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Summary. Data refinement is the systematic substitution of one data type 
for another in a program. Usually, the new data type is more efficient than 
the old, but possibly more complex; the purpose of the data refinement 
in that case is to make progress in program construction from more abstract 
to more concrete formulations. A recent trend in program construction is 
to calculate programs from their specifications; that contrasts with proving 
that a given program satisfies some specification. We investigate to what 
extent the trend can be applied to data refinement. 

1. Introduction 

In [1], Back proposed an extension of Dijkstra's calculus [7] where specifications 
and programs are given equal status during program construction. Later interest 
in specifications generally has led quite recently to further work on such con- 
structions I-3, 4, 18-20, 22, 24]. The style is now known as the refinement calculus. 

Characteristic of any calculus is that it is used for calculation, not just descrip- 
tion. The refinement calculus, therefore, should allow programs to be calculated 
from their specifications. It does indeed allow presentations in which each inter- 
mediate design follows from a previous design according to some law of refine- 
ment. That contrasts with the more well-known style in which intermediate 
designs are first proposed and then proved to follow from their antecedents. 
Our hope is that constructions in the refinement calculus will proceed more 
smoothly, and that proof obligations will be reduced. That is the point of a 
calculus, and it can be observed elsewhere: for example, in the differential calcu- 
lus one uses laws of differentiation, not proofs from first principles. For differenti- 
ation, the process is now mechanical. In the integral calculus, we have laws 
too - but there, as in the refinement calculus, success is not guaranteed. 
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Data refinement is a special case of refinement : one replaces an abstract 
type by a more concrete type in a program while preserving its algorithmic 
structure. Abstract operations are similarly replaced by corresponding concrete 
operations. It is a well-established technique, with its own specialised proof 
rules [11, 13]. 

Our principal contribution is to draw data refinement into the calculational 
style: we show how to calculate data refinements rather than prove them. Hoare 
et al. [12] first introduced this concept, but their work, being in a relational 
setting, was not easily applied in practice. Here we build on our earlier work 
[8], which was in a predicate transformer setting, to produce practical methods 
of calculation. This paper gives applications of the theory in [8], though for 
convenience we have presented afresh some proofs which are corollaries by 
specialisation. Recent work by Morris [23] addresses the same concerns that 
we do. 

In passing we fromalise logical constants, long used in program derivation, 
but not until now treated rigorously. Their use in programs loses the property 
of conjunctivity, another of Dijkstra's healthiness laws [7]. (The law of the 
excluded miracle, and continuity, have already been abandoned [6, 19, 24, 25].) 

This work relies on the ideas of the refinement calculus, reviewed in Sects. 2 
and 3 below. More detail can be found in [2, 19, 20, 24]. 

2. Refinement 

We consider Dijkstra's programming langt~age [7], whose meaning is given 
by predicate transformers. For any program P, we write ~P~ for its meaning; 
and that meaning is a function from (desired) final assertions to (necessary) 
initial ones: 

For  any formula ~ over state variables, and program P, ~P~ ~ is the weakest 
formula whose truth in an initial state ensures that activation of P will 
lead to a final state in which ~ is true. 

Thus we write [P~ ~ for Dijkstra's wp(e, ~). 

2.1. Algorithmic Refinement 

A program P is algorithmically refined by another P' whenever every specifica- 
tion satisfied by P is satisfied by P' also. We restrict our specifications, however, 
to formulae r ~P~ ~ which state "the program P must be such that its activa- 
tion in a state in which t~ is true will lead to a state in which ~9 is true." 
We do not, for example, specify time or space constraints. 

Note that, when we assert a formula in text (for example r ~b in the 
above paragraph), we mean that the formula is valid (i.e. true for all values 
of its free variables). 

Definition 1. Algorithmic refinement: Program P is algorithmically refined by 
program P' precisely when, for all formulae r and ~O over the program variables, 

r =~ ~P~ ~b implies ~b =~ ~P'~ ~b. 
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We write P ~_ P' for that relationship. [] 

The following is an easy consequence of Definition 1, and is what we will 
use in practice: 

Lemma 1. Algorithmic refinement: For programs P and P', we have P ~ P' precisely 
when 

[P~ ~=r [P'~ ~b for all formulae ~ over the program variables. 

Proof. For /f, note that ~b=~[P~ ~b and ~P-~ ~=~[P'~ ~k imply cb::e,[~P'~ ~, as 
required; for only if, take q~ to be [e~ ~/itself. [] 

We assume that in Lemma 1 we may limit our choice of formulae ~ to 
those containing only variables free either in P or P' or both. 

2.2. Data Refinement 

Data refinement arises as a special case of algorithmic refinement. A program 
P is data-refined to another program P' by a transformation in which some 
so-called abstract data-type in P is replaced by a concrete data-type in P'. The 
overall effect is an algorithmic refinement of the block in which the abstract 
data type is declared. 

For that, we add local variables to Dijkstra's language in the following (stan- 
dard) way: 

Definition 2. Local variables: For (list of) variables l, formula I (the initialisation), 
and program P, the construction 

I[varllI 'e]l 

is a local block in which the local variables l are introduced for the use of 
program P; they are first assigned initial values such that I holds. We define, 
for ff not containing l, 

[ l [ v a r l l I ' P ] l ~ , ' - ( V l ' I ~ P ~ , ) .  [] 

The symbol ~_ is read "is defined to be equal to". 
Note that the scope of quantifiers is indicated explicitly by parentheses (V...). 
Where a postcondition ~k does contain the local variable l, Definition 2 can 

be applied after systematic change of the local l to some fresh l'. We assume 
therefore that such clashes do not occur. 

