
J. Math. Biology (1986) 23:231-246 
,Journal of 

Mathematical 
Biology 

O Springer-Verlag 1986 

Cell growth and division: a deterministic/probabilistic 
model of the cell cycle 

John J. Tyson and Kenneth B. Hannsgen 

Departments of Biology and Mathematics, Virginia Polytechnic Institute and State University, 
Blacksburg, VA 24061, USA 

Abstract. A model of the cell cycle, incorporating a deterministic cell-size 
monitor and a probabilistic component, is investigated. Steady-state distribu- 
tions for cell size and generation time are calculated and shown to be globally 
asymptotically stable. These distributions are used to calculate various statis- 
tical quantities, which are then compared to known experimental data. Finally, 
the results are compared to distributions calculated from a Monte-Carlo 
simulation of the model. 
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1. Introduction 

The fundamental purpose of the cell division cycle is to make two cells from 
one. This involves (i) accurately replicating the cell's DNA and apportioning 
sister chromatids to daughter nuclei at mitosis, and (ii) approximately doubling 
all other bulk constituents of the cell (e.g. mitochondria, ribosomes,, plas- 
malemma) and dividing them more-or-less evenly between daughter cells at cell 
division. Great care is taken by every cell to ensure that each daughter gets an 
exact copy of the genetic material, but less attention seems to be paid by individual 
cells to the amount of other materials inherited by their daughters. This "sloppi- 
ness" is evidenced by a broad distribution of cell size at birth (coefficient of 
variation -~ 10%). Nonetheless, there is some coordination between overall cell 
growth and division, because there does exist a characteristic size distribution 
(cells do not become arbitrarily large or small) and because this size distribution 
is stable (after a perturbation the characteristic size distribution is rapidly re- 
established). Furthermore, there is evidence that cell size plays an important role 
in setting the time of cell division (Mitchison 1977; John 1981; Nurse and 
Streiblova 1984). For example, cell size at division is typically less variable than 
cell age at division (CV for size-10% compared to CV for age = 20%), and 
there is a strong negative correlation between size at birth and generation time 
(i.e. time from birth to division). 
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Fig. 1. A deterministic/probabilistic 
model of cell cycle. After birth, cells must 
grow to a critical size (m--l) before 
entering the indeterministic A-phase, from 
which they exit with constant probability 
per unit time (p). Cells divide a fixed time 
period (TB) after leaving the A-state 

In this paper  we examine a model of  the cell cycle that incorporates both a 
deterministic cell-size monitor  and a probabilistic, variability-generating com- 
ponent. The model is illustrated in Fig. 1. When a cell reaches the critical size 
m = 1, it enters the A-phase of  the cell cycle (Smith and Martin 1973), from 
which it exits with constant probabili ty per  unit time, p. Variable residence times 
in A-phase,  TA, generate variability in all cell cycle parameters.  On leaving 
A-phase,  the cell enters B-phase and divides after a fixed time interval, TB. I f  
cell size at birth is less than 1, then the cell finds itself in C-phase,  during which 
it must grow until it achieves the critical size m = 1. I f  a cell is born with m > 1, 
it enters directly into A-phase.  

This model has been suggested by a number  of  authors (Shilo et al. 1976; 
Fantes 1977; Shields et al. 1978; Nurse 1980) and has been aptly called the 
" t andem"  model by Lord and Wheals (1981). In a recent publication (Tyson and 
Hannsgen 1985) we have analyzed the tandem model in some detail, concentrat- 
ing on the distributions of  cell size and generation time defined on samples of  
cells born in a narrow time window (t, t + a t ) ,  which we shall refer to as a 
"con temporaneous"  sample of  cells. In this paper  we reformulate the tandem 
model in terms of distributions defined on samples of  cells belonging to distinct 
"generat ions".  

Because we assume that cells leave A-phase  with constant probabili ty per 
unit time (p) ,  the residence time in A-phase (TA) must be an exponentially- 
distributed random variable, i.e. 

Prob{ TA ~ > t}-- fA(S) ds = e -pt. (1) 
t 

We shall also assume that individual cells grow exponentially with specific 
growth rate k. Let 7 = In 2 / k  denote the mass-doubling time of individual cells. 
During steady state growth, r is also the mass-doubling time of  the cell populat ion 
as a whole. We must assume that r >  TB; otherwise, the cell populat ion would 
be doubling in mass faster than any cell can possibly divide so there could be 
no stable size distribution. Under  these assumptions it is obvious that the minimum 
size of  a cell at birth is 

Or -~ ekTa/2 = e -k(7-T~), with �89 Or< 1. (2) 

2. Size distribution functions 

There are many  different ways to express the distribution of  cell size in an 
asynchronous culture of  growing cells. Do we want to know size at birth, size at 
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division, size at onset of DNA synthesis? Do we want to choose for our sample 
all cells at time t, e.g. all cells born in narrow time window (t, t+At ) ,  or all 
newborn cells belonging to a certain generation n ? The specification of the sample 
over which the distribution is defined is a critical and often neglected factor. For 
instance, the distribution of mass at division in a sample of dividing cells at time 
t is generally different from the distribution of mass at division in a sample of 
newborn cells at time t, since in any narrow time window one is more likely to 
sample rapidly dividing cells than slowly dividing cells. 

