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Abstract. A predator-prey model, where both species are subjected to para- 
sitism, is developed and analyzed. For  the case where there is coexistence of  
the predator with the uninfected prey, an epidemic threshold theorem is 
proved. I t  is shown that in the case where the uninfected predator cannot 
survive only on uninfected prey, the parasitization could lead to persistence 
of the predator provided a certain threshold of transmission is surpassed. 
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1. Introduction 

Many macroparasi te species exhibit a regular alternation between two host 
species. The transition from one host to the other is accomplished either by 
releasing eggs or larvae into the environment where they are taken up by one of 
the hosts or by a prey-predator relation between the two host species. In some 
cases more sophisticated life cycles with even three hosts and complicated 
transmission techniques have evolved (e.g., in the snail-ant-sheep-system of  
Dicrocoelium lanceolatum; see Holmes and Bethel 1972 for further references). A 
mathematical  model for the parasite-prey-predator interaction contains a de- 
scription of the prey-predator relation as well as of  the host-parasite-interaction. 
For  both components of  the system one can use well-established models. 
However the complete model has a higher degree of  complexity and requires 
more detailed investigation. 

* Support by the Central Research Fund of the University of Alberta is gratefully acknowledged 
** Research partially supported by the Natural Sciences and Engineering Research Council of 

Canada, Grant No. NSERC A4823 



610 K.P. Hadeler and H. I. Freedman 

The interaction of one-prey and one-predator populations is reasonably well 
understood. After the early and basic work of Lotka, Volterra, Kolmogorov and 
others, major breakthroughs were obtained by the systematic investigations of 
response functions (Holling 1959) and by the discovery of the phenomenon of 
destabilization by enrichment (Rosenzweig 1971; Freedman 1987; Freedman and 
Wolkowicz 1986). Mathematically, the investigation of these models is simplified 
by the fact that they are two-dimensional and thus the Poincar6-Bendixson 
theorem applies. 

Models for the interaction of more than two species have been studied in 
recent years. Then more complex phenomena arise, making the mathematical 
problems of a complete qualitative analysis, in some cases, insurmountable. On 
the other hand, a complete analysis is often not appropriate to answer the 
underlying biological questions. Hence many recent investigations have been 
concentrated on persistence problems. In biological terms, persistence says that 
asymptotically the density of each species remains above a positive bound 
independent of the initial conditions, i.e. all species stay away from extinction. 
Mathematically, this may be stated in terms of behavior of solutions of the 
models representing the biological phenomena, termed uniform persistence or 
permanence (Freedman and Waltman 1985; Hofbauer and Sigmund 1987). 

Most models for the transmission of infectious diseases descend from the 
classical SIR model of Kermack and McKendrick (1927). Susceptibles become 
infectious by contact with infectious individuals. Later they may recover and join 
the group of immune (or dead) individuals. Also the Kermack-McKendrick 
model and many of its extensions are well investigated. Whereas the SIR model 
describes only the spread of the disease, some extended versions show the 
demographic impact of the disease (Hadeler 1984). 

.Although many parasite species have two or more stages which live in 
different hosts, for some important parasitic diseases of vertebrates (in particular 
humans, e.g., malaria, schistosomyasis, or onchocercasis), the secondary host 
does not play an essential role in the ecology of the primary host, except for the 
transmission of the disease. 

On the other hand, there are quite a number of examples where the two hosts 
are in a prey-predator relation and where the predation itself transmits the 
parasite from the prey to the predator, whereas the transmission from the 
predator to the prey typically is far less directed. In many cases the parasite 
modifies the external features or the behavior of the prey so as to make infected 
individuals more vulnerable to predation. In a review article Holmes and Bethel 
(1972) have collected many examples of such modification. In simple cases the 
infected individuals are less active and can be caught more easily. In more subtle 
cases the behavior of the prey individuals is modified such that they live in parts 
of the habitat which are accessible to the predator (fish and aquatic snails staying 
close to water surface, snails staying on top of the vegetation rather then under 
the plant cover), or in extreme cases, the body of the prey becomes more 
conspicuous. Dobson (1988) has provided further examples (mainly from the 
group of Acanthocephales) and has studied several sets of model equations. 
Peterson (Peterson and Page 1987; 1988; Mech et al. 1987) has indicated that 
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wolf attacks on moose are more often successful if the moose is heavily infected 
by Echinococcus granulosus. The moose is an intermediate host and the wolf is a 
terminal host of the parasite. 

From a biological perspective, there are two rather different situations. A 
parasite population can invade an existing predator-prey relation if it manages to 
satisfy the two basic requirements for a successful parasite, namely to contact 
and invade the host with sufficient reliability, and to restrict the resulting increase 
in host mortality. In the situation of the predator-prey system, the parasite has 
to satisfy these conditions with respect to both species. The conditions for 
persistence of the parasite in the prey-predator system can be formulated as a 
threshold condition for the transmission rates or as a condition for the basic 
reproduction rate of the parasite ("net reproductive value" in a more general 
context introduced by R. A. Fisher 1930, "basic reproduction rate Zo" introduced 
by G. Macdonald 1952, 1955 for malaria, "reproduction rate R" of K. Dietz 
1976 and Aron and May 1982). In simple epidemics the basic reproduction rate 
may be evaluated at the uninfected equilibrium of the host population. However, 
in prey-predator models the uninfected equilibrium may be unstable, and the 
threshold conditions have to be computed at a periodic solution (see Sect. 3 
below). As stated earlier, a successful and well-adapted parasite ensures its 
persistence by establishing a reliable transmission and by restricting the damage 
inferred upon the host. As Curio (1988) has observed the situation is more 
complex with respect to an intermediate host which is the prey in a prey-predator 
relation. Here increased mortality due to predation is favoured in order to 
guarantee transmission from the intermediate to the definite host. 

In the second situation only the presence of the parasite makes the predator- 
prey relation possible. In the absence of the parasite the predator can prey upon 
the prey species but not to such an extent as to sustain a stable population. On 
the other hand, infected individuals are more easily caught by the predator. A 
certain level of infection with the prey species is required for persistence of the 
predator on this particular prey. 