Where appropriate, we consider types to be simply sets of values, and will 
write I [var l: T I I .  P] [ for I [var I I (l~ T ^ I). P] I; thus a variable is initialised to 
some value in its type. And if I is just true we may omit it, writing I[varl 'P]l  
or I[var l: T.P]I as appropriate. 

Now data-refinement transforms an abstract block I[varall"P]l to a con- 
crete block I[var c I I'. P'] I. We assume that the concrete variables c do not occur 
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in the abstract  program I and P, and vice versa. The transformation has these 
characteristics: 

1. The concrete block algorithmically refines the abstract block: 

I [ v a r a l I ' P ] l ~ l [ v a r c l I "  P']l. 

2. The abstract variable declarations var a are replaced by concrete variable 
declarations var c. 

3. The abstract  initialisation I is replaced by a concrete initialisation I' .  
4. The abstract p rogram P, referring to variables a but not c, is replaced 

by a concrete program P' referring to variables c but not a; moreover,  the 
algorithmic structure of P is reproduced in P '  (see below). 

The four characteristics are realised as follows. An abstraction invariant AI  
is chosen which links the abstract  variables a and the concrete variables c. 
It  may be any formula, but usually will refer to a and c at least. (See Sect. 4.1 
below for a discussion of the impracticality of choosing false as the abstraction 
invariant.) The concrete initialisation I' must be such that I'::>(3 a ' A I  ^ I). For  
the concrete program we define a relation <_ of data-refinement: 

Definition 3. Data refinement: A program P is said to be data-refined by another  
program P', using abstraction invariant AI, abstract variables a and concrete 
variables c, whenever for all formulae ~ not containing c free we have 

(3 a" AI ̂  [P~ O)~ [P'~ (3 a" AI A ~). 

We write this relation P'~(AI . . . .  P', and omit  the subscript A~ .... when it is under- 
stood from context. []  

Definition 3 is appropriate  for two reasons. The first is that it guarantees 
characteristic 1, as we now show. 

Theorem 1. Soundness of data-refinement: I f  I'=~ (3 a" AI  ^ I) and P ~_ P', then 

I[varalI 'P-II~_l[varclI"P']l .  

Proof Consider any ~O not containing a or c free. We have 

[ l [varal I 'P] l~b  
= (V a" I => ~P~ 0) Definition 2 
= (V c, a" I =~ [P~ O) c not free in above 
=>(Vc, a . A I  ^ I ~ A I  ^ [P~ qJ) 
 (Vc.0 a'A/^ [P] q,)) 
:=>(Vc.I'=>(3a.AI ^ ~P~ 0)) assumption 
~(Vc.I'~P'~(3a.AI ̂  0)) assumption; Definition 3 
=> (V c. I' =:- ~P'] ~b) monotonicity; a not free in ~9 
-- [[[varcII"P'][~k Definition 2. [] 
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The second reason our Definition 3 is appropriate is that it distributes 
through program composition. This is shown in [23, 8], and we refer the reader 
there for details. Here, for illustration, we treat sequential composition; alterna- 
tion and iteration are dealt with in Sect. 4 and 6 below. 

Lemma 2. Data-refinement distributes through sequential composition: I f  P~_P' 
and Q~_Q' then (P; Q)_~(P'; Q'). 

Proof. Let ~k be any formula not containing c. Then 

(3a.AI ^ ~P; Q~ ~) 
= (3a'AI A ~P~(~Q~ ~)) semantics of " ;"  
=~P'~(3a;AI A ~Q~ ~k) P~_P' 
=~P'~(~Q ~(3a.AI A ~k)) Q~_Q'; monotonicity 
= ~e'; Q'~ (3 a 'AI A if) semantics of , . []  

It is the distributive property illustrated by Lemma 2 that accounts for char- 
acteristic 4 above: if for example P is P1; P2;-.-P~ then we can construct P'  
with P~_P' simply by taking P' =P~; P~; ... P" with PL~P' i for each i. It is in 
this sense that the stucture of P is preserved in P'. We will see in Sect. 4 below 
that this carries through for alternations and iterations also. 

3. Language Extensions 

We extend Dijkstra's language in two ways. With the specification statement 
we allow specifications and executable program fragments to be mixed, thus 
promoting a more uniform development style. With program conjunction we 
make more rigorous the use of so-called logical constants, which appear in specifi- 
cations but not in executable programs. 

3.1. Specification Statements 

A specification statement is a list of changing variables called the frame (say w), 
a formula called the precondition (say pre), and a formula called the postcondition 
(say post). Together they are written 

w: [_pre, post]. 

Informally this construct denotes a program which, 

if pre is true in the initial state, will establish post in the final state by 
changing only variables mentioned in the list w. 

For the precise meaning, we have 

Definition 4. Specification statement: For  formulae pre, post over the program 
variables, and list of program variables w, 

~w: [pre, post]~ ~ ~-pre ̂  (Vw.post~b). [] 
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Specification statements allow program development to proceed at the level 
of refinement steps _ rather than directly in terms of weakest preconditions, 
and are discussed in detail in [19, 20]. They are similar to the descriptions of 
[21 and the prescriptions of [24]. For  now we extract from the above works 
a collection of refinement laws, given in the appendix to this paper. We illustrate 
their use with the following small program development: 

"assign to y the absolute value of x "  
= y :  [true, y-- lxl ]  
= y :  [(x <0)  v (x>  0), y = Ixl] 
___Law 13 

if x<0--+y:  [ x < 0 ,  y--lxl] 
0 x > O ~ y :  [x>O, y=lxl] 
ft. 

= i f  x < O - + y :  I - x - - I x l ,  y--  Ixl] 
Iq x>O--+ y: [x=lxl, Y=lxl] 
ft. 

_ Law 12 twice 
if x<O--+ y . .=-x  
0 x>O--+y:=x 
ft. 

