
Acta Informatica 27, 481-503 (1990)

�9 Springer-Verlag 1990

Data Refinement by Calculation

Carroll Morgan and P.H.B. Gardiner*
Oxford University, Programming Research Group, 8-11 Keble Road. Oxford, OX1 3QD, UK

Received July 18, 1988 / October 17, 1989

Summary. Data refinement is the systematic substitution of one data type
for another in a program. Usually, the new data type is more efficient than
the old, but possibly more complex; the purpose of the data refinement
in that case is to make progress in program construction from more abstract
to more concrete formulations. A recent trend in program construction is
to calculate programs from their specifications; that contrasts with proving
that a given program satisfies some specification. We investigate to what
extent the trend can be applied to data refinement.

1. Introduction

In [1], Back proposed an extension of Dijkstra's calculus [7] where specifications
and programs are given equal status during program construction. Later interest
in specifications generally has led quite recently to further work on such con-
structions I-3, 4, 18-20, 22, 24]. The style is now known as the refinement calculus.

Characteristic of any calculus is that it is used for calculation, not just descrip-
tion. The refinement calculus, therefore, should allow programs to be calculated
from their specifications. It does indeed allow presentations in which each inter-
mediate design follows from a previous design according to some law of refine-
ment. That contrasts with the more well-known style in which intermediate
designs are first proposed and then proved to follow from their antecedents.
Our hope is that constructions in the refinement calculus will proceed more
smoothly, and that proof obligations will be reduced. That is the point of a
calculus, and it can be observed elsewhere: for example, in the differential calcu-
lus one uses laws of differentiation, not proofs from first principles. For differenti-
ation, the process is now mechanical. In the integral calculus, we have laws
too - but there, as in the refinement calculus, success is not guaranteed.

* Supported by British Petroleum Ltd.

Offprint requests to: C. Morgan

482 c. Morgan and P.H.B. Gardiner

Data refinement is a special case of refinement : one replaces an abstract
type by a more concrete type in a program while preserving its algorithmic
structure. Abstract operations are similarly replaced by corresponding concrete
operations. It is a well-established technique, with its own specialised proof
rules [11, 13].

Our principal contribution is to draw data refinement into the calculational
style: we show how to calculate data refinements rather than prove them. Hoare
et al. [12] first introduced this concept, but their work, being in a relational
setting, was not easily applied in practice. Here we build on our earlier work
[8], which was in a predicate transformer setting, to produce practical methods
of calculation. This paper gives applications of the theory in [8], though for
convenience we have presented afresh some proofs which are corollaries by
specialisation. Recent work by Morris [23] addresses the same concerns that
we do.

In passing we fromalise logical constants, long used in program derivation,
but not until now treated rigorously. Their use in programs loses the property
of conjunctivity, another of Dijkstra's healthiness laws [7]. (The law of the
excluded miracle, and continuity, have already been abandoned [6, 19, 24, 25].)

This work relies on the ideas of the refinement calculus, reviewed in Sects. 2
and 3 below. More detail can be found in [2, 19, 20, 24].

2. Refinement

We consider Dijkstra's programming langt~age [7], whose meaning is given
by predicate transformers. For any program P, we write ~P~ for its meaning;
and that meaning is a function from (desired) final assertions to (necessary)
initial ones:

For any formula ~ over state variables, and program P, ~P~ ~ is the weakest
formula whose truth in an initial state ensures that activation of P will
lead to a final state in which ~ is true.

Thus we write [P~ ~ for Dijkstra's wp(e, ~).

2.1. Algorithmic Refinement

A program P is algorithmically refined by another P' whenever every specifica-
tion satisfied by P is satisfied by P' also. We restrict our specifications, however,
to formulae r ~P~ ~ which state "the program P must be such that its activa-
tion in a state in which t~ is true will lead to a state in which ~9 is true."
We do not, for example, specify time or space constraints.

Note that, when we assert a formula in text (for example r ~b in the
above paragraph), we mean that the formula is valid (i.e. true for all values
of its free variables).

Definition 1. Algorithmic refinement: Program P is algorithmically refined by
program P' precisely when, for all formulae r and ~O over the program variables,

r =~ ~P~ ~b implies ~b =~ ~P'~ ~b.

Data Refinement by Calculation 483

We write P ~_ P' for that relationship. []

The following is an easy consequence of Definition 1, and is what we will
use in practice:

Lemma 1. Algorithmic refinement: For programs P and P', we have P ~ P' precisely
when

[P~ ~=r [P'~ ~b for all formulae ~ over the program variables.

Proof. For /f, note that ~b=~[P~ ~b and ~P-~ ~=~[P'~ ~k imply cb::e,[~P'~ ~, as
required; for only if, take q~ to be [e~ ~/itself. []

We assume that in Lemma 1 we may limit our choice of formulae ~ to
those containing only variables free either in P or P' or both.

2.2. Data Refinement

Data refinement arises as a special case of algorithmic refinement. A program
P is data-refined to another program P' by a transformation in which some
so-called abstract data-type in P is replaced by a concrete data-type in P'. The
overall effect is an algorithmic refinement of the block in which the abstract
data type is declared.

For that, we add local variables to Dijkstra's language in the following (stan-
dard) way:

Definition 2. Local variables: For (list of) variables l, formula I (the initialisation),
and program P, the construction

I[varllI 'e]l

is a local block in which the local variables l are introduced for the use of
program P; they are first assigned initial values such that I holds. We define,
for ff not containing l,

[l [v a r l l I ' P] l ~ , ' - (V l ' I ~ P ~ ,) . []

The symbol ~_ is read "is defined to be equal to".
Note that the scope of quantifiers is indicated explicitly by parentheses (V...).
Where a postcondition ~k does contain the local variable l, Definition 2 can

be applied after systematic change of the local l to some fresh l'. We assume
therefore that such clashes do not occur.

