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Summary.  The existence of periodic solutions of  the equation 

x(t) = k ( P -  f~ A ( t -  s )x (s )ds )  f ~ _ o o a ( t -  s)x(s)ds 

is established. This equation arises in the study of the spread of a disease which 
does not induce permanent  immunity. 
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1. Introduction 

The purpose of this paper is to study the existence of periodic solutions of  the 
equation 

( f ); x(t)  = k P - A( t  - s)x(s)ds a(t - s)x(s)ds,  t~  R = ( -  o% oo). 
oo oO 

(i.I) 

This equation is related to models of the spread of a disease, that does not induce 
permanent  immunity, in the following way: The function x is the infection rate, i.e. 
the rate at which individuals susceptible to the disease become infected. Then 
~t  ~o a(t - s)x(s) ds is approximately proportional  to the "total  infectivity" if the 
average infectivity of  an individual infected at time s is proportional  to a(t - s) at 
time t, t ~> s. The constant P is the size of  the population in question and then 
P - S t oo A( t  - s)x(s) ds is approximately the number of susceptibles provided that 
the cumulative probability for the loss of  immunity of  an individual infected at time 
s is 1 - A(t  - s). To obtain equation (1.1) one must make the assumption that the 
infection rate is proportional  to the number of  susceptibles and the "total  
infectivity". 

For earlier results on the same kind of problems, see e.g. [1] - [4], [8] - [15] 
and the references mentioned there. In [11] the equation (1.1) is considered and it is 
shown that if the infection rate is given up to time 0, then there exists a unique, 
bounded, continuous and nonnegative solution of (1.1) for t i> 0 (under appro- 
priate assumptions on A and a). Moreover, sufficient conditions for the con- 
vergence of this solution to a limit when t ~ vo are given. 
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When the model considered in this paper is compared with other models that 
have been studied earlier, one can make the following observations: No spatial or 
stochastic phenomena are studied, the emphasis is completely on the effects of the 
delays and the assumptions concerning these delays are quite general. Thus it is for 
example not assumed that infected individuals have a constant recovery rate (in fact 
this assumption implies that A(t) = e - c t ,  for some constant c, and it turns out that 
the assumption (2.3) in Theorem 1 below cannot be satisfied in this case), nor that 
the immunity is completely lost after some fixed time interval. Note also that the 
model we are studying is time invariant, that is we do not assume that e.g. the 
proportionality constant k is a periodic function of t. The point is not that such an 
assumption is unrealistic but that it is not needed in order to prove the existence of 
periodic solutions. 

The proof  below of the bifurcation of periodic solutions is closely related to the 
proof  of the Hopf  bifurcation theorem as it is presented in e.g. [51. For other results 
concerning the bifurcation of  periodic solutions of integral equations, see e.g. 
[6] - [-8]. 

2. Statement of Results 

We let " ^ "  denote the Fourier transform and we extend functions defined on 
R + = [0, oe) as zero on ( -  o% 0). The space of all continuous T-periodic functions 
on R is denoted by C(T). 

Theorem 1. Assume that k > 0 and that 

A is a nonnegative, nonincreasing and absolutely continuous 
function on R +, A(O) = 1 and A eLl(R+),  (2.1) 

a is a nonnegative, absolutely continuous function on 
R +, ~ a(s)ds = 1 and td(t)~Ll(R+),  (" ' " - - -d /d t ) ,  (2.2) 

there exist positive numbers bo and e) such that 

1 - ~(e) )  + bo~?(e)) = 0,  (2 .3 )  

1 - ~(ne)) + boft(ne)) # 0, n = 2, 3 . . . .  , (2.4) 

I m ( ( -  fi'(e)) + boA'(e)))/A(e))) # 0, ( ..... = d/de)). (2.5) 

Then there exists a positive number t 1 and continuously differentiable functions 
(b,p,u): ( -  ~I,q)~ R x R • C(To), To = 27r/e), such that 

b(O) = bo, p(O) = 1, u(O) = 0 (2.6) 

and 

def 
xq(t) = u(q)(t/p(q)) + b(q)/k, t ~ R is a nontrivial 

p(q)To-periodic solution of  (1.1) when 
P = (b(q) ~ A(s) ds + 1)/k, q ~ ( -  r/, r/)\(0). (2.7) 