3.2. Program Conjunction 

Given a program P we write the generalised program conjunction of P over 
some variable i as I[eon i .P]l .  We call it conjunction because that new program 
is a refinement ~_ of the original program P for all values of the logical constant 
i. For  example, consider the statement x: Ix = i, x = i + 1], and suppose our vari- 
ables range over the natural numbers. Its generalised conjunction over i refines 
all of the following: 

x: [ x = O , x = l ]  

x: [ x = l ,  x=23  

x: [ x = 2 ,  x = 3 ]  

Each of those programs deals with a specific value of x, and can abort for 
all others. Yet, as Definition 5 will show, that generalised conjunction equals 
the statement x. '=x + 1, which is guaranteed to terminate. 

Definition 5. Program conjunction: For program P and variable i not free in 

El [con i-P] 1~ ~k ~ (3 i- ~P~ ~b). [] 

As in Definition 2, systematic renaming can deal with occurrences of i in ~k. 
Thus for the example above we can calculate 

El[con/" x: [x=i, x = i +  1]]l~ ~k 
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=(3i-~x:  I x = i ,  x = i +  1]~ if) Definition 5 
= ( 3 i . x = i A ( V x . x = i q - l ~ k ) )  Definition 4 
= (3 i ' x  = i A ~k [ x \ i  + 1]) One point rule 
= ~k [ x \ i  + 1] [ i \ x ]  One point rule 
= ~k [ x \ x  + 1] i not free in ~k 
-- ~x..=x+ 1] @ 

The notation [ x \ i + l ]  indicates syntactic replacement of x by i + 1  with any 
changes of bound variable necessary to avoid capture. 

Variables declared by con we call logical constants. They usually appear 
in program developments where some initial value must be fixed, in order to 
allow later reference to it. For  example in the Hoare style [101 we might write 
"find a program P, changing only x, such that { x = X } P { x = X + I } " .  Here 
the upper case X makes use of a convention that such variables are not to 
appear in the final program: it is not x . . = X + l  that is sought, but x : = x +  1. 
We would just write 

I1-conX'x: I x = X ,  x =  g + 1]]1, 

it being understood that we are looking for a refinement of that. Since our 
final programming language does not allow declarations con, we are forced 
to use refinements whose effect is to eliminate X. We do not need an upper-case 
convention. 

It is interesting that program conjunction is the dual of local variable declara- 
tion (compare Definitions 2 and 5); thus logical constants are in that sense 
dual to local variables. It is shown in I-8] that data refinement distributes through 
program conjunction. 

4. Data Refinement Calculators 

In Sect. 2 we defined the relation _--< of data-refinement between two statements 
S and S'. We gave there also a sufficient relation between the abstract initialisa- 
tion I and the concrete initialisation I'. 

In this section we show how the extensions of Sect. 3 allow us to calculate 
data-refinements S' and I' which satisfy the sufficient relations automatically. 
Following [14], we call these techniques calculators. 

For  the rest of this section, we will assume that the data-refinement is given 
by 

abstract variables: a 
concrete variables: c 
abstraction invariant: A I  

Moreover, we assume that the concrete variables c do not appear free in the 
abstract program. 
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4.1.7he Initialisation Calculator 

For  concrete initialisation I' to data-refine the abstract I we know from Theo- 
rem 1 that I '=r A I) is sufficient; therefore we define I' to be ( 3 a . A I  A I) 
itself. Law 5 (appendix) shows that we lose no generality, since any concrete 
initialisation I', where I' =:, (3 a. A I  ^ I), can be reached in two stages: first replace 
I by the calculated (3 a. A I  ^ I); then strengthen that, by Law 5, to I'. 

If A I  is false, then the calculated I' will be false also; indeed, Law 5 allows 
a refinement step to false initialisation directly. That  is valid, though impractical, 
for the following reason: Definition 2 shows that the resulting program is miracu- 
lous: 

El [var I I false.  P] I~ false = true. 

It can never be implemented in a programming language. (And that is why 
programming languages do not have empty types.) 

4.2. The Specification Calculator 

Lemma 3 to follow gives us a calculator for the data-refinement of any abstract 
statement of the form a, x: [_pre, post], where a and x are disjoint (and either 
may be empty). Lemma 4 shows that taking that data-refinement loses no gener- 
ality. The two results are combined in Theorem 2. Finally, we give as a corollary 
a calculator for statements b, x: [pre, post] where b is a subset of a; that is 
an abstract statement which may require some abstract variables not to change. 

I .emma 3. Validity: The following data-refinement is always valid: 

a, x: [pre, post] 
~ c ,  x: [(3a. A I  A pre), ( 3 a . A I  ^ post)] 

Proof. We take any formula ~b containing no free c, and proceed as follows: 

( 3 a . A I  A [a, x: [pre, post]~ ~k) 
= (3 a" A I  A pre A (V a, x" post =~ ~)) Definition 4 
= (3 a. A I  A pre) A (V c, a, x" post =~ ~b) c not free in post, ~k 
=~(3a. A I  A pre) A (Vc, x, a" A I  A post=~ A I  A ~,) 
=*.(3a.AI A pre) 

^ (V c, x" (3 a" A I  ^ post) =*.(3 a" A I  A ~k)) 
= [[c, x: I-(3 a. A I  A pre), (3 a" A I  A post)]~ (3 a" A I  A ~b). [] 

Lemma 4. Generality: For all programs CP, if a, x: [pre, post] ~_ CP then 

c, x: [(q a" A I  A pre), (3 a" A I  A post)] ~_ CP 

Proof  We take any ~b containing no free a, and proceed as follows: 

~c, x: [ (3a .A I  A pre), ( 3 a ' A I  Apost)]] ~b 
= (3 a. A I  A pre) Definition 4 

