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Summary 

We consider a model with two types of genes (alleles) At, Az. The population lives in a bounded 
habitat R, contained in r-dimensional space (r= I, 2, 3). Let u (t, x) denote the frequency of A t a t  

time t and place x e R. Then u (t, x) is assumed to obey a nonlinear parabolic partial differential 
equation, describing the effects of population dispersal within R and selective advantages among the three 
possible genotypes d t A I, A t Az ,  A z A z. It is assumed that the selection coefficients vary over R, 
so that a selective advantage at some points x becomes a disadvantage at others. The results 
concern the existence, stability properties, and bifurcation phenomena for equilibrium solutions. 

1. Introduction 

A central problem in popula t ion  genetics theory is to unders tand the diversity 
of  genetic types so widely observed in nature. One kind of  diversity is spatial. 
Frequencies of  types of  genes (alleles) at a given gene locus often vary significantly 
with geographic  locat ion within the habitat  of  the species in question. In particular, 
the frequency of  an allele may  increase monotonical ly  in some direction;  in such 
a case a ctine is said to occur.  

We consider a model  with two alleles At, A2. The populat ion lives in a bounded  
habitat  R, conta ined in r-dimensional space ( r=  1, 2, or 3). Changes in gene fre- 
quencies will be assumed to occur  solely through the mechanisms of  dispersal 
within R and selective advantages  for certain genotypes. Let u (r, x) denote  the 
frequency of  allele A 1 at time 3, measured (say) in generations, and place x in R. 
Then u is assumed to obey the partial differential equat ion 

6311 m 
O ~= 2-'7 A u+s (x)f(u) (1.1) 

with A the Laplace opera tor  in x = (x~ . . . . .  x~) and with 

f(u)=u (1 - u )  [h (1 - u ) + ( l  - h )  u] (~.2) 

* This research was supported by the National Science Foundation under GP-38428 X. 
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m__ Au in (1.1) represents the effect of for some constant h, 0 < h < I. The term -~ r 

population dispersal, with rn the mean square dispersal distance per unit time. 
The term s (x)f(u) represents the effect of natural selection, where the fitness 
coefficients of the genotypes A 1 A 2 and A 2 A 2 relative to A t A 1 are respectively 
1 - h  s(x) and 1-s (x) .  For s=cons tan t  and h=  �89 (1.1) is Fisher's equation. 

An essential feature for our results is that s(x) varies; in fact, s(x) takes both 
positive and negative values on the habitat R. Thus a selective advantage at 
some points of R becomes a disadvantage at others. It may happen that both alieles 
A 1 and A 2 are maintained in equilibrium, even though the heterozygote A I A 2 
has fitness intermediate to A t A1 and A2 A2 (0 <h  < 1). This kind of modification 
of Fisher's equation was considered by Haldane I-7] and Fisher [5] when 
R = ( - o o ,  oo) and s(x) depends on x in a simple way. More recent work by 
several authors is mentioned below. 

Let us take as habitat a bounded region R and impose at the boundary c~ R the 
zero normal derivative condition: 

3u  
a n = 0 ,  x e a R .  (1.3) 

Condition (1.3) will be satisfied if there B no flow of genes into R or out of R. 
Since u (3, x) is a frequency, we seek only solutions of (1.1)---(1.3) for which 
0 < u _< 1. Our results concern stable and unstable equilibrium solutions. There are 
always the trivial equilibria uo (x) -0 ,  u 1 (x)--1, corresponding to the occurence 
of allele A2 only or A t only. Theorem 3.1 is concerned with their stability. 

In section 4 we show that there is an equilibrium u* which minimizes a certain 
functional I (u). Since I (u) plays the role of a Lyapunov-functional in the 
stability analysis, it arises naturally in the problem. In eases where Theorem 3.1 
implies instability of the trivial equilibria, u* must be a third (nontrivial) 
equilibrium. 

In sections 5--8 we take for the habitat R the 1-dimensional interval - 1 < x < 1. 
1 

If S s (x)dx<O, then there is a critical dispersal rate m 1 such that the trivial 
- 1  

equilibrium ud is stable for m>ml and unstable for m<m v In section 6 we find 
that as m decreases from m t a stable nontrivial equilibrium bifurcates from u o, 
provided h > {  in (1.2). Numerical evidence suggests (but does not prove) that 
the bifurcating solution coincides with u*. However, if h<�89 the bifurcating 
solution appears for m > ml and is unstable. The situation is more complicated in 

1 

that case. Similarly, if S s (x) d x > 0 and h < 2  a stable equilibrium bifurcates 
from ut. - 1 

1 

If S s(x)dx=O, then both uo'and u 1 are unstable and u* is nontrivial. This 
- 1  

condition on s (x) holds, in particular, for the symmetric case treated in section 7. 
In that case there is a unique nontrivial stable symmetric equilibrium. Fisher [5"1 
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considered s(x)=kx, h=�89 on the infinite interval - c o < x < ~ .  In section 8 
we compare his numerical results with corresponding results for a finite habitat 
- L  < x  < L. For the finite habitat model there is greater heterogeneity, i.e., that 
model predicts higher frequencies for the less common of the two alleles A t, A,. 

