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Introduction 

In uniaxial tension tests on fibres of polymeric materials such as nylon or 
polyethylene, it is frequently observed that the fibre will initially elongate homo- 
geneously until a critical value of the applied load is reached whereupon the 
fibre will develop regions of reduced thickness known as necks. Nonhomogeneous 
behaviour of this type is usually referred to as necking. 

The development of a neck within a fibre is quite interesting. As the neck 
starts to form it both narrows and lengthens. After a certain time the narrowing 
stops but the lengthening continues until either another neck, which has formed 
in a different region of the fibre, is reached or the end of the fibre is reached. 
From observations, the material in the necked and unnecked regions of the bar 
appears to be in a state of homogeneous strain whilst the transition region be- 
tween the necked and unnecked regions has large nonhomogeneous behaviour. 
Thus, the neck propagating along the fibre can be regarded as a mechanism for 
converting regions of low axial strain to high axial strain (for further details see 
[13]). 

The phenomenon of necking has been studied extensively using plasticity and 
elasto-plasticity theories (see, for example, [17] and [20]). Less work, however, 
has been done on using finite elastostatics to predict the onset of necking. The 
two main attempts to show this have been quite distinct in their approaches. 

The first approach, and the one we shall concentrate on in this paper, is made 
in [5] (see also [4] and [8]) where the equilibrium equations for a one-dimensional 
theory of hyperelastic rods with sufficient structure to allow axial and radial 
deformations are shown to possess solutions which, it is conjectured, represent 
necking deformations. Significantly, the elastic material considered is strongly- 
elliptic. A question left open in [5] is which of the non-trivial solutions satisfies 
the energy criterion of stability, that is, which solutions locally minimize the 
total stored elastic energy of the body. A brief study of the stability of the trivial 
solution to the equilibrium equations (which corresponds to uniform elongation) 
is made in [5]. It is usual to regard deformations that do not satisfy this criterion 
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as physically unrealizable. We remark here that the relationship between the energy 
criterion of  stability and the asymptotic behaviour of solutions to the equations 
of elasto-dynamics is not yet fully understood. Thus, it is not certain what is the 
correct choice of topology in which to look for local minimizers. For  an interesting 
example of this problem in one-dimensional viscoelasticity see [25]. 

In this paper we use classical methods from the calculus of  variations to give 
a complete description of  stability of both the trivial (homogeneous) and non- 
trivial solutions for bars with sufficiently small undeformed radii. We show that 
if the total elongation of the bar is specified (a "hard loading" device) and the 
applied load-extension curve is non-monotone, then the homogeneous equilibrium 
solution will lose stability for sufficiently large elongations. Further, solutions 
corresponding to one or more fully developed necks can never be local minimizers 
(in any sense) of the energy (this latter result is independent of the initial radius). 
From these two results it is easy to deduce that the only stable nonhomogeneous 
deformation possible is a half-neck or draw. 

The second approach to using elastostatics to predict the onset of localized 
behavior is made by ERIC~SEN in [14], where the consequences of dropping strong- 
ellipticity are studied (see also [18]). For a one-dimensional rod theory with only 
axial deformations allowed, it is shown that if the stored-energy function is non- 
convex, the minimizers of the energy have jump discontinuities in the axial strain 
(the discontinuity can be identified as a transition point in the bar between two 
different regions of constant strain). Further, there are infinintely many mini- 
mizers of this type all with the same energy. 

By setting the radius parameter formally equal to zero in the rod theory used 
by ANTMAN, the resulting singular problem is almost the same as the problem 
studied by ERICKSEN. In particular, the integrand is no longer convex (that is, 
strong ellipticity has been lost in the singular limit). Using the explicit form of  
the minimizers for the Ericksen problem we are able to show that for small un- 
deformed radii, the half-neck solution to the Antman problem is the global 
minimizer of  the energy and this solution takes approximately constant values of  
strain apart from a small region near the discontinuity of the singular minimizer 
where there is a rapid change in the strain. 

The result is motivated by recent work [l l]  on a gradient theory for phase 
transitions in a van der Waals fluid. In [l l] ,  the problem of minimizing 

L 

E(u) = f [m(u(x)) + ~2u'(x)21 dx, 
- -L  

subject to the constraint 

L 

f u(x)dx = M, 
- - L  

is considered. Here u(x) is the fluid density, W(u) is the nonconvex free energy 
per unit volume, M is the total mass and r is a small parameter. When z = 0 
the problem reduces to that studied in [14]. For  z small but non-zero intricate 
phase-plane arguments are used in [11] to show that there exists a unique, mono- 



Necking of Elastic Rods 359 

tone minimizer of E(u). The integrand in E(u) is similar to the stored-energy func- 
tion for the Antman rod theory where ~ is identified as the undeformed radius. 
We prove a slightly weaker result than that in [11] but our method uses variational 
rather phase-plane techniques and is considerably shorter. 

The results in this paper rely crucially on the natural (Neumann) boundary 
conditions used. Physically, these imply that the bar is held in such a way as to 
offer no resistance to changes in thickness at the ends. Clearly, this type of  support 
is unrealistic. I f  the bar is clamped at the ends, then we must impose Dirichlet 
boundary conditions. In this case, the variational techniques used in this paper 
no longer apply. However, by extending the phase-plane analysis in [11], it is 
shown in [24] that for sufficiently small radii the global minimizer of the energy 
is a single neck and there is a boundary layer at the ends of  the bar. 

Finally, we mention some recent work by SPECTOR [27] who looks at the sta- 
bility (in the sense of being a weak local minimizer) of the homogeneous defor- 
mations for a three-dimensional cylindrical elastic bar. It is shown that for the 
hard-loading device the homogeneous deformation cannot become unstable until 
after the applied load has attained a local maximum. This result is proved using 
the second variation and a generalized version of  the Korn inequality. An equi- 
valent result for the one-dimensional case is proved in this paper. In addition, the 
result proved here suggests that the maximum extension for which the homoge- 
neous deformation must be stable is a decreasing function of  the undeformed 
radius. 

The plan of  this paper is as follows: In Section 1 we describe the reduction of  
the full three-dimensional problem to a one-dimensional problem and state pre- 
cisely the variational problem to be considered. Section 2 contains a proof  of 
existence and regularity to the variational problem and in Section 3 the phase- 
plane for the Euler-Lagrange equations is constructed. The stability results for 
the trivial and non-trivial solutions to the Euler-Lagrange equations are given 
in Section 4. Section 5 considers the convergence of minimizers to solutions of 
the singular problem as the radius goes to zero. Incompressible materials are 
considered in Section 6 and some real constitutive models are discussed. 

Throughout  this paper w~'l(a, b) will denote the usual Sobolev space of equi- 
valence classes of integrable functions on (a, b) with integrable generalized first 
derivative. The canonical representation for an equivalence class is the absolutely 
continuous member of  that class. I f  X is a Banach space, then .'x,- denotes weak 
convergence with respect to that space. 