A (Vc, x ' ( 3 a ' A I  A post)=>~k) 
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= (3 a ' A I  A pre) c not free in post, 
A (Va, x . p o s t : * ( V c . A I = ~ ) )  a not free in 

= ( 3 a ' A I  A pre A (Va, x 'post=~(Vc'Al=*.~)))  
= ( 3 a . A I  A ~a, x: [pre, pos t]~(Ve.AI=~b))  Definition 4 
= ~ C P ] ( 3 a ' A I A ( V c . A I = ~ k ) )  assumption, Definition 3 
=*. ~CP~ ~O a not free in ~, monotonicity. []  

We now have the specification calculator we require: Lemma 3 states that 
it is a data refinement; Lemma 4 states that any other data-refinement of the 
abstract specification is an algorithmic refinement of the calculated one. We 
summarise that in Theorem 2: 

Theorem 2. The specification calculator: For all programs C P, 

a, x: [pre, post] ~ CP 

if and only if  

c, x: [(3 a" A I  ^ pre), (3 a. A1 A post)] ~_ CP. 

Proof  From Lemmas 3 and 4. []  

Note that the quantifications (3a ...) ensure that the abstract variables a 
do not appear in the concrete program. 

We conclude this section with a corollary of Lemma 3; it calculates the 
data-refinement of an abstract specification in which not all variables are chang- 
ing. In its proof  we are able to reason at the higher level of the relations =_ 
and 5 ;  weakest preconditions are not required. 

This corollary is the first occasion we have to use logical constants in data 
refinement. Like local variables, logical constants are bound in a program; and 
it is the con declaration which binds the abstract variables a in Corollary 1, 
since the quantification (3 b. . . )  alone may leave some abstract variables free. 

Corollary 1. For any subset (not  necessarily proper) b o f  the abstract variables 
a, the abstract specification b, x: [_pre, post] is data-refined by 

I[con a" 
c, x: [AI  ^ pre, (3 b. A I  A post)] 

]1 
Proof  Let y be the set of variables containing the members of a that are not 
members also of b, and let Y be a set of fresh variables with size equal to 
that of y. Then 

b, x: [_pre, post] 
= Law 9 

I [con Y. b, y, x: [pre A y = Y, post A y = Y] ] I 
~_ Lemma 3, data refinement distributes through con 

I Icon Y" 
c, x: [(3 b, y- A1 A pre A y = Y), (3 b, y" A1 A post A y = Y)] 

]1 
--  l l eon  Y" 

c, x: [ ( 3 b ' A I  A p r e ) [ y \  Y],  ( 3 b ' A l  A pos t ) [ y \  Y]]  
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11 
= Law 8 

I[eon y" 
c, x: [(3 b" AI  ^ pre), (3 b" AI  ^ post)] 

11 
= Law 6 

I[eon a" 
c, x: [A1 ^ pre, (3 b" A1 ^ post)] 

11 [] 
That  data refinement distributes through con, is proven in [81. 

4.3. The guard calculator 

We saw in Corollary 1 that the specification calculator introduces con a and 
existentially quantifies over changing abstract  variables only. For  guards, chang- 
ing nothing, we would expect that quantification to be empty. We have 

Theorem 3. The guard calculator: I f  Si ~ S'i for each i, then the following refinement 
is valid: 

if(0 i" Gi ~ Sl) fi  

~_ I Icon a- 
if(0 i .  A I  ^ Gi --* S'i) fi 

]1. 
Proof. For  any ~, not containing c, we have 

(3 a .  A I  ^ ~if(0 i .  G, ~ Si) fi~ ~') 
= (3 a .  A I  ^ (vi.  Gi) definition ~if... fi~ 

^ (A i. 6,  ~ Is,I] ~)) 
= (3a . (V i .A I  A G~) A ( A i ' A I  ^ G~=~AI A ~S~ ~b)) 
=~(3a. (Vi .AI  ^ Gi) 

^ (Ai.AI ^ ~ , ~ ( 3 a . A I  ^ [S~ ~))) 
=~(3a ' (Vi 'AI  ^ Gi) since Si~_S'i 

^ (A i" AI  ^ Gi =~ [S',~ (3 a" AI  ^ ~p))) 
= [ l [ c o n a ' . . . l l ~ ( 3 a ' A I A t p ) .  [] 
A similar construction is possible for do ... od, but in this general setting 

it is better to use if . . .  fi and recursion. There are special cases for do, however, 
and they are discussed in Sect. 6. 

5. Example of Refinement: The "Mean" Module 

We can present a data refinement independently 'of its surrounding program 
text by collecting together all the statements that refer to the abstract  variables 
or to variables in the abstraction invariant. Such a collection is called a module, 
and we can confine our attention to it for this reason: statements which do 
not refer to abstract variables, or to the abstraction invariant, are refined by 
themselves and we need not change them. 

Consider the module of Fig. 1 for calculating the mean of a sample of 
numbers. We write bag comprehensions between brackets -~ ~-, and use ~ b 
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module Calculator 
varb: bag of  Real; 
procedure Clear ~- b := <: >- ; 
procedure Enter (value r) ~ b ,=  b + <~ r > ; 
procedure Mean (result m) 

if b4: ~(~  ~ m , = ~  b / # b  
0 b = -< > ~ error 
fi 

end 

Fig. 1. The "mean" module 

and # b  for the sum and size respectively of bag b. The operator  + is used 
for bag addition. The statement error is some definite error indication, and 
we assume that error _~ error. The initialisation is bebag  of Real. 

The module is operated by: first clearing; then entering the sample values, 
one at a time; then finally taking the mean of all those values. 

For  the data refinement, we represent the bag by its sum s and size n at 
any time. 

abstract variables: b 

concrete variables: s, n 

abstraction invariant: s = ~ b ^ n = # b. 

