamental  solution of the diffusion equation, i.e. the solution of 

OP 02P 
-~ t=D~x 2 for x e R ,  t e R  + 

(2) 
P(x, o) = ~(x) 

where 3(x) is the Dirac distribution. The corresponding stochastic process is 
variously called a diffusion process without drift, Brownian motion, or a Wiener 
process. The most accessible statistic of such a process from an experimental 
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standpoint is the mean squared displacement 

( x 2 ) = I + ~ x 2 p ( x , t ) d x = 2 D t .  

The analogous two dimensional diffusion problem is 

OP [O2P a2P\ + 

P(x, y, O) = a(x)6(y) 

and the solution is 

265 

(3) 

(4) 

P(x,y,  t) = 1 e (x2+y2)/4Dt. 
4 ~r Dt 

The formula for the mean squared displacement in the plane is (r 2) = 4Dt. 
Since P(x, t) > 0 for t > 0 and any x e R, a diffusion process predicts a non-zero 

probability for arbitrarily large displacements at arbitrarily small times, and in 
this sense the underlying propagation speed is infinite. However, it has long been 
known that equations such as (3) are best regarded as asymptotic approximations, 
valid for large time, of equations that more accurately describe the correlations 
in movement that can be detected when the process is observed on a sufficiently 
short time scale (Einstein (1905), Ffirth (1920)). There are theoretical predictions 
that such correlation effects could be important in multicomponent reacting 
systems (Othmer (1969), Othmer (1976)), but to date there is no convincing 
evidence that such correlations are important on the time scales that characterize 
transport in condensed reacting media of  the type usually studied by physical 
chemists and engineers. 

However, dispersal of cells and large organisms occurs on entirely different 
time scales and often involves mechanisms that may introduce correlations in 
movements. For instance, there are various types of "taxes", there can be density 
dependence in the fluxes (Shigesada (1980)), avoidance phenomena, etc. (cf. 
Okubo (1980)). Furthermore, within the last 15 years several experimental studies 
have demonstrated the existence of significant correlations in the motions of 
several different types of cells. Gail and Boone (1970) showed that mouse 
fibroblasts exhibit persistence in their direction of motion when they are observed 
over successive time intervals of 2.5 h or less, but that this correlation is not 
observed over longer time intervals. In a similar vein, when the bacterium E. coli 
moves in an isotropic medium the successive turns are uncorrelated and indepen- 
dent of the step length, and the distribution of turn angles is symmetric about 
zero. In the presence of a gradient of a chemotactic substance the length of the 
steps increases when motion is up the gradient (Berg (1975, 1983)), i.e. some 
measure of persistence is increased. More recently Hall (1977) has studied the 
motion of Dictyostelium discoideum amoeba and detected correlations in the angle 
of turn between successive steps, but no correlation in the lengths of successive 
steps. Similar findings have been reported by Hall and Peterson (1979) for human 
granulocytes, by Dunn (1983) for chick heart fibroblasts, and by Kareiva and 
Shigesada (1983) for cabbage butterflies. The foregoing studies provide one of 
the motivations for our analysis of models other than the simplest diffusion model 
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for the description of biological transport. We shall discuss the results of these 
studies in more detail later. 

A very simple model for a correlated random walk in one dimension was first 
analyzed by Goldstein (1951), and later by Kac (1974), McKean (1967) and Segel 
(1978). Suppose that a particle moves along the x-axis at a constant speed s, but 
that at random instants of time it reverses direction. Suppose that this "velocity- 
reversing" process is a Poisson process with intensity A, i.e. the rate of reversal 
per unit time is A. Let p+(x, t) be the probability density of particles that are at 
(x, t) and are moving to the right, and let p-(x,  t) be the probability density of 
particles that are at (x, t) and are moving to the left. Then p• t) satisfy the 
equations 

OP+ + s Op+ = -Ap + + Ap- 
Ot Ox 

(5) 
Op - Op - 
- - -  s = hp+-  hp -. 
Ot Ox 

The probability that a particle is at (x, t) is p(x, t)=-p+(x, t )+p-(x ,  t), and the 
probability flux is j =-s(p + - p - ) .  These satisfy the equations 

OP + OJ=o 
Ot Ox 

(6) 
aj  + 2Xj = - s  2 ~ 
Ot Ox 

and the initial conditions p(x,O)=po(X), j(x,  0)=jo(x) ,  where Po and jo are 
determined from the initial distribution o f p  + and p- .  The system (6) is equivalent 
to the second-order equation 

f2_P+ 2a ~ = s 2 ~  (7) 
Ot 2 Ot Ox 2 

with initial conditions p(x, 0)=po(X), Op/Ot(x, O)=-Ojo/OX(X). Equation (7) is 
called the telegrapher's equation and the underlying stochastic process will be 
called the telegraph process. A nonlinear version of this equation that incorporates 
birth and death is studied in Dunbar and Othmer (1986) and Dunbar (1987). 

Since (7) is a hyperbolic equation signals cannot propagate faster than s, 
which is the underlying particle speed. Thus the telegraph process obviates one 
objection to the diffusion process. The mean squared displacement can be 
obtained from (7) by multiplying by x 2 and integrating over R. If p(x, t) and its 
first two x derivatives tend to zero as Ixl ~ oo, the right-hand side can be integrated 
by parts and one finds that 

d2{x 2) 
b2A ~ = 2s 2. 

dt 2 

If  we assume that p(x, O) = 6(x) and Op/Ot(x, 0) -- 0, then the appropriate initial 
conditions for this equation are (x2(0))= d~ dt(x2(O))= 0, and therefore 

(x2( t ) )=~-{  t---~A (1--e-2a')}. (8) 
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For small t, ( x 2 ( t ) ) -  s2t 2, which is characteristic of  a wave propagat ion process, 
and for large t, (x2(t))~ s2t/A, which is characteristic of  a diffusion process with 
diffusion coefficient D = s2/2A. To relate this result to the diffusion coefficient 
obtained earlier, note that in a Poisson process of intensity A the mean time 
between events is 1/A. Thus the average distance traveled between reversals is 
/1 = s / A, and therefore 

S 2 A A  2 

O - (9) 
2A 2 

This is the same expression for D given earlier, and thus the "diffusion limit" 
of  the telegraph process consists in letting A -+ oo and s -+ co while maintaining 
s2/A constant. The analog of (8) for a certain discrete-time correlated random 
walk in two space dimensions is given in Skellam (1973). 

Further insight into the diffusion limit of  the telegraph process can be gained 
from the integrated form of the second equation in (6), which reads 

Io j(x,  t) = e-2h~(x, O) - s 2 e_2~(,_,) Op (x, r) dr. (10) 
Ox 

It is easy to prove that 

fo lim 2A e -2A(t-,~ -~- (x, ~') dr - Op (x, t), 
a ~oo OX -- OX 

and therefore in the diffusion limit (10) reduces to 

j(x,  r ) = - D ~  (x, r) 

where D is given by (9). This gives one form of Fick's law, and when this is used 
in the first equation of (6) one again obtains the diffusion equation. Thus the 
diffusion limit of  the telegraph process can be viewed as a limit in which the 
probabili ty flux relaxes instantaneously to the relationship given by Fick's law. 
That is~ inertial effects are negligible in this limit (cf. Othmer (1976)). 

Since (7) is linear it can be solved explicitly. One finds that the solution 
for the initial conditions p(x, O)= 6(x), Op/Ox(x, 0 ) =  0 is given by (Morse and 
Feshbach (1953)) 

( o  f o r  Ix[ > st  

where A = A , / t Z - x 2 / s  2 and Io and 11 are the modified Bessel functions. The 
Bessel functions have the asymptotic expansions (Abramowitz and Stegun (1965)) 

e x 

l o ~ + O ( 1 / x )  

e x 

I , ~ - ~ x +  ~(1/x)  
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for x-> ~ ,  and it follows that 

p(x ,  t) 1 e_X2/4o, + e_~,O(~:2) 

for ~---x2/(st) 2. Therefore, far from the boundaries Ix I = st of the forward light 
cone the solution reduces as t ~ oo to the solution of the diffusion equation, as 
expected. 

The diffusion and telegraph process are examples of what we shall call position 
jump or kangaroo processes and velocity jump processes, respectively. Both 
processes will be described in greater generality later. Kangaroos and grasshop- 
pers provide the most amusing examples of  movement via the first type of  process, 
while the examples from cellular movement discussed earlier are best described 
as velocity jump processes. While the diffusion equation and the telegrapher's 
equation serve as useful tools for analyzing experimental data, it should be 
recognized that experimental data usually provides only a few spatial moments 
of the underlying stochastic process, and therefore the underlying process cannot 
be uniquely identified. Thus it is of interest and possibly of experimental value 
to identify general classes of processes that lead to the same observables, such 
as the mean squared displacement. This is one of the major objectives here. 