In addition, there exists a positive number e such that if  y is a nontrivial p To-periodic 
solution of  (1.1) and 
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[ p -  1[+ - bo A(s )ds  + 1 k + sup[y(t) - bo/k] < e, (2.8) 
0 t ~ R  

then there exists a number q~ (0, ~1) and a number to ~ [O,p(q)To) such that 

P=(b(q) f~A(s)ds + 1 ) / k ,  p = p ( q )  and y ( t ) =  Xq(t + to), t ~ R .  

(2.9) 

Observe that u is a function: ( -  t/, t/) ~ C(To), hence u(q) is the function: t --+ 
u(q)(t) from R to R. Note also that it is easy to deduce from (2.1) and (2.2) that a(s) 
and ei(s) are continuously differentiable and A(s) va 0 in Im s ~< 0, s r 0 so that (2.5) 
makes sense. 

In (2.1) and (2.2) the assumptions that A and a are nonnegative and that A is 
nonincreasing with A(0) = 1 are motivated by the model under consideration and 
the remaining assumptions are needed for the proof  to go through. Note that one 
can always normalize a so that S~ ~ a(s)ds = 1 and that it follows from (2.1) that 
tA(t) ~ LI(R+).  

In Theorem 1 we used P as a parameter and k was kept constant, but as one sees 
from the proof  one can just as well use k as a parameter and keep P constant. 

Next we consider the stability of the periodic solutions. The first observation 
one can make is that i f P k  > 1, then x(t)  =- xp = (Pk  - 1)/(kS~ A(s) ds) is a positive 
solution of (1.1). Moreover, if (2.1), (2.2) hold and 

1 - ~(s) + kxp3(s )  # O, Ires ~< 0, (2.10) 

then it is possible to show that the solution Xp is asymptotically stable in the sense 
that if x(t)  is given (and continuous) on ( -  ~ ,  0) and supt,(_ o~,o)[x(t) - :re[ is 
sufficiently small, then x(t)  ~ Xp as t ~ ~ ,  provided that (1.1) holds for t ~> 0. 
Clearly (2.10) does not hold if (2.3) holds and the assumption (2.5) says that there 
exists a zero of 1 - fi(s) + kxpTt(s) crossing the real axis (as P, and hence xp, varies) 
when kxp  = bo. If we linearize equation (1.1) around a solution x, we get the 
following equation 

y(t)  - a(t - s)y(s)ds + k x e  A( t  - s)y(s)ds 
- o o  - o o  

+ k a(t - s)(x(s) - xe )ds  A( t  - s)y(s)ds 
- o o  - o o  

+ k A( t  - s)(x(s) - xe )ds  a(t - s)y(s)ds = O, t ~ R .  (2.11) 
o o  - c ~  

I f y  is given on ( -  ~ ,  0) (and is such that the integrals in (2. l 1) are defined), then 
one can solve y(t)  from equation (2.11) for t ~> 0 and one gets a new function 

def  

L(y)( t)  = y( t  + T) defined on ( - o % 0 ) .  In the next theorem we study the 
eigenvalues of this mapping L, i.e., we are looking at Floquet multipliers. 

Theorem 2. Let  the assumptions (2 .1) -  (2.5) hold and assume that 

e~td(t),e~tA(t)E L l ( R  +) f o r  some a > 0. (2.12) 
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Then there exists a positive number # (# <~ tl where r 1 is 9iven in Theorem 1) and a 
continuous function 2: ( -  #, #) ~ R such that 2(0) = 1 and whenever 2(q) ~ 1, 
q ~ ( - #, #), there exists a nonzero function yq ~ C(R), (yq(t) = O(e -~t) as t ~ - ~ ) ,  
that satisfies 