Painter and Marr (1968) have suggested a useful notation for size distributions. 
They let the Greek letters 0, h, and tk denote, respectively, the distributions of 
size at birth, size at present, and size at division; and they let the subscripts b, 
e, and m denote the sample on which the distribution is defined, whether newborn 
cells ("babies"),  extant cells, or dividing cells ("mothers").  For example, 
t)e(x, t) dx is the probability that, choosing a cell at random from a sample of 
all cells alive at time t, the chosen cell has a birth size in the interval (x, x + dx). 
Similarly, Oh(X, t) dx is the probability that a cell has birth s izebetween x and 
x + dx, if the cell is chosen from a sample of  all cells born in a narrow time 
window (t, t + At). We must introduce the artifice of a narrow time window when 
speaking of samples of newborn cells or samples of dividing cells because the 
size of such samples tends to zero as At-~0. 

During balanced, or steady-state, growth these size distributions do not depend 
on t, so ~bb(x), etc., can represent the steady-state probability densities. Further- 
more, Painter and Marr suggest that the subscripts be dropped from the most 
natural combinations: 

~(x) =-- $b(X) = steady-state probability density for size at 
birth in a sample of newborn cells; 

A(x)--Ae(x) = steady-state probability density for present 
size in a sample of extant cells; 

th(x)-= ~bm(x)= steady-state probability density for size at 
division in a sample of dividing cells. 

The distributions used by Painter and Marr (1968) are all defined on samples 
chosen from cells alive during a brief time span. It was with such samples that 
we were concerned previously. In this paper we want to consider samples of cells 
of a certain generation, and we suggest that the subscript n be used to denote 
such samples. Thus, ~bn(x) will denote the probability density of size at birth in 
a sample of cells of generation n, and ~bn(x) the probability density of size at 
division in a sample of cells of generation n. (There is no analog to A, the present 
size distribution, for generation-based samples.) In the state of balanced growth 
these distributions no longer depend on generation number, so we suggest that 
the subsc r ip t ,  denote the steady-state distributions: 

O,(x)~qJ , (x) ,  dpn(x)oqb,(x) as n-~oo. 

One of our goals is to determine the distribution of generation times in the 
tandem model, but on what sample should this distribution be defined? Painter 
and Marr (1968) let f ( T )  ='fb(T) = steady-state probability density for generation 
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time on a sample of cells newborn in some time window. But, as Powell 
(1956, 1964) has emphasized, if there is a correlation between generation times 
of mother and daughter cells, then the time-window convention produces a biased 
sample. The bias comes about because a sample of cells newborn in a narrow 
time window is biased toward the daughters of rapidly dividing cells, and if 
mother and daughter generation times are negatively correlated, this sample will 
be biased toward cells with long generation times. Powell (1964) suggested that 
an unbiased sample would be all newborn ceils of generation n where n is large 
enough so that steady-state conditions can be expected, i.e. f , ( T ) .  

On the basis of experimental observations we asserted above that a population 
of cells will approach, from arbitrary initial conditions, a steady-state of balanced 
exponential growth, characterized by time-independent distribution functions for 
cell size and generation time. For distribution functions based on contem- 
poraneous samples of cells, the global asymptotic stability of the steady-state 
size distributions can be difficult to prove even in favorable cases (see, e.g. 
Diekmann et al. 1984; Heijmans 1984; Hannsgen and Tyson 1985). However, 
for distribution functions based on samples of cells of the same generation, Lasota 
and Mackey (1984) have shown that, under quite general conditions, the evolution 
of the birth-size probability density obeys a simple recursion relation from which 
global asymptotic stability of the size distribution can often be proved by verifying 
a few simple inequalities. 

In the next sections we apply the Lasota-Mackey theory to the tandem model. 
Since many of our results do not follow directly as trivial special cases of equations 
in Lasota and Mackey (1984), we present the entire theory in a form suitable to 
the tandem model. 

3. The recursion relation 

Suppose we are given the distribution of size at birth in generation 0, 0o(X), and 
we wish to determine 0n(x), n = 1, 2, 3 , . . . .  Consider a cell, in generation n, of 
given birth-size, x, = y, and let x,+x be the birth-size of its daughters (assuming 
division of a mother cell into two equally sized daughters). Recall that individual 
cells are assumed to grow exponentially with specific growth rate k and that 
o-= e x p { - k ( r - T ~ ) }  = minimum size at birth. Now, provided x ~  > o-, 

f Prob{ TA >I k -1 In(x/or)} 
Prob{x.+,>~ x l x . = y } = l  Prob{ TA >~ k- '  ln(x/o'y)} 

(tr~<y~< 1) 
( l<~y~x/o ") 
(x/o-~y<oo). 

