
On the Uniqueness of Flow of a Navier-Stokes Fluid 
Due to a Stretching Boundary 

J. B. McLEoD & K. R. RAJAGOPAL 

To James Serrin, on the occasion of  his sixtieth birthday, and in recognition o f  
his fundamental contributions both to analysis and to applied mathematics in its 

finest sense 

1. Introduction 

When a sheet of polymer is extruded continuously from a die, it entrains the 
ambient fluid and a boundary layer develops. Such a boundary layer is markedly 
different from that in the Blasius flow past a flat plate in that the boundary layer 
grows in the direction of the motion of the sheet, starting at the die. SAKIADIS 
[1]-[3] was the first to study such a boundary layer flow duo to a rigid flat con- 
tinuous surface moving in its own plane. Later, EmCKSON, FAN & FOX [4] studied 
the boundary layer due to the motion of a porous flat plate when the transverse 
velocity at the surface is non-zero. 

There are situations when the extruded polymer sheet is being stretched as 
it is being extruded (cf  MCCORMACK & CRANE [5]) and this is bound to alter 
significantly the boundary layer characteristics of the flow considered by SAKIADIS 
[I]. A detailed analysis of the boundary layer flow of a Navier-Stokes fluid due 
to a stretching sheet has been carried out recently by DANBERG & FANSLER [6]. 
They assume that the free-stream velocity of the fluid is a constant, while the sheet 
is being stretched by a velocity proportional to x, where x is the coordinate 
in the direction of stretch. The problem of the sheet velocity being a constant, 
while the free-stream velocity is proportional to x, had been studied earlier by 
ROTT [7]. 

Let us consider the two-dimensional flow of a Navier-Stokes fluid due to 
the stretching of a flat sheet coinciding with the plane y = 0, the fluid being 
confined to y > 0. A steady uniform stress leading to equal and opposite forces 
is applied along the x-axis so that the sheet is stretched keeping the origin fixed. 
Thus, the appropriate boundary conditions are 

u = c x ,  v = 0, at y = 0 (c > 0) (1.1) 
and 

u--> U| as y - >  oo. (1.2) 



386 J. B. McLEoD & K. R. RAJAGOPAL 

Here u and v denote the velocity components in the x and y directions, respectively, 
and U~ is the free-stream velocity. 

We introduce the dimensionless quantities 

where 

= 

R =  
C~ 

(1.3) 

(1.4) 

is the Reynolds number. We shall seek a solution of the form 

= ~f '(f)  + g '(f)  and ~ = --f(y). (1.5) 

Notice that the above velocity field is isochoric or volume-preserving. Substituting 
(1.5) into the Navier-Stokes equations (with the pressure independent of x) leads 
to the following system of coupled ordinary differential equations: 

f,,, +ff , ,  _ f , z  _ O, (1.6) 

g'" + fg" --fig' = 0. (1.7) 

The appropriate boundary conditions are 

f(O) = O, if(O) = 1, f ' (v)  ---> 0 as )7 --> oo, (1.8) 

and 

g(0) = 0, g'(0) = 0, g '0  5) ~ 1 as )7 -+ cx~. (1.9) 

It is interesting to note that for the assumed form of the velocity field (1.5), 
the boundary layer equations and the Navier-Stokes equations are the same. Thus, 
for the velocity field under consideration, the terms which are dropped out of  
the Navier-Stokes equations in deriving the boundary layer approximations hap- 
pen to be identically zero. 

Equation (1.6), subject to (1.8), has the following simple solution: 

f ( f )  = 1 -- e-~. (1.10) 

Using this solution for f in (1.7), DANBERG 8~ FANSLER were able to exhibit an 
explicit solution for g, by using the method of variation of parameters. 

Since equation (1.6) is nonlinear, it is possible that (1.6), subject to (1.8), 
possesses other solutions in addition to (1.10). This, then, would imply the possible 
existence of a boundary layer with a structure different from that exhibited by 
(1.10).In this paper we prove that (1.I0) is the unique solution to (1.6) and (1.8). 
An alternative treatment of this is given in [8]. 