In the following section we present a general formulation of position jump 
processes, based on an arbitrary waiting time distribution for the interval between 
jumps and a spatially homogeneous process for the direction and length of the 
jumps. We derive the time dependence of the first few spatial moments for some 
typical choices of the functions. We also show how some of the standard partial 
differential equations can be obtained from our integral equation formulation. 

In Sect. 3 we present a general formulation of the velocity jump process in 
n-space for n = 1, 2, 3. In Sect. 4 we discuss several generalizations of the cases 
treated in Sects. 2 and 3, and in Sect. 5 we show how our approach can be used 
in analyzing data. 

2. The position jump or kangaroo process 

2.1. Derivation o f  the model 

Consider a random jump process on R" in which the particle executes a sequence 
of jumps of negligible duration, and suppose that the waiting times between 
successive jumps are independent and identically distributed. That is, if the jumps 
occur at To, T ~ , . . .  then the increments T~ - T~_~ are identically and independently 
distributed, and therefore the jump process is a semi-Markov process (Feller 
(1968), Karlin and Taylor (1975)). Let 3- be the waiting time between jumps and 
let &(t) be the density for the waiting time distribution. 3- is experimentally 
observable, and in principle ~b (t) can be determined from experimental observa- 
tions (cf. Sect. 5). If a jump has occurred at t -- 0 then 

r = Pr{t < ~ - ~  t + dt). 

The cumulative distribution function for the waiting times is 

;o q~(t) = c~(s) ds = Pr{~-~ < t} 
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and the complementary cumulative distribution function is 

= f o~ &(s) ds = 1 - ~ ( t )  = Pr{3-~ > t}.  b(t) 

For example, if the jumps are governed by a Poisson process then ~O(t) = 1 - e  -z '  
and 4~(t) = A e z,. This is the only smooth distribution for which the jump process 
is Markovian (Feller (1968), p. 458). 

Next we must specify how jumpers are redistributed in space, given that a 
jump occurs. For simplicity we shall assume that the spatial redistribution that 
occurs at jumps is independent of  the waiting time distribution. Thus the probabil- 
ity of a transition from y to x at time t will simply be the product of  qb(t) times 
the function that gives the probability of  the jump from y to x. This assumption 
of statistical independence between the event of  deciding to jump and the event 
of  deciding where to jump may clearly be too restrictive for some systems, for 
the direction and length of a jump may very well depend on the time elapsed 
since the last jump. Our formulation of the velocity jump process will incorporate 
some types of  directional persistence, but for now we shall, in effect, assume that 
we have infinitely energetic jumpers that have no recollection of their previous 
location. 

Let T(x, y) be the probabili ty density function for a jump from y to x. That 
is, if X(t) is a random variable giving the jumper 's  position at time t, then given 
that a jump occurs at T~, 

T(x, y) dx  = Pr{x ~< X ( T ~ )  <~ x + dxlX (TT) = y}, (12) 

where the superscripts + denote limits from the right and left, respectively. This 
definition allows for the possibility that the underlying medium is spatially 
nonhomogeneous and nonisotropic, in which case the transition probability 
depends on x and y separately. In the case of  a homogeneous and isotropic 
medium T(x, y) = T ( x - y ) ,  where T gives the absolute (unconditioned) probabil- 
ity of  a jump of length x - y .  

One of the purposes of  the analysis is to show how the functions ~b(t) and 
T(x, y) can be related to experimentally observable quantities. The statistics most 
accessible from observations are the various moments of  the displacement and 
their dependence on t. To relate these to ~b and T we must derive an evolution 
equation for the density function P(x, t]0), which is defined so that P(x, t I 0) dx 
is the probabili ty that the position of a jumper  which begins at the origin at time 
t = 0  lies in the interval ( x , x + d x )  at time t. We shall derive this equation via 
equations for some auxiliary quantities. 

Let Qk(x, t) be the conditional probabili ty that a jumper  which begins at x = 0 
at t = 0  takes its kth step at t -  and lands in the interval ( x , x + d x ) .  Then for 
x > 0, t > 0, Qk satifies the first-order difference equation 

f0I  Qk+,(x, t ) =  , q~( t - - r )T(x,  Y)Qk(Y, r) dy dr. 

Summing this over k we obtain the density function for arriving in the interval 
( x , x + d x )  at time t -  after any number  of  steps. Thus we obtain the Volterra 
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integral equation 

Q(x, t) = ~_ Qk(X, t )= Qo(x, t)+ th(t-~ ')r(x,  y)Q(y, z) dy aT (13) 
k = 0  

and this must satisfy the initial condition 

Q(x, o) : 8(x). 
Consequently (13) becomes 

Q(x, t )= 8(x)8(t) + , ( a ( t - z ) T ( x , y ) Q ( y ,  ~') dy  dr. 

The probability density function P(x, t[0) for the conditional probability that 
X ( t )  lies in (x, x+ dx) at time t can be computed as the product of the probability 
of arriving in this interval at some time T < t, multiplied by the probability that 
no transition occurs in the remaining time t -7 .  Thus 

P(x, tl0)-- ~ ( t - T ) Q ( x ,  ~-) d~" 

: f~ 4~(t-'~){8(x)~(,)+ I~ fRo 4,(~'-s)T(x,y)Q(y,s) dr ds} d'~ 

= qb(t)8(x)+ 8 ( t -  r)th(~--- s) d~" T(x, y)Q(y, s) dy  ds. 
~ 

(14) 

On the other hand, it follows from (14) that 

f~  fR, ga( t -~ ' )T (x ,Y )P(Y , ' r lO)  dy  dT 

- 

= . c h ( t - T ) ~ ( ~ ' - s ) T ( x , y ) Q ( y ,  s) dy  asa~. 

= ~ ( T - - S ) 6 ( t - - ~ ' )  d~" T(x,y)Q(y, s) dy  ds. 
R n s 

It is easy to show that 

fs Is ~(t-,)4~(~--s)d~-= 4,(t-,)~(~--s)d~- 

by setting u = t - s, z = ~ ' -  s, and observing that the resulting integrals have the 
same Laplace transforms. Thus P(x, t l0) satisfies the following renewal equation: 

If the initial distribution is given by F(x) then 

n(x, t)-= f .  P(x, tlxo)F(xo) dxo 
JR 
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can be regarded as the number density of identical non-interacting jumpers at x 
at time t. Clearly n(x, t) satisfies 

foI  n(x, t)= ~ ( t ) F ( x ) +  ,, &(t-~')T(x,y)n(y, ~') dydz. (16) 

In order that the total number of jumpers be conserved in the jump process 
it is necessary that 

N(t)=fR~ F(x)  dx 

i.e. that 

~(t)NO+ fR, fOt fR ~b(t-z)T(x,y)n(Y, :') dy dzdx= No. 

We assume that T~ LI(R"x R"), and therefore the x and y integrations can be 
interchanged by Fubini's theorem. It follows that the necessary and sufficient 
condition for conservation of jumpers is that 

fR" T(x, y) = 1. dx  

Hereafter we assume that q~ and T have the proper normalizations and sufficient 
regularity that the indicated operations make sense. 

Special choices of ~b and T lead to some of the standard random jump 
problems treated in the literature. For instance, if 4~(t)= 6(t-to) then q0(t)= 
H(to-t), where H ( .  ) is the Heaviside function, and (15) reduces to 

P(x,  tl0) = H(to- t)8(x) +[1 -H(to-  t)] fR" T(X, y)P(y, t -  to[0) dy. 

This is the governing equation for a discrete time, continuous space process in 
which jumps occur at intervals of to. If  in addition the support of  T is concentrated 
on the points of a lattice Z"  = R", then 

P(xi, t] O) = H(to- t)6io +[1 - H ( t o -  t)] • TijP(xj, t -  to I 0), 
J 

where 6io is the Kronecker delta, and x, is a lattice point. This can be written in 
the more conventional Chapman-Kolmogorov form as follows: 

P/o(n + 1) = Y. T/jPjo (n), n~>l. 
J 

Clearly the underlying process is Markovian for this ~b. 

2.2. Analysis of moments 
As we remarked earlier, one of our purposes is to relate q~ and T to the 
experimental observations. The statistics most accessible from observations are 
the various moments of the displacement, in particular their dependence on t. 
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We shall compute these moments from (15), and for illustrative purposes we 
assume that the medium is one-dimensional and spatially homogeneous. Define 

(x"(t))= f +~ x~P(x' t]O) 

= _f+~fo'f+ xnT(x-y)4)(t-~)n(y,z[O)dydzdx. (17) 

Let 

mk= _ x~i '(x)  dx 

be the kth moment of T about zero. Then (17) can be written 

(x"(r = ~o  m k 6 ( t -  ~')(x~ &. (18)  

It follows that all the moments of x(t) can be gotten by solving a sequence of 
linear integral equations of convolution type. 