We data-refine the module by replacing the abstract variables b by the con- 
crete variables s, n and applying the calculations of Sect. 4 to the initialisation 
and the three procedures. Stacked formulae below denote their conjunction. 

�9 For  the initialisation, we have from Sect. 4.1 

3 / b ~ b a g o f R e a l \  
b'~ s=~ 'b  

\ n = # b  / 

/ s  eal \ 
=~ neNatural ] 

\n=O=~s=Ol 

�9 For  the procedure Clear, we have from Sect. 4.2 

b :=~(~-  
= b :  [true, b= ~ ~ ] 
_~ Lemma 3 

It s,n: 3b.2 = , b'n=4~b]] 
b = .< ~-/J 

_cLaw 1 
s, n: [true, s = 0 A n = 0] 

_m Law 12 
s, n-'=O, 0 
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�9 For  the procedure Enter, we have from Sect. 4.2 

b:=b+ ~(r~- 
= I[eonB- b: [b=B, b=B+ ~(r~-]] l  
_~ Lemma 3 

r s = E 8  s = E ( B + < r > ) ] ]  
n : [ n =  # B '  n =  # ( B +  ~(r~-)]]l 

~_ Law 12 
I[con B" s, n:=s + r, n+ 1]1 

_ Law 7 
s, n:=s+r, n+ 1 

�9 For  Mean we have first that from Sect. 4.2 

m..=Eb/ ,b  
=m: [ ~ b + 0 ,  rn=~b/=~b] 
~Coro l l a ry  1 (noting the quantification is empty) 

I[conb" 

m, s, n: 

11 

4t:b , 0 ,  rn=~b/#b-  
s=Eb, s=F~b 
n=4#b, n=41:b 

_ Laws 10, 2, 3, 1 
I[eon b" m: In4=0, m=s/n]]l 

_ Laws 12, 7 
m :=sin. 

Then we conclude from Theorem 3 that 

if b=~ ~ ~ m : = ~ b / # b  
D b = ~ ~ ~ error 
fi 

~l l -con 

if 

D 

fi 

]1. 

b o 

b,<>\ 
s=Y 'bJ  ~m:=s/n 
n = # b /  

s = E b error 
n = # b /  

To make further progress with Mean, we need to eliminate the abstract 
variable b from the guards; then Law 7 applies. That  is assisted by the following 
lemma (which is generally applicable to the refinement of alternations, whether 
or not they occur within data refinements): 
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[ ,emma 5. Refining guards: Given the conditions 

1. (Vi. G,)=~(Vi-G',) 

2. (Vi" Gi)=~(G'i=~Gi) for each i 

the following refinement is valid: 

if(n i. G i ~ Si) fi _ if(l] i. G'i --* Si) ft. 

Proof. By Lemma 1 and ~if... fi~ we must show for all formulae ~k that 

(Vi. Gi) A (Ai" G,=~ ~S,] ~) 

~ ( V i "  G;) A (Ai" G'i=~ IS,] ~). 

That follows by propositional calculus from assumptions 1 and 2 above. []  

We have immediately the following corollary: 

Corollary 2. Weakening guards: The following refinement is valid for any formula X:  

if(l] i" Gi A X ~ Si) fi _m if(l] i" Gi ~ Si) ft. [ ]  

Now we can continue the refinement of Mean: 

_ Lemma 5, Law 7 
if n ~ O ~ m = s / n  
D n = 0 ~ error 
ft. 

In Fig. 2 we give the resulting data refinement for the whole module. 

module Calculator ~- 
var s: Real; n: Natural; 
procedure Clear ~- s, n = 0 ,  0; 
procedure Enter(value r) ~ s, n ,=s + r, n + 1; 
procedure Mean (result m)-~ 

if n~O ~ m,=s/n 
0 n = 0 ~ error 
fi 

in i t ia l ly  n = 0=*- s = 0 
end. 

Fig. 2. The "mean" module, after data refinement 

T o  see the need for the initialisation, consider this alternative definition 
of Clear: 

procedure Clear ~- 
i f b = t = ~ > - ~ b : = ~ >  
0 b = ~ > -~ skip 
fi 
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That  is semantically identical to the original, in Fig. 1, but might be cheaper 
overall if the operation b.'=-< >- were expensive. Its calculated data refinement 
is 

procedure Clear ~- 
if n~=O~ s, n~=O, 0 
D n = O ~ s k i p  
ft. 

That  would not work correctly if used immediately after an initialisation, say, 
of s =  1 ̂  n = 0 !  So our stated initialisation is necessary, after all; note however 
that since initialisations can always be strengthened (Law 5), we could use the 
simpler s = 0 if desired. 

6. Specialised Techniques 

Now we specialise the techniques of Sect. 4: we consider guards, functional data- 
refinement, and the use of auxiliary variables. 

6.1. Data-refining Guards 

We have seen that data refinement takes an abstract program of the form 

if (D i. Gi ~ Si) fi 

to a concrete one of the form 

l I-con a. 
if ([q i" A I  A Gi ~ S'i) fi 

]1 
where AI is the abstraction invariant, and S'~ is the result of applying data 
refinement to S~. 

One of the steps towards code is the removal of the con. Before this can 
be done the occurrences of abstract variables in the concrete guards must be 
eliminated. We use Lemma 5 for that: we replace each of the calculated guards 
Gi A AI by the guard (V a" AI=~ Gi), which does not contain a free. By that lemma, 
we must show 

1. (vi-  G~ ̂  AI)=~(Vi" G~), 

2. (Vi- Gi A A1)=~(G}=~ Gi A AI) for each i 

where G'i is (Va'AI=~Gi). 
After expanding G'~ the validity of 2 is evident; and 1 can be rewritten to 

(3 a" AI  ^ (Vi- G~)) =~ (Vi. G}). Thus we have the following 

Lemma 6. Data refinement of alternations: Given abstraction invariant AI, 
abstract guards Gi, and abstract statements Si, let the concrete guards G~ and 
concrete statements S'~ be such that 
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1. G'i =(V a'AI=~ Gi). 