I. The one-dimensional problem 

We consider a circular cylindrical rod of undeformed length 2 and radius r, 
and which is made of  a homogeneous, isotropic, hyperelastic material. We shall 
be interested in deformations of the rod in a "hard loading" device, in which one 
end of the rod is fixed whilst the other end is extended a given distance. We 
ignore shearing effects (cf [8]). Then the appropriate one-dimensional equilibrium 
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(P') [ 

where 

problem we shall study is to find solutions of 

1 

Minimize It(9, e) : f W(ro'(x), r e(x)) dx 
- -1  

on 2[~7 = {9 6 WI'I( - 1, 1), e 6 LI( - 1, 1) : ~ > 0 a.e., e > 0 a.e., 

It(Q, e) < 0% and e satisfies (1.1)}, 

1 

f e(x) dx = 2y. (1.1) 
- - 1  

Here, 9(x) is the radius of a cross-section of the rod with centre at x along the 
axis of the rod in the undeformed configuration, e(x) is the axial strain and 
9'(x) = dg(x)/dx. The function W is the one-dimensional stored-energy density 
function. In the admissible set, 9ire, the pointwise constraints on 9 and e are con- 
sequences of  the local invertibility of three-dimensional elasticity. The integral 
constraint (l.1) says that the total extension of the rod is 2y, where y ( > l )  is 
given. 

A detailed derivation of problem (Pre) is given in [5] (see also [4]). However, 
that derivation is carried out for a rod of unit undeformed radius so that the role 
of  the radius is not made explicit. In the remainder of this section, we shall moti- 
vate why the radius r should multiply the highest-order term in the integrand of  
I, by considering a class of constrained deformations. For an extensive descrip- 
tion of  more general rod theories see [3]. 

Suppose the rod occupies the region O : {(X, Y, Z): --1 --< X--< l, 
y2 _j_ Z 2 ~ r 2} with respect to a Cartesian coordinate system in its undeformed 
configuration. Consider deformations of  the form (X, Y, Z) --* (x, y, z) where 

X 

x(X, Y, z )  = f e(,) & - 1, 
- l  (1.2) 

y(X,  Y, Z )  : 9(X)Y,  z(X, Y, Z )  ---- ~(X)Z.  

Here 9 and e are scalar functions to be determined. 
The deformation gradient for (1.2) is 

// ,,(x) 0 ) 
F = ~9 (X) V 9(X) ~ (1.3) 

\9 ' (x )  z o 9(x) 

and the principal invariants of the left Cauchy-Green deformation tensor, 
B ---- F F  r, are 

Is = 292 + e 2 + (r 2 + z 2) (932 , 
IIa = e 4 -~ 2eee 2 + (y2 + Z 2) (9,)2 92, (1.4) 

l l I  B = 9 4 e  2 " 
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If  9 and e are independent of X, then (1.2) will be a homogeneous deformation. 
In general, (1.2) will not be a semi-inverse solution of the three-dimensional 
equilibrium equations nor will it satisfy the zero-traction condition on the lateral 
surface. (For this reason it is appropriate to regard (1.2) as a material constraint.) 

Let ~r = {(Y, Z): y2 _]_ Z 2 ~ r 2) (a cross-section of the rod) and let ~ be 
the three-dimensional stored-energy density function. We define a one-dimensional 
stored-energy density function as 

1 W'(9'(X ), 9(X), e(X)) = ~ ~: tb(F) dr2 r . (1.5) 

Since the material is isotropic, there is a function h such that 

~(F) : h(IB, liB, III8). (1.6) 

By changing to polar coordinates from (1.4), (1.5), (1.6) we get 

2 
f h(2~2 _~_ e2 ~_ R2(0,)2, 94 _{_ 292e2 _[_ R2(gt)2 Q2, 94e2) R dR. w ' ( e ' ,  9, e) = 7 o 

(1.7) 
With R -- rT, the right-hand side of (1.7) becomes 

1 

2 f h(292 ~- e 2 ~- T2(rg') 2, 94 ~- 292e 2 -~ T2(rg') 2 Q2, 9462) T d T ,  

0 

which is of the same form as the right-hand side of (1.7) but with r replaced by 
1 and ~' replaced by re'. Hence, we have 

W (r 9 (X), 9(X), e(X)). (1.8) w r ( e ' ( x ) ,  e ( x ) ,  ~ ( x ) )  = 1 , 

Since we shall be interested in the behaviour of solutions to (Pw) as r--~ 0, 
it is more convenient to use the right-hand side of (1.8) as the one-dimensional 
stored-energy density function. 

The total stored-energy E(x, y, z) for the deformation (1.2) is 

1 
E(x, y, z) = f ~ ( r )  d ~  = f f q)(r) d$2~ dX 

~2 1 D r 

1 

= ~r  ~ f w l i f e ' ( x ) ,  e (x) ,  ~(x)) d X .  
--I 

2. Existence and regularity 

Following [7], we assume that W satisfies the hypotheses: 
HI W(p,u ,v ) :R•  oo)• oo)--> [0, oo) is in C ~. 
H2 Wpp(p, u, v) ~ O, Wuu(p, u, v) ~ O, Wvv(p, u, v) ~ O and 

wp~(p, u, v) 2 
Wpp(p, u, v) Wv~(p, u, v) > 0 for all u, v E (0, oo) and for all p E R .  
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H3 There are functions h~(~7), h2(~), 0 < ~1 < oo, bounded below, such that 

W(p, u, v) ~ h~(u) q- h2(v) 

for every u E (O, oo), v E (0, oo), p E R, and 

h~(~q) -+ cx~, h2(~) -+ ~ as ~/--+ 0. 

H4 There is a function 1/(~), 0 ~ ~7 < ~ ,  bounded below, such that 

W(p, u, v) > l I((p 2 + v2) ~) 

H5 
for all u E (0, e~), and H(~)/~ --+ oQ as B -+ oo. 
Given u > 0, there are constants 30, No depending on u, such that for 

[y - u[ < ~o 

[Wu(p,y,v)] <= No(1 + W(p,u,v))  

for all vE(0 ,  o~) and p E R .  
H6 W(p, u, v) is an even function of p for every u, v E (0, o~). 

The smoothness assumption H1 can be made weaker. In H2, the first, third 
and fourth inequalities are consequences of  the three-dimensional condition of  
strong ellipticity for q~ (see [7]), whilst the second inequality follows from the 
strong-ellipticity condition for two-dimensional plane-strain elasticity [4, p. 97]. 
Hypotheses H3 and H4 are one-dimensional analogues of the natural growth 
conditions 

~(F)  -+ c~ as det F - +  0, 

~ ( F ) ~ o o  as [ F ] ~ o o  

(ef. (1.3)). Here, ] ] denotes the Euclidean norm on the space of 3 • 3 matrices. 
Hypotheses H5 is a technical requirement to ensure that the solutions of  P,7 are 
smooth. The remaining hypothesis, H6, is an immediate consequence of isotropy 
and objectivity; it means the response of  the bar is invariant under reversal of  
the x-axis [3]. 