Let 

fo Xk(s) = 2~{(xk(t))} = e-"(xk(z)) dr 

be the Laplace transform of the kth moment, and let Og(s)= ~{~b(t)}. Then one 
finds that 

X~(s) = m, ~(s)  
s 1-~(s)  

(19) 

X2(s)= 2mlxl(s)+ T l - -~s ) "  

If  the first moment of T vanishes then these simplify to 

X~(s)=0 

X2(s) = m2 q~(s) (20) 

s 1-  4~(s)" 

The asymptotic behavior of the moments can be gotten by applying limit 
theorems for Laplace transforms (Widder (1946)), but we shall merely illustrate 
the dependence of X2 on t for two particular choices of 4~. Firstly, suppose that 
ml = 0 and that 

~ ( t )  = ;t e -~ '  ( 2 1 )  

which is the density function for an exponential waiting time distribution. Then 
~(s)  = h / ( s + h )  and it follows that 

(x2(t)) = rn2 ~-1 dr = m2ht. (22) 
3o ks~ 

Secondly, if we choose 

~b(t) = A2t e-;" (23) 
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which is the density function for a gamma waiting time distribution with param- 
eters (2, A), then 

~2 

(s+,X) 2" 

One finds that 

( x 2 ( t ) )  = m~ \ s ( s  + 2,~)/ ~ ' 
ar=- ' -~--  t -  ( 1 - e  -2At) (24) 

which is shown in Fig. 1. 
It is clear from the analysis given in the Introduction that (22) predicts the 

same mean squared displacement as a diffusion process with diffusion coefficient 
D = mzA/2. Similarly (23) leads to the same mean squared displacement as the 
telegraph process. Of  course neither fact proves that the processes defined by 
(21) and (23) are diffusion and telegraph processes, respectively, but an 
experimentalist who can reliably measure only the first two moments of  the 
displacement could not distinguish them from these processes. It is noteworthy 
that this conclusion holds under the reasonable hypothesis that the first two 
moments of  T are finite, without any condition on the higher moments. 

2.3. Diffusion limits for the exponential waiting time distribution 

The results given by (22) and (24) raise the question as to whether, for some 
choice of  T, the corresponding integral equations are equivalent to the diffusion 
and telegraph equations, respectively, in an appropriate limit. Consider first the 
choice q~(t) = A e -A' which leads to (22). After differentiating (15) and rearranging 
one finds that 

0 P  
- A P + A  f T ( x -  y)P(y,  t) dy (25) 

at JR 

where here and hereafter we suppress the conditioning argument in P. I f  

7"(x - y) = �89 - y  - A) + 6 ( x - y  + A)] (26) 

Fig. 1. Theoretical curves of the 
mean-squared displacement 
sketched for the position jump 
process with exponential (a) 
and gamma waiting time 
distribution (h) 

) ) 
a t b t 



274 H.G. Othmer et al. 

then 

OP A 
- - = - [ P ( x +  A, t ) - 2 P ( x ,  t ) + P ( x - A ,  t)]. 
Ot 2 

The right-hand side can be written 

AA 2 [02p ] 
2 L~-~x 2 + e ( g 2 )  ' 

and therefore, in the diffusion limit (a ~ co, A -+ 0, aA2 = constant) we obtain 

OP 02P 
- D ( 2 7 )  

Ot OX 2 ' 

provided that the higher-order derivatives included in 6(A 2) are bounded. 
In fact, a similar result holds in any dimension. Let 

8 ( x - - y - A )  
2~(x-- y) A n-loOn 

where ton is the surface measure of the unit sphere in R n. For this choice of  
one finds that 

OP 
- - =  A[/5(x, A, t) - P ( x ,  t)] 
Ot 

where /5 is the average of P over the surface of a sphere of  radius a centered 
at x. By expanding P about x and performing the indicated average one finds 
that in the diffusion limit 

,gP DV2p ' (28) 
0 t  

provided that P varies smoothly, i.e. provided that all higher-order derivatives 
are bounded. Here D---- AA2/2t/ is the diffusion coefficient in n dimensions. 

A similar conclusion holds for much more general kernels T. Suppose that 
has the form 

Then 

7Zx + c(a ). 

It follows that if the first moment  of  To is 6(A) for A--> 0, if the second moment  
of  To tends to a constant, and if all higher moments are bounded,  then in the 
diffusion limit (A -+ oo, A -> 0, a d  2 = constant) we obtain a diffusion equation with 
drift. The diffusion coefficient is given by 

D = A - -  lim To(r, A ) r 2 dr (30) 
2 /i-+0 



Models of dispersal in biological systems 

and the drift coeff• is given by 

/ ~ 2  

/ 3 = a - - l i m  I To(r,A) 
2 a-'o JR A rdr. 

275 

(31) 

If  the kernel is symmetric then the drift coefficient vanishes. The reader can check 
that the foregoing conditions are satisfied for the kernel 

1 {e_(X y_A)2/Zcr2_~_e (x_y+A)2/2o_2} 
:~(x -y)  - 2 , / ~  

provided that ~r/a ~ U(1) as a -+0. 
The situation is quite different when ~b(t)= A2t e-*'. In this case the analog of 

(25) is 

02P+2 a 0 t  2 O___P=ot - A 2 p +  A2 --fR T ( x -  y)P(y, t) dy, (32) 

which is homogeneous in At. Thus it is clear that there is no scaling of time in 
which the second-order time derivative can be neglected for a -* 0% irrespective 
of the choice of Z Thus there is no possibility of letting a ~ oo in such a way 
that the resulting equation is the telegrapher's equation on time intervals of the 
form [to, oo). Of course the choice given at (26) for T(x, y) will produce a finite 
difference approximation t o  02/OX 2 on the right-hand side of (32) for any finite 
to, but the higher-order spatial derivative terms cannot be removed by taking the 
limit a ~ oo in such a way that the telegrapher's equation remains. 

3. Velocity jump processes 

The prototypal organisms whose motion can be described as a velocity jump 
process are the flagellated bacteria, the best studied of which is E. coli. To search 
for food or escape an unfavorable environment, E. coli alternates two basic 
behavioral modes, a more or less linear motion called a run, and a highly erratic 
motion called tumbling, the purpose of which is to reorient the cell (cf. Fig. 2). 
Run times are typically much longer than the time spent tumbling, and when 
bacteria move in a favorable direction (i.e. either in the direction of foodstuffs 

I 

. V  I 

! 

r 

Fig. 2. Schematic drawing of a velocity jump process, during which a new moving direction = v/[]v]] 
is chosen according to a turn angle distribution as in Fig. 4a for example. See text for details 
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or away from harmful substances) the run times are increased further. During a 
run the bacteria move at approximately constant speed in the most recently 
chosen direction. New directions are generated during tumbles, and when bacteria 
move in an unfavorable direction the run length decreases and the relative 
frequency of tumbling increases. The distribution of new directions is not uniform 
on the unit sphere, but has a bias in the direction of the preceding run. The effect 
of  alternating these two modes of behavior, and in particular, of  increasing the 
run length when moving in a favorable direction, is that a bacterium executes a 
three-dimensional random walk with drift in a favorable direction when observed 
on a sufficiently long time scale (Koshland (1980), Berg (1983)). 

3.1. Derivation of the model 
Our approach to velocity jump processes will be a direct generalization of the 
earlier derivation of the telegrapher's equation. Thus we shall work directly with 
the differential equation form of the conservation equation for a phase space 
density function that depends only on the position, velocity and time. The 
development is, except for some differences related to conserved quantities, the 
same as that which leads to the Boltzmann equation and its related moment  
equations in the kinetic theory of gases (cf. Resibois and DeLeener (1977)). In 
some circumstances it is desirable to incorporate internal variables in the distribu- 
tion function in order to describe the effect of the internal state on parameters 
such as the run length. Such generalizations have been treated in Alt (1980). 

Let p(x, y, t) be the density function for individuals in a 2n-dimensional phase 
space with coordinates (x, v), where x e R n is the position of an individual, and 
ve  R ~ is its velocity. Then p(x, v, t) dx dv is the number density of individuals 
with position between x and x +  dx and velocity between v and v+  dv, and 

n(x, t) = I p(x, v, t) dv 

is the number  density of individuals at x, whatever their velocity. The evolution 
of p is governed by the partial differential equation 

aP+v,,'vp+Vv.Fp = ~ ,  (33) 
at 

where F denotes the external force acting on the individuals and ~ is the rate 
of  change of p due to reaction, r a n d o m  choice of  velocity, etc. For the present 
we assume that F=-0 and that only two processes contribute to the changes on 
the right-hand side of  (33), namely, a bir th/death process and a process that 
generates random velocity changes. We assume that the former is independent 
of the velocity and that it can be written 

(aP) = k r ( n ) p ~  bd (34) 

where k is a constant. We suppose that the random velocity changes are the 
result of  a Poisson process of  intensity A, where A may depend upon other 
variables. Thus A -1 is a mean run length time between the random choices of 
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direction. The net rate at which individuals enter the phase-space volume at (x, v) 
is given by 

sp 

where "sp"  denotes the change due to the stochastic process. Clearly this equation 
is the velocity-space analog of (25). The kernel T(v, v') gives the probability of 
a change in velocity from v' to v, given that a reorientation occurs, and therefore 
T(v, v') is non-negative and normalized so that 

I T(v,v') d r =  1. 