yq(t) - a(t - s)yq(s)ds + b(q) A( t  - s)yq(s)ds 
- o r 3  - ~ 

y + k a(t - s)u(q)(s/p(q))ds A( t  - s)yq(s)ds 
- -  ~ 0  - - c o  

+ k A(t  - s)u(q)(s/p(q))ds a(t - s)yq(s)ds =- O, t e R  (2.13) 
- - o 0  - -  o 0  

and 

yq(t + p(q)To) = 2(q)yq(t), t 6 R ,  (2.14) 

where the functions b, p and u are given in Theorem 1. I f  moreover, for  j = 0 or 1, 

then 

and 

( -  1)JIm(c(op)) > 0 (2.15) 

( -  1)~(2(q) - 1) > 0, q ~ ( -  #,#)\{0} (2.16) 

yq is a continuous function o f  q (in the topolopy o f  C(R) o f  
uniform converpence on compact sets) and yo(t) = u'(O)(t) 
+ Re(c(co))/Im(c(co))u'(O)(t + rc/(2co)), ( ..... = d/dq), (2.17) 

where 

c(co) = (2b o ~([a(co)l 2 - Re(a(co)))(a(co) + .~(co)/3(o)) 

+ (.l](co).~](2co)[t~(co)[ 2 + a(co)~(2co)l.4(co)12)(1 - a(209) + boA(2co))-1) 

x ( -  a'(co) + bo3'(co)) -1. (2.18) 

It  is a consequence of  (2.7) tha t  for  every q ~ ( - r / , q ) ,  q # 0 the funct ion 
f6q)(t/p(q)) is a nonzero solution of  (2.13) and fi(q)(t/p(q) + To) = fffq)(t/p(q)). One 
would expect the multiplier  2(q) to be < 1 if the solution xq is stable and xq to be 
unstable  if 2(q) > 1, bu t  it is no t  clear to what  extent  this is a valid statement.  But  at  
least the linearized equat ion is unstable  if 2(q) > 1 and one can see when this is the 
case by calculating c(co) as defined in (2.18). Using the calculat ions in the p r o o f  of  
Theorem 2 one can, however,  show tha t  the "principle  of  exchange of  linearized 
stabil i ty" holds in the following sense: I f j  = 1 in (2.15) and (2.16), then the zero 
s = co of  1 - a(s) + boil(s) becomes a zero of  1 - a(s) - b(q)J(s) in I m s  < 0 when 
q # 0 so that  the stability condi t ion (2.10) for  the cons tant  solution fails. I f j  = 0, 
then the zero s = co moves  into the upper  half  plane, so that  it is possible tha t  (2.10) 
holds (with kxp = b(q), q # 0), but  there may,  o f  course, be other  zeros of  
1 - ~ ( s )  - b o . 4 ( s )  in I m s  ~< 0. 
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We also remark that it is not difficult to show that if (2.1) and (2.2) hold and 
there exists a zero of 1 - gt(s) + bTl(s) in Ires < 0 for some b > 0, then (2.3) holds 
for some positive co and bo. By choosing the largest zero on the real axis we see that 
(2.4) must be satisfied and in this case it only remains to verify the critical condition 
(2.5). 

Finally we consider a simple example. Assume that an individual infected at 
time t remains infective (with constant infectivity) up to time t + ~ when the 
infectivity drops to zero and the immunity is lost at time t + ,  + q .  Here ci is a 
positive constant and ~ is a random variable with exponential distribution and 
mean value c~-1. In this case A(t )  = 1, 0 <~ t <~ ci, A( t )  = 1 - e x p ( -  c 2 ( t  - -  Cl)), 

t > c~ and a(t) = c2 e x p ( -  Czt), t >~ 0. A calculation shows that the assumptions of  
Theorem 1 are satisfied provided that ClC2 >~ inf=<t<2=(- t/sin(t)). 