In this second approach the following evolutionary question poses itself. 
How could the parasite adapt itself to the predator-prey-situation if that relation 
never existed without the parasite? This problem is also reflected in the mathe- 
matical results. It turns out that the prey-only stationary point never becomes 
unstable, even at high transmission rates, and the prey-predator-parasite popula- 
tion is not persistent in the usual orthant. However, at high transmission rates a 
new stable stationary point appears together with a saddle-point. In this situation 
there is a threshold phenomenon: if there are just a few predators, then the 
predator population becomes extinct, whereas if there are many (infected) 
predators then the system evolves towards the stable predator-prey-parasite state. 

In modelling this situation we do not introduce the parasites as an interact- 
ing species, but we consider populations structured by the level of infection 
(Hadeler and Dietz 1983, 1984; Kretzschmar 1988; Waldst/itter et al. 1988). We 
consider the most simple situation, we do not consider multiple infec- 
tion or sexual reproduction in the host. Hence our model is a system of four 
ordinary differential equations for four types (noninfected and infected prey and 
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predators, respectively). Our approach is different from that of Dobson (1988) 
who uses the variables eggs, density of parasites in intermediate hosts and in 
definite hosts, number of intermediate hosts, whereas the number of definite 
hosts is assumed constant. In our model we retain the typical properties of the 
prey-predator model (extinction of the predator if the carrying capacity of the 
prey is decreased, destabilization by enrichment). Also we believe that the 
structured population model gives a better description of what really happens at 
the level of the individual hosts. On the other hand, in our approach multiple 
infections (clumping of parasites, Anderson and May 1979) can only be de- 
scribed with several classes of infected hosts. We do not think it necessary to 
model the compartment "eggs" by a separate variable. The "loss" of eggs or 
larvae due to successful infection can be neglected. 

Anderson and May (1986) have studied five prey-predator-parasite interac- 
tions (invasion of a pathogen into an existing host-pathogen relation, introduc- 
tion of a new host into such relation, invasion of a pathogen into a system of 
competing hosts, infection of either the prey or the predator by a parasite). Our 
problem is different because the prey is the intermediate host. 

It is well known, even for three-dimensional problems, that the persistence 
problem becomes difficult if the faces of R~ contain periodic orbits. Here we 
overcome this difficulty by an appropriate application of the Perron-Frobenius 
theorem. 

In Sect. 2 we derive and discuss the model equations, in Sect. 3 we prove the 
epidemic threshold theorems, Sect. 4 is devoted to a short discussion of the 
persistence problem. In Sect. 5 we derive results on parasite-mediated coexistence 
of prey and predator, in Sect. 6 we show the results of numerical simulations, 
Sect. 7 contains a concluding discussion of the results and their biological 
implications, in the Appendix, Sect. 8, we present those features of the Perron- 
Frobenius theory which are needed in the proofs. 

2. Formulation of the model 

The four population densities are the noninfected prey x0, the infected prey xl, 
the noninfected predator Yo, and the infected predator Yl. For convenience we 
introduce the total densities of prey and predator, respectively, 

X =Xo-~-XI, Y =Yo +Yl. 

Since our models will consist of systems of autonomous ordinary differential 
equations, we will assume throughout this paper that all functions are sufficiently 
smooth so that solutions to initial value problems exist and are unique. 

In the absence of the parasite the two species follow a Rosenzweig predator- 
prey dynamics 

Yc = B ( x )  - D ( x )  - q ( x ) y ,  

.9 = - 7(  Y )  + c q ( x ) y ,  

(2.1) 
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where B, D are the birth and death functions of the prey, V is the death rate of  
the predator, q is the response function, and c is the conversion rate of prey 
biomass into predator biomass. These functions are assumed to satisfy the 
following hypotheses: 

B(0) = D(0) = 0; B(x) > 0, D(x) > 0 for x > 0; 

B'(x) > O, D'(x) > 0 for x > 0; B'(0) > D'(0) i> 0; 
(2.2) 

there exists a unique K > 0 such that B(K) = D(K); 

B'(K) < D'(K). 

Hypotheses (2.2) imply that birth and death rates increase with increasing 
populations. Initially the birth rate must be greater than the death rate for the 
prey population to survive, but at some positive population density K (the 
carrying capacity of the environment), birth rate equals death rate. For larger 
densities, death rates exceed birth rates. 

q(0) = 0, q'(x) > 0. (2.3) 

Hypotheses (2.3) imply that the predator functional response is an increasing 
function of prey density. 

~,(0) = 0, 7'(Y) > 0. (2 .4)  

V(Y) is the density-dependent predator death rate. 
The response function of  the predator with respect to partially infected prey 

is 

p(XO, Xl) =po(Xo, Xl) "[-pl (X0, Xl) , (2.5) 

where po(xo, xl) >~ 0 is the consumed noninfected prey, and pl(x0, xl) ~> 0 is the 
consumed infected prey. We assume po(Xo, O) = q(xo), 

and 

po(Xo, xl) +pl(xo, xl) ~ q(x), (2.6) 

p(XO, X1) ~ kX with some k > 0. (2.7) 

Most important are the laws for the transmission of the parasite between the two 
species. The parasites are spread into the habitat by the infected predators and 
are taken up by the prey. We assume that the noninfected prey are infected in 
proportion to their own number and in proportion to the density of infected 
predators. The predators become infected by feeding on infected prey. Thus it 
appears to be a natural assumption that the noninfected predators become 
infected in proportion to the consumed infected prey. Then the transmission 
function is 

xp, ()Co, x, )yo. (2.8) 

Thus the full model becomes 
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Xo = B(x) -X~  -po(Xo, x l ) y - f l xoy l ,  
x 

Yo = -?(Y)Y~ X I ) + p l ( X o ,  X 1 ) ) Y - - K p l ( X o ,  xl)yo, 
Y 

Yq = fly, Xo - x l  D ( x )  - Pl  (Xo, x , ) y ,  
x 

(2.9) 

Yl = _ ? ( y )  Yl + xpl(xo ' xl)Yo. 
Y 

Here fl and x are constants representing the rate of conversion of uninfected 
populations into infected populations. 