This normalization condition merely expresses the fact that no individuals are 
lost during the process of changing velocity. At present we assume that T(v, v') 
is independent of the time between jumps. 

In light of the foregoing assumptions, (33) becomes 

- ~ + V x ' v p = - A p + A  f T(v,v')p(x,v' , t)dv'+kr(n)p. (36) 

For most purposes one does not need the distribution p, but only its first few 
velocity moments. The first two are the number density n(x, t) introduced pre- 
viously, and the average velocity u(x, t), which is defined by 

n(x, t)u(x, t) -= j p(x, v, t)v dv. (37) 

If we integrate (36) over v we find that 

On 
- -+  Vx. nu= R(n) (38) 
Ot 

where R(n) ==- knr(n). Similarly, multiplying by v and integrating over v gives 

0(nu)+ V. 1 pw d r =  A [ T(v, v')vp(x, v', t) dr'  d r -  Anu+ knur(n). (39) 
at 3 3 

3.2. Analysis of some special cases 

In one space dimension we define 

T(v, v') = ~(v+v') 

and thus demand that individuals change direction each time a choice is made. 
This is consistent with the scheme that led to the telegrapher's equation in Sect. 
1, but not for instance, with the random choice of direction made at each tumble 
in bacterial motion. 

When the speed is constant v = +s and nu = s(p + - p - ) ,  where p~: -= p(x, +s, t). 
Furthermore 

V. f pvv dv= s2 Ofl= s 2 0 
Ox O~ (p+ +p-)" 
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For the foregoing choice of  T the integral term in (39) reduces to - A s ( p  + - p - ) ,  
and thus in the absence of reaction (38) and (39) reduce to 

0 0 + 
O--t(p++p-)+SUx(p - p - )  = 0 

0 s - - (p+-p- )+s  2 (p+ + p - )  = -2As(p+-p-). 
Ot 

These are just the equations given at (6), written in a slightly different form. 
In higher space dimensions Eqs. (38) and (39) do not specify n and u as they 

stand, for they involve the second v moment  of  p and the as yet unspecified 
kernel T(v,v').  Some further simplifying assumptions are necessary, and to 
describe some that are biologically meaningful we shall first introduce the notion 
of persistence. 

Let v =  s~: where s = Ilvll is the speed (the Euclidean norm of v) and ~=v/llvll 
is the direction of v. For a fixed v', the average velocity v after reorientation is 
defined by 

~= f T(v, v')v dv = f T(v, v')~s" ds dw. 

where dw. is the surface measure on the unit sphere S~ -1 centered at the origin 
in R". While the average speed 

g= f T(v,v')llvll dv= f T(v,v')s"dsdw. 

is always positive (since T~>0 and T is not concentrated at v = 0 ) ,  the average 
velocity vector may vanish, and II~]l <~ g, see Fig. 2. The angle between ~/g and 
~' = v ' / s '  provides a measure of  the tendency of the motion to persist in any given 
direction ~:'. Therefore we define the index of directional persistence as 

~ . V  t 

did =-- gs' (40) 

where ~ba c [ - 1 ,  +1]. Of  particular interest is the case in which the speed does 
not change with reorientation and the turning probability depends only on the 
cone angle 0 between v' and v, which is given by 

u  t 

O(v, v') -= arccos  - - ,  
S S  r 

where 0 ~ [0, 7r]. Then T(v, v') has the form 

a(s-s') 
T ( v , v ' ) -  . 1 h(0(v,v '))  

S 

for any n t> 2. The distribution h is normalized so that 

2 h(O) dO = 1 

(4a) 
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for n = 2 and 

27r h( O) sin O dO= l 

for n = 3 .  
Given a velocity v', the average velocity after reorientation can be resolved 

into a component  along v' and a component  v~_ orthogonal to v'. Since the 
probability of  choosing a given direction depends only on 0 for the foregoing T, 
it follows that v', = 0. Furthermore, in this case Od in (40) is independent o fv '  and 

= 4Ja v', (42) 

where the persistence index or mean cosine is given by 

2 (0) cos OdO for n = 2  

~bd = (43) 

[ 27rfo h(O) cosOsinOdO f o r n = 3  

(cf. Patlak (1953)). Some specific examples of interest in Sect. 5 will help 
to illustrate this. For the simple case of  uniform random selection of direction 
on the unit circle, h(O)=l/(27r) and qJd=0. For the circular normal dis- 
tribution (Johnson and Kotz (1970)) with pole 0o=0, we have h ( 0 ) =  
[2~-Io(k)] l exp (kcos  0), where Io is the Bessel function of order zero of 
imaginary argument. For this distribution one finds that 6d =Ii(k)/Io(k) 
(Abramowitz and Stegun (1965), Eq. 9.6.19). For k = 0 we have uniform random 
selection of direction, while as k ~  ~ the new direction of motion tends to be 
the same as the previous direction, and 6d ~ 1. From observations of  the two- 
dimensional locomotion of Dictyostelium amoeba,  the data from Hall (1977) 
yield ~0d ~ 0.7 whereas the three-dimensional bacterial random walk data in Berg 
and Brown (1972) show ~0d =0.33 (cf. Berg (1983)). 

It is also possible to derive simple equations for the mean squared displacement 
of individuals which begin at the origin at t = 0. Let 

@2(t)=-(Nx(t)l[2)=-f Hx[lap(x,v,t)dxdv/f p(x,v,t)dxdv (44) 

b e  the mean squared displacement, and let 

 m(t)=(sm>=-fsmp(x,v,t)dxdv/fp(x,v,t)dxdv 
be the mth moment  of  the speed distribution. I f  No individuals are released at 
x = 0 at t = 0 then  n(x ,  0) = NoB(X) and  ( n u ) ( x ,  0) = 0. We shall assume that there 
is no bir th /death  term in (36) ,  (38)  and  (39)  until stated otherwise, and as a result 

f p(x, v, t) dx dv=- No. 
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To obtain a differential equation for 92(t), multiply (36) by [[x[I 2 and integrate 
over x and v. Under the assumption that terms of the form S5 x2vjp dx dv vanish 
at infinity we obtain the equation 

d 2 f 
dt  92(0  =Noo J (x'v)p(x'v't)dxdv=-2~(t)" (45) 

By multiplying (36) by x-v and integrating we obtain the following equation for 
~( t ) :  

at -~o (x.v)Vx.(vp)dxdv-a~(t)+ (x.V)p(x,v',t)dv'dx. (46) 

In cases where the relation (42) holds, the last term is simply A~d~(t). 
Suppose that this is the case, and that terms of the form 

ff(xivjvk)p(x,v,t)dxdv 

vanish at infinity; then (46) reduces to 

d~  
d--7 + A (1 - q,~) Ya = ~2 (47) 

where 5 p2, the second moment of the speed distribution, is a constant. Therefore 
integration of (47), subject to 3 ( 0 ) = 0 ,  and of (45) subject to 92(0)=0,  yields 

{ f 
A(1--~d)[1--e -'xO 4"d)t] for ~bd#l 

~ ( t ) =  (48) 
{oc~ for ~bd = 1 

and 

2~2 [ 1 (l_e_a(1 ,a)t)] for~0~# 1 
@2(0 = A(~-Z~d) t A(1--@d) (49) 

oqo2t 2 for q'a = 1. 

The quantity A0 = A(1-  g'a) is a modified turning frequency associated with 
the reorientation kernel T(v, v'), and the inverse 

P = l / a o  

is a characteristic run time that incorporates the effect of persistence. This is 
called a "persistence time" by Dunn (1983). The "motility" or diffusion coefficient 
is defined as 

D = 5t '2P/n 
in a space of dimension n. In terms of D the first equation in (49) reads 

92(t)=2nD[t-~o(1-e-%') ] (50) 

(eft Fig. 3a). To reduce this to the result obtained in Sect. 1, note that when a 
individual reverses direction at every step q'a = - 1 ,  and therefore A0 = 2A. Con- 
sequently (50) is equivalent to (8) in the one-dimensional case. 
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,D 2 (t) 

p~ ~//e 252p 

8 P time : t 
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Y 
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b 1 B 5 number of moves: m 

Fig. 3. A sketch of the theoretical values of the mean squared displacement a versus time t, according 
to Eq. (50) and b versus the number of consecutive moves m according to Eq. (51). See also Hall 

(1977), Fig. 7 

However, while formula (50) measures the mean squared displacement ~2(t) 
for continuous times, most analyses are based on a discrete recording of the 
displacement data. The first and most frequently used approach consists in 
sampling the organism's location at equally spaced time instances, connecting 
these points by straight lines and computing from this "artificial random walk 
model" a discretized version of formula (50). This has been elaborated by Lovely 
and Dahlquist (1975), and has been applied in various experimental situations, 
e.g. to fibroblasts by Gail and Boone (1970), to crawling caterpillars by Kareiva 
and Shigesada (1983) (see Fig. 3 in their paper), and to white blood cells by 
Gruler and Biiltman (1984). However this approach does not rely on the micro- 
scopic structure of the actual random paths, but rather, it arbitrarily chooses 
fixed observation intervals, which then define an artificial, approximating path. 
Dunn (1983) defined certain derived parameters (the speed and the persistence 
time) as limits in which the observation time goes to zero, which makes them 
independent of the choice of the interval length (see also Lackie (1986, Sect. 7)). 
It is obvious that this method applies mainly to random walks with fluctuating 
path curvature (cf. Tranquillo and Lauffenburger (1987)). 