Our work overlaps Karlin and McGregor 1,11], who obtain more detailed 
results for special choices of s (x). Karlin and Dyn 1,10] give a series of results for 
discrete habitats. Recent interest in the continuous habitat selection-migration 
model was stimulated by the article of Slaktin 1' 16]. Nagylaki 1' 15] gave conditions 
for a stable nontrivial equilibrium, for semi-infinite habitat R = 1,0, ~ )  and special 
choices ofs (x). He considered, for instance, s (x) = st > 0 for 0 < x < a, s (x) = - s2 < 0 
for x >  a, corresponding to a finite "pocket" in the environment where allele A t 
is favored. Conley 1,4] considered R = ( - c o ,  ~ )  and any s (x) not integrable near 
x =  + co. If sgn s (x)=sgn x for large Ix I, then a nontrivial stable equilibrium 
exists. However, if s (x )<0  for large I x I, then an additional condition is needed 
to guarantee this. 

Chafee 1,2], [3] developed the Lyapunov stability method for dynamical systems 
governed by a nonlinear parabolic equation (1 space dimension). He studied the 
asymptotic behaviour of solutions near stable and unstable equilibria. Aronson 
and Weinberger 1,1] studied the asymptotic behaviour of solutions of nonlinear 
parabolic equations on R = ( - ~ ,  ~ )  or on R=I-0, co) with u(z, 0) given. Their 
results apply to (1.1) if s(x) is constant; h < 0  is allowed, corresponding to 
heterozygote advantage. (When h < 0 a third constant equilibrium appears.) 

The main results of the present paper were announced in 1,6]. Hoppensteadt 1,9] 
treats the asymptotic behaviour of u 0:, x) for large r, if m is near the critical 
dispersal rate rn t where the bifurcation in section 6 occurs and u (r, x) is near 
the corresponding trivial equilibrium u o or ut. 

2. Problem Reformulation 

The special form (1.2) of f(u) will play no role in what follows. Let us assume 
throughout that f is of class C t, with 

f ( 0 ) = f ( 1 ) = 0 ,  f '  (0)>0, f '  (1)<0, 

0 < f ( u )  for 0 < u < l .  

It is convenient to introduce the new time scale t =(2 r)-~ m r, and to rewrite 
(1.1) in the form 

0u 
.. . . .  A u + 2  9 (x)f(u), 

Ot 
where (2.1) 

s (x) = s o 9 (x), 3. = 2 r So, 2 > 0. 
m 

The function g in piecewise continuous and takes both positive and negative 
values on R. The region R is bounded, with smooth boundary 0 R. The boundary 
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condition is again (1.3), the zero Neumann condition. We regard ;t as a parameter. 
For fixed intensity of selection s o, small ~ corresponds to m large (rapid dispersal) 
and large 2 corresponds to m small (slow dispersal). 

An equilibrium is a function u (x) satisfying 0 < u (x) _< 1, 

O=Au+2g(x)f(u), xeR,  (2.2) 

and the boundary conditions (1.3). There are always two trivial equilibria 
u o (x)~ 0, ul (x)-- 1. They correspond respectively to the occurence of type A 2 only, 
or type A 1 only, in the population. In the next section we shall give conditions for 
stability or instability of the trivial equilibria. 

3. Stability of Equilibria 

Let us use the Lyapunov concept of stability, and give a criterion (Lemma 3.1 below) 
for stability or instability based on linearizing equation (2.2). It is convenient to 
work in the Sobolev space V= H 1 (R); this is the space of functions 4~ (x) such 
that q~ and q~,, i =  1,. . . ,  r, are in L 2 (R). Let 

X={q~ e V: 0<4~ (x )< l  a.e. in R}. 

Given ~b (x)--u (0, x) in V, equation (2.1) with the boundary conditions (1.3) has 
a solution u (t, x) in the sense of the Hilbert space theory of parabolic partial 
differential equations. In the Appendix we review properties of solutions in this 
sense. Consider the semigroup T(t) of operators on V defined by u (t, . )=  T(t)~. 

From the maximum principle for parabolic equations it follows that T(t) maps X 
into X. 