Since by assumption (1) TA is exponentially distributed, we have 

f ~ f x/o- 
Prob{X~+l>~ X}-=(x/o') -p/k O.(Y) dy+(x/ar)-P/k Yv/~O.(Y) dy 

J 1  

ix o + On(Y) dy. /,~ 
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Differentiating this equation with respect to x, we obtain 

I]/n+l(X ) = K(X, y)qJ.(y) dy, 

where 

Notice that 

I (p/ko-) (x/o-) -~ -~ p/k~, 
K (x, y) = ] (p /  ko-)(X/ o-)-~-(v/k~y p/k, 

tO, 

x>~o- 

o-<~y~<l, 

l <~ y<~x/o-, 

y >  x/o-. 
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(3) 

(4) 

, ~  y) dx = 1 (5) 

for all y, as it must be in order that 

I; I; tp,(x) dx = 1 guarantees that qJ,+l (x) dx = 1. (6) 

Equation (4) can be derived from Eq. (20) in Lasota and Mackey  (1984) after 
identifying the function q(x)  in Lasota and Mackey's  equation with p / k x  if 
x > 2o- max{l ,  y} and 0 otherwise. 

4. The steady state size distribution 

Any steady state size distribution, ~b,(x), satisfies 

~b,(x) = K(x ,  y)~b,(y) dy, f f , (x)  dx = 1. (7) 
o" 

I f  we look for solutions of  the form ~ , (x )  = x -r  (r real, r >  1), we find that the 
exponent r must satisfy the characteristic equation 

p - k ( r -  1) = po-( r -1) ,  (8)  

o r  

1 - s = e -as, (8a) 

with s = k ( r - 1 ) / p  and a = p ( r - T s ) .  In order that f f , ( x ) = x  -r  be integrable, 
i.e. in order that r >  1, we must insist that k /p  < - I n  or, i.e. that p ( r -  TB)> 1. 
Properly normalized, our steady state size distribution is 

~ b , ( x )  = [ ( r  - 1)/o'](x/o-) -r, X >i O" (9) 

o r  

6 , ( x )  = (ps/ko-)(x/o-) -l-(ps/k), x >~ o-. (9a) 

To prove uniqueness and global asymptotic stability of  the steady state solution 
(9), we must first restate the machinery developed by Lasota and Mackey (1984). 
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Let D be the set of all real-valued functions in L t ( = L l [ o  -, oo)) which satisfy 

0(x)~>0 and r dx=l .  (10) 

Let K(x, y) be a real-valued function defined on x, y e [~r, oo) 

K ( x , y ) ~ O  and K(x ,y )  d x = l  f o r a l l y .  (11) 

Let the operator  P: L I ~  L 1 be defined by 

PO(x) = j?  K(x, y)O(y) dy. (12) 

A function h e L 1 will be called a non-trivial lower bound function for P if, for 
every 0 e D, there exists an integer no(O) such that 

P"O(x) >1 h(x),  n ~> no(0), (13) 

and if 

io h(x)>~O and h(x) dx>O. (14) 

Theorem 1 (Lasota and Yorke 1982; Lasota and Mackey 1984). I f  for kernel 
K (x, y) satisfying (11), there exists a nontrivial lower bound function for the operator 
(12), then Eq. (7) has a unique solution O. e D. Moreover, for any O e D, 

!irn IP"0(x)  - 0 , (x) l  dx = 0. (15) 
o "  

Theorem 2 (Lasota and Mackey 1984). I fK (x ,  y) satisfies (11), and if 

? x K ( x , y )  d x ~ y y + 6 ,  y>-O (16) 

for some nonnegative constants y and 6, 2/< 1, and if 

Io " inf dx>O (17) K(x ,y )  
y~[O, ,~] 

for some a > 6 / ( 1 -  y),  then there exists a nontrivial lower bound function for the 
operator (12). 

(Note: Lasota and Mackey require a stronger condition than our (17); a simple 
modification of  their proof  justifies our version.) 