Of course these equations are considered in •4. The orthant R 4 is positively 
invariant. Note that the solutions of the system (2.9) exist for all t > 0 in view of 
the obvious inequalities 

<~ B(x) -- D(x), 

<~ - ?( y) + kcxy, 

and the assumed conditions on the coefficient functions. 
Of the 15 faces of  the cone R 4 only few contain invariant subsystems. There 

are no proper three-dimensional invariant subsystems and the only two-dimen- 
sional invariant subsystem is the noninfected predator-prey system. 

The classical Rosenzweig model (for uninfected populations) is conveniently 
written 

x + A  y' 

(x .) ~ = c  
x + A  B + A  y" 

(2.10) 

Note that in this case 

B ( x )  = ax ,  
a x  2 

D ( x )  = 
K '  

(2.11) 
x B 

q(x) x + A '  "~(Y)= ~ y' ~ = c ~ < c .  

Here we assume that the level of  saturation does not depend on whether the prey 
is infected, i.e. we assume 

Then the )~ = 0 isocline is just the straight line x = B, and the three major cases 
of interest are characterised by 

K < B: no coexistence, 

(K + A)/2 < B < K: stable coexistence equilibrium, 

0 < B < (K + A)/2: stable periodic orbit of  coexistence. 
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Xo 0xl (2.12) 
po(Xo, Xl) - A  -[-Xo-~-OXl' pI(X~ - A  "1- Xo "q- Qx 1 ' 

where Q > 1 is a constant .  Thus  in the Rosenzweig case the full model  reads 

ax o x x o 
20 = ax  y - -  f l X o Y l ,  

K A + Xo + 0Xl 

B x o -q- ~x 1 0x1 
Yo = -- c ~ Yo + c A + Xo + OXl y -- ~c A + Xo + OXl Yo, 

(2.13) 

fC 1 = flylXo axlx ~X 1 y, 
K A -~l-Xo-q-Ox 1 

B QXl 
J~l = - c ~ y l  + tc A Yo. 

+ Xo + Oxl 

3. Epidemic threshold theorems 

In  this section the threshold theorems are derived. The Jacob ian  at an arbi t rary  
point  can be seen as a block matr ix  

:), 
where the four 2 x 2 blocks are given by 

d = 

B'(x) -xoD'(x)/x -x1D(x)/x 2 
-flyl-Poo(Xo, x1)y 

C(Poo(Xo, Xl )WPlo(Xo,  Xl))Y 

--xplo(Xo, xl)yo 

--p0(x0,  Xl) 

- ( 7 " ( y ) y y o + V ( y ) y l ) / y  2 

s X1)--Kpl(Xo, X1) 

, (3.2) 

= 

B' (x )  + xo(D(x)  - x D ' ( x ) ) / x  2 

+Pol(XO, x1)y 

C(poI(Xo, X l ) + P l l ( X o ,  Xl))Y 

- - K P l l ( X o ,  x1)Y0 

--pO(Xo, X1)- - f lX  0 

( - -  V ' ( y ) y  + V ( y ) ) y o / y  2 

cp(XO, X1 ) 

(3.3) 

Cg = 

I ~Yl "[- X1 (D(x)  -- xD ' ( x ) )  /x  2 

--Plo(Xo, x l )y  

t~Pl0 (X0, x1)Y0 

-pl(xo, xl) 

( --T'(Y)Y + 7(Y))Yl/Y 2 

+ xpl (Xo, xl ) 

(3.4 

= 

-- (xoD(x)  + X 1 x D ' ( x ) ) / x  2 

--Pl l  (Xo, xl )y 

KPll (Xo, x1)Y0 

~ Xo - p~ (Xo, Xl) / 

--(~ (y)yy~ + 7(y)yo)/y2]" 
(3.5) 
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Here the symbol pj~ denotes the partial derivative of pj with respect to xk, 
j, k = 0, 1. Then the equations xl = 0, Yl = 0 define an invariant manifold (the 
noninfected manifold). At points of this manifold the lower left block cg vanishes. 
The upper left block d is related to the noninfected manifold. It describes the 
action of J on its invariant subspace {Xl = yl = 0}. The lower right block ~ is 
also related to a two-dimensional invariant subspace. However, this subspace is 
not constant, i.e. it varies with the point where the Jacobian is formed. The block 

describes the stability of the disease-free situation (stationary point or limit 
cycle) with respect to infection. 

Along the noninfected manifold the lower right block ~ has the form 

{ - - (D(xo ) /X  o -b yoPll(Xo, 0)) fix o 
(3.6) 

I \ lCyoPll(XO, O) --7(Yo)/Yo,]" 
! 

This block describes the invasibility of the disease free situation (stationary state 
or periodic orbit). The off-diagonal elements of this matrix are nonnegative, 
hence the Perron-Frobenius theory applies (here for continuous semigroups). 
The spectral bound (largest real part of any eigenvalue of ~)  is itself an 
eigenvalue (the leading eigenvalue, see Sect. 8), corresponding to this eigenvalue 
there is a nonnegative eigenvector (of ~). In the actual proof the off-diagonal 
elements are positive (Xo > 0, Y0 > 0), then the spectral bound is a simple eigen- 
value. The other eigenvalue is (real and) strictly smaller and there is a positive 
eigenvector. Of course, in this simple case the eigenvalues can be explicitly 
computed from a quadratic equation and the statements can be checked directly. 
However we need the general approach for the proof of Proposition 2. Our first 
result is 

Proposition 1. I f  the (two-dimensional) noninfected model has a stable equilibrium 
(5Co, Yo) with 5Co, Yo > O, and if  this equilibrium is considered as an equilibrium 
(Xo, Yo, O, O) of  the four-dimensional system then there is a bifurcation towards an 
epidemic equilibrium at fix = To, where 

D(xo)/~o +P~t(~o, O)Yo ~'(Yo) 
To = (3.7) 

x0p I 1 ('~0, 0).~0 .~0 

For [3x < To, the noninfected equilibrium is locally stable. For [3~ > ~o, the nonin- 
fected equilibrium loses its stability, and for [3x - T o  > 0 small there is a locally 
stable epidemic equilibrium (Xo, Yo, xl ,  Y~) with all components positive. 