Theorem 2.1. For each y > 1 and r ~ O, a solution (~, e) of (Pr7 ) exists. Further- 
more, ~ E C 2 ( [ - - 1 , 1 ] ) , e E C l ( [ - - 1 , 1 ] ) , 8 ~ k ) 0 ,  e ~ k ) 0  and o, e satisfy 
the Euler-Lagrange equations 

d 
r ~  [;v.(re'(x), e(x), ~(x))] = w.(re'(x), e(x), ~(x)), (2.1) 

Wo(re'(x), e(x), ~(x)) = 2, 

where 2 is a constant, and the boundary conditions 

e ' ( - -1)  = e ' ( l )  = 0. 

(2.2) 

(2.3) 
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The constant ;t is just the Lagrange multiplier of classical isoperimetric prob- 
lems of the calculus of variations. I f  (~, [)E 9Ar~ satisfies (2.1), (2.2) and (2.3), 
then we say (~, [) is an extremal of 1, 

This result is a consequence of  the existence and regularity of solutions in 
the general one-dimensional theory of nonlinear elasticity given in [7]. The 
regularity part is subtle since we cannot use the standard methods [12] directly; 
the singular behaviour of W(p, u, v) as u ~ 0 or v ~ 0 means that it is not 
obvious we can pass to the limit in 

d f [W(r(o' + z~7'~), ~ + v~,  e + z~72) W(re', 0, e)] dxl~=0 0 
dv _l 

to get 
1 

f [w~(re', e, ~) r,~; + w,,(re', e, ~) ~, + wo(ro', e, ~) ~]  dx = O. 
--1 

We shall give a proof of the regularity part of Theorem 2.1. Since we are con- 
sidering a functional Ir simpler than that studied in [7] we can give a more direct 
proof of regularity. Our proof will also use some techniques of [lO]. 

Proof of regularity. Without loss of generality, set r = 1. We show, initially, 
that the minimizer satisfies the weak Euler-Lagrange equations almost everywhere 
(cf [10]). 

(~, e) E 92r~ be a minimizer of 11 and define sets -Qn = {x E [-- 1, 1] : Let 

r > _ t ] ,  n = I, 2 , . . . .  Since 0 is continuous (by the Sobolev embedding theorem) 
n l  

the f2 n are open and can be written as the countable union of disjoint, open inter- 
o o  

vals f2n = ~.J (an,m, bn,m). Let (an, k, bn,k) be a typical component interval and 
m = l  

suppose an,k--~a~, bn,g--~b k as n-->oo for ak, b ~ E [ - 1 , 1 ] .  By continuity 
r = r = 0. Fix n and let 

/ 1 } 
M m =  xE(an,k, bn ,k ) : [~ ' (x ) l<m or - - < e ( x ) < m  , r e = l , 2  . . . . .  

m 

Choose urn, Vm E L~(~Qn) such that f 12m(X ) dx = f 1.)m(X ) dx = 0 
urn(x) = 0 for x E M~. Mm Mm 

Let 
X 

eXx) = e(x) + ~ f z.,(y) Um(Y) dy, 
all~k 

s~(x) = e(x) + TZAx) vm(x) 

and 

where Zm is the characteristic function for Mm. Clearly, e~ satisfies (1.1) and for 
[7 ! sufficiently small (~,  eO E 9~r~. 
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By the definitions of Mm, Qr and e~, we have 

( x ) I1(~,  e~) - -  I,(~, e) W ~' 
--- @- rum, q -~- V f Zm(Y) Um(Y) dy, e -~- "r;v m 

�9 15 "K Mm [ an,k 

an,k 

-~- --T an,k W e ' , e + ' r  f%,k Zm(y)um(y)dy'e 

- w ( ( ,  ~, ~)] dx. (2.4) 

Since u m and v m are essentially bounded, our construction of Mm implies we can 
use the dominated convergence theorem to show that the first integral in (2.4) 
approaches 

f [Wp(e', p, e) u m + W,(e', e, e) Vml dx (2.5) 
Mr 

as T -+ 0. Similarly, by H5 and the mean value theorem we have that the second 
integral in (2.4) is bounded by 

~.,k r ] 
f [ W(Q', ~, e). / Zm(Y) urn(Y) dy dx (2.6) 

an,k [ an,k 

for v sufficiently small. Since (Q, e)E 9~,~ and u,, E L ~, (2.6) is finite, so the 
dominated convergence theorem implies that the second integral in (2.4) has the 
limit 

f Wu(Q', e, e)" f Xm(Y) Urn(Y) ay ax  (2.7) 
an,k an,k 

as z - + 0 .  

From (2.6) and (2.7), it follows that lira I t (Q,  eO --  I~(e, e) exists, and since 
r--+O T 

(e, e) is a minimizer o f /1  this limit must be zero. Hence, by using (2.6) and inte- 
grating (2.7) by parts we conclude that 

sI ] Wp(o", Q, E) ~l m -~- Wv(Q" , ~, 8) u m - -  f Wu(~t(y), Q(y), E(y)) dy " u m dx ---- O. 
M m 1_ an, k 

Since urn, v m are arbitrary, this equation implies that 

Wp(~'(x), e(x), E(x)) = / Wu(~'(y), O(y), E(y)) dy • C . . . .  (2.8) 
an,k 

Wu(q'(x), O(x), e(x)) = 2,,m (2.9/ 
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for almost every x E M,,, where c,.,~, 2,. m are constants. Furthermore, since 

M,, Q mm+l and m e a s  (an,k,b.,k) \ ~_J M m = O, it follows that C,.m~ c, 
m = l  

and 2,,m ~ 2, are independent of  m and (2.8), (2.9) h o l d  for almost every 
x E (a,,~,, b,,.k). Finally, if we let n -+ ~ ,  then an argument similar to that above 
implies that c, ~ c and 2, ~ 2 are independent of  n and (2.8), (2.9) hold for 
almost every x E (ak, bk). 

Since the right-hand side of (2.9) is uniformly bounded (trivially), H3 and H4 
imply that ess infe  > 0 and ess sup e < o0. Likewise, (2.8) shows that 9' is 

[ak,b k] [ak,b k ] 
essentially bounded on every compact subset of  (a~,, bk). Note that by construction 
the integrand in (2.8) is singular at a, and bk. From the arbitrary choice of (ak, bk) 
we deduce that ess inf e > 0 and e E L~(  - 1, 1). Hence, after re-defining e on 

[ - l , l l  

a set of measure zero we find that there is a number k such that e(x) ~ k > 0 
for all x E [--1, 1]. 

We now show by contradiction that 9(x) > 0 for all xE  [--1, 1]. Suppose 
p(~) = 0 for some ~ E [-- 1, 1]. Let A, be the maximal connected open interval 

1 
such that ~ ( x ) < - -  o n A ,  and ~EA, .  Let 

n 

91x ) for x 6  A,, 

~(x) = __ for x E A,. 

Then ~ E Wl'l( - 1, 1), ~(x) > 0 a.e. and (~, e) E 9~1r. Since W(p, u, v) is 
even and convex in p, 

-4 n 

Since e is bounded away from 0 and o% H2 and I-I3 imply that there is an 
Nt. > 0 such that the integrand in (2.10) is strictly negative for all n > N~, 
contradicting the fact that (~, e) is a minimizer. 