Thus, to prove uniqueness and global asymptotic stability of (9), we must 
verify (16) and (17). Assuming for a moment that p >  k, we find that Eq. (16) 
holds with y = ~rp/(p - k) and ~ = (1 - or) o'p/(p - k). In order that y < 1, we must 
insist not merely that p > k but further that 

1 - o r >  k/p. (18) 
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Then, taking a = {(1 - o')trp/[p(1 - or) - k]} + e (e > 0), we find that 

f0,  i f x < ~ r  
inf K ( x ,  y)  = J~. (p/kO.)(X/O.)-l-(p/k), if x >  olo" y~[O, cQ 
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so (17) is satisfied. Thus, (18) is a sufficient condition for uniqueness and global 
asymptotic stability of  $ , (x ) .  It is interesting to note that (18) is identical to the 
condition ( r >  2) that $ , ( x )  given by (9) have finite first moment,  i.e. that there 
be a finite average birth size. For �89 < cr < 1 and 

1 - o r <  k i p  < - I n  or, (19) 

we have 1 < r <2 ,  so O,(x)  given by (9) is integrable but x ~ , ( x )  is not. We 
suspect that ~b,(x) is still unique and globally asymptotically stable in case (19), 
but we cannot prove so using the Lasota-Mackey theorems. Furthermore, we 
suspect that there does not exist an integrable, stable steady-state solution to (3) 
when k i p  > - I n  o-, but we have not tried to prove this assertion. 

5. The generation time distribution 

Now that we know ~ , (x ) ,  the steady-state distribution of birth size on a sample 
of  ceils belonging to the same generation, we can calculate the steady-state 
distribution of residence times in C-phase (again) on a sample of  cells belonging 
to the same generation, which we denote f c  (t). This distribution will have three 
contributions: 

1) the probabili ty that a cell, chosen at random from a sample of  cells of  the 
same generation, has Tc = 0 is just the probabili ty that a cell has birth mass > 1, 
i.e. 

fo~ t~,(x) dx = = 1 - s. (20) o.(ps/k) 
1 

2) the probabili ty that a cell, chosen at random from a sample of  cells of the 
same generation, has Tc > 7 -  TB is identically zero, since the maximum value 
of Tc is given by 1 = tr exp(kT~ax). 

3) the probabili ty that a cell, chosen at random from a sample of  cells of  the 
same generation, has Tc greater than some chosen time, 0 < t < T~ ax, is 

Prob{ t < Tc < Tr~c ax} = Prob{o- < birth size < e -k ' }  

-- f exp(--kt) 
r dx 

--,itr 

= 1 - (1 - s) e pst. (21) 

Differentiating (21) with respect to t, we find that 

f c ( t ) = p s ( 1 - s ) e  ps', f o r 0 < t < 7 - T B .  

Collecting these three facts, we can write 

f c ( t )  = (1 - s ) 2 8 ( t ) + p s ( 1  - s ) e  p~', 0~< t~< 7 -  Tn, 

= 0, t > 7 -  TR, (22) 
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where 6(t)  is the Dirac delta function, which satisfies 8 ( t ) = 0  if t # 0 ,  and 
~o ~(t) dt = �89 

Now we are in a position to calculate f , ( T ) ,  the steady-state generation-time 
distribution on a sample of  cells belonging to the same generation. Since T - To = 
Ta + Tc = sum of  two independent  random variables, 

Z,(  T) = fA( T--  To - t ) fc(  t) at. 

Using (1) and (22), we find that 

f , ( T )  = 0, if 0~< T <  To, 

= C[1 + s exp{p(1 + s ) ( T -  To)}]p e x p { - p ( T -  To)}, if  To ~< T ~  < r 

= C [ l + s e x p { p ( l + s ) ( r - T n ) } ] p e x p { - p ( T - T ~ ) } ,  if  T>~r, (23) 

where C = (1 - s ) / ( l + s ) .  

The mean generation time is given by 

( T ) =  I o  t f , ( t )  dt = ( TA) + To + ( Tc) = r. (24) 

That is, the mean generation time is identical to the mass-doubling time of the 
population.  At first sight, this result seems wrong, since Painter and Marr (1967) 
emphasize that the mean generation time is always larger than the mass-doubling 
time. However,  we must recall that the Pa in ter -Mar t  p roof  is for a generation-time 
distribution based on a sample of  cells newborn at a particular instant of  time, 
whereas our result (24) refers to the average of  a generation-time distribution 
based on a sample of  cells belonging to a particular generation. 

In the Appendix we prove that ( T ) =  �9 whenever cells grow exponentially 
and divide exactly in half. Otherwise, such a simple relation is not generally true. 

6. Alpha and beta curves 

Since cell kineticists often plot generation-time data as survivorship functions, 
we calculate the function a (t) = ~ f , ( T )  dT, 

ce(t) = 1, i f O < t < T B ,  

= 1 - C [ e x p { p s ( t -  T B ) } - e x p { - p ( t -  TB)}], if TB~ < t ~  < ~', 

= C e x p { - p ( t -  T B ) } [ l + ( s / 1 - s ) e a ] ,  if t ~  > ~-. (25) 

Equation (25) can be derived from Eq. (8) in Lasota and Mackey (1984), but 
the derivation is quite tedious. 