Where appropriate, we consider types to be simply sets of values, and will
write I [var l: T I I . P] [for I [var I I (l~ T ^ I). P] I; thus a variable is initialised to
some value in its type. And if I is just true we may omit it, writing I[varl 'P]l
or I[var l: T.P]I as appropriate.

Now data-refinement transforms an abstract block I[varall"P]l to a con-
crete block I[var c I I'. P'] I. We assume that the concrete variables c do not occur

484 C. Morgan and P.H.B. Gardiner

in the abstract program I and P, and vice versa. The transformation has these
characteristics:

1. The concrete block algorithmically refines the abstract block:

I [v a r a l I ' P] l ~ l [v a r c l I " P']l.

2. The abstract variable declarations var a are replaced by concrete variable
declarations var c.

3. The abstract initialisation I is replaced by a concrete initialisation I' .
4. The abstract p rogram P, referring to variables a but not c, is replaced

by a concrete program P' referring to variables c but not a; moreover, the
algorithmic structure of P is reproduced in P ' (see below).

The four characteristics are realised as follows. An abstraction invariant AI
is chosen which links the abstract variables a and the concrete variables c.
It may be any formula, but usually will refer to a and c at least. (See Sect. 4.1
below for a discussion of the impracticality of choosing false as the abstraction
invariant.) The concrete initialisation I' must be such that I'::>(3 a ' A I ^ I). For
the concrete program we define a relation <_ of data-refinement:

Definition 3. Data refinement: A program P is said to be data-refined by another
program P', using abstraction invariant AI, abstract variables a and concrete
variables c, whenever for all formulae ~ not containing c free we have

(3 a" AI ̂ [P~ O)~ [P'~ (3 a" AI A ~).

We write this relation P'~(AI P', and omit the subscript A~ when it is under-
stood from context. []

Definition 3 is appropriate for two reasons. The first is that it guarantees
characteristic 1, as we now show.

Theorem 1. Soundness of data-refinement: I f I'=~ (3 a" AI ^ I) and P ~_ P', then

I[varalI 'P-II~_l[varclI"P']l .

Proof Consider any ~O not containing a or c free. We have

[l [varal I 'P] l~b
= (V a" I => ~P~ 0) Definition 2
= (V c, a" I =~ [P~ O) c not free in above
=>(Vc, a . A I ^ I ~ A I ^ [P~ qJ)
 (Vc.0 a'A/^ [P] q,))
:=>(Vc.I'=>(3a.AI ^ ~P~ 0)) assumption
~(Vc.I'~P'~(3a.AI ̂ 0)) assumption; Definition 3
=> (V c. I' =:- ~P'] ~b) monotonicity; a not free in ~9
-- [[[varcII"P'][~k Definition 2. []

Data Refinement by Calculation 485

The second reason our Definition 3 is appropriate is that it distributes
through program composition. This is shown in [23, 8], and we refer the reader
there for details. Here, for illustration, we treat sequential composition; alterna-
tion and iteration are dealt with in Sect. 4 and 6 below.

Lemma 2. Data-refinement distributes through sequential composition: I f P~_P'
and Q~_Q' then (P; Q)_~(P'; Q').

Proof. Let ~k be any formula not containing c. Then

(3a.AI ^ ~P; Q~ ~)
= (3a'AI A ~P~(~Q~ ~)) semantics of " ;"
=~P'~(3a;AI A ~Q~ ~k) P~_P'
=~P'~(~Q ~(3a.AI A ~k)) Q~_Q'; monotonicity
= ~e'; Q'~ (3 a 'AI A if) semantics of , . []

It is the distributive property illustrated by Lemma 2 that accounts for char-
acteristic 4 above: if for example P is P1; P2;-.-P~ then we can construct P'
with P~_P' simply by taking P' =P~; P~; ... P" with PL~P' i for each i. It is in
this sense that the stucture of P is preserved in P'. We will see in Sect. 4 below
that this carries through for alternations and iterations also.

3. Language Extensions

We extend Dijkstra's language in two ways. With the specification statement
we allow specifications and executable program fragments to be mixed, thus
promoting a more uniform development style. With program conjunction we
make more rigorous the use of so-called logical constants, which appear in specifi-
cations but not in executable programs.

3.1. Specification Statements

A specification statement is a list of changing variables called the frame (say w),
a formula called the precondition (say pre), and a formula called the postcondition
(say post). Together they are written

w: [_pre, post].

Informally this construct denotes a program which,

if pre is true in the initial state, will establish post in the final state by
changing only variables mentioned in the list w.

For the precise meaning, we have

Definition 4. Specification statement: For formulae pre, post over the program
variables, and list of program variables w,

~w: [pre, post]~ ~ ~-pre ̂ (Vw.post~b). []

486 C. Morgan and P.H.B. Gardiner

Specification statements allow program development to proceed at the level
of refinement steps _ rather than directly in terms of weakest preconditions,
and are discussed in detail in [19, 20]. They are similar to the descriptions of
[21 and the prescriptions of [24]. For now we extract from the above works
a collection of refinement laws, given in the appendix to this paper. We illustrate
their use with the following small program development:

"assign to y the absolute value of x "
= y : [true, y-- lxl]
= y : [(x <0) v (x> 0), y = Ixl]
___Law 13

if x<0--+y: [x < 0 , y--lxl]
0 x > O ~ y : [x>O, y=lxl]
ft.

= i f x < O - + y : I - x - - I x l , y-- Ixl]
Iq x>O--+ y: [x=lxl, Y=lxl]
ft.

_ Law 12 twice
if x<O--+ y . .=-x
0 x>O--+y:=x
ft.

3.2. Program Conjunction

Given a program P we write the generalised program conjunction of P over
some variable i as I[eon i .P]l . We call it conjunction because that new program
is a refinement ~_ of the original program P for all values of the logical constant
i. For example, consider the statement x: Ix = i, x = i + 1], and suppose our vari-
ables range over the natural numbers. Its generalised conjunction over i refines
all of the following:

x: [x = O , x = l]

x: [x = l , x=23

x: [x = 2 , x = 3]

Each of those programs deals with a specific value of x, and can abort for
all others. Yet, as Definition 5 will show, that generalised conjunction equals
the statement x. '=x + 1, which is guaranteed to terminate.