Thus, since 9 and e are bounded away from zero, we can now apply standard 
arguments [12] (cf. (2.3)) to show that 9 and e are smooth and that (2.8), (2.9) 
hold for every xE  [--1, 1]. 

The natural boundary conditions ([15]) for I t  are 

Wp(e' ( -  1), 9(-- 1), e(-- 1)) = Wv(9'(1), e(1), e(1)) = O. 

The boundary conditions (2.3) then follow since W is even in p. [ ]  

The test function ~ can be thought of as lifting 9('~) away from zero and thus 
lowering the energy. 
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3. Solutions of the Euler-Lagrange equations 

The Lagrange multiplier 2 in (2.2) is determined by the constraint (t.1). In 
this section we shall ignore (1.1), consider 2 as a parameter and construct the 
phase-plane for (2.1), (2.2) for various values of  2. Our construction will combine 
the approaches in [5] and [11], and will illustrate the underlying similarities be- 
tween the two works. 

Consider the algebraic equation Wu(0, u, v) = 0. By H2, H3 and the implicit 
function theorem, this equation can be solved for u as a function of v. That  is, 
there exists a Ca-function ~ : (0, ~ )  -~- (0, cx~) such that 

W,(0, ~(v), v) ~ 0 (3.1) 

for all u E (0, oo). A bootstrap argument shows that ~ is smooth. 
In addition to H1-H6  we assume that W satisfies 

H7 There are numbers 0 < ~ < 0 < / 3 < ~  such that the function 

g(v) ~f" Wv(O, -~(v), v) ~ 0 satisfies 

g(Sx) > g(O) > g(/3) > O, 

g'(v) > 0 for v E (0, if) kJ (/3, or 

g'(v) < 0 for v E (~,/3), 

g"(v) < 0 for v E (0, 0), 

g"(v) > 0 for v E (0, oo). 

H8 W , v ( p , u , v ) > O  for all u, vE(O, oo) and for all p E R .  

The graph of Wv(O, ~(v), v) against v (Figure 1) has the familiar non-monotone 
shape associated with many studies of phase transitions in fluids and solids (see 
[1], [14]). Clearly, H7 implies that W(0, u, v) is not convex. In [5], W(O, u, v) is 
assumed to be non-convex but no explicit assumption such as H7 is made. 

W~[O,p(v),v] 

. . . . . . . . . . . .  ! 

il . 

Fig. 1 
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From H8 and differentiation of (3.1) we see that ~(v) is a monotone decreasing 
function. We note that H8 is not a consequence of  strong ellipticity. It has the 
physical interpretation that for a bar deforming homogeneously in uniaxial ten- 
sion the radius of the bar decreases as the length increases. 

Let 2_ ---= W~(O, ~(~), fl) and ~. = W~(0, ~(~), ~) where ~,/5 are given in H7. 

For 2 E (2, 2"), the equation 

wo(0,  ~(v), v) = 2 (3.2)  

has three distinct solutions which we denote 0~ < ~a < fl~ (cf. Figure 1). For 
2 = 2, (3.2) has two solutions; one is ~ and the other we denote fl[ Likewise, for 
2 = 2_, (3.2) has solution v = fl and another one we denote ~. If  2 ~ [2, 2-], (3.2) 
has a unique solution cA. 

We define the Maxwell triplet (o%, flo, 20) (cf  [14]) as the unique solution of  
the algebraic system 

W ( 0 ,  ~(~),/7) - -  W ( 0 ,  ~(~), ~) = 2({7 - -  ~), 
(3.3) 

2 = w~(0,  ~(~), ~) = wo(0 ,  ~(~), ~). 

d 
Since -~v W(0, ~(v), v) = W~(0, ~(v), v) (by definition of  ~), the geometrical inter- 

pretation of the Maxwell triplet is the usual equal-area rule: the area above the 
line 2----20 and below the curve W~(0, ~(v), v) equals the area below 2 ~--2o 
and above W~(0, ~(v), v) (Figure 1). 

By H2, H3 and the implicit function theorem there exists a Ca-function 
: R • (0, oo) • R -+ (0, oo) such that 

=k( ro ' ,  ~,2) (3.4) 

satisfies (2.2). A bootstrap argument shows that k is in C ~. 
Equations (2.1), (2.2) can now be written as the first-order system 

where 

Q' =~/ ,  

~v = (V(r~, ~, ~(r~, ~, 2)). 

(3.5) 

P r o p o s i t i o n  3 . 1 .  (cf. [5]) 

(i) For 2 E ( - - ~ ,  2_) W (,T, oo), (3.5) has one fixed point which is a saddle. 

(ii) For 2 E (2_, 2), (3.5) has three distinct .fixed points (~(/5~), 0), (~(~), O) and 
(~(~), 0). The first and third of  these f ixed points are saddles and the second 
is a centre. 
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Proof.  The fixed points of  (3.5) are (p ,~)  = (e, 0) where 
W,(0, e, ~(0, e, )1)) = 0. They correspond to solutions (e, ~) of  

Wu(O, e, ~) = o ,  

w~(o, e, ~) = z. 

The result then follows from the definitions of  ~(-), 2_ and 2. [ ]  

e satisfies 

(3.6) 

We note that  (3.6) are the equilibrium equations for a bar deforming homo- 
geneously under  an applied load )l. Proposition 3.1 says that  for sufficiently high 
loads there is more than one homogeneous solution. 

The system (3.5) has first integral 

! ^ v ^ r f (re ' ,  e, 2) def. Wp(re, ~, e(r~, e, 2)) r e' -~ )1e(re, e, 2) 

--  W(re',  e, ~(re', e, 2)) = E (3.7) 

for constant  E. Following the ideas in [5], we set 2o9 = (re') 2, V(oJ, u, v ) =  
W(re', u, v), b(oJ, u, 2) = ~(r~', u, )1) and s(w, u, 2) = fir(. ' ,  u, 2). Since W is even 
in r~' by (H6) it follows that  f is even in r~', and ~o, V, 5 and s are well defined. 
Substituting these new variables into (3.7) gives 

s(,o, e, )1) = 2,o vo~(~, e, b(~,, e, )1)) + )1b(o~, e, ~) 

--  V(o), e, gr(oJ, e, )1)) = E. (3.8) 

We shall show that  (3.8) can be solved for oJ. 
The Gibbs function, (~(2, u), for W (cf. [11]) is defined as 

~(2, u) = W(O, u, ~(0, u, )1)) -- )1~(0, u, 2). (3.9) 

Proposition 3.2. The function ~3(', ") is a smooth mapping f rom R • (0, oo)-->R. 