Proof. Let R(~o, Yo, 0, 0) denote the equilibrium in question. Let J, ~ ,  g ,  ~ be 
the matrices J, d ,  ~ ,  ~ respectively evaluated at E. The eigenvalues of J are 
precisely the eigenvalues of the two matrices ~ and ~.  The eigenvalues of ~ ,  by 
assumption, both have negative real parts. The eigenvalues of ~ are both real. 
One of them is negative since the trace of ~ is negative. Hence the sign of the 
determinant of ~ (or of J)  determines whether the leading eigenvalue is positive 
or negative. 

The two right eigenvectors ~ ,  32 of ~ can be extended to eigenvectors 2~, 22 
of J. Thus Jhas  the eigenvector 2~ for which the last two components are positive 
and the eigenvector 32 for which the last two components have opposite sign. 
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Thus, if the leading root is positive then the flow near the noninfected equi- 
librium is inward with respect to R 4 in the direction of ~1. 

By the usual argument one can establish a bifurcation which leads locally to 
a new stable equilibrium and an exchange of stability at fix = %. At this moment 
nothing can be said about the global stability of this epidemic equilibrium or 
about its existence or stability for fix -Zo large. [] 

The threshold condition fix < Zo can be written in the form 

/~XoYo x.'~opl 1 (fo, O)Yo < 1, (3 .8)  
~(-9o) D(s + xoP11 (Xo, 0)-9o 

which has a direct interpretation as R 1 R2 < 1 where R~ and R2 are the number 
of infections in preys per infectious predator and the number of infected 
predators per infected prey, respectively, in a totally susceptible population. This 
proposition is the appropriate analogue of the Kermack-McKendrick epidemic 
threshold theorem. Here two species are involved, and what is important is the 
product of the two transmission rates. I f  this product is small then the parasite 
cannot persist, if it is above a certain threshold Zo then an epidemic situation 
occurs. We discuss how the threshold condition depends on the other parame- 
ters, for the special case of the Rosenzweig dynamics, where 

B + 0(K - B) B + Q(K - B) B 
~ o -  B o ( K - B )  " 7 -  BQ( K -B )  " c - ~ - ~ "  (3.9) 

The threshold for the product of the transmission rates is increasing, if the 
predator mortality ? increases. The threshold decreases, if the carrying capacity 
K increases. Of course, this behavior of the model agrees with biological 
intuition�9 Furthermore, for fixed ~, the threshold increases with increasing 
equilibrium prey density. But in this Rosenzweig model, as long as ( K -  A)/2 
< B < K, increasing prey density is coupled to decreasing predator density�9 If  7 
is fixed, then ~o is an increasing function of B, as it should be. 

Increasing the response parameter Q decreases the threshold and thus en- 
hances transmission�9 Of course, increasing Q also increases prey mortality (cf. our 
earlier remark). Since predation cannot extinguish the prey, for the parasite the 
beneficiary effect dominates. 

In the proof the stability of the equilibrium E(fo, .90, 0, 0) has not been used, 
only the fact that the eigenvalues of the matix ~ are different from zero�9 Hence 
there is a bifurcation towards an infected stationary point also in the case where 
/~ is unstable. But in that case the new stationary point is unstable. 

In the Rosenzweig model the stationary point may lose its stability to a stable 
limit cycle�9 It is known bY the results of Liu and Cheng 1988 (see also Kuang and 
Freedman 1988) that this limit cycle is unique. For this situation we prove the 
next proposition. 

Proposition 2. Suppose the (two-dimensional) noninfected system has a stable limit 
cycle (fo(t),-9o(t)). Consider this orbit as a limit cycle (fro(t), -9o(t), 0, 0) of the 
four-dimensional system�9 Then there is a unique critical level zl depending only on 
the noninfected system with the following properties�9 I f  the product fix is less than 
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T, 1 then the limit cycle, considered as a periodic orbit o f  the four-dimensional 
system, is stable. For fix > Zl the limit cycle (in the four-dimensional system) has 
a multiplier greater than 1 and thus is unstable. The corresponding eigenvector o f  
the Poincark map is pointing inward with respect to R4+. For fix - z~ > O, but 
small, there is a locally stable limit cycle with xl(t), yl(t) > 0 throughout. 

For the proof  we need the following lemma: 

Lemma 3. Consider the linear equation 

fi(t) = ,~(t)u(t) + 2/~(t)u(t) (3.10) 

where the matrices ,4 and B are periodic with period to > O, and 

ajk(t) >~O, j ~ k ,  
(3.11) 

bjk(t)>~O, for al l j ,  k. 

Then the leading multiplier #1 is a nondecreasing function of  2. 

Proof  Consider the fundamental matrix U(t) defined as a solution of  

U(t) = ,4(t)U(t) + 2/~(t)U(t), 

and its derivative V(t) = dU(t)/B2 which satisfies 

1;'(0 = (2(t) + 2/~(t))V(0 + l~(t)U(O, 
and thus, by the variation of constants formula, 

;o z ( t )  = u( t )  U(s) - 1B(s) U(s) as. 

U(O) = / ,  (3.12) 

11(0) =0 ,  (3.13) 

(3.14) 

In particular, the monodromy matrix is U(to), and its derivative with respect to 
~, is V(to). 

Now, in view of (3.11), U(s) is a nonnegative matrix, and for t t> s, the matrix 
U(OU(s)-  ~ is nonnegative. The matrix ~(s) is nonnegative by assumption. Hence 
U(to) and V(to) are both nonnegative. Hence we can apply the classical Perron-  
Frobenius theorem (see Sect. 8) to the matrix U(to). The maximum of the 
absolute values of the Floquet multipliers is itself a multiplier (the leading 
multiplier). 