Definition 5. Program conjunction: For program P and variable i not free in

El [con i-P] 1~ ~k ~ (3 i- ~P~ ~b). []

As in Definition 2, systematic renaming can deal with occurrences of i in ~k.
Thus for the example above we can calculate

El[con/" x: [x=i, x = i + 1]]l~ ~k

Data Refinement by Calculation 487

=(3i-~x: I x = i , x = i + 1]~ if) Definition 5
= (3 i . x = i A (V x . x = i q - l ~ k)) Definition 4
= (3 i ' x = i A ~k [x \ i + 1]) One point rule
= ~k [x \ i + 1] [i \ x] One point rule
= ~k [x \ x + 1] i not free in ~k
-- ~x..=x+ 1] @

The notation [x \ i + l] indicates syntactic replacement of x by i + 1 with any
changes of bound variable necessary to avoid capture.

Variables declared by con we call logical constants. They usually appear
in program developments where some initial value must be fixed, in order to
allow later reference to it. For example in the Hoare style [101 we might write
"find a program P, changing only x, such that { x = X } P { x = X + I } " . Here
the upper case X makes use of a convention that such variables are not to
appear in the final program: it is not x . . = X + l that is sought, but x : = x + 1.
We would just write

I1-conX'x: I x = X , x = g + 1]]1,

it being understood that we are looking for a refinement of that. Since our
final programming language does not allow declarations con, we are forced
to use refinements whose effect is to eliminate X. We do not need an upper-case
convention.

It is interesting that program conjunction is the dual of local variable declara-
tion (compare Definitions 2 and 5); thus logical constants are in that sense
dual to local variables. It is shown in I-8] that data refinement distributes through
program conjunction.

4. Data Refinement Calculators

In Sect. 2 we defined the relation _--< of data-refinement between two statements
S and S'. We gave there also a sufficient relation between the abstract initialisa-
tion I and the concrete initialisation I'.

In this section we show how the extensions of Sect. 3 allow us to calculate
data-refinements S' and I' which satisfy the sufficient relations automatically.
Following [14], we call these techniques calculators.

For the rest of this section, we will assume that the data-refinement is given
by

abstract variables: a
concrete variables: c
abstraction invariant: A I

Moreover, we assume that the concrete variables c do not appear free in the
abstract program.

488 C. Morgan and P.H.B. Gardiner

4.1.7he Initialisation Calculator

For concrete initialisation I' to data-refine the abstract I we know from Theo-
rem 1 that I '=r A I) is sufficient; therefore we define I' to be (3 a . A I A I)
itself. Law 5 (appendix) shows that we lose no generality, since any concrete
initialisation I', where I' =:, (3 a. A I ^ I), can be reached in two stages: first replace
I by the calculated (3 a. A I ^ I); then strengthen that, by Law 5, to I'.

If A I is false, then the calculated I' will be false also; indeed, Law 5 allows
a refinement step to false initialisation directly. That is valid, though impractical,
for the following reason: Definition 2 shows that the resulting program is miracu-
lous:

El [var I I false. P] I~ false = true.

It can never be implemented in a programming language. (And that is why
programming languages do not have empty types.)

4.2. The Specification Calculator

Lemma 3 to follow gives us a calculator for the data-refinement of any abstract
statement of the form a, x: [_pre, post], where a and x are disjoint (and either
may be empty). Lemma 4 shows that taking that data-refinement loses no gener-
ality. The two results are combined in Theorem 2. Finally, we give as a corollary
a calculator for statements b, x: [pre, post] where b is a subset of a; that is
an abstract statement which may require some abstract variables not to change.

I .emma 3. Validity: The following data-refinement is always valid:

a, x: [pre, post]
~ c , x: [(3a. A I A pre), (3 a . A I ^ post)]

Proof. We take any formula ~b containing no free c, and proceed as follows:

(3 a . A I A [a, x: [pre, post]~ ~k)
= (3 a" A I A pre A (V a, x" post =~ ~)) Definition 4
= (3 a. A I A pre) A (V c, a, x" post =~ ~b) c not free in post, ~k
=~(3a. A I A pre) A (Vc, x, a" A I A post=~ A I A ~,)
=*.(3a.AI A pre)

^ (V c, x" (3 a" A I ^ post) =*.(3 a" A I A ~k))
= [[c, x: I-(3 a. A I A pre), (3 a" A I A post)]~ (3 a" A I A ~b). []

Lemma 4. Generality: For all programs CP, if a, x: [pre, post] ~_ CP then

c, x: [(q a" A I A pre), (3 a" A I A post)] ~_ CP

Proof We take any ~b containing no free a, and proceed as follows:

~c, x: [(3a .A I A pre), (3 a ' A I Apost)]] ~b
= (3 a. A I A pre) Definition 4

A (Vc, x ' (3 a ' A I A post)=>~k)

Data Refinement by Calculation 489

= (3 a ' A I A pre) c not free in post,
A (Va, x . p o s t : * (V c . A I = ~)) a not free in

= (3 a ' A I A pre A (Va, x 'post=~(Vc'Al=*.~)))
= (3 a . A I A ~a, x: [pre, pos t]~(Ve.AI=~b)) Definition 4
= ~ C P] (3 a ' A I A (V c . A I = ~ k)) assumption, Definition 3
=*. ~CP~ ~O a not free in ~, monotonicity. []

We now have the specification calculator we require: Lemma 3 states that
it is a data refinement; Lemma 4 states that any other data-refinement of the
abstract specification is an algorithmic refinement of the calculated one. We
summarise that in Theorem 2:

Theorem 2. The specification calculator: For all programs C P,

a, x: [pre, post] ~ CP

if and only if

c, x: [(3 a" A I ^ pre), (3 a. A1 A post)] ~_ CP.