For )1 E ( - - ~ ,  2_) L] (~, oo), (~()1, .) has exactly one critical point ~(c~.). For 2 E (4, 2), 
(~()1, .) has three critical points ~(o~) > ~(~).) > ~(/3~) and 
(i) ~()1, -) is strictly decreasing on (0, ~(fl~.)) L / (~(~) ,  ~(o~)) and strictly increasing 

on (~(~), ~(~)) w (~(o,,.), ~ ) ,  
(ii) 63()1, ~(fl,,)) > ~(2, ~(or for  )1 < 20, ~(2, ~(a~)) > ~()1, ~(flz)) for  )1 > 20, 

and 

(~.o, ~(~,o)) = $()1o, 6(/3o)). (3.1o) 

Proof. Regularity of  ~ follows from H1, whilst the critical points are given by 
solutions to (3.6). 

To prove (i) and (ii) we make the change of  variables u = ~(v), so that  

c~(~, v) ~~ ~(~,  ~(~)) = w(o ,  ~(v), v) - ~,~. 
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Since ~ is a decreasing function, if (~(2, .) is strictly decreasing on (0, ~ ) ,  then 
@(2, .) is strictly increasing on (~(~a),oo). From (3.1) and for Vl, v2 E (0, ~z) 

V2 

c~(k, v~) - ~(k, v J  = f [w~(o, ~(v), v) - k] dv 
v t  

v ~  

= f [wv(o ,d (v ) , v )  - -  W,,(O,-~(o~b,~.)ldx. (3.11) 

For v E (0, ~ ,  H7 implies that the integrand in (3.11) is strictly negative and 
hence (~(2,-) is strictly decreasing. The remainder of (i) follows similarly. 

Now let v~. = o~, v2 =/3a in (3.11). For  ;t = 2o, (3.10) is just a restatement 
of  (3.3). For 2 = 2, the integrand in (3.11) is negative for vE (~, if) (el Figure 1) 
and this gives the second inequality in (ii). A similar argument holds for ;t < ko. [ ]  

Differentiating (3.8) with respect to to, changing back to the original variable 
t~' and using H2 shows that 

s,o(co, e, 2) > 0. (3.12) 

Let 2 E (2,)-.). Since s(0, ~, k) = -- ~J(2, e), it follows that s(0, e, 2) --~ ~ as 
O ~ 0, oo by H3 and H4. Proposition 3.2 then implies that the equation 

s(0, e, 2) ---- E 

has at most four solutions 0 < 60(2, E) ~ r E) < e~.(2, E) ~ et(2, E) < 
for 2 and E satisfying 

2<2~2o 

ko<k<=k 

(see Figure 2). 
In addition, 

~(2.u)' 

-E 

and fit(k, ~(/3~)) ~ - -E  < ~(2, ~(~x)), / 

/ and ~(2, ~(~z)) ~ - - E  ~ ~(2, ~(~)), 
(3.13) 

s(0, ~, k) > E for e E (qo, e-) L/(~+, Ca), 

s(0, q, k) < E for e E (0, qo) ~J (q-, q+) ~J (e~, co). 

~<,1.< 2o ~=X 0 

W 
~(k,u] J 

-E 

ko<k<Z 

1 ~ _ q q - I I _ 

Fig. 2 
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Hence, by (3.12) and H4 there exists a unique (oE [0, cx~) such that given 
e [e-, e+]. 

s(o~, o, 2) = E. (3.14) 

Let ~ .  ,E ---- {(~, 2, E) : 2 E (_2, 2), E satisfies (3.13), l o1E [Q_(2, E), e+(2, E)]}. Then 
we can define a function H :  ~. ,E-+ [0, ~ )  implicitly by 

H(~, 2, E) = 2o~, 

where ~o is the unique solution of (3.14). Thus, the first integral (3.7) can now be 
written 

for 0 E [~_(2, E), 0+(2, E)]. 

Proposition 3.3. The function 

rZ(~') z = H(~, 2, E) (3.15) 

H : ~.,~ ~ [0, ~ )  is smooth. Furthermore, for 
2 E (2, -2) and E satisfying (3.13) 

H(o_(2, E), 2, E) = H(e~.(2, E), 2, E) = 0, 
(3.16) 

H(Q, 2, E) > 0 for o E (e_(2, E), o+(2, E)).  

In addition, for 2 E (_2, 20) 

~o+(2, --6J(2, ~(fl~.))) = ~(/3a), Ho(~(/3~,), 2, --(~(2, ~(/3~))) = 0, (3.17) 

whilst for 2 E (20, 2) 

e+(2, -- ~(2, ~(o~))) = ~(o~,), H~((~(oca), 2, -- 6J(2, ~(o~a))) = 0. (3.18) 

I f  2 = 2o and E o de_f --6J(2, ~(Or then 

0-(20, Eo) = ~(flo), e+(2o, Eo) ---- ~(Or 
(3.19) 

20, Co) 20, Co) = 0. 

Proof. The smoothness of  H follows from the regularity of  W and H2. The 
definition of H and (3.13) imply (3.16). The first part of  (3.17) follows from the 
definitions of 06(2, ~) and ~z. 

By substituting (3.15) into (3.7) and differentiating it with respect to ~ we get 

2W,, -- 2H'ffO, 2, E ) [Wp, - -  WwW~/Wr~ ] 
i-lo( 2, E) = Wp,- w ,/w o 

where W is evaluated at (H~(~o, 2, E), 8, ~(H'(~o, 2, E), ~o, 2)). The second part of  
(3.17) then follows from (3.16) and (3.6). 

The equalities (3.18), (3.19) are proved in the same way. [ ]  

From Propositions 3.1 and 3.2 we have enough information about H to con- 
struct the phase portrait for (3.5) from (3.15) for various values of 2, E and 
0 E [~_(2, E), 0+(2, E)]. Figure 3 (el [11]) shows the phase diagrams for 2 E (_2, 2.) 
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and E satisfying (3.13). The significant features of  the phase diagram are the hetero- 
clinic and homoclinic orbits enclosing a set of closed orbits. Given 2 and E (satis- 
fying (3.13)), (3.15) defines a unique orbit which crosses the ~' = 0 axis at the 
points r = r E) and r = ~+(2, E). 

@ 
Fig. 3 

) -0<& <~. 

To solve (3.5) and the boundary condition (2.3) we need to show that 
there is a trajectory starting and finishing on the ~-axis with the time taken to 
traverse this trajectory equal to 2. (We now interpret the x variable as time.) 
Obviously, the constant solutions r ~_ ~(fl;.), ~(r and ~(~) satisfy these condi- 
tions. Hence, (~, e) ---- (~(fl~), fl~), (~(~.), ~.) and (~(~), ~.) are solutions of (2.1), 
(2.2) and (2.3). 