In another approach an attempt is made to identify (almost) straight moves 
in the observed paths and to sample the organisms location only at the turning 
times. From the resulting run length and turn angle distribution Hall (1977) 
derived the discrete analog of (50). For n =2  and [thd[<l, the mean squared 
displacement after m consecutive moves is given by 

~2[m] = K ( m  - B(1 - O~')) (51) 

which is plotted in Fig. 3b. Here @d is the directional persistence index as in 
(43), and the "persistence number" B as well as the asymptotic slope K can be 
given explicitly in terms of @a and the ratio (r)2/(r2), which is computed from 
the distribution of run lengths r. 

The advantage of the discrete formula (51) is that it holds independently of 
the possible resting periods at the turning points (see Sect. 4) and also of the 
speed distribution. It has, for example, been used to model ovipositing (or 
nectar-feeding) butterflies by a correlated random walk (see Fig. 2 of Kareiva 
and Shigesada (1983)). 
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The apparent  disadvantage in comparison to the continuous formula (50) is 
that evaluation of the experimental data for ~2[m]  requires the experimenter to 
follow the individual tracks, whereas ~2(t) can be measured as the squared 
displacement of  individuals at fixed time t, averaged over the population sample. 

4. Generalizations of the simplest cases 

The simplest position-jump processes are based on constant waiting time distribu- 
tions for the jump process and spatially-homogeneous redistribution kernels. This 
suggests two immediate types of  generalizations, one in which the waiting time 
distribution is time and /o r  density dependent, and the other in which the redistri- 
bution kernel depends on the local density, a local average of the density, or is 
non-homogeneous by virtue of  its dependence on some specified, nonconstant 
field. Here we shall briefly discuss a special class of processes with nonconstant 
waiting time distributions. 

Suppose that the waiting time distribution of a position jump process is 
exponential with an intensity A that depends on n and t. In this case it is easy 
to see that 

(Io ) ~ ( n , t ) = - P r [ ~ - < ~ t ] = l - e x p  - A ( n ( x , s ) , s ) d s  , 

and therefore 

4 ) ( n , t ) = - - - ~ t 4 ) ( n , t ) = A ( n ( x , t ) , t ) e x  p - A ( n ( x , s ) , s ) d s  . 

Equation (16) now reads 

) n ( x , t ) = e x p  - A ( n ( x , s ) , s ) d s  F(x)  

+I~fR ,x(n(x,t-'r),t-'r) 

x e x p -  A ( n ( x , s ) , s ) d s  r ( x , y ) n ( y , ' r ) d y d ' r .  

Such a formulation should be capable of describing a variety of  density- 
dependent aggregation or dispersal phenomena.  For the latter one would expect 
that A (n, �9 ) is an increasing function of n, so that the mean waiting time between 
jumps becomes a decreasing function of the density. Conversely, density-depen- 
dent aggregation could be modeled by making A a decreasing function of n, in 
which case the waiting time between jumps increases with the density. In either 
case one expects that A has the form 

A = A0+Al(rt, t) 

where the residual intensity A0 is non-vanishing. Some one-dimensional examples 
of  this type of generalization have been reviewed by Aronson (1985). Shigesada 
(1980) has derived an explicit formula for the mean squared displacement for a 
diffusion process with the density-dependent diffusion coefficient D = f in (x ,  t) ,  
but one cannot expect to obtain such explicit formulas in general. 
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4.1. Random walks with a resting phase 

A number of generalizations of the simple velocity jump process are also possible. 
Firstly, as is suggested by the notation used in (35), there is no necessity that the 
random process generating the velocity changes be a Poisson process. Whatever 
the underlying process, one simply has to compute (Op/Ot)sp for that process, 
but of course if it is not Markovian the right-hand side of (35) will involve an 
integral over time. Secondly, we can include a resting time in the reorientation 
or tumbling phase, in order to more accurately describe for example the motion 
of foraging birds (Smith (1974)) and of certain species of bacteria (see Greenberg 
and Canale-Parola (1977)). The following analysis of this phenomenon is set in 
the bacterial context, but the results are applicable in other systems as well. 

When a resting phase is incorporated, the total population is divided into two 
subpopulations, one consisting of the moving bacteria and the other comprising 
the resting bacteria. As before, let p = p(x, v, t) be the density of bacteria at (x, v), 
and let r = r(x, v, r, t) be the density of bacteria in the resting phase, defined so 
that r = r(x, v, r, t) dx dv dr is the number of bacteria with position between x 
and x+  dx, whose most recent non-zero velocity lies between v and v+ dr, and 
whose rest time lies between z and r+dz .  We assume as before that there are 
no external forces on the bacteria, and that the loss of bacteria from a given 
(x, v) point in position-velocity space is governed by a Poisson process of intensity 
A. Now however the change is not to a non-zero velocity, but rather into the 
resting phase. Bacteria leave the resting phase at random times and choose a 
new velocity. The random exits from the resting phase are supposed to be governed 
by a Poisson process of intensity/x, and the new choice of velocity depends on 
the time spent in the resting phase as follows: 

T(v, v', z) = e - : T ( v ,  v') + (1 - e ~)g([[v[[). (52) 

Here T(v, v') is a velocity kernel of the type given at (41), and the speed distribution 
g(s) is such that g (0 )=  0 and 

w, g(s)s  "-1 ds = 1. (53) 

The factor co, = 2rc ' /2 /F(n /2)  is the surface area of the unit sphere in R ". Thus 
the probability of choosing a random direction with speed g(s) increases with 
the resting time, and any directional persistence embodied in the kernel T(v, v') 
is exponentially fading in the resting time. 

In the absence of bir th/death terms, the governing equations for p and r are 

:Rio ~ + v ' V x p  = - a p  +/z . T(v, v', r )r(x,  v', r, t) (54) dr dv' 

and 

Or Or 
- - + - -  = - /xr  (55) 
Ot Or 

with the initial condition on r having the renewal form 

r(x, v, 0, t) = hp(x, v, t). (56) 
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Np(t)=--fR. fR P(X,V,t) dvdx 

Nr(t) =- , ,, r(x, v, ~', t) dv dx d'r, 

then, since the total number of particles are conserved in the absence of a 
bir th/death process, Nv(t ) and Nr(t) must satisfy 

Np(t)+Nr(t) = No. 

It is easy to see that the solution of (55) and (56) is given by r(x, v, z, t) = 
A e-~'p(x, v, t -  r), and it is convenient to introduce the following notation for 
the two moments 

and 

r0(x, v, t) --= I o  r(x, v, "r, t) d'r 

rl(x, v, t ) ~  e ~'r(x, v, z, t) d'r. 

The governing equation for p can now be written 

-~+v.V~p = - A p + .  IR" T(v,v')rl(x,v', t) dv' 

+ g(llvll) [ (to(x, v', t)-rx(x, v', t)) dr'. (57) 
dR n 

As before, we define the mean squared displacement in x of moving bacteria as 

~ = f R o  fR, llxll2P(X,v,t) dv dx/Np(t), 

and of resting bacteria as 

~2= fR" IR" "x"2r~ v' t) dv dx/ Nr(t)" 

Furthermore, we define the corresponding second-order moments 

~;=fR, , fR(x 'v )p(x ,v , t )dvdx/Np( t )  

and 
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These satisfy the following system of ordinary differential equations 

d~2pNp 
dt - 2gdpNp -- ,)t~2pNp q- ]Z~2rNr (58) 

d~2ry 
- -  - -  ] - s  r N r  ( 5 9 )  dt _ A~2 N, 2 

d~pNp 
dt 5~2p Np -- A~?3pNp q- [,s (60) 

d~rNr 
dt = AG3pNp - (i ~ + y)~rNr. (61) 

This system is not closed, for the second moments O~ 2 and .Sezr of the speed 
distribution, which are defined as 

5&= fR,, fR, s2p(x, v, t) dv dx/  Np(t) 

and 

2LL 5F r = ~ ,, serl(x, v, t) dv dx/Nr(t) ,  

are time-dependent, in contrast to the case analyzed in Sect. 3. One finds that 

d ~ N ~  2 
if; = -Ab~ + tzS~N~ +/zs2(N~ - n~) 

~ ) ~ N ~  
dt 

dNr 
dt = A N ,  - ~Nr  

(62) 

dR1 
dt = ANp - (/~ + y)R~ 

where 

So = o)~ g,(s)s ~+~ ds 

and 

R1=--fR. fRor1(x,v,t)  dvdx" 

Since these equations are linear in 2 ~pNp, etc., they can be solved explicitly and 
the results can be used in (58)-(61). However, if A and/x are large the solution 
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quickly relaxes to the steady-state solution, which is given by 

ANo 
Nr= ~+U. 