An equilibrium u (x) is stable if: given r/> 0 there exists 6 > 0 such that Ll 4> - u [I < 5 
implies tl T(t)~p-u Ih <r / for  all t>0 .  Here II l[ is the Sobolev norm on V: 

II v 112= ~ [Ivl'+lVvl2]dx. 
R 

An equilibrium u is isolated if some V-neighborhood of u contains no other 
equilibria. For u e X let 

R 
{�89 v u 12-~. o (x) F [u (x)]} a x, 

F (u) = i f (Y) d y. 
0 

(3.1) 

The Euler equation for I (u) is (2.2), and (1.3) is the free boundary condition. 
Moreover, I [T(t)  ~b] is a nonincreasing function of t (Appendix). This means that 
I has the role of a Lyapunov functional. 

Given u ~ X, let us also consider the quadratic functional on V: 

Q (v)= I {I v v 12- 2 g (x)f' [u (x)] v 2} d x. (3.2) 
R 

The Euler equation for Q (v) is the linearized form of (2.2): 

A v+; t  g (x)f' [u (x)] v =0 .  (3.3) 
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Lemma3.1: Let u ~ X  be an equilibrium. (a) I f  there exists a > 0  such that 
Q (v) > a t[ vt[ z for all v ~ V, then u is stable. 

(b) I f  u is isolated and there exists v ~ V such that Q (v) < O, then u is unstable. 

P'.,trt (a) is easily shown; in the Appendix we prove (b). For brevity let us set 
A (x)=g (x ) f '  [u (x)]. Consider the Rayleigh quotient 

I IVvl 2dx 
K (v)= R 

A v Z d x  
R 

In the following lemmas we suppose that A (x) has both positive and negative 
values on R. We consider K (v) only when the denominator is positive. Let 

2 t =inf  ftK(v): j" A v 2 dx>0} .  (3,4) 
R 

Lemma 3.2: There exists v ~ V such that Q (v) < 0 if either 

(a) j ,,i (x) d x >_ O, or 
R 

(b) J" /l(x)dx<O and ).>21. 

Proof: If S A (x)d x>0, then we take v (x)=-c, a constant not 0. If ~ A (x)d x=O, 
R R 

then Q (c)= 0. If Q (v)> 0for  all v e V, then constants minimize Q (v). However, 
constants c~0  do not satisfy the Euler equation (3.3). Hence Q (v)<0 for some v. 
This proves (a). Part (b) is immediate from (3.4). III 

Lemma 3.3: Let S A (x) d x < O. Then there exist l~ > O, ? > 0 such that 
R 

j I V v l Z d x > , 8  j vZdx  on {v: J A v Z d x > - 7  j v2dx} .  
R R R R 

This lemma is easily proved by contradiction, after noting that it suffices to 
consider those v with ~ v 2 d x = 1. 

R 

Lemma 3.3 implies the lower bound At >/}/sup I A (x)]. 
R 

Lemma 3.4: Let ~ A (x) d x <O and 0<2<21.  Then there exists a > 0  such that 
R 

Q(v)>a {[ v [[2 for al lv~ It'. 

Proof: Write 2=(1-6)21.  Whenever ~ A v 2 d x > O  
R 

(l--~) ]" I V l )  I 2 d x  
R 

2 < ( l - 6 ) K ( v ) =  ~ A v Z d  x 
11 

After multiplying by the denominator and rearranging, 

6 ~ l V v l Z d x < Q ( v ) ,  if~ A v Z d x > O .  
R R 

(*) 

16" 
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Since 6<1,  (*) also holds if I Avadx<O"  If I A v 2 d x >  - Y  ~ v2dx,  we have 
from (*) and Lemma 3.3 R R R 

In the opposite case, 

>~ I ElVv12+Bv23dx" 
Q (v)_ 2 R 

Q (v)>__ j" {I V vl2+).~'v2} dx. 
R 

Let a = min 1, 2 Y, ~-, �9 �9 

Lemma 3.5: Let ~ A ( x ) d x < O  and ).=).1. Then Q(v)>_O for all v s  V. There 
R 

exists w (x)~O such that Q (w)=O and w satisfies (3.3) with the boundary condition 
(1.3). 

Proof: The first statement is obvious from (3.4). The second will follow if we show 
that K (w)=).: for some w in {v ~ V: ~ A v 2 d x>0 ,  S v 2 d x =  1}. Take a sequence 

R R 
w, in this set such that K (w,) tends to the infimum 21. By Lemma 3.3, 

2dx>_b, n = l ,  2 . . . . .  Ivw.I  dx-<c, I Aw. 
R R 

for suitable positive constants C, b. A subsequence of w. converges in L 2 norm 
to a limit w. By lower semicontinuity of K (v) with respect to L ~ convergence, 
K (w) =).1. �9 

From Lemmas 3.4 and 3.5, 21 is the least positive eigenvalue for the linearized 
problem (3.3)---(1.3). 