As can be seen from figure 3, the closed orbits lying inside the separatrices 
connecting critical points satisfy (2.3). Consider a trajectory that starts at r E), 
traverses half an orbit and finishes at ~ = r E). The time taken to traverse 
this half orbit is given by the time map 

0+(;~,E) 

T(q_(2, E)) = f H(~, 2, E) -~ do. 
e (;.,E) 

Standard results ([16]) show that T(0 is continuous on (~(fl;,), ~(~a)) and 

lim T(e)---- +oo,  (3.20) 

i.e., it takes an infinite time to traverse a connecting orbit. Furthermore,  a simple 
calculation based on Proposition 3.2 and (3.14) shows that 

- -  1 {. _woo• 
lim T(Q)= (3.21) 

where the partial derivatives are evaluated at (0, ~(~a), ~) .  The continuity of  T 
and the limits (3.20), (3.21) then imply that for r sufficiently small there exists at 
least one solution of  T(~_) = 2, i.e., there exists a non-constant solution of (3.5) 
and (2.3). Since the phase portrait is symmetric about the ~' = 0 axis ((3.15)) 
the trajectory starting at ~)+ and finishing at ~_ is also a solution. If  ~(x) is a solu- 
tion of this type (i.e., a monotone function), then the corresponding solution 
(~, e) of  (2.1), (2.2) and (2.3) we shall call monotone. Since /,(~(--x), e( - -x ) )  = 
I~(~(x), e(x)) there is no loss in generality in assuming that a monotone solution 
has r decreasing. 
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We now consider trajectories that traverse the whole orbit one or more times. 
As before, consider a trajectory starting at 0__(2, E). Let N be the number of  times 
that the trajectory crosses the 0' = 0 axis not including the starting point (the 
monotone solution has N = 1). The time taken, TN(r to traverse this trajectory 
is just an integer multiple of  T(o_): 

TN(O_ ) = NT(o_ ) (3.22) 

(cf. [11]). 
As above we see that if r is sufficiently small, then the equation T(r = 2/N 

will have a solution. Hence there is a trajectory satisfying TN(0) = 2. The cor- 
responding solution (~, e) of (2.1), (2.2) and (2.3) we shall call non-monotone. 

In [5], it is conjectured that the monotone solutions represent drawing defor- 
mations whilst non-monotone solutions represent necking deformations. The con- 
stant solutions of (2.1), (2.2) and (2.3) correspond to homogeneous deformations. 

The remainder of  the phase portrait for 2 E (2_, ~.) can be constructed using 
techniques similar to the above. The significant features of  trajectories lying out- 
side the connecting orbits are that they are unbounded and cross the 0' = 0 
axis at most once. Hence, none of  these trajectories satisfies (2.3). 

For  2~ (_2, ~.) there is exactly one fixed point (Proposition 3.1) and it is 
straightforward to show that all other trajectories are unbounded and cross the 
0 ' =  0 axis at most once. Thus, the only solution of (2.1), (2.2) and (2.3) is 
(o, ~) = (~(e~), c~). 

I f  2 = _2, 2 the phase portrait has a structure slightly different from that 
described above. However, we shall see in the next section that stable non-constant 

solutions cannot have ~ = 2 or 5. 
We note that if bl~(0, ~(v), v) is monotone (i.e., if H7 is not satisfied), then 

(3.5) has one fixed point for all values of  2 and the only solution of  (2.1), (2.2) 
and (2.3) is 0 = constant, e = constant. We conclude that in this case there is 
no non-homogeneous behaviour of the form (1.2). 

Finally, we state a lemma which will be used in section 5. The proof  of this 
is the same as that for the equivalent result in [11]. 

Lemma 3.4. l f2 ,  E satisfies (3.13), then 

~(flo) < o_(2, E) < o+(2, E) < ~(0~o), 

O~o < ~(0, 0+(2, E), 2) < ~(0, o_(2, E), 2) </30.  
(3.23) 

4. Minimizers of I, 

As stated, problem (Prz) refers only to global minimizers of I,. We are also 
interested in local minimizers. To be precise, we say that (0, e) E 9~rv is a strong 
local minimizer of  Ir if there exists /z > 0 such that 

Ir(O~, ~') ~ It(01, ~1) (4.1) 
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whenever (et, e l )E 91 w and sup let(x) --~(x)l  < / t .  If(4.1)holds for (ej, el)E 9~ w 
[-LH 

satisfying sup I~l(x) --  ~(x) l + ess sup le~(x ) -- e'(x)l § ess sup l el(x) --  e(x) l < ~, 
[--1,1] [--1,11 [--1,1] 

then we say that (~t, eO is a weak local minimizer. Clearly, if (~, e) is a strong 
local minimizer, then it is a weak local minimizer. The converse is false. 

Let 

{ ' / ~ = fib, ~2) : ~ E IVy!2(_ 1, 1), ~2 E L2( - 1, 1), f ~2(x) dx = 0 . 
--I 

For (~, e) E ~,~, the second variation of  L at (~, e) is 

def. d 2 
V2(~1., ~2,  e ,  e ) =  d ~ l r ( e  § T~I , 8 § "K~]2)I,=~ 0 

1 
: f [l~mr2(~/'~) 2 + l~u~l 2 + 2I~Jh2/2 + 2I~'p~r~/~2 

1 

^ t ^ 
+ 2 W ,  ur~t~ + Woo~] dx 

where l~ ---- IV(re', ~, e) and (~7~, r/2) E t~. 
From Taylor's theorem, it is straightforward to show that a necessary and 

sufficient condition for an extremal (e, e) of I, to be a weak local minimum is that 

V2(~/t, ~/2, e, e) ~ 0 for all (~h, ~2) E V. 

Surprisingly, positivity of  the second variation is also a sufficient condition for 
a strong local minimum. 

Theorem 4.1. Suppose (e, e) E 9~r~ is an extremal of  I,. I f  

V2(~t,~2;e,e) > 0  for all (~ ,~2 )E  ta, ~ t * O  or ~2 ~ 0 ,  (4.2) 

then (Q, e) is a strong local minimum. 

The proof of  this theorem, using the field theory of  the calculus of  variations, 
is given in [22]. 

We now consider the constant solutions of (2.1), (2.2) and (2.3). From Sec- 
tion 3 we know that constant solutions are of the form (~(da), da) where da satisfies 
(3.2). Given 7 E (0, cx~), (~(da), da) E 9A~ if and only if d~ = 7, i.e., d~ satisfies 
(1.1) and 2 == Wo(0, ~(7), 7). Thus, (~(7), 7) is an extremal of  It. 

Theorem 4.2. 
1) For 7 ~ ~162 or 7 ~ flo, (~(7), 7) is the global minimizer of  I, on 9A,7. 
2) Given r sufficiently small, there exist numbers "rl(r), ~2(r) > 0 such that i f  
7 E (o%, ~ + ~'t(r)) LJ (/3 -- v2(r), flo), then (~(7), 7) is a strong local minimizer ofl~. 

3) Given r sufficiently small, there exist numbers "ra(r) > "ct(r), v,(r) ~ ~2(r) such 
that if  7 E (~ + v2(r), /3 -- T4(r)), then ~(7), 7) is not a minimizer (in any sense) 

of It. 
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Proof. 1) Suppose 7 ~ ~x 0 and (6, e) E 9~,~. Then 

1 

I,(e, e) -- Ir(-~(7), 7) ~ f [W(0, ~(x), e(x)) -- W(0, ~0'), Y)] dx, (4.3) 
--1 

by H2 and H6. Define a smooth function f :  (0, ~ ) •  (0, o o ) ~  R by 

f(y,  z) = W(O, y, z) -- W(O, 0(7), ~) z. 