3. Proof of Theorem 1 

It is clear that equation (1.1) can be rewritten as 

x(t)  - xe  - a(t - s)(x(s)  - Xe )ds  + k x e  A ( t  - s)(x(s)  - x e ) d s  
O9 - - o 9  

+ k a(t  - s)(x(s)  - x e ) d s  A ( t  - s)(x(s)  - x e ) d s  = O, t E R ,  (3.1) 
- - O 9  0O 

where xe  = ( k P  - 1)/(kS~ A(s)ds) .  We introduce the unknown period explicitely 
as a new parameter and hence we are going to study the mapping F: U1 x V1 --* 
C(To)  (where U1 is a neighbourhood of (0, b0, 1) in R3), defined by 

F(q, b ,p ,  v) = Cpo + v - S(p,  (Oo + v) + bT(p ,  ~Oo + v) 

+ k q S ( p ,  (Po + v)T(p,  (Oo + v), (3.2) 

where (recall that To = 2n/co) 

{ ? } V1 = f s  C(To)  f ( t )  sin(cot) dt = f ( t )  cos(cot) dt = 0 , (3.3) 
o 

q~o(t) = cos(cot), t e R, (3.4) 

S ( p , w ) ( t )  = ~ p a ( p ( t -  s))w(s)ds,  t s R  (3.5) 
d -  oO 

and 

~t 
T ( p , w ) ( t )  = | p A ( p ( t -  s) )w(s)ds ,  t ~ R .  (3.o) 

d -  o9 

The product in the last term in (3.2) is the ordinary pointwise product of functions. 
It is a consequence of (2.1) and (2.2) that the mappings ( p , w ) ~  S(p, w) and 
(p, w ) ~  T(p, w) are continuously differentiable (when p > 0). Therefore we 
conclude from (3.2) that F is continuously differentiable, too. 



276 G. Gripenberg 

We want to apply the implicit function theorem and then we must first show that 

w ~ Fv(0, bo, i, 0)w = w - S(1, w) + boT(1, w) is an isomorphism: V1 ~ V1. 

(3.7) 

Since 1 - g(0) + boil(0) = bo ~ A(s)ds  > 0 (see (2.1), (2.2)), and (2.4) holds, we 
conclude that F~(0, bo, 1, 0) is an injection. Let f s  V~ be arbitrary. Define the 
function w by 

w(t) = (1 - g(no9) + boA(no))  - l To 1 f(r)e-~.o,~ dr e~"~'L (3.8) 
. = - ~ ,  Inl~l 

As liml,l_~(1 - g ( n o g ) +  b o A ( n ~ ) ) =  1 and f is continuous, we see immediately 
from (3.8) and Plancherel's theorem that w s L2(0, To). Next we note that by (2.1) 
and (2.2) 

sup ~ A ( t + n T o )  < oo and sup ~ a ( t + n T o )  < oo 
t>~0 n = 0  t~>0 n = 0  

and therefore S(1, w) and T(1, w) belong to C(To) since wEL2(0, To) and w is To- 
periodic on R. But from (3.8) we see that w = f + S(1, w) - bo T(1, w), that is, w ~ V~ 
and F J0,  bo, 1,0) is a surjection. This shows that (3.8) holds (recall that V1 is a 
closed subspace of  C(To)). 

The second fact that must be established is that 

(s, t) -+ sFb(O, bo, 1, O) + tFp(O, bo, 1, O) 

= sT( l ,  ~Oo) + t( - Sp(1, ~Oo) 

+ boTp(1, ~o)) is an isomorphism: R x R ~ 112, (3.9) 

where V2 = {ct cos(t) + c2 sin(t)lq, ca e R}. This is seen to be the case once we note 
that by (3 .4)-  (3.6) 

r(1, gOo) - 2-1(3(o~)e i~t + 3 ( -  ~)e -i~ 

and 

- Sp(1, q~o) + boTp( 1, q~o) = 2-l(cog'(~o) - booJl'(co))d ~ 

+ 2 - 1 ( -  cog'(- ~o) + bo~o3'(- co))e -i~" 

because then (3.9) follows from (2.5) and the fact that 

de t [~ ( (co) )  _ mg'(co)-boogA'(co) co)l 
cog'(- co) + boco.~'(- 

= 2i~o1.~(~)l 2 I ra ( ( -  a'(o~) + boM~O)) /3(o~) ) .  