2. S i - ~ S  ~ . 

Then provided (3 a" AI  A (vi" Gi) )=~ (Vi" G~), the following data refinement is valid: 

if (Oi 'Gi~ Si) fi~_if (Oi.G~--* S~) ft. [] 

For  iterations the result is the same: we use the recursive formulation. 

do (0 i" Gi ~ Si) od ~ (#P' i f  (0 i" Gi --* Si; P) 
0 -a(Vi 'Gi) - , sk ip  
fi). 

Since data refinement distributes through recursion (see [8] for proof), we merely 
have to determine the conditions under which 

if (Oi" A l  A G i ~ Si; P) 
0 AI ^ --7 (Vi" Gi) --* skip 
fi 

m_if (Oi.G'i-, S'~; P) 
0 --7 (v i -  G~) --, skip 
ft. 

Here we apply Lemma 5 again, this time noticing that the disjunction of the 
guards of the initial program simplifies to AI, and that of the refined program 
simplifies to true. Thus Lemma 5 requires 

1. AI=~ true 

2a. AI=~(G~=~Gi ^ AI) for each i 

2b. AI=~(--a(Vi'G~)=~-a(Vi'Gi) ^ AI). 

The validity of 1. and 2a. are evident; and 2b. can be rewritten to give 
(Vi-Gi ^ AI)=e,(Vi. G'i), which is the formula that was required in the treatment 
of alternation. Thus we have 

Lemma 7. Data refinement of iterations: Under the same conditions as Lemma 6, 
the following refinement is valid: 

do (Oi'Gi--~Si) od_~do (Oi'G'i--~S'i) od. []  

Our choice of G'i is used also in [23], where those two rules are proved 
from first principles (that is, from Definition 3). We have shown therefore how 
that technique is an instance of our Theorem 3. 

6.2. Functional Refinement 

In many cases, the abstraction invariant is functional in the sense that for any 
concrete value there is at most one corresponding abstract value. In [13], for 
example, this is the primary form of data-refinement considered. 
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Functional abstraction invariants can always be written as a conjunction 

(a = AF(c)) ^ CI(c) 

where A F  we call the abstraction function and CI the concrete invariant; the 
formula CI of course contains no occurrences of abstract variables a. We assume 
that CI(c) implies well-definedness of A F  at c .  

Functional data-refinements usually lead to simpler calculations. First, the 
concrete formula (3 a. A I  A ~) - where ~b is pre or post in the abstract specification 
- is simplified: 

(3 a" A I  ^ d?) 
= O a ' ( a =  AF(c)) ^ CI (c) ^ 4)) 
= CI(c) ^ d? [a \AF(c)] .  

Thus in this case data-refinement calculations are no more than simple substitu- 
tions. Note also that the resulting concrete formula contains no free abstract 
variables, and this allows any ][con a- . . . ] ]  to be eliminated immediately. We 
have this corollary of Theorem 2: 

C o r o l l a r y  3. Functional data-refinement: Given an abstraction invariant 
(a=AF(c))  ^ CI (c), the following data-refinement is always valid: 

a, x: [pre, post] 

[pre[a\AF(c)]  pos t[a \AF(c)]]  
~_ c, x: [ CI (c) ' CI (c) J" 

Moreover, it is the most general. [] 

A second advantage is in the treatment of guards, as is shown also in [231. 
According to Theorem 3 we replace G i by G~ ̂  AI,  which becomes 

Gi ^ (a = AF(c)) ^ CI (c) 

= G i [a \AF(c)]  A (a = AF(c)) ^ Cl(c). 

Now by Corollary 2, we can eliminate the conjunct a = AF(c) immediately, and 
hence the enclosing [[con a . - . . ] l  as well. (And we can eliminate the CI(c), but 
that is optional: it contains no a.) So we have the following result for the 
functional data-refinement of alternations: 

Lemma 8. Functional data-refinement of  alternations: Given abstraction invariant 
(a=AF(c))  ^ CI(c), abstract guards Gi, and abstract statements St, let concrete 
guards G'~ and concrete statements S'i be such that 

1. G '  i = G i [a \AF(c)]  ^ CI(c), 

2. Si<S~. 

Then the following data refinement is valid 

if  (~i'G~ ~ Si) fi<_if (Di'G'~ ~ S'~) ft. [] 

The same remarks apply to iteration (and again, the conjunct CI(c) is option- 
al in the concrete guards): 
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Lemma 9. Functional data-refinement of iterations: Under the same conditions 
as Lemma 8, the following data refinement is valid 

do (0 i" G i ~ Si )  od~_do (0 i" G'i --" S'i) od. []  

6.3. Auxiliary Variables 

A set of local variables is auxiliary if its members occur only in statements 
which assign to members of that set. They can be used for data refinement 
as follows. 

There are three stages. In the first, an abstraction invariant is chosen, relating 
abstract variables to concrete. Declarations of those concrete variables are added 
to the program, but the declarations of the abstract variables are not removed. 
The initialisation is strengthened so that it implies the abstraction invariant; 
every guard is strengthened by conjoining the abstraction invariant; and every 
assignment statement is extended, if necessary, by assignments to concrete vari- 
ables which maintain the abstraction invariant. 

In the second stage, the program is algorithmically refined so that the abstract 
variables become auxiliary. In the third stage, the (now) auxiliary abstract vari- 
ables are removed (their declarations too), leaving only the concrete - and the 
data-refinement is complete. 