By HI ,  H2, H3 and H4, f i s  bounded below and goes to ~ as y - ~  0, cx~ or as 
z --~ 0, cx~. Thus, f attains a minimum value and the critical points o f f  are given 
by 

W,(0, y, z) = 0, Wv(0, y, z) = Wv(0, ~0'), 7) (4.4) 

(el (3.6)). For  7 < a__, (4.4) has a unique solution z = 7, Y -- 5(7). Hence, 

w(o,  ~(x), ~(x)) - wo(o, -~0'), 7) e(x) > w(o,  -~0'), 7) - wv(o, -~0'), 7) 7 (4.5) 

for all x E [--1, 1]. Positivity of the right-hand side of  (4.3) follows by rearrang- 
1 

ing (4.5), integrating it and noting that f [ e ( x ) -  7] dx = O. 
--1 

For 7 :> a_, there is more than one solution of (4.4). A simple calculation 
based on H7 shows that the minimum value o f f i s f ( ~ ( 7 )  , 7). The result then fol- 
lows as for 7 ~_~. 

The proof  for y ~ fl is analogous. 
2) By Theorem 4.1 we need only show that the second variation is positive for 
7 in the desired range. Hypothesis H6 implies that Wp(O, u, v ) =  0 for all 
u, v E (0, oo), so that the second variation at (~(7), 7) simplifies to 

1 
V2(r]x, ~/2; Q ( 7 ) , 7 )  ~-  f [Wppr2(z]'l) 2 ~-  ~"uu~] 2 -}- 21~.~F/2 q- 21Vj/~] dx 

-1  

: -,J l~pprZ(~i)2§ W~v +"-:--~hwv~ , + ~ W~ -~-~,~}~,]dx, (4.6) 
I 

where now /~ = W(0, ~(7), 7)- 
By H2, V2 is strictly positive if the last term in the integrand of (4.6) is non- 

negative. From the definition of ~, 

d 2 
a~  w(0, ~(~), ~)Io=~ = w~v ~ ~  - w.-C' ( 4 7 )  

so that H7 implies the left-hand side of  (4.7) is non-negative for 7 ~ ~ or 7 ~ fi 

(~f Figure 1). That the last term in the integrand of (4.6) is non-negative follows 
from H2. 

For  ~ E [0, fl -- ~] let h(x) = g'(~ § x) where g is as defined in H7. Then 

h(O) = O, h(fl -- ~) = O, h'(O) < O, h(r) < 0 for ~ E (0,/3 -- a---); 
- - (4.8) 

there is a O~E(O, f l - - ~ )  such that h ' ( r ) < O  for rE[O,O~]. 
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Hence, h is a negative, decreasing function on (0, 00. For  z E [0, f l -  ~] let 

l(~) = WppWvv/Wu,,I(o.~-+~),~+~). By H1 and H2, I is a bounded, continuous func- 
tion and so there are constants 0 < m ~ M such that 

m ~ l(z) ~ M for all -r E [0, fl -- ~]. 

We define zl(r) as the solution of 
~ 2  

h(z) ---- - - r  z ~-- m. 

From (4.8), this equation will have a unique solution provided r is sufficiently 
small. 

We now show that 1/2 => 0 for all y E (o%, ~ q- ~'t). From (4.6) 

f wvo w.o/ j V~(~I,~2; 7(~), ~')---- > 
--1 

with equality if  and only if 

r/2(x) -- 1 ~  ~h(x) for a.e. xE  [--1, 1]. (4.9) 

1 
If  (4.9) holds, then f ~(x) dx = 0 since the partial derivatives are constant 

--1 
and (~h, r/2)E V. By the Poincar6 inequality [21], [26] 

4 1 , l I 1 d 2  1 
zS 7 f (~,y dx > f ~ - �89 f n,(~) dx = f n~ dx, 

- -  - - 1  - - i  - - 1  

so that 

V2(~/,.,~/z;00'),~)~ -,/ r2--4-1~pp-k-~--~ I~vV ~ ~iax (4.10) 

> 0  

provided 

7~ 2 l~rvv 
h(7) = 1~ ffzo > - - r  2 ~Ipp (4.11) 

Since h is decreasing, the definition o f -~  ensures that (4.11) holds for y =< ~ -k 

A similar argument holds for 7 E (fl -- 1%(r), fl) where ~2(r) is defined in the 

obvious way. 
3) This result is proved in [5] but without giving an explicit definition of za(r) 
and z4(r). We shall construct a variation ( ~ ,  ~2) such that V2(~, ~]2 ; ~(Y), 7) < 0. 

For r sufficiently small, let ~'a(r) be the unique solution of  

~./;2 
h(~') = - - r  2 -~- M.  
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Clearly, ~3(r) => T~(r) and we can define the number z4(r) in a similar way. Let 

~71(x) = sin ( -~ - -x )and  ~/z(X)= 
\ / 

satisfy (4.9), so that 

v~(~,,~;~(y),y) = ~ ~,,r~ ~-co: x 

v~(ff:.~ wo.W~"̂2) 

=[w:2 
which is negative for ~ + 

+ ffrv v h(~/ - -  ~ --1 

�9 3(r) < ~ < # - r , (r) .  

Then 

s,n2( x) x 
[] 

From the construction of  the function h, it is straightforward to show that 
there is a K > 0 such that for r > K the constant solution ~0 ' ) ,  ~') is a strong 
local minimizer for all ), > 1. Furthermore, from the definition of  "ri, 

Ti(r)-+ 0 as r - + 0 ,  i =  1 , 2 , 3 , 4 .  

The quantity W,(0, ~(V), ~) is the applied uniaxial tension required to produce 
a homogeneous extension 7 (cf. [5]). The graph of I4:,(0, ~(~),~,) against 7 can 
then be identified as the measured tension-extension curve (at least up to the onset 
of  necking). 

Theorem 4.2 shows that the homogeneous deformation cannot lose stability 
until after the first local maximum of the tension-extension curve is passed. More- 
over, there is a finite range of deformations after this maximum point for which 
the homogeneous deformation is stable and this range is determined by the un- 
deformed radius of  the bar. In particular, the thinner the bar, the less extension 
is required before stability is lost. 

In [27], it is shown that the second variation for the full three-dimensional 
theory for an elastic bar in a hard device is positive beyond the first maximum of 
the tension-extension curve. However, the bar considered is of  arbitrary cross- 
section so that the role of the undeformed radius is not considered. 

Finally, we note that for sufficiently large initial radii the homogeneous de- 
formation will never lose stability. 

We now consider the monotone and non-monotone solutions of (2.1), (2.2) 
and (2.3). To show directly which of these solutions satisfy (1.1) is difficult (cf. 
[11]). However, the following results shows that we do not have to consider the 
non-monotone solutions. 

Theorem 4.3. Suppose (~, e) is a non-monotone solution of(2.1), (2.2), (2.3) and (1.1) 
(that is, an extremal o f  It). Then (9, e) cannot be a local minimizer o f  I r on 92(~v for  
any 7 ~  1, r ~ O .  
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The proof  of this surprising result is a straightforward extension of  the cor- 
responding result in [11]. 