(Note that it follows from (2.1) that .4(co) ~ 0.) 
Clearly C(To) is a direct sum of the closed subspaces V1 and V2 and therefore it 

follows from the implicit function theorem by (3.7), (3.9) and the fact that 
F(0, bo, 1, 0) = 0 (see (2.3), (3.2), (3.4) -(3.6))  that there exists a positive number ~/ 
and continuously differentiable functions (b,p, v): ( -  q, q) ~ R • R • V1 such 
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that  b(0) = bo, p(0) = 1, v(0) = 0 and 

F ( q , b ( q ) , p ( q ) , v ( q ) )  -- 0, q ~ ( -  ~/, r/). (3.10) 

If  we define the funct ion u by u(q)  = q(q~o + v(q)), then we see f rom (3.1), (3.2), 
(3.5), (3.6) and (3.10) that  the first par t  of  the assertion of  Theorem 1 holds. 

We proceed to the uniqueness par t  of  the theorem. If  y is a nontrivial  p T o -  

periodic solution of  equat ion (1.1), then there exist nonnegat ive numbers  q and to so 
that  

) y ( p t  - to) - ( P k  - 1) k A ( s ) d s  = q~oo(t) + z( t ) ,  t ~ R  (3.11) 
0 

and z E V1 satisfies 

G ( b , p ,  q~oo + z) = O, (3.12) 

where 

G ( b , p ,  w)  = w - S ( p ,  w)  + b T ( p ,  w) + k S ( p ,  w ) T ( p ,  w)  (3.13) 

and 

) b = ( e k  - 1) A ( s ) d s  . (3.14) 
0 

Since (Po - S(1, (Po) + boT(1, (Po) = 0 it follows f rom (2.1), (2.2), (2.8), (3.5), (3.6) 
and (3.13) that  there exists a constant  cl (provided e is sufficiently small), such that  

]]G(b,p, q(Po + z)  - (z  - S(1, z) + boT(1, z)) - q(p - 1 ) ( -  Sp(1,  q)o) 

+ boTp(1 ,  ~Po)) - q(b - bo)T(1, ~Po)[lc(ro~ 

<~ cl(([[Z[]vl + q + ]P - 1] + I b  - bo[)llzllv, 

+ q(q + [b - bo[ Ip - 1[ + ]p - l[9(P - 1))), (3.15) 

where 9( t )  ~ 0 as t ---> 0. If  we recall (3.7), (3.9) and (3.12) we see that  (3.15) implies 
the existence of  a constant  c2 such that  

Ilzllvl + q[p - 1[ + qlb - bo[ ~< c2((]lz[lvi + q + IP - 1[ + I b  - bol)llzllv, 

+ q(q  + ]b - b o [ ] p -  1] + ]p - 119(P - 1))). 

I f  ~ is sufficiently small, then it follows f rom this inequality and (2.8), (3.11) and 
(3.14) that  

Ilzl[v~ + q]p - 1] + q[b - b0l ~ c3q 2 (3.16) 

for  some constant  c3. F r o m  (3.16) we conclude that  if q = 0, then z = 0 and then y 
cannot  be a nontrivial  periodic function. I f  q > 0, then we have by (3.2), (3.12) and 
(3.13) 

F(q ,  b , p , z / q )  = 0. (3.17) 

But since the implicit funct ion theorem also gives the uniqueness of  the solution 
found in (3.10) (note that  q is small if ~ is small), we obtain the second assertion o f  
Theorem 1 f rom (3.11), (3.14) and (3.17). This completes the p roo f  of  Theorem 1. 
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4. Proof of Theorem 2 

We use the same notation as in the proof of Theorem 1 and in addition we define 

~ol = ~bo, (4.1) 

H(q, ?, w) = w - So(q, y, w) + b(q)To(q, ?, w) + kS(p(q),  u(q))To(q, y, w) 

+ kT(p(q) ,  u(q))So(q, ?, w). (4.2) 