That  technique was proposed by [15], and a simple example is given in 
I-7, p. 64]. It also appears in [11] and I-9]. It is a special case of our present 
technique, as we now show. Suppose our overall aim is the following data- 
refinement: 

abstract variables: a 
concrete variables: c 
abstraction invariant: AI. 

We decompose this into two data-refinements, applied in succession. In the 
first, there are no abstract variables: 

abstract variables: (none) 
concrete variables: c 
abstraction invariant: AI. 

Clearly this refinement removes no declarations. And, for an abstract program 
S to be taken to a concrete program S' under this refinement, Definition 3 
requires only that for all ~ not containing c free, we have 

A1 ^ (AI ^ 

That is precisely the first stage explained informally above. 
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The second stage remains: it is only algorithmic refinement. For  the third 
stage, we use the following data refinement in which there are no concrete vari- 
ables: 

abstract variables: a 
concrete variables: (none) 
abstraction invariant: true. 

For an abstract program S to be taken to a concrete program S' under this 
refinement, Definition 3 requires that for all formulae ~b 

(3 a" ~S~ ~O)=~ WS'~ (3 a-~). 

And this holds only when the abstract variables a are auxiliary. 
We illustrate the auxiliary technique with two lemmas, derived from our 

general rules for data refinement: 

Lemma 10. Introducing concrete variables while maintaining the invariant: Let 
the abstract variables be none, the concrete variables be c, and the abstraction 
invariant AI. Then for abstract expression AE and concrete expression CE, we 
have 

a:=AE ~a,  c,=AE, CE 

provided AI ~ ~a, c:=AE, CE~ AI. 

Proof 

AI A ~a :=AE] 
= aI  ^ ~ [a\AE] 
=~ ~a, c :=AE, CE~ AI A ~ [a\AE] 
=:. AI[a, c \AE,  CE] ^ ~ [a\AE] 
= AI [a, c \AE,  CE] ^ ~b [a, e \AE,  CE] 
= ~a, c'.=AE, CE~ (AI ^ ~k) 

by semantics of := 
by assumption 
by semantics of ..= 
since ~b contains no c 
by semantics of ,= []  

Lemma 11. Eliminating auxiliary variables: Let the abstract variables be a, the 
concrete variables be none, and the abstraction invariant true. Then 

1. a..=AE ~skip, 

2. c ,=CE~c,=CE 

provided CE contains no occurrence of a. 

Proof For  1 we have 

(3a. ~a..=AE~ ~k) 
= (3 a. ~k [a\aE]) 
=>(3a.qt) 
=  skip  (3 a .  q,). 

by semantics of ..= 
predicate calculus 
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For  2 we have 

( q a .  ~c:=CE~ ~k) 
= (3 a" ~1 [ c \ C E ] )  
= (~ a" ~,) [ c \ C E ]  
= ~c :=CE~ (~ a" ~b) 

by semantics of .'= 
since C E  contains no a 

(Note that  in case 2 we did not assume that ~ contained no c.) []  

If the abstract  statement is a specification a: [pre, post], then in the first 
stage we replace it by a, c: [pre A AI ,  post  A AI] .  If  by the third stage (after 
algorithmic refinement) we still have a specification - say a, c: [pre', post'], then 
the removal  of a as an auxiliary variable leaves us with c: [(3 a.  pre'), (3 a.post ' )] .  

Let us as a final illustration try to remove a variable which is not auxiliary: 
we take the data-refinement as for the third stage, and suppose that c ' .=a~_CP 
for some concrete p rogram CP.  We expect this to fail, since a is clearly not 
auxiliary in c:=a. Now we have for all constants n that 

true 
= ( q c ' c = n )  
= (3 a" (c = n) [ c \ a ] )  
= (3 a" [c.'=a~ (c = n)) 
=*.~CP]](3a 'c=n)  
= ~CP~ (c = n). 

predicate calculus 
renaming bound variable c to a 
by semantics of .'= 
by assumption 

Since the above holds for any n, we have that  C P  always establishes both 
c = 0  and c =  1. Because no executable p rogram can do this, we have shown 
that there is no such C P  - as hoped, a cannot  be eliminated from c ,=a.  But 
what if we write c:=a as a specification? In that case, Corollary 1 would allow 
us to perfrom the data refinement as follows. 

c:=a 
= c: [true, c = a] 
_< Corollary 1 (noting the quantification is empty) 

I[con a.  c: [true, c = a] ] I. 

So here we have a data-refinement, after all. But that is consistent with the 
above in the following way: there is no executable p rogram C P  (whether contain- 
ing a or not) such that c: [true, c = a] m_ CP.  Thus the I Icon a . . . . ] l  still cannot  
be eliminated. 

In [16] the auxiliary variable technique is presented independently of the 
refinement calculus. 

7. Conclusions 

Our calculators for data  refinement make it possible in principle to see that 
activity as the routine application of laws. The example of Sect. 5 is a demonstra-  
tion for a simple case. I t  is important  in practice, however, to take advantage 
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of the specialised techniques of Sect. 6; otherwise, the subsequent algorithmic 
refinement will simply repeat the derivation of the techniques themselves, again 
and again. 

That subsequent algorithmic refinement is in fact a lingering problem. In 
many cases, particularly with larger and more sophisticated refinements, the 
refined operations present fearsome collections of formulae concerning data 
structures for which we do not have an adequate body of theory. Their subse- 
quent manipulations in the predicate caclulus resemble programming in machine 
code. Fortunately, there is work on such theories (and their calculi, for example 
[5]), and we see little difficulty in taking advantage of them. 