Let us apply these results to the trivial equilibria uo, u 1. For uo we have 
A (x) = f '  (0) 0 (x), with f '  (0) > 0; while for u 1 we have A (x) = f '  (1) 9 (x) with 
f '  (1)<0. From Lemmas 3.1, 3.2, 3.4 we have: 

Theorem 3.1 : Suppose that the trivial equilibria Uo, u 1 are isolated. Then: 

(a) I f  S 9(x) d x  <O, then u 1 is unstable for any ).>0. There exists 21 such that 
R 

u o is stable for 0 < ). <).a and unstable for 2 > 2 x . 

(b) I f  ~ g (x) d x > O, a similar result holds with Uo, u 1 exchanged. 
11 

(c) I f  ~ # (x) d x =0, then u o and u 1 are both unstable for any 2 > O. 
!i 

We shall show in Theorem 5.1 that all equilibria are isolated at least if the 
habitat R is l-dimensional and jr, g are real analytic. Note that the assumption 
that uo, u 1 are isolated is used, through Lemma 3.1 (b), only to establish in- 
stability. 

When ).<),1 in Theorem 3.1 (a), it can be shown that u(t , .)  converges as t--.oo 
at an exponential rate to u o starting from u (0, x)= c~ (x) in some neighborhood 
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of u 0. See Chafee [3, section 8] if r =  1. The convergence rate for 2 near 21 is 
more delicate; see Hoppensteadt [9]. 

There is a simple intuitive explanation of (a) and (b), Frequency u0 ( x ) - 0  means 
that only type Az occurs, while j" g ( x ) d x < O  means that, averaged over the 

R 
habitat R, type A2 is advantageous. In (a) sufficiently rapid dispersal (2<21) 
implies that the population acts as a single unit in which A2 is advantageous. For 
slower dispersal (2 > 21) this is no longer the case even though heterozygotes have 
intermediate fitnesses ( 0 < h < l  in (1.2)~ In the next section we shall see that a 
nontrivial equilibrium u* appears when ;t > 2,. In (c) neither type has a selective 
advantage on the average. We shall see that a nontrivial u* then appears for 
any 2>0 .  

4. Existence of an Equilibrium Minimizing I (u) 

By methods of calculus of variations let us show: 

Theorem 4.1 : There exists an equilibrium u* minimizing I (u) on X. 

Proof: Since I (u) is lower semicontinuous with respect to L z convergence and 
subsets of X with I (u) bounded are LZ-compact, existence of a minimizing u* is 
immediate. We must show that u* is an equilibrium. Except for a slight difficulty 
presented by the constraints 0 < u < 1, the reasoning is standard. 

Let us extend F (u) symmetrically outside 0 < u < 1, such that 

F ( - u ) = F  ( 2 - u ) = F  (u). 

Since f (0) .=f  (1) - 0, F (u) remains C 1. Let 

0 (u) = u mod 2, ] 0 (u)] _< 1. 

If - 1 < u (x) ~ 2, then I (u) = I (fi), with fi (x) = [ 0 [u (x)] ]. This implies that u* 
minimizes I (u) among all u ~ V such that - 1  ~ u  (x )~Z  Therefore, the first 
variation o f / (u )  is 0: 

S (V u*. v + 2 g ( x ) f [ u *  (x)] v} d x = O  (4.1) 
R 

for all v e V. But (4.1) is equivalent to (2.2) with the free boundary condition 
(1.3). See [13, I, chapter 2.9]. Thus u* is an equilibrium. II 

From calculus of variations we must have 

Q(v)= S {I V v l Z - A g ( x ) f  ' [u*(x)] v z} d x > O  
R 

for all v ~ V. We then have the: 

Corollary 4.1 :In case (a) or (b) of Theorem 3.1, u* is nontrivial for 2 > 2t; while in 
case (c), u* is nontrivial for all 2 > O. 

Proof: In all these cases it was shown in section 3 that, for either u=u  o or u = u  I, 
there exists v such that Q (v)<0. �9 
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5. Analysis for r = 1 

Let us now suppose that the habitat is a 1-dimensional interval, which we take to 
be R = [ -  1, i]. Consider the follo,~ing family of functions u~ (x) for 0 < ~ < 1: 

u~ + 2 g (x) f [u~ (x)] = 0, - 1 < x < 1, (5.1) 

u, ( -  1)=a, u', ( -  1)=0.  (5.2) 

The equilibria are precisely those u = u. which satisfy in addition 

0 < u ~ ( x ) < l  and u'~(1)=0. (5.3) 

In particular, we have the trivial equilibria Uo, Ua. Let v~---auJa~. Then v. 
satisfies the linearized equation 

v'~' + ). 0 (x) f '  [u,, (x)] v,, = O, - 1 < x_< 1, (5.4) 

v,(- I)= I, v', (- 1)=0. (5.5) 

By multiplying (5.4) by v, and integrating by parts, we find that 

Q (v,)= v, (1) v" (1). (5.6) 

Lemma 5.1 : Let u = u, be an equilibrium. 