Now it is well known that the spectral radius of a nonnegative matrix 
depends monotonely on the matrix elements. Hence the leading multiplier is a 
nondecreasing function of 2. [] 

Now assume that the off-diagonal elements of /~  are strictly positive. Then, 
for 2 > 0, the off-diagonal elements of  A + 2J~ are strictly positive. Then U(s) 
and U-l( t )U(s)  are strictly positive for 0~<s ~< t. Thus B(s)U(s) is a positive 
matrix, and hence V(t) is positive for t > 0, Therefore V(to) is positive and thus 
the leading multiplier is strictly increasing. 

Since the off-diagonal elements of  B(t) have a positive uniform lower bound, 
the leading multiplier goes to + ~ for ;t ~ + oo. 
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Proof of Proposition 2. By trivial change of coordinates, we obtain for the system 
fi = @u (determining the multipliers related to the xl, yl-directions) the form 

fi(t) --- A(t)u(t) + x/~B(t)u(t), (3.15) 

where 

"~(t) =(--(D(x~176 + y~176 O)) [ 0 --7(yo(t))/yo(t) 0 ) ( 3 . 1 6 ) ,  

Since the periodic orbit of the noninfected system is a compact subset of the open 
set x0 > 0, Y0 > 0, the off-diagonal elements of B(t) have a positive uniform lower 
bound. Hence Proposition 2 is proved. [] 

In the situation where the noninfected system has a stable periodic orbit the 
noninfected equilibrium is a repeller (of the two-dimensional system). This 
repeller, considered as an equilibrium of the four-dimensional system, for 
increasing fit<, also undergoes the transition described in Proposition 1. There is 
a number Zo such that for fl~c < Zo the two additional eigenvalues have negative 
real parts, for fl~c > Zo the leading additional eigenvalue is positive. 

In general there will be no relation between the two numbers z 0 and z~. The 
two cases ro < zl and z 0 > zl lead to rather different phase space patterns. We 
characterize these patterns by their phase diagrams. A circle indicates the 
existence of a stationary point or limit cycle. A black circle indicates an attractor, 
arrows indicate trajectories (at least one trajectory) going from one object 
(singular element) to another. 

Zo < Zl : If  t<fl < Zo then the stationary point and the limit cycle attract trajectories 
from the interior. If  ~fl passes through z o then the stationary point undergoes a 
pitchfork bifurcation. There is a new stationary point in R 4 which is stable in the 
x~, y~-direction but unstable in the Xo, yo-direction. The periodic orbit is stable, 
as long as fix < z~. If  fl~c > r~ then there is new stable periodic orbit. Hence 
locally the phase diagram looks like the following: 

0 0 

0 " @  0 ' @  0 ---* 0 
point orbit point orbit point orbit 

flK < T O "C 0 ~ flK ~ "C 1 T 1 ~ /~K 

Fig. 1. Phase diagrams for r 0 < z 1 
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Thus the essential threshold, from the epidemiological viewpoint, is z~. 

r0 > Zl: I f  fix < z~ then both the unstable stationary point and the periodic orbit 
attract trajectories from the interior. I f  flK passes through z~ then a new stable 
periodic orbit appears, and if fix > r o then also the stationary point repels 
trajectories from the inside. In this case the phase diagrams are: 

0 ' 0  0 ' 0  0 ' 0  
point orbit point orbit point orbit 
fix < 3~ h <//x < % z o </~x 

Fig. 2. Phase diagrams for z o > z I 

Also in this case the essential epidemic threshold is T 1 . Thus we can collect the 
results obtained so far in the following theorem: 

Theorem 4. There is a well-defined threshold z with the following property. I f  the 
product of  transmission rates fix is less than z then the uninfected stable attractor 
(with respect to the uninfected system, stationary point or periodic orbit) is also 
stable against parasitic infection. I f  the product o f  transmission rates passes 
through the threshold then the uninfected attractor loses its stability and a stable 
infected attractor appears. 

The case Zl < fix < z0 seems quite interesting. There is a nice stable periodic 
attractor representing an infected population. Nevertheless the system is not 
persistent with respect to any of  the usual definitions since the stationary point 
has a two-dimensional stable manifold. This situation has been called almost 
persistence (G. J. Butler, private communication). 

For  completeness we consider the stationary solution (K, 0, 0, 0). Here 

flK 

Naturally this situation is stable against infection, but of  course it is not stable 
against the immigration of predators. 

4. A nonpersistence result 

In this section we consider the question as to whether or not a predator-prey 
system, where the predator is unable to persist on the prey in the absence of 
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parasites will become a persistent system with respect to the nonnegative cone 
when parasites are present. First we must define persistence and nonpersistence. 

We adopt the notions of persistence defined in Butler et al. (1986). 
Let X be a locally compact metric space with metric O and G c X have 

nonempty interior. Let ~3G denote the boundary of G, and G ~ the interior of G. 
Let u ~ X and let f (u,  t) be a flow given by a dynamical system defined on X 
(f(u,  O) = u , f ( f (u ,  t), t~) = f(u,  t + t~),f(u, t) is continuous). Then we say that 
f(u,  t) exhibits persistence with respect to G if 

u ~ G ~ =~ lim inf Q(f(u, t), ~G) > O. 
t ---~ o o  

We further say that f(u,  t) exhibits uniform persistence or permanence with respect 
to G if 

lim in fo ( f (G ~ t), OG) >>, 6 >0 ,  where f (G  ~ t) = {f(u, t ):u e G~ 
t ~ o o  

If persistence does not occur, we say that we have nonpersistence. In 
Freedman and Waltman (1984, 1985), X =  ~3 and G = g~3+ are chosen. There, 
persistence criteria were developed in that context for predator-prey and for 
competitive systems. A nice survey article on permanence is Hofbauer and 
Sigmund (1987). 

The predator-prey dynamics in the uninfected case is given by the invariant 
flow in the Xo, Yo plane. There are three possible equilibria in this paine, 
Eo(0, 0, 0, 0), EK(K, 0, 0, 0) and E(~o, Y0, 0, 0). Eo and Ex always exist (given our 
hypotheses). It is well known (Freedman 1987) that /~ exists if and only if Yo 
persists, i.e. lim inf,_ o~yo(t) > O. 