Our work on data refinement has been aided and improved by collaboration 
with Morris and Back, who present their work in [23] and [2] respectively. 
We extend Morris's approach by our use of logical constants (which, however, 
he has later discovered in another context 1-22]). A second extension is our 
"if and only if" result in Theorem 2. That is necessary, we feel, for a data 
refinement to be called a calculator: P <  Q is a calculator only if taking Q loses 
no generality. And Morris retains some restrictions on abstraction invariants 
which we believe are unnecessary. Conversely, Morris's specialised alternation 
calculator [23, Theorem 4] improves ours (Lemma 6) by introducing a miracle 
as the refined program [17]; his rule needs no proof obligation. Our work 
extends Back's by our emphasis on calculation, and our use of logical constants. 
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8. Appendix: Refinement Laws 

Below is a co l lec t ion  of  laws which  can  in pr inc ip le  t ake  mos t  specif icat ion 
s t a tements  t h r o u g h  a series of  ref inements  in to  executable  code. W e  have  no t  
t r ied  to  m a k e  t hem complete .  " E x e c u t a b l e  c o d e "  means  p r o g r a m  text  which 
does  no t  inc lude  e i ther  specif icat ion s t a tements  or  logical  constants .  

" I n  p r inc ip l e "  means  tha t  these bas ic  rules, used alone,  will in m a n y  cases 
give ref inement  sequences which  are very long indeed  - r a the r  l ike ca lcu la t ing  
der ivat ives  f rom first pr inciples .  But wi th  experience,  one collects  a r eper to i re  
of  m o r e  powerfu l  and  specific laws which  m a k e  those  ca lcu la t ions  rout ine.  

Some  of  the  laws be low are  equal i t ies  = ; some are  p r o p e r  ref inements  _ .  
In  all cases they  have  been p r o v e d  us ing the weakest precondition semant ics  
of  the cons t ruc t s  concerned .  

Sect ion 8.2 con ta ins  no tes  re la t ing  to  the  laws of  Sect. 8.1. 

8.1. Laws of Program Refinement 

M o s t  of  these laws are  ex t rac ted  f rom [20],  re ta in ing  only  those  used in this  
paper .  Log ica l  cons t an t  laws have  been added .  

1. Weakening the precondition: If  pre=~pre' then  

w: [pre, post] m_ w: [pre', post] 

2. Strengthening the postcondition: If  post'=~post then  

w: Lore, post] ~_ w: [pre, post'] 

3. Assuming the precondition in the postcondition: See Note 1. 
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w: [pre, (3 w" pr e) A post] = W: [pre, post] 

4. Introducing local variables: If  x does not  appea r  free in pre or  post, then 

w: [pre, post] ~_ I[var x I I -  w, x: [pre, post] ]1- 

5. Strengthening the initialisation : I f  I'=r then 

[ [var x [ I .  S] [m__ [ [var x I I'. S][. 

6. Introducing logical constants: If  x does not  appea r  free in post or  w, then 
See Note 2. 

w: [(3 x" pre), post] = I Icon x" w: [pre, post] ] 1. 

7. Eliminating logical constants: If  x does not  a p p e a r  free in P, then 
See Note 3. 

I [con x" P]  I = P 

8. Renaming logical constants: If  y is disjoint f rom w, and  does not  occur  
free in pre or  post, then 

l Icon x .  w: [pre, post] ]l 
= l Icon y" w I x \ y ]  : [pre I x \ y ] ,  post [ x \ y ] ]  ]l 

9. Expanding the frame: I f  y is a fresh var iable  then 

w: [_pre, post] = I Icon y.  w, x: [pre ^ x = y, post ^ x = y] ] I. 

10. Contracting the frame: If  w and x are disjoint, then 

w, x: [pre, post] ~_ w: [_pre, post]. 

l l .  Introducing skip: 
w: [-post, post] =_ skip 

12. Introducing assignment: If  E is an expression, then 

w: [-post [ w \ E], post] m_ w .'= E. 

13. Introducing alternation: 

w: [pre A (vi"  Gi), post] 
= if ([] i" Gi --' w: [pre ^ Gi, post]) ft. 

See Note 4. 

8.2. Notes 

1. Law 3 applies  when in format ion  f rom the precondi t ion  is needed in the 
postcondi t ion.  We  use it be low to derive a s t ronger  version of Law 2: 

I f  ((3 w.pre) ^ post')=~ post, then 
w: [pre, post] 

_ by  L a w  2 and  the a s sumpt ion  
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w: [pre, (3 w" pre) ^ post'] 
_ by Law 3 

w: [pre, post']. 

2. Usually Law 6 is used to introduce an equality into the precondition 
which "saves an initial value for later." That  is summarised in the following 
derived law: 

If  y is disjoint from w, and does not occur free in pre or post, then 
w: [pre, post] 

_ by Law 1 
w: [(3 y. x = y ^ pre), post] 

_ by Law 6 
I [con y. w: [x = y ^ pre, post] ] I. 

3. Logical constants, introduced by con, are variables which we can use during 
program development but not in final programs. Usually they are used 
to fix initial values, as in 

][con X .  x: [x=X, x = X +  1]]1 
___by Law 12 

I [ c o n X ' x , = x  + 111 
_ by Law 7 

x'.=x + 1. 

Since the keyword con does not occur in our executable programming 
language - j u s t  as specification statements do not - it must  be eliminated 
(using Law 7 as above) during the development process. Thus logical con- 
stants never appear  in the final program, since they cannot be declared 
there. 

4. Law 12 is usually applied together with Laws 10 and 1, as in the following 
derived rule: 

If w is a subset of the set of variables v, E is an expression, and pre=~ 
post [w\E] ,  then 

v: [pre, post] 
_ by Law 10 

w: [pre, post] 
~_ by Law 1 and the assumption 

w: [post [ w \ E ] ,  post] 
___by Law 12 

w:=E. 