(a) I f  Q (v) > 0 for all v ~ V, then: 

v~ (x) > 0 for - I < x < 1, (5.7) 

and ~'~(1)>0 /f v , (1)>0.  (5.8) 

(b) I f  (5.7), (5.8) hold and v~ (1)> 0, then Q (v)>_ 0 for all v ~ V. 

This result is standard in calculus of variations [8, chapter 3]. Part (a) follows from 
the proof of the Jacobi condition and (5.6). For (b) one can construct the field of 
extremals z~ (x) =/~ v ~ (x), - ~ </~ < ~ for the variational integrand Q (v). For  
a n y  v ~ V, take/a such that v ( -  1)=z~ ( -  1). Then 

t2 (v) >__ Q (z~)-- u 2 Q (v,) >_. 0. �9 

Note that v~ (1)= v'~ (1)=0 is impossible by (5.4), (5.5). 

Lemma 5.2: Let u, be an equilibrium. 

(a) Sufficient conditions for stability of u, are: 

v , (x )>0  for - l < x < l ,  
and 

v', ( I )>0 .  

(b) I f  u~ is isolated, then (5.7), (5.8) are necessary for stability. 

Proof: By Lemmas 5.1 (b) and (3.2), conditions (5.7')---(5.8') imply 
1 

S g (x) f '  [u, (x)] a x < 0 
- I  

(5.7') 

(5.8') 
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and 2<21. Lemma 3.5 (with w=cu~) and (5.6) exclude 2 = 2  t. Part (a) then 
follows from Lemmas 3.1 (a) and 3.4. Part (b) follows from Lemmas 3.1 (b) and 
5.1 (a). �9 

Theorem 5.1: Let f and g be real analytic functions. Then there are only 
finitely many equilibria. 

Proof: Since f and 9 are real analytic, u;(1) is a real analytic function of e. 
Either u, is an equilibrium for finitely many e (0 < e < 1), or there is a maximal inter- 
val G such that u, is an equilibrium for every e e G. Let us exclude the second 
possibility. By differentiation under the integral sign and integration by parts, 

d 
d-"~" t (u~)= u; (I) o~ (1). (5.9) 

Since u'~(1)=0 on G, I (u , )=constant  on G. Let y be the left endpoint of G. If 
y>0,  then u, (x t )=0 with - I < x t  < 1. If x t < 1, then u'y (xx)=0 contrary to the 
uniqueness theorem for (5.1). Since u~ (1)=0, x t = 1 is excluded for the same reason. 
Hence ~=0. Similarly, the right endpoint of G is 1. Then I (uo)=l  ( ,q)=l(u*),  
where u* minimizes (Theorem 4.1). Thus both Uo, 'zt minimize I (u). But the argument 
in section 3 shows that, for either U=Uo or u=ut  and some u, the necessary 
condition Q(v)>>_O for a minimum is violated. Thus, there are finitely many 
equilibria. �9 

6. Dependence of Equilibria on Z. 

Let us continue with the 1-dimensional habitat R =  [ - I ,  1]. The set of ~ for 
which u~ is an equilibrium depends on the parameter 2. This set always contains 
~--0, 1, corresponding to the trivial equilibria. When the minimizing u* in 
section 4 is nontrivial, a third equilibrium u~--u* appears. 

Let us set $(~t,2)--u'~(1). Equilibria correspond to roots of $ = 0 .  Moreover, 
1 

d r  o~ = v'~ (1). From the discussion in section 5, when ~ g (x) f '  [u~ (x)[d x < 0, 
- t  

the conditions (5.7'), (5.8') are equivalent to 0 < 2 < 2  t. In this range, the implicit 
function theorem implies smooth dependence of ~ = ~ (2) on the parameter L For 
~.=2 t, (5.7') holds but v'~ (1)--0. At 2 t, a bifurcation may occur. 

The following bifurcation theorem can be proved by a standard Lyapunov- 
Schmidt argument. However, we give another direct proof. 

l 
Theorem 6.1 : Assume that f "  (0) < 0 and J,  g (x) d x < O. Then there exists a stable 

nontrivial equilibrium u~(x) for 2 > 2 t sufficiently near 2t, with ~ (2) L 0 as 2 ~ 2t. 