Notice that, for t > ~', In a (t) = In(constant) - p ( t - To), which gives a straight 
line when In a is plotted against t (an "alpha-curve") .  That this must be so 
follows f rom the fact that max(Tc )  = z -  To: all cells with T > ~- must be in the 
A-state ~ ' -  To time units after birth; these cells leave the A-state with constant 
probabil i ty per  unit time so a( t )  must be a decaying exponential for t > r. For 
To ~< t ~< z, there is a shoulder which connects the "exponential  tail" with the 
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Fig. 2a, b. Generation-time distributions for (x) Balbc 3T3 cells (Shields 1980) and for (+) Staphylococ- 
cus albus (Shields 1978). The time unit is hours for the murine cell data and minutes for the bacterial 
cell data. The continuous curves are calculated from the model with the following parameter values: 
for Balbc 3T3, p = 0 . 3 5 h  -1, r=13 .8h ,  and TB=10h; for S. albus, p=0.106min -1, 7=38.8rain, 
T~ = 6 min. (a) a-curves (cumulative distributions plotted semilogarithmically) calculated from the 
data and from Eq. (25). (h) Histograms of cell generation times constructed from the data, and 
probability distribution functions calculated from Eq. (23) 

point In ct = 0 at t =Tm If p(~- - TB) >> 1, then, from Eq. (8a), s --~ 1 and 

c~(t) - 1 - e -a cosh [p ( t -  Tn)], TB <~ t ~< ~', 

= 0.5 e x p [ - p ( t -  ~')], t~>z. (26) 

Figure 2a illustrates the excellent fit of Eq. (25) to experimental alpha-curves 
for bacterial and murine cell populations. These are not "best fits" in any statistical 
sense, but merely casual fits obtained by estimating p from the slope of the 
exponential tail, TB from the minimum observed generation time, and r from 
the median generation time (cf. Eq. (26)). Using these values of p, TB and r we 
can sketch the expected generation-time distribution f , ( T )  according to Eq. (23) 
and compare the expected distribution with the observed histograms, as in Fig. 
2b. Presumably, one could improve the fit by standard statistical procedures, 
such as the principle of maximum likelihood, but we have not attempted to do this. 

Another statistic that is commonly reported for cell populations is 

fl(t) =probability that IT1- T2I>~ t, where 7", and T2 are the 
generation times of sister cells. 

For the tandem model, sister cells (which are by assumption identical in size at 
birth) have identical values of Tc and differ only in TA. Since TA is exponentially 
distributed, we have/3(t)  = e -p'. T h u s ,  a plot of In fl versus t ("beta-curve") will 
be a straight line through the origin with the same slope as the tail of the 
alpha-curve for the cell population. This situation is commonly observed (Minor 
and Smith 1974; Shields and Smith 1977). Indeed, for the bacteria! cell popula- 
tion whose alpha-curve is reported in Fig. 2, Shields (1978) has found that the 
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beta-curve is a straight line through the origin with slope = -0.1 min -1, exactly 
as we would expect from the tandem model. However, it should be recognized 
that beta-curves are not always parallel to the tail of the corresponding alpha- 
curve. For instance, for the murine cell population whose alpha-curve is given 
in Fig. 2, Shields (1980) has found that the beta-curve is a straight line through 
the origin with slope = - 0 . 6  h -x, which is twice the expected value. 

7. Correlation coefficients 

Our model can be tested further by evaluating the correlation in generation times 
between sister cells and between mother-daughter pairs. For sister cells the 
correlation coefficient is (Green 1980) 

rsi s = var( T c ) / [ v a r ( T c )  + var( TA)]. (27) 

Since var(TA)=p-2 and va r (Tc )=p -2 [1 -2s~1 ( 1 -  s ) ( a -  1)], we have 

r,,, = [2(1 - s ) ( a  - 1) - s]/[2(1 - s ) ( a  - 1) -2s ] .  (28) 

Since s = s ( a ) ,  rsi, is a function of a only, and it is plotted in Fig. 3. Though the 
model predicts that 0 <  rsis <0.5, sisiter cell correlation coefficients are often 
greater than 0.5. (Powell 1956; Schaechter et al. 1962; Kubitschek 1962; Minor 
and Smith 1974; Shields 1980). 

Mother and daughter generation times ( T "  and T d) are negatively correlated 
since, as long as T,~ + TB < r, T d = r -  T ~  + T d. Provided that T~, + TB < r, the 
correlation coefficient is 

r,,a = -var(TA)/{2 var(TA) [var(TA) + var( Tc)]} ' /2 ,  (29) 

which reduces to - 0 . 5 { s / [ 1 -  a (1 - s ) ]}  1/2. Now, T ] <  r -T ,~  for a fraction of 
mother-daughter pairs = 1 - e -a. The rest of the pairs, for which T~ > r - TB, are 
uncorrelated. Thus, roughly speaking, 

r,,d ~- -0.5(1 - e - a ) { s / [ 1  - a(1 - s)]} '/2, (30) 

which is plotted in Fig. 3. The model predicts that r,,a -~ -0.5 for all values of a, 
which is, in general too negative (Powell 1956; Schaechter et al. 1962; Kubitschek 
1962; Shields and Smith 1977). 