~No 

A/zNo (63) 
R, - (/z + A)(/z + r )  

a =so 
2 / s  2 

,~~ r ----- S O . / x + y  

Moreover, if we assume that initially the cells are released at the origin x = 0, 
then ~ ( 0 )  = @~(0) = 0, and if they have no preferential direction of motion then 
~p(0) = ~ r ( 0 ) =  0. If in addition the initial distribution between moving and 
nonmoving cells is the steady-state distribution given by (63), then (63) holds 
for all time and the mean squared speed 

6e~ = So 2 (64) 

is a constant. With these assumptions we obtain from (58) and (59) the usual 
formula 

d~  2 
dt = 2 ~ N p /  No (65) 

for the weighted mean squared displacement 

@2(t) - ~2p( t)Np + @2~( t ) N  r 

No 

The quantity ~-= ~p satisfies the following second order equation, which is 
derived from (60), (61) 

d2~ 
+ (A +/z + y) d_~+ A (/~(1 - qJd)+ Y)~ = (/Z + T)S~. (66) 

dt  2 a t  

It should be noted that in the limit/z ~ oo, in which case the mean resting time 
1//z tends to zero, Eq. (66) formally reduces to Eq. (47) with S e2 = So 2. The solution 
of (66) and the solution of the reduced equation agree to within terms of O (1//z), 
except in a neighborhood of t = 0. 

This suggests the following definition of a modified turning frequency 

Ao = A/z(1 - ~Pd)+ Y, (67) 
k~+Y 

and if we solve (66) subject to ~r(0) = ~p(0) = 0 we obtain 

~ ( t ) = S ~ l  A+-Ao _ x , + A - - A o  ) 
- -  e e - ~ + '  ( 6 8 )  

Ao( A+-A_ A+-A_ ' 
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where A=~ are given by 

A + / ~ + y [  ~ /  (1 - q,a)IZ + y 1 
a ~ -  2 1 + 1 - 4 a  [ , [ + - ~  ~ j .  (69) 

Note that A+ - ~ and A_ ~ Ao in the limit ~ -~ oo. The solution of (65) subject to 
the initial condition @2(0) = 0 gives a relation for the mean squared displacement, 
namely 

2so 2 /~ I t  + 1 A+-AO(e_,_~ 1) 1 A_-AO(e_X+t 1)~. ~2(t) (70) 
t J Ao A+/~ A_ A+-A_ A+ A+-A_ 

As we saw in Sect. 1, the first term in (70) arises in a diffusion process. It can 
be shown that A• are both real and therefore the foregoing generalization deviates 
from this by two exponentially decreasing terms with the relaxation times 

1 p •  
A• 

A plot of the relation in (70) similar to Fig. 3a has'an asymptote whose intercept 
with the t-axis is the persistence time 

P A + + A _ - A 0  
A+A_ 

4.2. Random walks in external fields 

A third generalization of the simplest velocity jump process arises when A and/or  
T(v,v') in (35) are allowed to depend on the mean density or other specified 
fields. An example of such a field is given by the gradient of a chemotactic 
substance, and this problem has been studied by Alt (1980). The case in which 
the turning frequency A depends on the direction of motion was analyzed by 
Nossal and Weiss (1974), who derived asymptotic expressions for the mean 
location and the variance. This was generalized to include a bias of T by Nossal 
(1976). In the remainder of this section we shall analyze a model for the two- 
dimensional motion of slime mold cells or leukocytes in a constant chemotactic 
gradient directed along the positive xl axis of the plane, under the assumption 
that the gradient only influences the turn angle distribution T. Our objective is 
to derive expressions for the mean location and related quantities that are valid 
for all time. 

We begin with the velocity jump process studied in Sect. 3, and suppose that 
both the speed s and the turning frequency A are constant. The appropriate 
density function is now p(x, ~b, t), where 4~ is the angle between the direction of 
motion and the positive xl axis. The direction of travel is ~: = (cos ~b, sin ~b). We 
further suppose that there is no birth or death of cells, and that the gradient of 
the chemotactic substance affects the probability of turning but does not give 
rise to any persistent bias to the motion by polariztion of the motile machinery, 
Under these assumptions the evolution equation (36) for p reduces to 

OP+s(.Vxp = - A p + A  [ T(4~, 4~')p(x, ~b', t) dqV. (71) 
Ot 3 
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We assume that  the turn angle  d i s t r ibu t ion  T is the sum of  a symmet r i c  p robab i l i t y  
d i s t r ibu t ion  h as in Sect. 3 and  a bias  te rm k ( 0 )  tha t  results f rom the g rad ien t  
o f  the chemotac t i c  subs tance .  Since the g rad ien t  is d i rec ted  a long the xl axis,  we 
assume tha t  the bias  te rm takes  its m a x i m u m  at 0 = 0, and  tha t  it is symmet r ic  
abou t  0 ---0. Thus we have  

T ( 0 ,  0 ' )  = h ( 0  - 0 ' )  + k ( 0 )  

where  T~>0 for all (0 ,  0 ' )  and  h and k are no rma l i z e d  as fol lows 

fo z~ h(O) = 1 dO 

(72) 

o ~ k ( 0 )  d 0  = 0 .  

Typica l  examples  of  h and  k are shown in Fig. 4. 
The statist ics o f  interest  are the  mean  loca t ion  of  cells ~ ( t ) ,  thei r  mean  

squared  d i sp l acemen t  9 2 ( t ) ,  and  thei r  mean  veloci ty  ~v'(t), which  are def ined as 
fol lows 

~ ( t )  = 2 xp(x ,  O, t) dO dx/ No, 

~ 2 ( t )  = ~ [Ixll2p(x, O, t) dO dx/No (73) 

-e ' ( t )  = s ~ ~p(x,  O, t) dO d x / N 0 .  

In  add i t ion ,  we in t roduce  the auxi l ia ry  func t ion  

~ ( t )  = 2 ( x . ~ ) p ( x ,  O, t) d o dx/No 

. J  

I 
- H  

a 
Tt o 

b 

Fig. 4. Typical graphs a of a symmetric turn angle distribution h(O) for 0 = q5 -qb', see inset and b 
of a symmetric bias distribution k(ch) in the gradient direction ~. Experimental data like those for 
moving leukocytes given in Nossal (1983), Fig. 2 could be represented by superpositions h(O)+ 
k(qS'+ 0) for a certain range of ~h' 



Models of  dispersal in biological systems 289 

and define the taxis coefficient 

fo X -= k(tb) cos O d&. 

We assume that X < 1 - 0d, where ~bd is the persistence index defined in Eq. (43). 
As before, we can derive differential equations for the evolation of the various 

statistics. An easy calculation shows that 

d~  e 
='//" (74) 

dt 

d'g" 
= -Ao~ w + ;tXs~l (75) 

dt 

d@ 2 
- -  = 2 s ~  ( 7 6 )  

dt 

d N  
- -  = s - h o ~  + AXxl (77) 
dt 

where ~l ~- (1, 0). The solution of (74) and (75) subject to zero initial data is 

x t -  ( 1 - e  -"o') ~, 
~ ( t ) : s l - o a  ~o 

~ ( t ) - - s  x ( 1 - e  ~o')~, 
1 - O d  

where Ao=A(1-@d) as before (cf. Fig. 5a). Thus the mean velocity of cell 
movement is parallel to the direction of the chemotactic gradient and approaches 
the value 

X 
1 - 0d 

as t tends to infinity. The quantity 

X 
C I  =- - -  (78) 

1 - ~bd ' 

'Zlft) / /  T ~2(t) slope 2s2P'(1-CI 2) 

a P t b t 

Fig. 5. Typical plots a of  the mean displacement ~ in the gradient direction (1, and b of  the mean 
squared deviation o-2(t). Notice that in b the intercept M = 2s~P(~CI 2 -  1) is positive provided the 
chemotaxis index CI is near 1. The asymptotic slope is decreased by the factor ( 1 -  CI 2) when 
compared to the unbiased random walk in Fig. 3a 



290 H . G .  Othmer et al. 

which is called the chemotactic index, measures the net effect of the bias due to 
the chemotactic gradient on the motion in the direction ~1- More precisely, the 
quotient of the expected displacement ~1 in the direction ~1 and the total length 
s. t of the path is given by (1  ) 

g~_A_~ = CI  1 - (1 - e -Ao') 
s . t  ~ot ' 

which is sometimes called the "chemotropism index". 
A measure of the fluctuations of the cell path around the expected value is 

provided by the mean squared deviation, which is defined as follows 

~  = 2 I [ x - ~ ' ( t ) [ I Z p ( x ,  c~, t)  dc~ d x / N o  

= ~ 2 ( t ) -  II~(t) [I 2. (79) 