Proof: For ~,---0, 2--2 t one has $ =0  $/0 ~=0.  Let us show that 

~2~ 
~ 2  >0,  when 0t--0, 2---2 t. (6.1) 
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For this purpose, let 
3 2 u~ Or= 

For ~ =0,  22= 221 
zg + 221 9 [ ' f" (0) v02 + f '  (0) Zo] =0 .  (6.2) 

By Lemma 5.2, if 22<22 1 , Vo(X)>0 for - l _ < x < l  and v~(1)>0. For 22=21, 
vb(1)=0;  since Vo(1)=v~(1)=0 is impossible Vo(X)>0 for - l < x < l  for 22 in 
an intervaI containing 221. For such 22>221, v~(1)<0 since uo is unstable when 
22> 2 1. Multiply (6.2) by Vo, integrate by parts twice, and use (5.4) with ~ = 0  to get 

1 

Vo(1) z'o(1)=-221f"(O) ~ 9v3odx. 
- 1  

By multiplying (5.4) by v~ and making another integration by parts, one gets 

f "  (0) i 02~ b =ZOO)= f ?  Vo(V'o) 2 dx>O. 
O ~2 (0) v o (1) _ 1 

This establishes (6.1). For 22 sufficiently near 221 the equation q~=0 has two 
roots ~=0,  ~ (22) with ~ (22) increasing and 0t (221)=0. Moreover, for 22 near enough 
2.1 (22>221) 

V=~z~(x)>0 for - l _ x < l ,  

vb (1)= (0,22)<0, v'=~z) ( i )=  (~ (22), )~) >0 .  

By Lemma 5.2, u=~ is a stable equilibrium. �9 

Note: For 2<21,  ~ (2 )<0  is not admissible since we must have 0<_u=(x)~l.  
Moreover, no solution bifurcating from an eigenvalue different from 221 can 
satisfy 0 < u= (x) < 1. 

In Theorem 6.1 we assumed f "  (0)<0. For f(u) as in (1.2) this means h>�89 If 
1 
S g(x)dx>O, a stable nontrivial equilibrium bifurcates from ul for 22>21 

- 1  

provided f "  (1)<0. This means h <3- In numerical examples with h =�89 only three 
equilibria were found for 2>221, including the two trivial ones Uo, Uv In such 
cases, the minimizing u* in section 4 is the same as the bifurcating equilibrium. 

If h<�89 or h >  z, then matters are more complicated. Suppose for instance, 
I 

# (x) d x < 0 and h < �89 ( f "  (0) > 0). The bifurcating solution with ~ (22) > 0 occurs 
- 1  
for 22 <221 and is unstable. The minimizing equilibrium u* could arise in several 
ways; we have not investigated which actually occur. One can show that u*= u o 
for 0<22<22z<22 p Perhaps the simplest situation which could occur is that 
u*=ur for 22>222, where ~=/3(22) is the upper branch of a curve in the 
(~, 22)-plane whose lower branch a = ~ (22) corresponds to the unstable equilibrium 
bifurcating backward from (0, 221). In this situation, u o would give a local (not 
absolute) minimum to I (u) for 222 < 22 < 22 1 . 
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l 

The case ~ g (x)dx=O. By Corollary 4.1, there are always at least three equi' 
- I  

libria u0, ut, u*. The behaviour of nontrivial equilibria for it near 0 can be 
treated as follows. We omit some tedious calculations. One has ~b (a, 0)=0. By 

t 
differentiating (5.1) with respect to it and using (5.2) and j" gdx=O,  one finds 

- 1  
that a ~b/d it = 0 when it = 0. Now consider c satisfying f '  (c) = 0, f "  (c) 4 0. By further 
differentiations with respect to it and ct one finds that when 7 = c, it = 0 

i a i t z = 0 ' ~  = f(c) _ t \ c ~ i t }  ax~-O. 

By applying the implicit function theorem to ,l -2 ~b, one gets an equilibrium 
u~u ~ for it near 0, with ~(0)=c.  This equilibrium is stable if f " ( c ) < 0  and 
unstable i f f "  (c)>0. For the genetics model, with f (u)  as in (1.2), c is the unique 
maximum of f (u) and f "  (c)< 0. At least for small 2, u ~  = u*. 

7. The Symmetr ic  Case  

Let us now suppose that 

g ( -  x)= - g  (x), g ( x ) > 0  for x > 0 ,  

f ( u ) = f ( l - u ) ,  f(O)=f(1)=O, f "  (u)<O. 

For the genetic model, this implies h=�89 f ( u )= �89  Let us call an 
equilibrium symmetric if 

u (x)  = 1 - u ( -  x ) .  

Note that a nontrivial symmetric equilibrium is increasing in x, with u (0)=�89 
u" (x)>0 for x <0, u" (x)<0 for x > 0 .  

Theorem 7.1: For any 2 > 0  there exists a unique nontrioial stable symmetric 
equilibrium. 

Proof: Using the notation of section 5, let 

f l=sup  {a:u,(x)<�89 for - l < x < 0 } .  