Proof From Lemmas 3 and 4. []

Note that the quantifications (3a ...) ensure that the abstract variables a
do not appear in the concrete program.

We conclude this section with a corollary of Lemma 3; it calculates the
data-refinement of an abstract specification in which not all variables are chang-
ing. In its proof we are able to reason at the higher level of the relations =_
and 5 ; weakest preconditions are not required.

This corollary is the first occasion we have to use logical constants in data
refinement. Like local variables, logical constants are bound in a program; and
it is the con declaration which binds the abstract variables a in Corollary 1,
since the quantification (3 b. . .) alone may leave some abstract variables free.

Corollary 1. For any subset (not necessarily proper) b o f the abstract variables
a, the abstract specification b, x: [_pre, post] is data-refined by

I[con a"
c, x: [AI ^ pre, (3 b. A I A post)]

]1
Proof Let y be the set of variables containing the members of a that are not
members also of b, and let Y be a set of fresh variables with size equal to
that of y. Then

b, x: [_pre, post]
= Law 9

I [con Y. b, y, x: [pre A y = Y, post A y = Y]] I
~_ Lemma 3, data refinement distributes through con

I Icon Y"
c, x: [(3 b, y- A1 A pre A y = Y), (3 b, y" A1 A post A y = Y)]

]1
-- l l eon Y"

c, x: [(3 b ' A I A p r e) [y \ Y], (3 b ' A l A pos t) [y \ Y]]

490 C. Morgan and P.H.B. Gardiner

11
= Law 8

I[eon y"
c, x: [(3 b" AI ^ pre), (3 b" AI ^ post)]

11
= Law 6

I[eon a"
c, x: [A1 ^ pre, (3 b" A1 ^ post)]

11 []
That data refinement distributes through con, is proven in [81.

4.3. The guard calculator

We saw in Corollary 1 that the specification calculator introduces con a and
existentially quantifies over changing abstract variables only. For guards, chang-
ing nothing, we would expect that quantification to be empty. We have

Theorem 3. The guard calculator: I f Si ~ S'i for each i, then the following refinement
is valid:

if(0 i" Gi ~ Sl) fi

~_ I Icon a-
if(0 i . A I ^ Gi --* S'i) fi

]1.
Proof. For any ~, not containing c, we have

(3 a . A I ^ ~if(0 i . G, ~ Si) fi~ ~')
= (3 a . A I ^ (vi. Gi) definition ~if... fi~

^ (A i. 6, ~ Is,I] ~))
= (3a . (V i .A I A G~) A (A i ' A I ^ G~=~AI A ~S~ ~b))
=~(3a. (Vi .AI ^ Gi)

^ (Ai.AI ^ ~ , ~ (3 a . A I ^ [S~ ~)))
=~(3a ' (Vi 'AI ^ Gi) since Si~_S'i

^ (A i" AI ^ Gi =~ [S',~ (3 a" AI ^ ~p)))
= [l [c o n a ' . . . l l ~ (3 a ' A I A t p) . []
A similar construction is possible for do ... od, but in this general setting

it is better to use if . . . fi and recursion. There are special cases for do, however,
and they are discussed in Sect. 6.

5. Example of Refinement: The "Mean" Module

We can present a data refinement independently 'of its surrounding program
text by collecting together all the statements that refer to the abstract variables
or to variables in the abstraction invariant. Such a collection is called a module,
and we can confine our attention to it for this reason: statements which do
not refer to abstract variables, or to the abstraction invariant, are refined by
themselves and we need not change them.

Consider the module of Fig. 1 for calculating the mean of a sample of
numbers. We write bag comprehensions between brackets -~ ~-, and use ~ b

Data Refinement by Calculation 491

module Calculator
varb: bag of Real;
procedure Clear ~- b := <: >- ;
procedure Enter (value r) ~ b ,= b + <~ r > ;
procedure Mean (result m)

if b4: ~(~ ~ m , = ~ b / # b
0 b = -< > ~ error
fi

end

Fig. 1. The "mean" module

and # b for the sum and size respectively of bag b. The operator + is used
for bag addition. The statement error is some definite error indication, and
we assume that error _~ error. The initialisation is bebag of Real.

The module is operated by: first clearing; then entering the sample values,
one at a time; then finally taking the mean of all those values.

For the data refinement, we represent the bag by its sum s and size n at
any time.

abstract variables: b

concrete variables: s, n

abstraction invariant: s = ~ b ^ n = # b.

We data-refine the module by replacing the abstract variables b by the con-
crete variables s, n and applying the calculations of Sect. 4 to the initialisation
and the three procedures. Stacked formulae below denote their conjunction.

�9 For the initialisation, we have from Sect. 4.1

3 / b ~ b a g o f R e a l \
b'~ s=~ 'b

\ n = # b /

/ s eal \
=~ neNatural]

\n=O=~s=Ol

�9 For the procedure Clear, we have from Sect. 4.2

b :=~(~-
= b : [true, b= ~ ~]
_~ Lemma 3

It s,n: 3b.2 = , b'n=4~b]]
b = .< ~-/J

_cLaw 1
s, n: [true, s = 0 A n = 0]

_m Law 12
s, n-'=O, 0

492 C. Morgan and P.H.B. Gardiner

�9 For the procedure Enter, we have from Sect. 4.2

b:=b+ ~(r~-
= I[eonB- b: [b=B, b=B+ ~(r~-]] l
_~ Lemma 3

r s = E 8 s = E (B + < r >)]]
n : [n = # B ' n = # (B + ~(r~-)]]l

~_ Law 12
I[con B" s, n:=s + r, n+ 1]1

_ Law 7
s, n:=s+r, n+ 1

�9 For Mean we have first that from Sect. 4.2

m..=Eb/ ,b
=m: [~ b + 0 , rn=~b/=~b]
~Coro l l a ry 1 (noting the quantification is empty)

I[conb"

m, s, n:

11

4t:b , 0 , rn=~b/#b-
s=Eb, s=F~b
n=4#b, n=41:b

_ Laws 10, 2, 3, 1
I[eon b" m: In4=0, m=s/n]]l

_ Laws 12, 7
m :=sin.