That the predicted correlation coefficients for sister cells and for mother- 
daughter pairs are too negative is a common failing of deterministic models of 
the cell cycle (Koch and Schaechter 1962). This does not invalidate the notion 

0 .5  

0 .0  

- 0 . 5  

f 

I 2 3 4 

Fig. 3. Product-moment  correlation coefficients. The upper  

curve  is the sibling correlation coefficient calculated from Eq. 
(28), and  the l ower  curve  is the mother-daughter  correlation 
coefficient calculation from Eq. (30) 
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of size control, however, since small heterogeneities in growth rate would tend 
to make both correlation coefficients more positive (Koch 1980). 

8. Monte-Carlo simulations 

A Monte-Carlo simulation of the tandem model can be implemented as follows. 
Choose an arbitrary initial mass distribution for a suitable large number, N, of 
cells. Calculate Tc for each cell, assuming exponential growth (Tc = 0 if birth 
mass i> 1). Next, generate N random numbers, Ta's, from an exponential distribu- 
tion. Compute the division mass of each cell from its birth mass and its generation 
time (TA + TB + Tc),  assuming exponential growth. Finally, imagine that each 
cell divides exactly in half, and retain only one daughter. This generates a new 
sample of  N cells of known initial masses. The process can be iterated until the 
mass distribution and generation-time distribution settle down to their asymptotic 
forms. The results of such simulations are illustrated in Fig. 4, and it is seen that 
the analytic expressions for ~b,(T) and a ( t )  agree quite well with the Monte-Carlo 
results. 

The Monte-Carlo simulation generates the asymptotic birth-mass distribution 
function as well as the generation-time distribution function. In Table 1, we 
compare the mean, variance and skewness of ~b,(x) with the mean, variance and 
skewness of the set of random numbers representing the birth masses of 1,000 
cells of a Monte-Carlo simulation in the 20th generation. The mean, variance 
and skewness of @,(x) are 

mean = c r ( r -  1)(r- '2)  -1, (31) 
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Fig. 4a, b. Generation-time distributions from Monte-Carlo simulations of the tandem model. The 
fundamental parameters, p, k and TB, were the same used to model (• the murine cell data and 
(+) the bacterial cell data in Fig. 2. In the Monte-Carlo simulation, N =  1000 ceils, and the 
generation-time distribution was determined in the 25th generation after starting the population with 
all cells of unit mass. (a) Histograms of simulated cell generation times, and probability distribution 
functions calculated from Eq. (23). (b) Alpha-curves calculated from the same simulations and from 
Eq. (25) 
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Table 1. Mean, variance and skewness of the birth-mass distribution function, according to the 
analytical result and Monte-Carlo simulation a 

No. p k TB r Mean Variance Skewness 

1 0.580 0.0559 8.0 10.33 0.88 (0.88) 0.011 (0.012) 2.89 (2.88) 
2 0.390 0.0408 13.0 6.93 1.02 (1.01) 0.045 (0.045) 3.85 (3.73) 
3 0.180 0.0246 21.0 4.07 1.24(1.22) 0,47 (0.38) 68.7 (5.9) 
4 0.140 0.0224 23.0 2.29 3.73 (1.7~') oo (1.8) oo (5.5) 

a The Monte-Carlo simulations were performed as described in the text, with N = 1000. The mean, 
variance and skewness were calculated in the 20th generation after starting from a population of 
1000 cells of unit mass. The Monte-Carlo results are given in parentheses after the theoretical values 
predicted by Eqs. (31)-(33). Simulations 1 and 2 had reached the stationary mass distribution by the 
20th generation, but simulation 4 was not yet at a stationary state (the mean was still increasing at 
generation 20). The values chosen for p, k and T B are those used by Tyson and Hannsgen (1981) to 
model some experimental cell populations. 

variance----/x2 = o'2(r - 1 ) ( r -  2 ) - 2 ( r -  3) -1, 

skewness  - - /z3/ /x  3/2 = 2 r ( r - 4 ) - l [ ( r - 3 ) ( r  - 1)-1] 1/2, 

(32) 

(33) 

w h e r e / z ,  = n th  m o m e n t  o f  ~ , ( x )  abou t  the  mean .  The results  in Table  1 show 
tha t  the  ana ly t i c  f o r m u l a e  agree  excel len t ly  with the  M o n t e - C a r l o  results  as long 
as r is no t  too  small .  F o r  r smal l ,  the  h igher  momen t s  will  not  agree  because ,  
e.g. i f  r ~  < 4, /z~ = oo for  n = 3, 4 , . . . ,  yet  any  s imula t ion  will  necessar i ly  give a 

finite va lue  for  all  these  moments .  