One finds that 0 -2 satisfies the differential equation 

do -2 
d--~- = 2(s~  - ~ .  "//'). (80) 

Let 2b denote the right-hand side of (80); then b is the solution of 

db 
~tt + Aob = s2(1 - CI2(1 - e-~~ 

These lead to the following representation for the mean squared deviation: 

0" 2 = 2 S  2 ( (2CI  2 - 1 )  
)to _ ( 1 - C I 2 ) t - 2 C I 2 t  e-a~ q )to (1 e-;% t ) 

CI  2 
(1 - e-A~ (81) 

+ 2Ao 

As t tends to infinity this tends to 

The dependence of 0-2(0 on t is shown in Fig. 5b. 
From experimental recordings of the position of cells released at the origin 

at t =0  one can easily obtain values of ~ l ( t )  and 0-2(t) at a sequence of times 
(cf. Gruler and Biiltman (1984)). Comparison with the theoretical functions that 
are graphed in Fig. 5 would enable one to determine the speed s, the persistence 
time P, and the chemotactic index CL On the other hand, evaluation of the 
piecewise linear random paths of cells gives distributions for the speed, the run 
length and the turn angles, from which the mean speed s, the mean run length 
L and values of 0d and X can be estimated (Keller and Zimmerman (1985)). The 
validity of the proposed model could then be tested by checking the identities 

L 1 
- - ( 1 -  Od)P 

s h 

and 

x = (1 - 4 ,d)CI .  
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5. Applications of the models to biological dispersal 

In this section we consider examples of dispersal of cells, insects and mammals. 
These laboratory and field examples on a variety of biological scales provide 
both qualitative and quantitative support for the models of dispersal in the 
previous sections. In addition, the theoretical results from the models aid interpre- 
tation of the data from those examples. 

We briefly describe each experimental or field study, and discuss why simple 
models of dispersal are inappropriate. Then we describe how to model the 
situation with the equations presented in this paper. In order to apply the models 
to systems that have been studied experimentally, one must estimate the redistribu- 
tion functions and parameters in the models from the experimental data. We are 
not able to check all of  the relevant formulas for the model of each particular 
dispersal example. This is often because the necessary data has not been collected. 
Nevertheless, we hope that the models together with the examples will suggest 
new experimental and data gathering approaches. Furthermore, a careful dis- 
cussion of the modeling approaches can rule out wrong models and misleading 
interpretations. 

5.1. Examples of cell dispersal 

Using the same model as Hall (1977) for slime mold amoebae, Hall and Peterson 
(1979) studied the motion of  leukocytes (human granulocytes) in a homogeneous 
medium. Hall and Peterson (1979) have shown that the movements of human 
granulocytes on a two dimensional medium can be characterized as a persistent 
or correlated random walk. Considering their moving paths on a gtass surface 
as piecewise straight lines (deviations of half a cell diameter are allowed) they 
measured the step length and turn angle distributions (Figs. 2, 3 in their paper) 
from which they determined a persistence index as defined in (43) of 

~d 20.3.  (82) 

However, the time distributions for displacement are not available for their 
analysis. 

Gruler and Biiltman (1984) present plots of the mean squared displacement 
of leukocytes versus time (Fig. 6) and also a plot of the degree of orientation of 
paths (Fig. 7). They try to fit the latter data by an exponential function 

Pl(t) ~ e -'/~M, with T M = 74 sec. (83) 

In the terminology of Sect. 3, the mean orientation of a cell at time t compared 
to its initial moving direction becomes (after normalization to the positive x-axis) 

P,(t)=ffcosr (84) 

with 

P1(0) = 1. 

Since Pl(t) satisfies the differential equation 

dP~(t) + A(1 - ~d )P, = O, 
dt 

(85) 

(86) 



292 H . G .  Othmer et al. 

:3. 
4000- 

t~ / 
~, / 
I - -  o/ 
z 9' 
w 

w 

2 000 ~" 
D J 2 
c3 ,o /.am 
w " D = 2 4 0 + 2 0  
n- ~ m m  
< 
D ~ Z'= 37 sec 
~n p 

z 

Inl . o,ll, ~ / 

TIME t [min i  

Fig. 6. Experimental values of  the mean 
squared displacement of leukocytes as 
obtained by Gruler and Biiltman (1984), 
Fig. 5 

which is analogous to (47), we obtain from (85) and (86) the theoretical 
expression 

P l ( t )  = e -A~ 

wherein Ao = A ( 1 -  @d). Comparison with (83) shows that the persistence time 

P = A o  I = r M  = 1.23 min 

is indeed the characteristic time to maintain an initial directionality. Using 
(82), we can estimate the turning frequency 

Ao 1 1 
A - l _ ~ a  0.7.1.23 min-~ 0.86mln 

which gives a mean run time of A 1-~52sec. This is consistent with 
representative paths as shown, for example, in Fig. 7a. 

According to our theoretical formula (50), the mean squared displacement 
is given by 

~ 2 ( t )  = 4 D [ t  - P(1 - e ' / e ) ]  (87) 

A t = S s  

1.o 

0.2 

b t ime  t [ s e c  ] 

Fig. 7. Experiments showing persistence of direction in the random migration of leukocytes, from 
Gruler and B/iltman (1984): a path of one cell with initial moving direction ~ ,  cf. Fig. 7 in their 
paper, b Averaged values of the cosine deviation Pl(t) versus time t for various cells and various 
starting points in their paths, cf. Fig. 8 there 



Models of dispersal in biological systems 293 

with persistence time P and diffusion constant D = 5O2p/2. Taking the experi- 
mental values for the mean squared displacement in Fig. 6 and assuming the 
above persistence time of P ~ 1.23 min, we estimate from the resulting asymptotic 
slope a value of D ~ 350 ixm2/min in contrast to their value of D ~ 240. From 
this we obtain a mean squared speed of about 

b ~ = 2 D / P  ~- 560 (~xm/min) 2. 

On the other hand, the asymptotic relation @2(t)~so2t2 for small t fits the 
experimental data using the value 

5O2 ~ 525 (txm/min) 2. 

The difference between these is well within the error in the data. 
This brief analysis shows that the assumed random walk model for leukocyte 

movement  is consistent with the data obtained thus far. More rigorous evaluation 
of displacement data and fitting to the whole theoretical curve (87) could further 
validate our modeling approach.  

Noble and Levine (1986), and Boyarsky (1975), analyzed polymorphonuclear  
leukocytes moving in both the presence and absence of E. coli. They also analyzed 
lymphocyte movement  in the presence of tumor cells. Their theoretical analysis 
was in terms of the stationary distribution of a discrete state space and continuous 
time Markov process. This is what we have called here a velocity jump process 
where the velocity redistribution function is discretized to a single speed and 
four turn angles representing the four movement  states of the cells. Their analysis 
shows that the velocity redistribution kernel is nonuniform in the presence of 
taxis inducing agents such as E. coli or tumor cells. 

Moreover they found that in the absence of taxis the leukocytes spend a 
considerable amount of  time in a reorientation phase without visible translocation. 
Within the framework of Sect. 4.1, the Poisson intensities for the moving and 
resting phase can be estimated from their data by A ~ 0.5 min -1 and/x ~ 0.2 min -1. 
This means that the average time fraction spent by the cells on moving is 
~ / ( ~ + A )  ~ 1/3. 

The turn angle distribution measured by Noble and Levine is nearly uniform, 
thus in our model equation (52) we should choose 3' = co. Then, in this limit, 
Eqs. (67) and (69) yield Ao = A as well as A_ = A and A+ = ~ .  Finally from (70) 
we obtain the mean squared displacement 

2S~ /~ ( t  1 ) @2(t) - 

which, compared to the standard expression (50) for nonresting random walks, 
is just reduced by the constant factor ~ / ( / ~ + A )  measuring the proportion of 
moving time. 