Then we conclude from Theorem 3 that

if b=~ ~ ~ m : = ~ b / # b
D b = ~ ~ ~ error
fi

~l l -con

if

D

fi

]1.

b o

b,<>\
s=Y 'bJ ~m:=s/n
n = # b /

s = E b error
n = # b /

To make further progress with Mean, we need to eliminate the abstract
variable b from the guards; then Law 7 applies. That is assisted by the following
lemma (which is generally applicable to the refinement of alternations, whether
or not they occur within data refinements):

Data Refinement by Calculation 493

[,emma 5. Refining guards: Given the conditions

1. (Vi. G,)=~(Vi-G',)

2. (Vi" Gi)=~(G'i=~Gi) for each i

the following refinement is valid:

if(n i. G i ~ Si) fi _ if(l] i. G'i --* Si) ft.

Proof. By Lemma 1 and ~if... fi~ we must show for all formulae ~k that

(Vi. Gi) A (Ai" G,=~ ~S,] ~)

~ (V i " G;) A (Ai" G'i=~ IS,] ~).

That follows by propositional calculus from assumptions 1 and 2 above. []

We have immediately the following corollary:

Corollary 2. Weakening guards: The following refinement is valid for any formula X:

if(l] i" Gi A X ~ Si) fi _m if(l] i" Gi ~ Si) ft. []

Now we can continue the refinement of Mean:

_ Lemma 5, Law 7
if n ~ O ~ m = s / n
D n = 0 ~ error
ft.

In Fig. 2 we give the resulting data refinement for the whole module.

module Calculator ~-
var s: Real; n: Natural;
procedure Clear ~- s, n = 0 , 0;
procedure Enter(value r) ~ s, n ,=s + r, n + 1;
procedure Mean (result m)-~

if n~O ~ m,=s/n
0 n = 0 ~ error
fi

in i t ia l ly n = 0=*- s = 0
end.

Fig. 2. The "mean" module, after data refinement

T o see the need for the initialisation, consider this alternative definition
of Clear:

procedure Clear ~-
i f b = t = ~ > - ~ b : = ~ >
0 b = ~ > -~ skip
fi

494 c. Morgan and P.H.B. Gardiner

That is semantically identical to the original, in Fig. 1, but might be cheaper
overall if the operation b.'=-< >- were expensive. Its calculated data refinement
is

procedure Clear ~-
if n~=O~ s, n~=O, 0
D n = O ~ s k i p
ft.

That would not work correctly if used immediately after an initialisation, say,
of s = 1 ̂ n = 0 ! So our stated initialisation is necessary, after all; note however
that since initialisations can always be strengthened (Law 5), we could use the
simpler s = 0 if desired.

6. Specialised Techniques

Now we specialise the techniques of Sect. 4: we consider guards, functional data-
refinement, and the use of auxiliary variables.

6.1. Data-refining Guards

We have seen that data refinement takes an abstract program of the form

if (D i. Gi ~ Si) fi

to a concrete one of the form

l I-con a.
if ([q i" A I A Gi ~ S'i) fi

]1
where AI is the abstraction invariant, and S'~ is the result of applying data
refinement to S~.

One of the steps towards code is the removal of the con. Before this can
be done the occurrences of abstract variables in the concrete guards must be
eliminated. We use Lemma 5 for that: we replace each of the calculated guards
Gi A AI by the guard (V a" AI=~ Gi), which does not contain a free. By that lemma,
we must show

1. (vi- G~ ̂ AI)=~(Vi" G~),

2. (Vi- Gi A A1)=~(G}=~ Gi A AI) for each i

where G'i is (Va'AI=~Gi).
After expanding G'~ the validity of 2 is evident; and 1 can be rewritten to

(3 a" AI ^ (Vi- G~)) =~ (Vi. G}). Thus we have the following

Lemma 6. Data refinement of alternations: Given abstraction invariant AI,
abstract guards Gi, and abstract statements Si, let the concrete guards G~ and
concrete statements S'~ be such that

Data Refinement by Calculation 495

1. G'i =(V a'AI=~ Gi).

2. S i - ~ S ~ .

Then provided (3 a" AI A (vi" Gi))=~ (Vi" G~), the following data refinement is valid:

if (Oi 'Gi~ Si) fi~_if (Oi.G~--* S~) ft. []

For iterations the result is the same: we use the recursive formulation.

do (0 i" Gi ~ Si) od ~ (#P' i f (0 i" Gi --* Si; P)
0 -a(Vi 'Gi) - , sk ip
fi).

Since data refinement distributes through recursion (see [8] for proof), we merely
have to determine the conditions under which

if (Oi" A l A G i ~ Si; P)
0 AI ^ --7 (Vi" Gi) --* skip
fi

m_if (Oi.G'i-, S'~; P)
0 --7 (v i - G~) --, skip
ft.

Here we apply Lemma 5 again, this time noticing that the disjunction of the
guards of the initial program simplifies to AI, and that of the refined program
simplifies to true. Thus Lemma 5 requires

1. AI=~ true

2a. AI=~(G~=~Gi ^ AI) for each i

2b. AI=~(--a(Vi'G~)=~-a(Vi'Gi) ^ AI).

The validity of 1. and 2a. are evident; and 2b. can be rewritten to give
(Vi-Gi ^ AI)=e,(Vi. G'i), which is the formula that was required in the treatment
of alternation. Thus we have

Lemma 7. Data refinement of iterations: Under the same conditions as Lemma 6,
the following refinement is valid:

do (Oi'Gi--~Si) od_~do (Oi'G'i--~S'i) od. []

Our choice of G'i is used also in [23], where those two rules are proved
from first principles (that is, from Definition 3). We have shown therefore how
that technique is an instance of our Theorem 3.