9. Theoretical and experimental distributions 

In  this  p a p e r  we have  been  conce rned  with age and  size d i s t r ibu t ions  def ined on 
samples  o f  cells  be long ing  to the  same genera t ion  ( f rom some dis tan t  ancestor) .  
In  a p rev ious  p u b l i c a t i o n  we l ooked  at d i s t r ibu t ions  def ined on samples  o f  cells 
tha t  were  all  bo rn  c o n t e m p o r a n e o u s l y  (i,e. in some  na r row t ime window) .  Ne i the r  
o f  these  s a m p l i n g  convent ions ,  which  are conven ien t  f rom a theore t ica l  po in t -of -  
view, c o n f o r m  very c losely  to expe r imen ta l l y  m e a s u r e d  d is t r ibu t ions ,  for  which  
the s a m p l i n g  conven t ion  is ra re ly  def ined expl ic i t ly  but  seems in most  cases to 
consis t  o f  all  cells in a t ime- l apse  record  for  which  adequa t e  measu remen t s  can 
be  m a d e  with  some cor rec t ion ,  pe rhaps ,  for  t runca t ion  o f  the  record .  I t  wou ld  
behoove  expe r imen ta l i s t s  to p a y  more  a t t en t ion  to the sample  o f  cells on  which  
the i r  h i s tog rams  are cons t ruc ted .  Two sampl ing  convent ions ,  due  to Powell ,  seem 
pa r t i cu l a r ly  c lear  and  a p p r o p r i a t e  for  bo th  theore t ica l  and  expe r imen ta l  purposes .  
First ,  one cou ld  c o m m e n c e  a t ime- lapse  record  with jus t  a f ew cells (p re fe rab ly  
one)  in the  field o f  view and  then  use as one ' s  s ample  all the  p r o g e n y  o f  these 
cells in, say, the  fifth o r  s ixth genera t ion .  This w o u l d  give an a d e q u a t e  a p p r o x i m a -  
t ion  to the  d i s t r ibu t ions  ~b,(x) and  f , ( T )  d i scussed  in this paper .  Al terna t ive ly ,  
one cou ld  use  a t ime- l apse  record  with m a n y  h u n d r e d s  o f  cells,  choose  a f rame 
in the  m i d d l e  o f  the  film, and  define as one ' s  s amp le  all  cells al ive in this  frame.  
This is a s amp le  o f  " e x t a n t "  ceils,  which  can  be used  to define the  d i s t r ibu t ions  
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~be(x) and fe(T). In particular (PoweU, 1964; Painter and Marr, 1968), 

f e ( T )  : 2 (1  - e-kr)f(T), 

SO f(T), the steady-state probability density for generation time defined on a 
contemporaneous sample of newborn cells, can easily be derived from fe(T) and 
k, the specific growth rate of the cell population. Unfortunately, we know of no 
comparable expression relating ~b~(x) to ~,(x), the birth-size distribution defined 
on a contemporaneous sample of newborn cells. 

10. Conclusion 

We have analyzed a model of the cell cycle that incorporates in a simple way 
the ideas of size control and random transitions as regulatory elements for progress 
toward division. We have (i) proved that there exists a globally asymptotically 
stable distribution of cell size at birth, (ii) given an analytic expression for the 
birth-size distribution, (iii) derived the generation-time distribution from the 
known birth-size distribution, and (iv) compared the generation-time distribution 
with experimental data. Our model is superior to both elementary models from 
which it is derived, in that it is able to account quite well for generation-time 
histograms, a-curves and/3-curves. However, the model is incorrect in at least 
three regards: it predicts values for mother-daughter and sister-sister correlations 
which do not agree with experiment, and it predicts a birth-size distribution with 
an abrupt discontinuity at x = o-= minimum birth size, which is far from the 
observed smooth, almost Gaussian, distribution of cell size at birth. These prob- 
lems are traceable to the assumptions of (i) exponential growth of individual 
cells and (ii) a size-monitoring mechanism that prevents cells from entering 
A-phase until they reach precisely x = 1. We are Currently investigating models 
for which cell growth is non-exponential and size-monitoring is imprecise. 