Computing the eigenvalues of the Jacobian matrices 20i and 2xi, i = 1 , . . . ,  4, 
about the equilibria E o and EK, respectively, we get from the previous section 

~,ol=B' (0)- -O' (0) ,  2o2=--7 '(0) ,  203=--D'(0) ,  )~04=--]1'(0), (4.1) 

2K, = B'(K) -- D'(K), 2za = - 7"(K) + Cpo (K, 0), 
D(K) (4.2) 

2K3 -- K ' 2K4 = -- T'(K)" 

Since 2ol > 0, 20i < 0, i = 2, 3, 4, E0 is a saddle point. Further, 2Kl < 0, )~K3 < 0, 
)~K4 < 0. In the two-dimensional case, we know that Yo persists if and only if 
2K2 > 0. 

Suppose now that Yo does not survive on Xo in the uninfected predator-prey 
dynamics, i.e. 

-v ' (O) + cpo(K, 0) < 0 (4.3) 

(and hence E does not exist). Then EK is asymptotically stable, and hence there 
are solutions to system (2.6) with positive initial conditions which approach EK 
as t ~ ~ .  This implies nonpersistence with respect to ~4 .  

An interpretation of this result is that this system could not evolve from an 
uninfected predator-prey system in which the predator species is not able to 
survive solely on this particular prey species. 
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In the next section, we show that persistence with respect to a set G c ~4 

where part of the boundary of G is a certain separatrix surface intersecting the 
positive cone, may be possible. 

5. Parasite-mediated coexistence 

For the discussion of the parasite-mediated coexistence it is necessary to discuss 
the stationary points in detail. Since we are mainly interested in the behavior of 
the system near the prey-only equilibrium we shall not consider periodic orbits. 
This discussion also throws some new light on the bifurcations in the threshold 
theorem. Here we assume the Rosenzweig dynamics. Our approach is to reduce 
the set of nonlinear equations to a single equation for the variable x = Xo + Xl. 

At a stationary point we have 

axo x Xo 
ax  y -- flxoyl = 0, (5.1a) 

K A + Xo + Oxi 

flXoy 1 a x i x  Oxl y = 0, (5.1b) 
K A + Xo + Qxl 

B Xo + Qxl IcOxz 
- c f f ~ Y ~  + X o + Q X l  y A + X o + Q X l  y ~  (5.1C) 

B xQx~ 
4 A + X o + Q x l  y~ =0.  (5.1d) ~ C ~ Y I 

Adding Eqs. (5.1c,d) gives for y ~ 0 

B Xo + ~OXl 

B + A  A + Xo + ~OXl 

from which 

X 0 -~- OX 1 = B, 

and 

Ox - - B  B - - x  
X o - - -  and X l -  

0 - 1  0 - 1  

Adding Eqs. (5.1a,b) we obtain 

xo§ 
ax  1 - -  - A + x o + O x l  

From Eq. (5.1d) and Yo +YI =Y it follows that 

~Qx~ 

Y~ -- Bc + ~CQXl y" 

We introduce the expressions obtained for x0,Yl into Eq. (5.1b), 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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XOXl Ox - B axx~ OXl 
B B c + ~ o x l  i f - -1  y K A + B  y=O" (5.7) 

This equation is satisfied for xl = 0. We assume xl r 0, and replace Xl and y. 
Then we arrive at 

~0(A + B)(ex - B) 8 
= + O. (5.8) 

Bc(# - 1) + xo(B -- x) K - x 

The equation is equivalent to a quadratic equation, hence there are at most two 
real roots�9 The equation assumes the form 

where 

~f(x) =g(x)  (5.9) 

x0(A + 8 ) (0x  - s )  
f ( x )  = Be(o _ 1) + x0(B - x ) '  (5.10) 

B 
g(x)  - + o. (5.11) 

K - - x  

Both the graphs o f f  and g are hyperbolas�9 The function f has a zero at B/O and 
a pole at 

O - 1  Be 
x* = B -~ > B. (5.12) 

0 

The function g has a pole at K and a zero at K + B/O. We distinguish four cases�9 

Case 1: B < x* < K. For small/3 there is one root in (B, x*). For increasing/~ 
the root decreases, and at 

B c 
8o = x ----~ (A + s )xo  (5.13) 

it enters the interval (B/e, B). Hence at/~ =/~0 there is a transcritical bifurcation. 

Case 2: B < K < x*. For  small /~ there are no roots. For  sufficiently large /~ 
there are two roots ~, q in (B/e, K). Since f ( B ) =  xo(A + B ) / e  and g ( B ) =  
B / ( K - B )  +O, the critical /~ is again given by (5.13). The two roots satisfy 
r < B < q for/~ >/~o. There is a pitchfork bifurcation at/~ =//o- 

Case 3: B/O < K < B. For small/~ there are no roots, for sufficiently large/ / there  
are two roots ~1 < 42 in the interval (a/e,  K) = (B/e, B). There is a saddle-node 
bifurcation for some/L It may not be worth the effort to give an explicit formula 
for the critical/L 

We do not perform a formal stability analysis, but it is plausible that the 
lower root 41 which corresponds to low prey density and large predator density, 
is stable, whereas the upper root (low predator density) corresponds to a saddle 
point with a one-dimensional unstable manifold. 
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/ B/e B X* 

/ 

K 

Y 

/C. 

Fig. 3. The two hyperbolas in 
Case 1 

/ XI>O 

XI>O 

X! <0 X1 <0 

Fig. 4. Pitchfork bifurcation in Fig. 5. Transcritical bifurcation in 
Case 2 Case ! 

Case 4: K < B/Q. In view of (5.4) we are looking for x ~ (B/Q, B). In this interval 
we have f (x)  > 0. But g(x) may assume positive values. Hence there may be 
solutions x of (5.9) for small ft. Since K < B/O, these solutions lead to y < 0 in 
view of (5.5). There are no feasible solutions in this case. 