The mappings S and T are defined in (3.5), (3.6) and 

So(q, 7, w)(t) = F t p(q)e-~(t-S)a(p(q)(t _ s))w(s) ds, t e R (4.3) 
J - -  co  

and 

f 
t 

To(q, 7, w)(t) = p(q)e-  ~('- S)A(p(q)(t - s))w(s) ds, t ~ R. (4.4) 
- oo 

Observe that the assumption (2.12) is essential for these definitions. It is not difficult 
to see from the proof of Theorem 1 that the function v(q) (for fixed q) is 
continuously differentiable with respect to t and that ~(q) is continuously 
differentiable with respect to q in a neighbourhood of zero. We define the mapping 
K: U2 • V1 ~ C(To) (where U2 is a neighbourhood of (0, 0, 0) in R3), by 

K(q, y, 6, z) = H(q, y, q~o + z) + 67-1H(q,  ?, ~Pl + ~3(q)). (4.5) 

Differentiating (3.10) with respect to t we conclude from (3.2) and the definition of 
u(q) that H(q, O, ~ol + f;(q)) = O, q e ( -  rl, rl). Hence we have 

7-1H(q,?,cpl + f i (q ) )=7-1 f eoHr(q , r ,@l  + ~(q))dr. (4.6) 

It is straightforward to check, using (2.1), (2.2), (2.12), the results of Theorem 1 
and the fact that b(q) is a continuously differentiable function of q, that K is 
continuously differentiable in a neighbourhood of (0, 0, 0) x V1. Moreover, the 
derivative with respect to 7, 6, z at (0, 0, 0, 0) is given by 

(s, t, w) ~ sH~(0, 0, Cpo) + tHr(O, O, ~Pl) + H(0, 0, w) 

and since H(0, 0, w) = FJ0,  bo, 1,0)w, H~(0, 0, q~i) = - Soy(l, 0, ~oi) + bo To~(1,0, q~i), 
i - - 0 , 1 ,  it follows from (2.5), (3.4), (3.7) and (4.1) that this derivative is an 
isomorphism: R x R • V1 ~ C(To). Hence we may apply the implicit function 
theorem and we find a number # > 0 and continuously differentiable functions 
(7, 6, z): ( -  #,/~) ~ R • R x V1 such that 

K(q, ?(q), 6(q), z(q)) = O, q e ( -  #, #). (4.7) 

For those values of q for which ?(q) # 0 we let 

y~(t) = e~(q)t/v(q)(q~o(t/p(q)) + z(q)(t/p(q)) 

+ 6(q)y(q)- x(cpl(t/p(q)) + fJ(q)(t/p(q)))), t e R (4.8) 

and it follows from (4.2) - (4.5), (4.7) and (4.8) that (2.13) and (2.14) hold when we 
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define 

2(q) = e ~(q)r~ q E ( - #, #). (4.9) 

Next  we assume that  (2.15) holds. Differentiating both  sides of  the equat ion 
(3.10) with respect to q we obtain by (3.2) 

v'(q) - S(p(q), v'(q)) + b(q)r(p(q) ,  v'(q)) + kqS(p(q),  v'(q))T(p(q), ~Oo + v(q)) 

+ kqS(p(q),  q)o + v(q))T(p(q), v'(q)) + p'(q)( - S~(p(q), ~Oo + v(q)) 

+ b(q)Tp(p(q), % + v(q)) + kqSp(p(q), q)o + v(q))T(p(q), % + v(q)) 

+ kqS(p(q),  (Po + v(q))Tp(p(q), (Po + v(q))) + b'(q)T(p(q), % + v(q)) 

+ kS(p(q),  % + v(q))T(p(q), ~Oo + v(q)) = 0, q e ( -  ~, ~). (4.10) 

If we let q = 0 in (4.10), then we deduce f rom (3 .4 ) - (3 .7 )  and (3.9), that  

b'(0) = p ' (0 )  = 0 (4 .11 )  

and 

v'(0) - S(1, v'(0)) + boT(1, v'(0)) + kS( l ,  (po)T(1, ~Oo) = 0. (4.12) 