Acknowledgments. We thank Robert Shields for graciously providing the experimental data in Fig. 
2; he obtained the bacterial data from E. O. Powell. Paul Nurse drew our attention to the cell cycle 
model discussed in this paper. This work has been supported by grants from the National Science 
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Appendix: mean generation time 

In Sect. 5 we noted that, for the tandem model, the steady-state mean  generation time (over a sample 
of cells belonging to the same generation) is identical to the mass-doubling time of  the populat ion 
(assuming that  individual cells grow exponentially). It is easy to show that this result holds quite 
generally for exponential  cell growth and exact binary fission. Consider a cell chosen at random from 
a sample of  same-generation cells. Let x be its birth mass,  t its generation time, and y the birth mass 
of  its daughters.  Then  y = x eke/2, or In y = In x + kt - In 2. Taking the expected value of both sides 
of  this latter equality over a sample of same-generation cells, we have (In y} = (In x)+ k ( t ) - I n  2. 
Under  steady-state conditions (In y) must  be the same as (In x), so ( t )=  In 2/k-~ z. 

This proof  can be generalized further. Lasota and Mackey (1984) have shown that 

qS,(x) = [ -~ , (y ,  T(x, y))][V(x)]-lqJn(y) dy, (A1) 
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where 
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~b. = probability density for birth size in nth generation, 

~b. = probability density for division size in nth generation, 

V(x) = rate of  growth of  a cell of  size x, 

T(x, y) = time needed for a cell to grow from size y to size x, 

a (x, t ) =  probability that a cell has generation time ~> t, given that its birth size is x. 

a t (x  , t ) =  Oa(x, t)/Ot, 

If  cells divide exactly in half, ihen r  and (A1) becomes Eq. (21) in Lasota and 
Mackey. If  cells divide into unequally sized daughters, then (Powell 1964) 

In ~b.+l(x) = p-lK(p)~b.(x/p) dp, (A2) 

where K ( .  ) is a probability density function for the ratio of  daughter-size to mother-size. Obviously 
K ( .  ) must be symmetric around ~. If  K ( - )  is a delta "function" at �89 then tp.+l(X)= 2~b.(2x), as 
expected. From (A1) and (A2) we have 

fo fx/p ~p~+t(x) = p- '  K(v )[ -a t (y  , T(x/p, y))][ V(x/p)]-ttp.(y) dy dp. (A3) .10 
Let (In x) n = So In x ~b n (x) dx. Then, from (A3), 

In (lnx),+l-~(lnm(x,t))n+ InpK(p)  dp, (A4) 

where m(xo, t) is the solution of  the initial value problem dx/dt = V(x), x(O)= Xo, and 

(ln re(x, t)) ,  = In re(x, t)[-a,(x, t ) ] ~ ( x )  dx dt. 

For exponential growth, re(x, t) = x e kt and 

(ln re(x, t))n = (ln x)n + k(t)n, (A5) 

where we have used the fact that the generation-time distribution is f~(t)= S~ [ - a f i x ,  t)]O~(x) dx. 
In steady state, the expectations are independent of  n so (A4) and (A5) imply that 

i' 
k(t)= - l npK(p )  dp. (A6) 

For K(p) a delta "function" at p = 1/2, the right hand side of  (A6) is simply In 2, so (t) = In 2/k = r 
as derived at the start. It is easy to show that, in general, 

In - l np  K ( p )  dp=ln2+21.~2+R (A7) 

where ~2 is the variance of  K(p) and the remainder is given by 

R =  ~ (2n)-122~2n 
n=2 

with/.q = i ' th central moment of  K(p). We can estimate the size of  the remainder by assuming that 
K(p) is a uniform distribution with variance = ~2- Then 

R=(36 /z l /5 )  ~ r.(12/z2) ~ n=O 
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with r, = 20[(2n +4)(2n + 5)] -1. Obviously, 

(36tx2/5) < R < (36/z22/5)(1 - 12/~2) -x. 

Thus, R = 0(/~), so to first-order in/~2, 

k(t) = In 2 + 2it2. (A8) 

We have derived (A8) by assuming that K (p) is a narrow uniform distribution. A more reasonable 
form for K(p) would be a narrow symmetric beta distribution, but one can show by a similar but 
lengthy argument that R = O(tx 2) for this ease as well. For cells like budding yeast, which divide 
asymmetrically, it may be that R = O(~2) and that/~2 is not particularly small. In such cases k(t) is 
not necessarily close to In 2. 

We can rewrite (A8) in terms of the coefficient of variation (CVP) of the distribution of p-~ 
daughter-size/mother-size; 

k(t)ge~ = In 2 + (CVp)2/2, (A9) 

where (t>gen is the mean generation time on a sample of same-generation cells. Equation (A9) should 
be compared to (Painter and Marr 1967) 

k(t)r = In 2 + (CVT)Z/4 (A10) 

where (t)co n is the mean generation time on a sample of contemporaneous newborn cells, and CVT 
is the coefficient of variation of generation times on such a sample. Typically, CVP= 5-10% whereas 
CVT= 10-20% so the difference between mean generation time and mass-doubling time (~-= In 2/k 
for exponential cell growth) is much less for same-generation samples than for contemporaneous 
samples. 

For cell growth laws other than exponential there is no simple relation between (t)gen and ~'. 
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