Recently, RAJAGOJ'AL, NA & GUPTA [9], [10], have studied the boundary 
layer due to a stretching sheet, in the case of an incompressible homogeneous 
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fluid of second grade. Using the velocity field (1.5), they show that the equations 
of motion are given by 

and 
f,,, +if,,  _f ,2 + k{2f'"f' _f,,2 _ fi~) = O, (1.11 

g'" +fg" - - f 'g '+ k(g"'f' +f'"g' --f"g" _fgi~} = 0, (1.12) 

where k is a non-Newtonian parameter. They study the problem by means of a 
perturbation in k, their zero th order equation corresponding to the equations 
(1.6) and (1.7). Thus the uniqueness established here bears on their study also. 

The boundary value problem under consideration also illustrates a pitfall 
which one encounters while solving nonlinear equations in unbounded domains 
numerically, namely, the specification of infinity. Fixing infinity at what seems a 
sufficiently large distance and solving the boundary value problem using a gears 
method suggests the existence of two distinct solutions, one of which is (1.10) 
(cf SZERI [ 11 ]). Shifting the location of infinity moderately produces no change, even 
in the seventh decimal place in the numerical solution, and lends credence to 
the existence of a second solution. However, in the light of the uniqueness theorem 
proved in this paper, the problem was re-examined. It was found (cf. SZERI [l 1]) 
that, as the location of infinity is moved significantly further, the apparent second 
solution in fact diverges. 

The underlying reason for uniqueness is that equation (1.6) is invariant under 
two simple transformations, first a translation of the independent variable, and 
secondly the basic transformation 

f ---> or X --->" Of, - 1  X .  

This implies that we can in effect reduce the order of the equation by two, so that 
we deal with a first-order equation. It is then a matter of looking at the phase 
plane for this first-order equation, from which uniqueness of the solution can 
be deduced quite easily. 

The plan of the paper is as follows, in section 2 we prove some easy preliminary 
lemmas on the asymptotic signs of possible solutions. In section 3 we give the trans- 
formation which reduces the equation to a form in which it is amenable to phase 
plane treatment, and in section 4 we discuss the phase plane. The uniqueness 
proof is then completed in section 5. 

2. Some Preliminary Lemmas 

Lemma 1. The solution (1.10) is the only solution of (1.6) and (1.8)for which 
f ' ~ O .  

Proof. First observe that a solution of (1.6) and (1.8) which satisfies f '  ~ 0 
also satisfies f "  =< 0. For (1.6) implies that 

{f" e x p ( /  f(t) dt)}" = f'2 e x p ( /  f(t) dt), 
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so that 

f "  exp t) 

cannot  deerease, and so f "  vanishes at most  once and, if it does vanish, is 
positive after the zero. But if also f '  >_ 0, then because f "  is ultimately positive, 
f '  tends to a strictly positive limit at infinity, which contradicts f ' ( ~ ) =  0. 
Hence f "  ~ 0. 

Now suppose for contradiction that there are two solutions f~, f2, where 
4~ ~- f2 - -  f t .  Then 4, satisfies 

4,'" + f24," - -  (fl  + f 2 ) '  4,' + f ' ( 4 ,  = 0, (2.1) 
with 

4,(0) = O, r  ----- O, 4,'(oo) = O. 

Suppose without loss of  generality that 4,"(0) > 0. Then initially 4, > 0, 4,' > 0, 
4," > 0, and so long as these inequalities are maintained, 

( / )  ~b" exp f ( t)  dt 

is nondecreasing since ( f t  + f2)' => 0, fl" =< 0. Hence 4,, 4,', $" never vanish, 
which contradicts 4,'(00) = 0. 

Lenmm 2. For any second solution of (1.6) and (1 .8)f ' ,  f " ,  f " '  all vanish precisely 
once, at x~, x2, xa, say, with x t  < x2 ~ x3. Also, ultimately, f >  O, f" < O, 

f " > 0 ,  f " ' < 0 .  

Proof. Certainly, f rom Lemma 1, f '  must have at least one zero, and s o f "  must 
have at least one zero, since f ' (oo)  _-- 0. 