6.2. Functional Refinement

In many cases, the abstraction invariant is functional in the sense that for any
concrete value there is at most one corresponding abstract value. In [13], for
example, this is the primary form of data-refinement considered.

496 C. Morgan and P.H.B. Gardiner

Functional abstraction invariants can always be written as a conjunction

(a = AF(c)) ^ CI(c)

where A F we call the abstraction function and CI the concrete invariant; the
formula CI of course contains no occurrences of abstract variables a. We assume
that CI(c) implies well-definedness of A F at c .

Functional data-refinements usually lead to simpler calculations. First, the
concrete formula (3 a. A I A ~) - where ~b is pre or post in the abstract specification
- is simplified:

(3 a" A I ^ d?)
= O a ' (a = AF(c)) ^ CI (c) ^ 4))
= CI(c) ^ d? [a \AF(c)] .

Thus in this case data-refinement calculations are no more than simple substitu-
tions. Note also that the resulting concrete formula contains no free abstract
variables, and this allows any][con a- . . .]] to be eliminated immediately. We
have this corollary of Theorem 2:

C o r o l l a r y 3. Functional data-refinement: Given an abstraction invariant
(a=AF(c)) ^ CI (c), the following data-refinement is always valid:

a, x: [pre, post]

[pre[a\AF(c)] pos t[a \AF(c)]]
~_ c, x: [CI (c) ' CI (c) J"

Moreover, it is the most general. []

A second advantage is in the treatment of guards, as is shown also in [231.
According to Theorem 3 we replace G i by G~ ̂ AI, which becomes

Gi ^ (a = AF(c)) ^ CI (c)

= G i [a \AF(c)] A (a = AF(c)) ^ Cl(c).

Now by Corollary 2, we can eliminate the conjunct a = AF(c) immediately, and
hence the enclosing [[con a . - . .] l as well. (And we can eliminate the CI(c), but
that is optional: it contains no a.) So we have the following result for the
functional data-refinement of alternations:

Lemma 8. Functional data-refinement of alternations: Given abstraction invariant
(a=AF(c)) ^ CI(c), abstract guards Gi, and abstract statements St, let concrete
guards G'~ and concrete statements S'i be such that

1. G ' i = G i [a \AF(c)] ^ CI(c),

2. Si<S~.

Then the following data refinement is valid

if (~i'G~ ~ Si) fi<_if (Di'G'~ ~ S'~) ft. []

The same remarks apply to iteration (and again, the conjunct CI(c) is option-
al in the concrete guards):

Data Refinement by Calculation 497

Lemma 9. Functional data-refinement of iterations: Under the same conditions
as Lemma 8, the following data refinement is valid

do (0 i" G i ~ Si) od~_do (0 i" G'i --" S'i) od. []

6.3. Auxiliary Variables

A set of local variables is auxiliary if its members occur only in statements
which assign to members of that set. They can be used for data refinement
as follows.

There are three stages. In the first, an abstraction invariant is chosen, relating
abstract variables to concrete. Declarations of those concrete variables are added
to the program, but the declarations of the abstract variables are not removed.
The initialisation is strengthened so that it implies the abstraction invariant;
every guard is strengthened by conjoining the abstraction invariant; and every
assignment statement is extended, if necessary, by assignments to concrete vari-
ables which maintain the abstraction invariant.

In the second stage, the program is algorithmically refined so that the abstract
variables become auxiliary. In the third stage, the (now) auxiliary abstract vari-
ables are removed (their declarations too), leaving only the concrete - and the
data-refinement is complete.

That technique was proposed by [15], and a simple example is given in
I-7, p. 64]. It also appears in [11] and I-9]. It is a special case of our present
technique, as we now show. Suppose our overall aim is the following data-
refinement:

abstract variables: a
concrete variables: c
abstraction invariant: AI.

We decompose this into two data-refinements, applied in succession. In the
first, there are no abstract variables:

abstract variables: (none)
concrete variables: c
abstraction invariant: AI.

Clearly this refinement removes no declarations. And, for an abstract program
S to be taken to a concrete program S' under this refinement, Definition 3
requires only that for all ~ not containing c free, we have

A1 ^ (AI ^

That is precisely the first stage explained informally above.

498 C. Morgan and P.H.B. Gardiner

The second stage remains: it is only algorithmic refinement. For the third
stage, we use the following data refinement in which there are no concrete vari-
ables:

abstract variables: a
concrete variables: (none)
abstraction invariant: true.

For an abstract program S to be taken to a concrete program S' under this
refinement, Definition 3 requires that for all formulae ~b

(3 a" ~S~ ~O)=~ WS'~ (3 a-~).

And this holds only when the abstract variables a are auxiliary.
We illustrate the auxiliary technique with two lemmas, derived from our

general rules for data refinement:

Lemma 10. Introducing concrete variables while maintaining the invariant: Let
the abstract variables be none, the concrete variables be c, and the abstraction
invariant AI. Then for abstract expression AE and concrete expression CE, we
have

a:=AE ~a, c,=AE, CE

provided AI ~ ~a, c:=AE, CE~ AI.

Proof

AI A ~a :=AE]
= aI ^ ~ [a\AE]
=~ ~a, c :=AE, CE~ AI A ~ [a\AE]
=:. AI[a, c \AE, CE] ^ ~ [a\AE]
= AI [a, c \AE, CE] ^ ~b [a, e \AE, CE]
= ~a, c'.=AE, CE~ (AI ^ ~k)

by semantics of :=
by assumption
by semantics of ..=
since ~b contains no c
by semantics of ,= []

Lemma 11. Eliminating auxiliary variables: Let the abstract variables be a, the
concrete variables be none, and the abstraction invariant true. Then

1. a..=AE ~skip,

2. c ,=CE~c,=CE

provided CE contains no occurrence of a.