Now we discuss the biological significance of these bifurcation phenomena. 
In Cases 1 and 2 the predator can survive on the uninfected prey. For fl > fl0 

the established prey-predator system loses its stability against infection by the 

I 
i 

Fig. 6. Saddle-node bifurcation in 
Case 3 

/ 

K x 

Fig. 7. Projected phase space in the case B > Kfor high 
transmission rates: parasite mediated coexistence 
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parasite, an infected stationary situation appears. The distinction between the 
transcritical and the pitchfork situation has no great biological significance. In 
the pitchfork case the level of infection increases more rapidly once fl exceeds the 
threshold. 

Case 3 is the most interesting. The predator cannot survive on the uninfected 
prey. It could however survive if all prey were infected. Hence for large fl, when 
a large proportion of the prey is infected, the predator can survive. There are two 
stationary points, a saddle and a node/focus. The node/focus is locally stable or 
it may undergo a Hopf  bifurcation and give rise to a locally stable periodic orbit. 
But in either case the local attractor is not globally stable. The predator goes to 
extinction, when the initial predator density is too low. This effect is easy to 
interpret. If  the initial predator density is low, then the parasites do not infect 
sufficient prey for the predator to survive. Then the predator population declines 
and with it the parasite population. In this case the prey and predator can coexist 
only in the presence of the parasite. 

In Case 4 the predators could not survive even if all prey were infected. Thus 
coexistence of prey and predator is impossible for arbitrarily high infection rates. 

The situation of Case 3 can be described by the following theorem on 
parasite-mediated coexistence. 

Theorem 5. In the system (2.13) assume that B > K, i.e. that there is no coexis- 
tence of  the uninfected species. I f  

B 

then for no choice of  x, fl > 0 the prey and the predator can coexist. I f  

B 

K 

then for every x > 0 there is a fll = ill(X) > 0 such that for fl > fit (~) there is an 
equilibrium of  parasite-mediated coexistence. 

In this discussion we have completely ignored periodic orbits. In general 
periodic orbits will appear if B/Q < (K + A)/2 and fix is large, i.e. in situations 
where the full system behaves like the two-dimensional Rosenzweig model with 
B replaced by B/Q. Near the value of fl where the new stationary point together 
with the saddle point appears, at least two of the eigenvalues are real. We do not 
know whether this point will undergo a Hopf  bifurcation if the parameters are 
further changed. 

6. Numerical simulation 

In order to support the conjectures which we could not prove we have performed 
some computer simulations. We have used the simple Euler method with 
constant stepsize. For the simulation we have chosen the fixed parameters a = 3, 
K --- I, b = 0.5, c = 1, A = 0.5 and we have varied B, Q, to, ft. In Figs. 8-10 we 
have chosen Q = 2. 
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In most plots we have represented the x, y plane, i.e. we have used as 
coordinates the total number of  prey and the total number  of  predators. Of  
course the resulting plot is a two-dimensional projection of a four-dimensional 
phase space. Hence the projected trajectories can intersect. 

In the first situation we have a viable predator-prey system infected to 
variable extent. I f  0 = 1 then of  course the x, y plane represents the phase plane 
of the usual Rosenzweig model. For  Q > 1 and large x, fl there are remarkable 
effects. I f  the uninfected system has a stable limit cycle then parasitic infection 
tends to increase the amplitude of the oscillation. This effect is quite plausible. 
Shifting the predator response from Q = 1 to Q > 1 moves the position of  the 

= 0 isocline from x = B to x = B/O. Hence the system with 0 > 1 instead of 
Q = 1 corresponds to a situation of  large amplitude oscillation. Similarly, if the 
uninfected system has a stable coexistence equilibrium the infected system may 
have a stable periodic orbit. A transition from a stationary state to oscillations 
has also been observed by Dobson (1988). But we underline that in many  cases 
of  interest already the uninfected population performs a stable oscillation, and 
the infection tends to increase the amplitudes. 

Two further remarks are appropriate. Although the shape of  the projected 
periodic orbit in the x, y plane looks very similar to the periodic orbit in the 

a 

....~ 

............ ''"~"'. 

I "., '. 
b e 

Fig. 8. Hopf bifurcation by decreasing B. a x, y-projection, B = 0.9, x = fl = 2.2: stable stationary 
point; b x, y-projection, B = 0.3, r =/~ = 2.2: stable periodic orbit; c x o, Y0 and Xl, Yl-projections, 
parameters as in b 
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Fig. 9. Hopf bifurcation by 
increasing the transmission rates. For 
B = 0.9, r = fl = 0 there is a stable 
stationary point (compare Fig. 8a); 
for x = fl = 4 a stable periodic orbit 
occurs 

. . /  
/ 

J 

Fig. 10. Parasite-mediated 
coexistence: saddle-node bifurcation, 
B = 1.2, x =fl =2.2 

uninfected situation, the projections into the Xo, Y0 plane and the x1, Yl plane 
look quite different. In par t icular  the number  o f  infected prey undergoes  rapid 
changes.  

In the p rob lem o f  parasi te  media ted  coexistence the s imulat ion shows the 
desired p h e n o m e n o n  (see Fig. 10). I f  B > K then the noninfected popula t ions  do 
not  coexist, all trajectories converge to (K, 0, 0, 0) in the fashion o f  a "big  bend"  
which is typical for  p reda tor -prey  models.  I f  Q is sufficiently large and x, fl are 
increased, then two new s ta t ionary  points  appear ,  a saddle point  and a stable 
focus. Figure 10 represents trajectories start ing f rom Xo(0) = yo(0), Xl (0) = 1.2 
for  varying Yl (0), for  B = 1.2 Q = x = fl = 2. Al though the project ion is not  a 
phase-plane  it looks very much  like a phase  picture of  a two-dimensional  system. 
The  domain  of  a t t rac t ion is tongue-shaped,  very low and very large p reda tor  
densities lead to extinction o f  the predator .  