Hence, f rom the proof  of  Lemma 1, f "  has precisely one zero, at x2, say, 
a n d f '  is decreasing before x2 and increasing after. Since if(0) ----- 1 and f ' (cx 0 = 0, 
it is clear t h a t f '  also has precisely one zero, at xt ,  say, with x~ < x2. (Note that 
a double zero o f f '  is impossible, for f '  ----f" ---- 0 implies f ' "  ---- 0 and so f - ~  
constant; similarly, f "  cannot have a double zero.) 

Finally, f(x) > 0 for x _< xl,  and so, from (1.6), f '"(x) > 0 for x ~ x~. 
Since 

fir + f , , , f  = f , f , , ,  

it follows that in (xl, x2), where f ' f "  > 0, we must have 

( f )  f " '  exp f ( t )  dt (2.2) 

nondecreasing, and so f ' " (x l )  >. 0 implies f'"(x~) > 0. For  x > x2, (2.2) 
is decreasing, and so f ' "  has at most  one zero, and indeed exactly one since 
f"(x2) = 0 and f"(cx 0 = 0. So f '"(xa) = 0 with x3 > x2. 
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The above argument shows tllat ultimately f '  < 0, f "  > 0, f ' "  < 0. It is 
also true that f ( x )  > 0 for all x > 0. For f is first increasing (from zero) and 
then decreasing. But 

never decreases. Hence ultimately, when f ' "  is positive decreasing, wemust have 

( / )  exp f ( t ) d t  increasing, so that f >  0. Hence f >  0 ultimately, and so al- 

ways. 

3. The Transformation of the Equation 

As long as f >  0, f '  < 0, 

z = --log f ,  

and (1.6) becomes 

~2u+  {.(~ )2 

The proof is routine. For  

we can make the change of variables 

du 
u = f ' / f 2 ,  bu = "-~z' 

- - - - 7 O u - - - ~ }  + 6(u + ~) = 0 .  (3.1) 

du du dx f ( f f " ~  2f'2~ (3.2) 
~u -- d(logf-------'~ = f dx d f  - -  f '  f a  ] ,  

f "  = - - f f ' (6u  --  2u) = --e -3" u(t}u --  2u), 

d dz 
f ' "  = - -  - - ( e -  3z u(tgu 

dz -- 2u)} ~xx 

= e-3Z{--3(u t}u --  2u 2) -t- u ~2u + (~u) 2 -- 4u ~u}, 

and substitution in (1.6) gives the answer. 
Note that Equation (3.1) is second-order autonomous, so that it could be 

reduced to first order, but it is easier to work with it as it stands. Since it is auto- 
nomous, it is amenable to phase plane methods, and we study the phase plane 
in the next section. The fact that equation (1.6) can be reduced to a first-order 
equation can be observed at once from the fact that it is invariant under both the 
tra~sformations 

f - + f ,  x ~ x + c; 

f --~ ~j~ X ' - ~  ~1 X. 
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4.  T h e  Phase  P lane  

~u �84 

Fig. 1 

~U=U 

A:(-~,o) 
8=(-�88 
c=(o,I) 

I I D=(-~,-~) 

The arrows denote the direction of a trajectory lying in the appropriate area 
of  the phase plane. Thus 

S implies both Ou, 62u > 0, 

"~ implies 6u > Oj ~2u ~ 0 

and so on. The appropriate areas are determined by observing that O2u----0 
when 

(Ou) 2 --  7u 6u -- 6u + 6u 2 -]- u = 0 ,  

i.e. when 
(~u -- u) (~u -- 6u -- 1 ) = 0 .  

The only rest-point (Ou = 62u = 0) is the point A(--~-, 0) although the origin 
is also some sort of  singular point. (The equation is singular at u = 0.) 

We established the validity of  the transformation leading to the phase plane 
only when u < 0, so that arrows are not entered in the right-hand half of the dia- 
gram. 