Then ua is a symmetric equilibrium. To prove uniqueness, we must exclude a 
symhaetric equilibrium u, with 0 < e < f l .  For - l < x < 0  and such r162 g(x) 
f'[u~(x)]<O. From (5.4) and (5.5) we have v~(x)>O for such x and a, and 
v , (0 )> l .  Since v~=auJOa, u~(O)<�89 for 0 < a < f l ,  proving uniqueness of ua 
(among symmetric equilibria). To prove stability, 

g (x) f '  [ua (x)] < 0 for - 1 < x < I, x 4 0, 
1 (7.1) 

Q (v)= S [(v') z - 2  g (x)f '  [u a (x)] v 2] d x > 0  
- 1  

for any v (x)~0. In particular, Q (va)=v a (1) v~ (1)>0. Since the coefficient of v a 
in (5.4) is negative and v a satisfies (5.5), v a (x)>0 on - 1  _<x_< 1. By Lemma 5.2, 
u a is stable. 
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Let us show that fl = fl (2) is a smooth, decreasing function of 2. For this purpose, 
let ~b (~, 2) = u= (0) -  �89 For 0t-- fl (2), 

0r r ~--v# (0)> 0. 

By differentiating (5.1) with respect to 2 and using (7.1), one finds that 0 uJO ;t < 0 
for - 1  _<x <0, ==f l  (2). In particular, 0 ~O/02>0 when fl=fl (2), and therefore 
d fl/d 2 <O. 

From these inequalities it also follows that 0 u#cx)(x)/02<O, and thus u#(a)(x) 
is a decreasing function of 2 for - 1  < x < 0 .  By symmetry u#r is increasing 
in ;t for 0 < x _  1. Intuitively, this result is expected. Since ~. is proportional  to 
m - t ,  increasing 2 means decreasing dispersal rate m. As ;t increases each of the 
alleles At, A: becomes in equilibrium more frequent in those parts of the 
habitat where it is favored. Moreover, 

~-~lim u#(~, (x)= { ~: - l _ < x < 0  0 < x <  1. 

In the limit (m=0)  there is no dispersal; then selection eliminates AI completely 
in the interval - 1 _< x < 0 and A: completely in 0 < x < 1. 

8. Numerical Examples 

Let us consider two examples, in both of which 

R =[- I, 1], f (u )= �89  u (I -u). 

The first example exhibits the bifurcation phenomenon in section 6, while the 
second is a symmetric case (section 7). In the latter example, the results are 
compared with Fisher's ['5]. 

The numerical results were found by C. P. Tsai. 

Table 1. Frequency of  Allele A 1 in Stable Equilibrium 

x 
- 1 - . 5  0 .5 1 

8 0 0 0 0 0 

12 .27 .17 .06 .012 * 

20 .54 .33 .09 .012 * 

40 .77 .45 .08 .02 * 

* Small; numerical method  inaccurate for x near 1 

g (x)---- --(2 x +  1), ~'1 =8.45 
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Example 1 : Let g (x)= - ( 2  x +  1). This is case (a), Theorem 3.1. It was found that 
).1=8.45 with only the trivial equilibria for 2 < 2  r For 2>21, one additional 
equilibrium u=u~t~} was found; ct(2) appears in the left column of Table 1 
( x = -  1). This must be the bifurcating equilibrium, and also the equilibrium 
minimizing I (u). 

Example 2: Let g (x) = 2 x, a symmetric problem. A single nontrivial equilibrium 
was found. It is the symmetric one in Theorem 7.1, and also the equilibrium 
minimizing I (u). 

Table 2. Frequency of Allele A t in Stable Equifibriura 

1 

5 

I0 

X 

- l - . 5  0 

.43 (.21) .45 (.33) .5 (.5) 

.20 (.084) .29 (.24) .5 (.5) 

.I0 (.044) .21 (.19) .5 (.5) 

~(x)=2x, u ( x ) = l - u ( - x )  for x>0 

Fisher [5] for infinite habitat in parentheses 

To compare the numerical results of Fisher [5] with ours, we first consider the 
steady state form of (1. i) on a habitat - L < X_< L, with s (X) = k X: 

m d2u k X  
0 = y  ~ - y + - - ~  u (1 -u ) i  (8.1) 

and with u' ( _ L ) = 0 .  This reduces to Example 2 upon setting 

2 =  kLa X = L x , - l _ < x _ < l .  
m 

For comparison, also consider (8.1) for - ~ < X < ~ with u ( - oo) = 0, u (oo) = 1. 
This takes the form d Z u / d ~ 2 + 4 ~ u ( 1 - u ) = O  considered by Fisher after the 
substitution x = ( 4 2 - 1 )  */a ~. From Table 2, we see that the finite habitat model 
consistently predicts higher frequencies for the less favored allele. For large 2, 
the difference is small except near the endpoints of the finite habitat. 