Proof For 1 we have

(3a. ~a..=AE~ ~k)
= (3 a. ~k [a\aE])
=>(3a.qt)
= skip (3 a . q,).

by semantics of ..=
predicate calculus

Data Refinement by Calculation 499

For 2 we have

(q a . ~c:=CE~ ~k)
= (3 a" ~1 [c \ C E])
= (~ a" ~,) [c \ C E]
= ~c :=CE~ (~ a" ~b)

by semantics of .'=
since C E contains no a

(Note that in case 2 we did not assume that ~ contained no c.) []

If the abstract statement is a specification a: [pre, post], then in the first
stage we replace it by a, c: [pre A AI , post A AI] . If by the third stage (after
algorithmic refinement) we still have a specification - say a, c: [pre', post'], then
the removal of a as an auxiliary variable leaves us with c: [(3 a. pre'), (3 a.post ')] .

Let us as a final illustration try to remove a variable which is not auxiliary:
we take the data-refinement as for the third stage, and suppose that c ' .=a~_CP
for some concrete p rogram CP. We expect this to fail, since a is clearly not
auxiliary in c:=a. Now we have for all constants n that

true
= (q c ' c = n)
= (3 a" (c = n) [c \ a])
= (3 a" [c.'=a~ (c = n))
=*.~CP]](3a 'c=n)
= ~CP~ (c = n).

predicate calculus
renaming bound variable c to a
by semantics of .'=
by assumption

Since the above holds for any n, we have that C P always establishes both
c = 0 and c = 1. Because no executable p rogram can do this, we have shown
that there is no such C P - as hoped, a cannot be eliminated from c ,=a. But
what if we write c:=a as a specification? In that case, Corollary 1 would allow
us to perfrom the data refinement as follows.

c:=a
= c: [true, c = a]
_< Corollary 1 (noting the quantification is empty)

I[con a. c: [true, c = a]] I.

So here we have a data-refinement, after all. But that is consistent with the
above in the following way: there is no executable p rogram C P (whether contain-
ing a or not) such that c: [true, c = a] m_ CP. Thus the I Icon a] l still cannot
be eliminated.

In [16] the auxiliary variable technique is presented independently of the
refinement calculus.

7. Conclusions

Our calculators for data refinement make it possible in principle to see that
activity as the routine application of laws. The example of Sect. 5 is a demonstra-
tion for a simple case. I t is important in practice, however, to take advantage

500 C. Morgan and P.H.B. Gardiner

of the specialised techniques of Sect. 6; otherwise, the subsequent algorithmic
refinement will simply repeat the derivation of the techniques themselves, again
and again.

That subsequent algorithmic refinement is in fact a lingering problem. In
many cases, particularly with larger and more sophisticated refinements, the
refined operations present fearsome collections of formulae concerning data
structures for which we do not have an adequate body of theory. Their subse-
quent manipulations in the predicate caclulus resemble programming in machine
code. Fortunately, there is work on such theories (and their calculi, for example
[5]), and we see little difficulty in taking advantage of them.

Our work on data refinement has been aided and improved by collaboration
with Morris and Back, who present their work in [23] and [2] respectively.
We extend Morris's approach by our use of logical constants (which, however,
he has later discovered in another context 1-22]). A second extension is our
"if and only if" result in Theorem 2. That is necessary, we feel, for a data
refinement to be called a calculator: P < Q is a calculator only if taking Q loses
no generality. And Morris retains some restrictions on abstraction invariants
which we believe are unnecessary. Conversely, Morris's specialised alternation
calculator [23, Theorem 4] improves ours (Lemma 6) by introducing a miracle
as the refined program [17]; his rule needs no proof obligation. Our work
extends Back's by our emphasis on calculation, and our use of logical constants.

Acknowledgements. We are grateful to have had the opportunity to discuss our work with Ralph
Back and Joe Morris, and for the comments made by members of IFIP WG 2.3. Much of our
contact with other researchers has been made possible by the generosity of British Petroleum Ltd.

References

1. Back, R.-J.: On the correctness of refinement steps in program development. Report A-1978-4,
Department of Computer Science, University of Helsinki, 1978

2. Back, R.-J.: Correctness preserving program refinements: Proof theory and applications. Tract 131,
Matbematisch Centrum, Amsterdam, 1980

3. Back, R.-J.: Procedural abstraction in the refinement calculus. Report Ser. A55, Departments
of Information Processing and Mathematics, Swedish University of/~bo, ~,bo, Finland, 1987

4. Back, R.-J.: A calculus of refinements for program derivations. Acta Inf. 25, 593-624 (1988)
5. Bird, R.S.: An introduction to the theory of lists. Technical monograph PRG-56, Programming

Research Group, 8-11 Keble Road, Oxford OX1 3QD, UK, October 1986
6. Boom, H.: A weaker precondition for loops. Trans. Prog. Lang. Syst. 4, 668-677 (1982)
7. Dijkstra, E.W.: A Discipline of Programming. Englewood Cliffs: Prentice-Hall 1976
8. Gardiner, P.H.B., Morgan, C.C.: Data refinement of predicate transformers. Theor. Comput. Sci.

(to appear). Reprinted in [21]
9. Gries, D., Prins, J.: A new notion of encapsulation. In: Syrup. Language Issues in Programming

Environments, SIGPLAN, June 1985
10. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12, 576-580

(1969)
11. Hoare, C.A.R.: Proof of correctness of data representations. Acta Inf. 1, 271-281 (1972)
12. Hoare, C.A.R., He, J.F., Sanders, J.W.: Prespecification in data refinement. Inf. Proc. Lett. 25,

71-76 (1987)
13. Jones, C.B.: Systematic Software Development using VDM. Prentice Hall, 1986
14. Josephs, M.B.: The data refinement calculator for Z specifications. Inf. Process. Lett. 27, 29-33

(1988)

Data Refinement by Calculation 501

15. Lucas, P.: Two constructive realizations of the block concept and their equivalence. Technical
Report TR 25.085, IBM Laboratory Vienna, 1968