O f  course we cannot  exclude that  for certain choices of  the paramete rs  
new p h e n o m e n a  occur  but  this s imulat ion suppor ts  the claim that  the local 
analysis is valid over  a certain range of  parameters  away  f rom the bifurcat ion 
point.  
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7. Discussion 

There are several different approaches towards modeling parasitic infections. One 
can consider host and parasite as interacting species, i.e. the parasite preys upon 
the host, or one can structure the host population according to the level of 
infection. The second approach gives a more detailed description of the popula- 
tion. For this reason we have divided both, the prey and the predator population, 
into classes of infected and of  noninfected. Thus we describe the population of 
three species (prey-predator-parasite) by four variables. We deal with two 
different, though closely related problems, persistence of a parasite in a given 
prey-predator system and parasite mediated coexistence of prey and predator. As 
examples we can choose the european fox tapeworm Echinococcus rnultilocularis 
and the dog tapeworm E. granulosus. The adults of E. multilocularis live in the 
intestinal track of foxes, the eggs are spread in the environment via the feces, and 
are taken up by mice. The larvae develop in the tissues of mice (and undergo 
asexual multiplication), they enter the fox via predation. This tapeworm has 
some medical importance, since the larvae, if taken up by humans, cause an 
incurable fatal disease. It has been observed that, although the mouse-fox system 
is widespread, the tapeworm is endemic only in certain areas (at least cases of 
human infections are restricted to these areas). Hence it seems that the transmis- 
sion conditions are not satisfied in all habitats. Of course the real situation is 
more complicated since foxes eat various prey other than mice and mice are 
decimated by different predators. The adults of E. granulosus live in dogs, the 
intermediate hosts are sheep. In many areas this parasite is becoming rare 
because of veterinary action. In certain areas of North America such as Western 
Canada and Alaska, but also on Isle Royale, E. granulosus is established on the 
moose-wolf prey-predator system. 

E. rnultilocularis could be seen as an example of persistence on the mouse-fox 
prey-predator system. It persists if the transmission conditions are favorable. For 
this situation our model shows the typical epidemic threshold behavior. Indepen- 
dent of whether the uninfected populations coexist at a stable equilibrium or 
along a stable limit cycle there is a critical level for the product of the 
transmission rates, such that an infected equilibrium or an infected periodic 
solution appears whenever the threshold is exceeded. 

In the second approach we assume that a predator cannot survive on a given 
prey. There is a parasite which can live in the prey and the predator as 
alternating hosts. The infection makes the prey more easily accessible to the 
predator, whereas the infection does not change the behavior of the predator. If  
the predator could not survive on a totally infected prey population, then there 
is, of course, no coexistence. If, however, the predator can subsist on totally 
infected prey then large transmission rates lead to a possible coexistence of prey 
and predator, i.e. a stable equilibrium (or periodic orbit) appears. Nevertheless 
in this situation the uninfected prey equilibrium remains locally stable. Hence the 
new coexistence equilibrium is not accessible from low predator levels. This 
behavior of the system differs from the first case, where coexistence is possible at 
all levels of infection. There (K, 0, 0, 0) is unstable, and any small number of 
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predation lead to the coexistence equilibrium. Here the stable coexistence of prey, 
predators and parasites can only be achieved, if there are sufficiently many 
predators at the beginning. It has been suggested (Peterson) that some isolated 
wolf populations can survive on the local moose population only in the presence 
of E.  g r a n u l o s u s  which provides prey accessible to wolves in the form of heavily 
infected moose. 

Here the positive orthant R4+ is not persistent. Culling the predator leads to 
extinction of the predators and of the parasites. We conjecture, however, that 
there is a persistence domain bounded by some faces of E4 and the unstable 
manifold of the saddle point. In biological terms: there is a surface of R 4 which 
separates a domain "many predators, many parasites" from a domain "few 
predators, or few parasites" such that the first domain is persistent in the sense 
of Sect. 4. In fact, as the computer simulation shows, an initially very large 
number of predators also leads to extinction of the predator. 

8. Appendix: The Perron-Frobenius theorem 

The Perron-Frobenius theorem for nonnegative matrices is well known and can 
be found in appropriate monographs, e.g., Gantmacher (1959). Here we need the 
continuous version which is folklore but not even the nomenclature is established 
(see, e.g., Arendt et al. 1986). 

Let A = (ajk) be a matrix acting as an operator on R". Consider the discrete 
time evolution equation 

x t  + ~ = A x t ,  t = O, 1, 2 . . . . .  

The behavior of the solutions is essentially determined by the spectrum of A. The 
matrix A is called nonnegative (positive) if ajk/> 0 (>0 )  for all j, k. If  A is 
nonnegative then x0/> 0 implies xt/> 0 for all t. A is called irreducible if A has no 
proper (i.e. different from {0} and R n) invariant subspace which is the span of 
coordinate vectors. The essential statement of the Perron-Frobenius theorem is 
the following. If  A is nonnegative and irreducible then its spectral radius (largest 
modulus of any eigenvalue) is itself an eigenvalue, it is a simple root of the 
characteristic polynomial, and it has a positive eigenvector. A nonnegative 
irreducible matrix A is called primitive if the spectral radius is strictly greater in 
modulus than the other eigenvalues. The matrix A is primitive if and only if A 
has a positive power. If  A is primitive then every solution of the evolution 
equation starting in ~_ \{0} approaches the positive eigenvector (up to scalar 
factors). 

The continuous version of this theorem reads as follows: Consider the 
evolution equation 

Yc(t) = A x ( t ) ,  t ~ ~ .  

We say that A preserves order if ajk ~> 0 for j # k, i.e. x(O) t> 0 implies x ( t )  >>. 0 

for t >i O. If  A is irreducible and preserves order than the "spectral bound" (the 
largest real part of any eigenvalue) is itself an eigenvalue and a simple zero of the 
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characteristic polynomial with a positive eigenvector. If A is order-preserving and 
irreducible then the spectral bound is strictly greater than the real part of any 
other eigenvalue if and only if for some ~ I> 0 the matrix A + ctI is nonnegative 
and has a positive power. This is the case if and only if exp(tA) is positive for all 
t > 0. Then every solution of the evolution equation starting in ~_  \{0} ap- 
proaches the positive eigenvector (up to scalar factors). 

Acknowledgement. The authors wish to thank Brigitte Frank, Odo Diekmann, and the referees for 
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