A p p e n d i x  

Let us first review briefly some background from the Hilbert space approach to 
parabolic partial differential equations. Then we verify that l (u)  defined by 
(3.1) is a nonincreasing function of t, and obtain the instability criterion in 
Lemma 3,1. 
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Consider the parabolic equation 

u t = A u + h ( x , u ) ,  x e R ,  t>O 

0 u (A.1) 
~ - n = 0  on 8R,  u(O,x)=q~(x), x e R .  

Let R be bounded with 0R smooth, and h of class C ~ in u with h and h, 
bounded. Suppose that q~e V, where V = H  ~ (R). By a compactness method 
[13, chapter 1] and a regularity result about solutions of linear parabolic 
equations [14, II, p. 36], there is a unique solution u(t ,x)  such that u(t , . ) ,  
ux, (t,.) e L z (R) for each t >0  and u t, u,, ,j e L 2 (QOT) for each T> 0, i, j = 1 . . . .  , r. 
Here Qor=(0, 7)x  R. For almost all t>0 ,  u (t, .) is in the Sobolev space H 2 (R); 
for such t, 0 u/O n (which is defined almost everywhere on 0 R) is 0. Moreover, if 
h (x, 0) = 0 and u (0, x) > 0, then u > 0 (a maximum principle). 

The time derivative w = u t satisfies, in the sense of the Hilbert space theory, the 
linear equation 

wt = A  w + h ,  w (A.2) 

with 0 w/O n = 0  on 0 R. For almost all s>0 ,  w (s, . ) e L  2 (R). If we consider (A.2) 
for t > s  with initial data w (s, .), then 
t>0 ,  0 < s <  T i=1  . . . . .  r. For almost 
For  such t, 

[12, p. 46] u, (t, .) e L 2 (R), u,~, e L 2 (Q,T), 
all t>0 ,  u ( t , . ) e H : ( R ) ,  u , ( t , . ) e H  1 (R). 

d 1 ~ i V u l 2 d x .  (A.3) S ( A u ) u ~ d x = - - S V u ' V u ~ d x =  d t  2 R 
R .  R 

Let us now take h (x, u)=2 9 (x) f (u)  as in section 2. For I (u) defined by (3.1) and 
0 < t  1 <t2, we get from (2.1), (A.3) 

! 

I [u (t2,.)] - I [u ( t l , . ) ]  = - ~ ut z d X d t < O. (A.4) 
Q*,ta 

Hence I [u (t,.)] is nonincreasing. We take ~b e X, with X as defined in section 3. 
By the maximum principle, 0 < u (t, x) < 1; thus u (t,.) e X for all t >_ 0. 

The following argument was suggested by C. Dafermos. By (A.4) and the fact that 
g (x) F [u (t, x)l is bounded, I [u (t, �9 )] is bounded. Thus 

lim ~ u2 d x d t = O .  
T ~ ~  Qr.~ 

Take a sequence t, such that ut(t,, .) tends to 0 in L2 (R). By (2.1), Au( t , ,  .) is 
bounded in /.2 (R). It follows that a subsequence of u(t,, .) tends to a limit 
u ~ ( . )  strongly in H 1 (R) and weakly in / /2  (R). Now (2.1) with the zero Neumann 
boundary condition 0 u/O n = 0 imply, for any v e V, 

u t v d x = - J  V u .  V v d x + ~ .  i a ( x ) f [ u ( t , x ) ] v ( x ) d x .  
R R R 

Let t tend to oo through this subsequence. We get 

0 = - ~  Vu ~ . V v d x + 2  ~ #(x) f [ u  ~~ (A.5) 
R R 
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But (A.5), for all v e V, implies that  u ~ is an equil ibrium. Moreover ,  if u (0, x) = ~b (x), 

then by (A.4) I (~b) _> I [u (t,, �9 )] _> I (u:~). (A.6) 

Proof of  Lemma 3.1(b): Let q > 0  be such that  any equil ibrium u ~ distinct 
from u satisfies II u ~ - u  11 >q.  Suppose  that Q (v )<0  for some v ~ tl. We may  
assume that  v is a bounded  function. Since Q ( +  I v [)= Q (v) we may  also suppose  
that  v > 0  if u = u  o, and v < 0  if u = u  1. For  an equil ibrium u ~ u  0,ut,  a version of  
the m a x i m u m  principle and (1.3) imply c < u ( x ) < l - c  for some c > 0 .  Then  
u + e v ~ X for small e > 0. Since s 

I (U + ~ V) = I (U) + 5 -  Q (V) + O (~'-), 

for e small enough l ( u + e v ) < I ( u ) .  Take  (a=u+ev .  By the discussion above  
there exists a sequence t, and equi l ibr ium u ~ such that T ( t , )~b=u( t , ,  .) tends 
to u ~ in H t norm. Since l ( q ~ ) < l ( u )  we have u~@u by (A.6), and hence 
l] u ~ - u  il > r/. This proves instability of the equi l ibr ium u. �9 
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