The dotted line denotes one special trajectory. It is trivial to verify that 

f =  a + be -ax (4.1) 

is a solution of  (1.6) for every a, b. (Our interest will be in a > 0, b > 0). In 
faO, because of  the invariance of  the equation under the transformations pre- 
viously mentioned, all solutions of the form (4.1) give the same trajectory in the 
phase plane, and it is given by the dotted line. Note the following points: 

(i) as x - ~  o% 

f ~"-' a, f ' ~  --abe -~x, f "  ~ a2be -ax, 

so that 
u - + 0 ,  ~u--~ 1; 
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(ii) as x ~ -  ~ ,  

f ~ be  -ax ,  

so that, since (3.2) leads to 

we have 6 u , - , ~ u ;  

(iii) when 6 = 0, 

which gives 

so that 

f '  ,-,~ - - a b e  -ax ,  f "  r ~  a2be - a x ,  

6u - -  2u  : - -  - -  
f "  a , '~ - -  e ax , '~ - -  u , 
f f '  b 

we have 

f , ,  = 2f  '2, 

(a @ be  -ax)  a2be -ax  = 2a2b2e -2ax 

a = be  -ax ,  u = - - � 8 8  
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5. The Proof of  Nonexistence of a Second Solution 

Let C denote the closed curve consisting of the dotted curve and the port ion 
of  the 0u-axis. Suppose for contradiction that we do have a second solution to 
(1.6) and (1.8). 

Suppose first that for some value of  x the trajectory of  this second solution 
lies inside C. Then, as we decrease x (or z), we cannot get outside C. For  we cannot 
cross the dotted port ion of  C, since that itself is a trajectory and trajectories do 
not  cross without being identical. (The form (4.1) corresponding to the dotted 
trajectory does not give us a second solution since it cannot satisfy the inequalities 
of  Lemma 2, which would imply a > 0, b > 0, and also f(0)  = 0.) Also, the 
direction of  the arrows shows that we cannot cross Ou = 0. As we decrease x, 
therefore, the trajectory always lies inside C, so that u < 0, f '  < 0, f is increasing 
(for x decreasing), and so f(0)  = 0 is impossible. 

The only other possibility is that the trajectory lies outside C. But then the 
arrows show that, as we increase x, we eventually increase Ou, and so eventually 
we must  have c~u > 0, u = 0. But Lemma 1 says that for any second solution we 
must  have u < 0 if x is sufficiently large, and this again gives a contradiction. 
(Note that  the line Ou ---- u corresponds to f ' "  = 0, so that, f rom Lemma 1, 
we have to be above 6u ---- u when x is sufficiently large.) 

This completes the proof,  but there are a number  of  remarks that can be made. 

R e m a r k  1. We have used the fact that a trajectory, in C and going backwards 
in x, does not  cross C. I t  can also be shown that a trajectory, in C and going for- 
wards in x, does not cross C, although the argument is a little more delicate. But 
the final conclusion is that no trajectory can cross C, and it is interesting to ask 
what happens to those trajectories which lie always inside C. 

It  is just a matter  of  linearization to prove that a trajectory starting sufficiently 
close to the rest-point A spirals out, and although we have not carried out the 
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calculations completely, it seems that a trajectory starting sufficiently closc to C 
spirals in. Hence there must  be a limit-cycle inside C, which corresponds to a perio- 
dic solution of  the equation (3.1), periodic, that  is, in z, not  in x. 

R e m a r k  2. I t  is possible to make a similar investigation of  the equation 

f , , ,  + f f , ,  = af ,~,  

for varying values of  2 ( >  0). We have not carried out all the details, but in 
(3.1) the only change is in the constant term, and the main consequence as far as 
the phase plane is concerned is that, at  2 = 8/7, the rest-point changes from un- 
stable to stable and merges with the limit-cycle. For  2 > 8/7, therefore, the limit- 
cycle disappears and we just have, inside C, spirals spiralling in to the stable 
rest-point. Of  course, we no longer have the explicit form (1.10) for the solutions 
that  correspond to tlle trajectory C, but we can establish tile existence of  sucll 
solutions by shooting arguments. 

R e m a r k  3. I t  is interesting that, with ~u ~-- y, u = x, the equation (3.1) becomes 
of  the form 

dy 6x 2 - -  7xy  + y2 + x - -  y 

dx  x y  ' 

which is the type of  equation that  is discussed in HILBERT'S sixteenth problem, 
with reference to the maximum number of  limit-cycles that such an equation may 
possess. 
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