N ow we subtract  the left-hand side of  the equat ion in (4.12) f rom that  in (4.10), 
divide by q # 0 and let q ~ 0. Then  it follows f rom (3.7), (3.9), (4.11) and the fact 
that  v(0) = 0 that  b"(O), p"(O) and v"(0) exist and satisfy the equat ion 

v"(0) - S(1, v"(0)) + boT(1, v"(0)) + p " ( 0 ) ( -  Sp(1, q)0) + boTp(1, q~o)) 

+ b"(O)T(1, % )  + 2k(S(1, v'(0))T(1, q)0) + S(1, ~o0)T(1, v'(0))) = 0. (4.13) 

Next  we go through the same calculations for equat ion (4.7) and if we differentiate 
both  sides of  this equat ion with respect to q, then we obtain by ( 4 . 2 ) -  (4.6) 

("),(q) 
Hq(q, ?(q), gOo + z(q)) + 6(q)7(q)- 1 | H./q(q, r, qol + (J(q)) dr 

d 0 

+ 6(q)7(q)- 1 n , (q ,  r, i/(q)) dr + H(q, y(q), z'(q)) 

+ y'(q)(HT(q, 7(q), q)o + z(q)) + 3(q)y(q) - ;  rH~,(q, r, (p~ + 13(q)) dr) 

;o + b'(q)7(q) -~ H~(q,r, q)l + i~(q))dr = 0, q e ( -  #,#) .  (4.14) 

If  we let q = 0 in (4.14) then we conclude that  (see (4.2), (4.11) and recall that  
u(q) = q(~oo + v (q ) ) ,  ~,(o) = ,~(o) = v ( o )  = z (O)  = o )  

y'(0) = 3'(0) = 0 (4.15) 

and 

z'(0) - S(1, z'(0)) + boT(1, z'(0)) + 2kS(l ,  rpo)T(1, rpo) = 0. (4.16) 
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N o w  we s u b t r a c t  the  l e f t - h a n d  s ide  o f  e q u a t i o n  (4.16) f r o m  t h a t  o f  e q u a t i o n  (4.14), 
d iv ide  b y  q ~e 0 a n d  let  q ~ 0. A g a i n  we are  (by  essen t ia l ly  the  s ame  a r g u m e n t  as 
a b o v e )  ab le  to  c o n c l u d e  t h a t  7"(0), 6"(0) a n d  z"(0) exis t  a n d  sa t is fy  the  e q u a t i o n  

z"(0) - S(1,  z"(0))  + boT(1,  z"(0))  + 7 " ( 0 ) ( -  Soy(0, 0, q~o) + boTo~(0, 0, ~Oo)) 

+ 6 " ( 0 ) ( -  S0s(0, 0, ~ol) + b0To~(0, 0, qh))  + kS(l, z ' (0))T(1,  ~Oo) 

+ kS(l, Cpo)T(1,z'(0)) + p " ( 0 ) ( -  Sp(1, q)o) + boTv(1, ~Po)) + b"(0)T(1,  ~0o) 

+ 2 k S ( l ,  ~0o)T(1, v'(0)) + 2 k S ( l ,  v ' (0))T(1,  q~o) = 0. (4.17) 

I f  we use  ( 3 . 2 ) -  (3.6), (4.1), (4.3), (4.4), (4.12), (4.16) a n d  (4.17), t hen  we c o n c l u d e  
(af te r  s o m e  t ed io u s  ca l cu l a t i ons )  t h a t  7"(0) a n d  5"(0) sa t i s fy  

7"(0) = - 2 -  lk2 Im(c(co)),  

6"(0) = (20~)- lk2 Re(c(e~)), 

where  c(co) is de f ined  in (2.18). N o w  it fo l lows  f r o m  (2.15), (4.8), (4.9) a n d  (4.15) 
t h a t  (2.16) a n d  (2.17) ho ld .  Th i s  c o m p l e t e s  the  p r o o f  o f  T h e o r e m  2. 
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