16. Morgan, C.C.: Auxiliary variables in data refinement. Inf. Process. Lett. 29, 293-296 (1988)
(Reprinted in [211

17. Morgan, C.C.: Data refinement using miracles. Inf. Process. Lett. 26, 243-246 (1988) (Reprinted
in 1-21]

18. Morgan, C.C.: Procedures, parameters, and abstraction: Separate concerns. Sci. Comput. Progr.
11, 17-28 (1988) (Reprinted in [21])

19. Morgan, C.C.: The specification statement. Trans. Prog. Lang. Syst. 10 (1988) (Reprinted in 1-21])
20. Morgan, C.C., Robinson, K.A.: Specification statements and refinement. IBM J. Res. Dev. 31

(1987) (Reprinted in [-21])
21. Morgan, C.C., Robinson, K.A., Gardiner, P.H.B.: On the refinement calculus. Technical Report

PRG-70, Programming Research Group, 1988
22. Morris, J.M.: Invariance theorems for recursive procedures. (In draft)
23. Morris, J.M.: Laws of data refinement. Acta Inf. (to appear)
24. Morris, J.M.: A theoretical basis for stepwise refinement and the programming calculus. Sci.

Comput. Progr. 9, 298-306 (1987)
25. Nelson, G.: A generalization of Dijkstra's calculus. Technical Report 16, Digital Systems Research

Center, April 1987

8. Appendix: Refinement Laws

Below is a co l lec t ion of laws which can in pr inc ip le t ake mos t specif icat ion
s t a tements t h r o u g h a series of ref inements in to executable code. W e have no t
t r ied to m a k e t hem complete . " E x e c u t a b l e c o d e " means p r o g r a m text which
does no t inc lude e i ther specif icat ion s t a tements or logical constants .

" I n p r inc ip l e " means tha t these bas ic rules, used alone, will in m a n y cases
give ref inement sequences which are very long indeed - r a the r l ike ca lcu la t ing
der ivat ives f rom first pr inciples . But wi th experience, one collects a r eper to i re
of m o r e powerfu l and specific laws which m a k e those ca lcu la t ions rout ine.

Some of the laws be low are equal i t ies = ; some are p r o p e r ref inements _ .
In all cases they have been p r o v e d us ing the weakest precondition semant ics
of the cons t ruc t s concerned .

Sect ion 8.2 con ta ins no tes re la t ing to the laws of Sect. 8.1.

8.1. Laws of Program Refinement

M o s t of these laws are ex t rac ted f rom [20], re ta in ing only those used in this
paper . Log ica l cons t an t laws have been added .

1. Weakening the precondition: If pre=~pre' then

w: [pre, post] m_ w: [pre', post]

2. Strengthening the postcondition: If post'=~post then

w: Lore, post] ~_ w: [pre, post']

3. Assuming the precondition in the postcondition: See Note 1.

502 C. Morgan and P.H.B. Gardiner

w: [pre, (3 w" pr e) A post] = W: [pre, post]

4. Introducing local variables: If x does not appea r free in pre or post, then

w: [pre, post] ~_ I[var x I I - w, x: [pre, post]]1-

5. Strengthening the initialisation : I f I'=r then

[[var x [I . S] [m__ [[var x I I'. S][.

6. Introducing logical constants: If x does not appea r free in post or w, then
See Note 2.

w: [(3 x" pre), post] = I Icon x" w: [pre, post]] 1.

7. Eliminating logical constants: If x does not a p p e a r free in P, then
See Note 3.

I [con x" P] I = P

8. Renaming logical constants: If y is disjoint f rom w, and does not occur
free in pre or post, then

l Icon x . w: [pre, post]]l
= l Icon y" w I x \ y] : [pre I x \ y] , post [x \ y]]]l

9. Expanding the frame: I f y is a fresh var iable then

w: [_pre, post] = I Icon y. w, x: [pre ^ x = y, post ^ x = y]] I.

10. Contracting the frame: If w and x are disjoint, then

w, x: [pre, post] ~_ w: [_pre, post].

l l . Introducing skip:
w: [-post, post] =_ skip

12. Introducing assignment: If E is an expression, then

w: [-post [w \ E], post] m_ w .'= E.

13. Introducing alternation:

w: [pre A (vi" Gi), post]
= if ([] i" Gi --' w: [pre ^ Gi, post]) ft.

See Note 4.

8.2. Notes

1. Law 3 applies when in format ion f rom the precondi t ion is needed in the
postcondi t ion. We use it be low to derive a s t ronger version of Law 2:

I f ((3 w.pre) ^ post')=~ post, then
w: [pre, post]

_ by L a w 2 and the a s sumpt ion

Data Refinement by Calculation 503

w: [pre, (3 w" pre) ^ post']
_ by Law 3

w: [pre, post'].

2. Usually Law 6 is used to introduce an equality into the precondition
which "saves an initial value for later." That is summarised in the following
derived law:

If y is disjoint from w, and does not occur free in pre or post, then
w: [pre, post]

_ by Law 1
w: [(3 y. x = y ^ pre), post]

_ by Law 6
I [con y. w: [x = y ^ pre, post]] I.

3. Logical constants, introduced by con, are variables which we can use during
program development but not in final programs. Usually they are used
to fix initial values, as in

][con X . x: [x=X, x = X + 1]]1
___by Law 12

I [c o n X ' x , = x + 111
_ by Law 7

x'.=x + 1.

Since the keyword con does not occur in our executable programming
language - j u s t as specification statements do not - it must be eliminated
(using Law 7 as above) during the development process. Thus logical con-
stants never appear in the final program, since they cannot be declared
there.

4. Law 12 is usually applied together with Laws 10 and 1, as in the following
derived rule:

If w is a subset of the set of variables v, E is an expression, and pre=~
post [w\E] , then

v: [pre, post]
_ by Law 10

w: [pre, post]
~_ by Law 1 and the assumption

w: [post [w \ E] , post]
___by Law 12

w:=E.