5.2. Examples  o f  dispersal in some ecological systems 

Kareiva (1983) made a survey of the data from mark and recapture field experi- 
ments on 12 species of  herbivorous insects. In this study he estimates the diffusion 
coefficient from the data by using the equivalent of  Eq. (4) from Sect. 1. Then, 
using the estimated value of D, he compared the observed distributions with the 



294 H.G. Othmer et al. 

bivariate normal distribution which is the solution of the two dimensional 
diffusion equation. The analogous one dimensional equation and its solution are 
discussed in the introduction as Eqs. (1) and (2). For 8 of the 12 species surveyed, 
he finds good agreement of the experimental data with the predicted values. From 
this he concludes that, at least in spatially homogeneous environments with 
uniform environmental conditions such as weather etc., the diffusion approxima- 
tion is reasonable. The data from these studies may also be consistent with the 
space jump and velocity jump models of biological dispersal. This is because the 
space jump processes lead to the diffusion equation in certain limits, as was 
shown in Sect. 2.3. A space jump process with an exponential waiting time 
between jumps also leads to the expression for mean squared displacement in 
Eq. (22), which is formally identical to the expression in Eq. (3) from the diffusion 
equation. As mentioned in Sect. 2, the space jump process with exponential 
waiting time between jumps cannot be distinguished from a diffusion process by 
the measurement of mean squared displacement alone. Statistical comparison of 
the observed distributions with the predicted distributions as done in Kareiva's 
survey should help distinguish these possibilities. Furthermore, as stressed in 
Sect. 3, on long enough time scales the predicted mean squared displacement for 
the velocity jump process is asymptotically the same as the mean squared displace- 
ment for the diffusion approximation of various position jump processes. Since 
the measurements used in Kareiva's study were made on the order of days, it is 
possible that the insect movement is actually a jump process observed on a time 
scale too long to notice the effects of correlations between steps. 

One of the main reasons for organisms to disperse is to search for food. In 
a homogeneous environment with sparse distribution of  discrete nutrient spots 
this foraging search is mostly random. At about the same time as Berg and Brown 
(1972) were tracking the random walk of bacteria in 3-dimensional space, Smith 
(1974) obtained extensive records of thrushes hopping on a 2-dimensional 
meadow. The typical behavior is a sequence of  more or less regular hops determin- 
ing an almost straight move, which is followed by a longer pause used by the 
birds for pecking and scanning their surroundings. The resulting time distributions 
of pause and move durations have been evaluated (see Fig. 8a), and they show 
that the mean move duration dm is about 1/10 of the mean pause duration dp: 

dp = 4.8 sec >> 0.56 sec = din. 

Thus the time spent for moving can be neglected and one would try to model 
the random search of thrushes by a simple position jump process as in Sect. 2. 
The pause duration or waiting time duration in Fig. 8a resembles a gamma 
distribution, as in (23), with mean 

2 
~. dp~4.8sec ,  

which would give a value A ~0.4  (1/sec). 
Smith (1974) also measured the distribution of jump lengths, from which one 

might try to obtain radially symmetric redistribution kernels T(x, y) = T ( l l x -  yll )- 
However, our position jump model assumes independence of the direction of 
successive steps, but this is not the case for Smith's data, as the turn angle 
distribution between successive moving directions shows (see Fig. 8b). 



Models of dispersal in biological systems 295 

20 1 ~ SONe 
,~ =4.84*-0.74(s.e.) X=0.$6"-0.04 ] ~ [ ~ U S H E S  

SECONDS SECONDS 10 

~) 12 L~ r] MALE 
~) 20 CKBIROS 

O 2 4 6 8 10 11. 0 0.2 04 0.6 0,8 1.0 1,1. Z 
;~ PAUSE DURATION (SECS) MOVE DURATION (SECSI10) 

O. ~LACKBIROS 
MOVE PAUSE 10 

t/A I o 
0 100% -'180" -90" O* *90* z180" 

a b ANGLES OF TURN 

Fig. 8. Data on random searching of hopping birds from Smith (1974). a Histograms of move and 
pause durations measured from single frame cine film analysis. The single horizontal bar expresses 
the mean move duration as a percentage of the total mean move-plus-pause duration. See Fig. 7 in 
Smith (1974) b Frequency histograms of turn angles for three groups of thrushes (see Fig. 11 there) 

Therefore,  we have to revise the foregoing approach of a posi t ion j u m p  process 
and go back to a general  r andom walk model  with pauses as described in Sect. 

4.1. If  we assume for simplici ty that the move and  pause durat ions  are exponen-  
tially distr ibuted,  we would  obta in  

t z = 1/dp ~ 0 . 2  sec -1 

and  

A = l i d  m ~ 1.8 sec -1. 

The mean  squared speed So 2 may be de termined from Fig. 8a, while the persistence 
index 0e can be calculated from the turn  angle dis t r ibut ion h(O) given in Fig. 
8b using the definit ions given in (43) and  (52): 

O a = 2  1+ h(O) 3' 1 - - -  cos 0 dO, 
/x 

Since A >> ~ we could formally proceed to the limit A + oe in Eqs. (69) and  (70). 

This gives A+ = A, A_ = (1 - 4'a)/x + y, and the mean  squa redd i sp l acemen t  formula  

2s~ l x ( I z+Y)  ( t _ l  ( l _ e  A=,)) 
~2( t )  = A 2 A_ _ " 

This means  that we obta in  the usual  expression for a dispersal process again, 
which in the limit A + Do of vanishingly  small moving periods and large speed 
s0 a + Do describes a j u m p  process with mean  squared j u m p  length m2 = s~/A 2 ~ 0 (1) 
as in Sect. 2.2, but  now with correlat ions between subsequent  j u m p  directions. 
A general  theory for these processes will be given elsewhere. 

All parameters  in the above formula  are known  except the decay parameter  
3,. Since the papers of Smith (1974) do not  conta in  any d isplacement  measure-  
ments,  a final es t imat ion of this physiological  constant  3' cannot  be performed. 
Also, we should remark that further invest igat ions are necessary before an 
assumpt ion  like (52) can be justified. 
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Although the mean squared displacement formula could not be checked for 
the  thrush data, this example nevertheless shows that a careful discussion of the 
possible modeling approaches can rule out wrong models and misleading interpre- 
tations, as mentioned before. Moreover, it should encourage experimentalists to 
collect both data on the mean squared displacement of the population and data 
on the movements of individuals. 

In another study, Siniff and Jessen (1969) collected data by radio telemetry 
about the movements of mammals within their home range. The movements of 
the mammals are a sequence of runs, followed a pause or rest of varying duration, 
then another run in a different direction with a possibly different speed. They 
obtained distributions of travel speeds for adult and juvenile foxes of both sexes 
and also for hares. Although the precise nature of the distribution was dependent 
on age, sex and species, the speed distributions all appeared to be of the form 
of a gamma probability distribution. Siniff and Jessen also measured the turning 
angle distributions of these species. They found that the turning angle distribution 
was unimodal and symmetric for the foxes and bimodal for the hares. If we 
assume that the distributions for speed and turning angle are independent, then 
we could do the parameter estimation as was done for the leukocytes to get a 
velocity redistribution kernel T(v, v') of the type considered in Sect. 3. 

Siniff and Jessen also measured the distribution of th.e duration of the moves 
and the duration of the rest periods. These distributions both appear to be of 
the form of an exponential distribution since they decline rapidly from an initial 
maximum value. Again we could assume independence of the random variables 
representing these two durations (which is probably not valid since one would 
presume that longer rests might follow longer movements), and we could use the 
approach given in Sect. 4.1. 

Another possibility is to combine the data for the duration of movement 
distribution with the speed and angle data of the velocity redistribution kernel 
to get a two dimensional displacement distribution of the kind considered in Eq. 
(12). As was already mentioned, the waiting time distribution between jumps 
appears to be exponential as in the special case treated in Eq. (20). Then one 
would arrive at the model given in Eq. (15) with the exponential waiting time 
between jumps substituted for ~b. 

Because Siniff and Jessen only present the data for individual animals there 
is not sufficient data to actually estimate the parameters of the functions required 
to specify the models. Nevertheless the data presented suggests that the space 
jump and velocity jump process are an appropriate framework for modeling of 
the movements of these animals. The study of Siniff and Jessen points up one 
of the difficulties of ecological modeling, since all of the distributions are depen- 
dent not only on species but also upon age and sex within the species. For a 
complete model one should consider these effects and also consider the boundary 
effects caused by natural barriers such as lakes, mountains, forests, grasslands, 
and animal territoriality. 

Several other studies on a variety of scales suggest that space jump or velocity 
jump processes may be appropriate models for biological dispersal. For instance, 
Jones (1977) and Kareiva and Shigesada (1983) characterized the flight sequences 
of cabbage butterflies as a persistent or correlated random walk. In this case the 
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turning angle distribution was unimodal  and symmetric about 0 ~ on the unit 
circle. Henderson and Renshaw (1980) describe a spatial stochastic process 
modeling the root growth of  the Sitka spruce. A two dimensional  random walk-like 
stochastic process described there has step lengths which are identically dis- 
tributed gamma random variables, and the step angle change is given by a wrapped 
normal variable. 

However,  we should mention that for many other examples of  cell or animal 
locomot ion  the foregoing idealizations cannot be justified, as, e.g. in the curved 
or helical movement  of  sperms or gametes (cf. Alt et al. (1985)). In these types 
of  dispersal continuous fluctuations in the changes of  moving direction seem to 
be the major component  determining the final random displacement. It remains 
a question, whether the translocations of  migrating cells, such as leukocytes or 
tissue cells always show structural piecewise straight components  with expressed 
reorientation phases, as we assumed, or whether continuous fluctuations are 
dominant,  as it is supposed for example in recent simulation studies (Tranquillo 
and Lauffenburger (1987)). 
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