Theorem 4.3 implies that the extremals corresponding to one or more necks 
are not "physically realizable". From Theorems 4.2 and 4.3 we conclude that the 
only localized behaviour possible is a half-neck or "drawing" deformation: 

Theorem 4.4. G&en r sufficiently small such that % ( r ) - <  T4(r) and given 
7 E (-~ + xa(r), 8 -- z,(r)) there exists (~,-;) E A,e with (~, "~) monotone, such that 
(9, "~) is a solution of  (P,e), i.e., a global minimizer of  lr. 

5. Convergence to minimizers of Io 

In the first part of this section we discuss the singular Ll-minimization problem 
produced by setting r = 0 in the integrand of  I,; 

/ ' Minimize Io(~, e) = f W(O, ~, ~) dx 
--1 

(P~') on ~ = {~ELI(--1 ,  1 ) ,eEL1(- -1 ,  1 ) : ~ , 8 > 0  a.e., ~ satisfies (1,1) and 
Io(e, e) < cx~}. 

Henceforth, we assume that W satisfies a hypothesis slightly stronger than H5: 

H5' There is a continuous function 0(~/), 0 --< r / <  o% 
that 

w(p,  u, v) >= O((p ~ + u ~ + v~) ~) 

o(0 
and --.-- cx~ as r / ~  0. 

bounded below, such 

H7 implies the integrand in Io is no longer convex so that we cannot expect 
smooth minimizers. The solutions of  (P0~) are well known [14]; they satisfy the 
Euler-Lagrange equations (cf. Proposition 3.1) 

w.(o ,  e, 0 = o ,  

wo(o, e, ~) = ;t 

(2 is the Lagrange multiplier) and the Weierstrass-Erdmann corner condition: 
W(0, r e(x)) -- ~(x) I4I,(0, ~(x), e(x)) -- e(x) Wv(O, 9(x), e(x)) is continuous for 
all xE  [--1, 1]. 

For  7 ~ O~o or 7 => 8o the only possible solution is ~ ~ ~(7), e ~ 7- For  
7 E (O~o, rio) the set of  solutions is far more interesting. Let $1, $2 be any disjoint, 
measurable sets whose union is [--1, 1] and such that 

2 ( 8 o - 7 )  2 ( r - ~ o )  
, meas ($2) -- (5.1) m e a s ( S 1 ) - -  8 o - - ~ o  8 o - - ~ o  
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Then  

J~(~o) for  x E S~ ~O~o for x E $1 

Co(X) = [0(~0) for x E $2 '  Co(X) = [/30 for x E $2 
(5.2) 

is a solution. Since S~ and 8 2 a r e  only determined up to their measures, there 
a re  infinitely many minimizers of  the form (5.2), all with the same energy 

2(/30 --  ~) 2(7 --  O~o) 
Io(~o, ~o) - /30 - ~,o w ( 0 ,  ~(~,o), ~o) + /30 - So 

Fur thermore ,  

Io(eo, ~o) < Io(~(~,), ~,). 

w(0, ~(/3o),/30). 

(5.3) 

We call minimizers of  the form (5.2) the Maxwel l  solutions o f  (Poe)- A point  
x E  [--1,  1] where (~o, Co) has a jump discontinuity is called a transition point. 

The main result of  this section is the following: 

Theorem 5.1. L e t  (0r, e,), be a solution o f  (Pre) f o r  7E (So, flo) and  r > O. There 
is a subsequence (~%, e~) o f  (er, e~) such that 

L 1 ^ 

8~(x) ---> ~o(X) u  E [0, 1 ] and e~ ~ eo as s --> O, 

where (~o, eo) is the Maxwel l  solution with one transition and ~o monotone decreasing. 

A result of  this type is proved in [11] using a detailed phase-plane analysis. 
Our  approach will be to use variational methods and a theorem from the theory 
o f  functions o f  bounded variation. 

We first show that  (gr, er) is a minimizing sequence of  Io. 

Lemma 5.2. 

Io(qr, er) -~  Io(qo, Co) as r -+ 0. 

Proof.  Let  It = - - I  + m e a s ( S ~ )  and let 

and 

Or ~ 

~,(x) = ~!/3o - ~,o) 
[ 

/ 2r 

/30 

[ ~(~,o) 
1 

Qr(X) = ~ (~(t~o) ~(~o)) i 

2r 

I ~(/3o) 

(x - - 1 1 +  r) + so 

(x - 6 + r) + ~(/3o) 

for - - l  < x < ll - -  r, 

f o r l l - - r = < x < l l §  

f o r l t + r < ~ x < - -  1 

for  - - l  <= x < l~ - -  r,  

for  l~ - -  r ~ x  < 11 + r, 

f o r l l + r ~ x < l .  
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Then (~r, kr) E 9A~ for all r > 0 and r~' r is bounded as r ~ 0. A simple calcula- 
tion shows that 

Ir(Qr, er) "-->" (1 -{- It) W(O, Q(Or , Or -~ (1 - -  10 W(0,  Q(flo), flo) : [o(Oo, Co) (5.4) 

as r ~ 0. Since (~,, er) is a minimizer of/~ and W(p, u, v) is convex and even in 
P, 

Ir(~r, ~r) ~ /r(0r, er) ~ I0(or, er) ~ Io(eo, Co). (5.5) 

The assertion then follows from (5.4) and (5.5). [ ]  

Proof of Theorem 5.1. By Lemma 5.2, H5' and the de la ValIee Poussin criterion 
[12], we can extract a subsequence of  (gr, er), which we again denote by (9,  er), 
such that 

L* L* 
Qr ~ ~ and er - -  e as r -+ 0 (5.6) 

for some Q, eEL1(--1 ,  1) with e satisfying (1.1). 
If  W(0, u, v) were a convex function, then Io would be weakly lower semi, 

continuous and we could conclude that (Q, t) is a minimizer of  Io. Without con- 
vexity this argument fails. 

Let BV(--1 ,  1) denote the space of  functions of bounded variation ([19], 
[28]). Since 0r is monotone we know that 0, E BV(--1 ,  1) for all r > 0 and its 
total variation is V+_~(Qr)= q r ( - k l ) -  er(--1). By Lemma 3.4, V+_~(Or) is uni- 
formly bounded for all r. Furthermore, sup let I is uniformly bounded for all 

[ -1,11 
r > 0. Therefore, by the Helly selection theorem ([19]) there is a subsequence 
(O~) of (0r) and a function 0* E BV(- -  1, 1) such that 

e~(x) ~ O*(x) as s ~ 0 

pointwise for every x E [--1, 1]. Since ~ is decreasing and satisfies (3.23) for all 
s > 0, we deduce that e* is decreasing and 

~(flo) :< O*(x) :< ~(O~o) u  [--1, 1]. 

In addition, we have 8 = ~* a.e.. 
Since W(p, u, v) is a convex function of  v for fixed p and u (by H2) and ~ 

converges pointwise we can apply the lower semicontinuity result in [12, p. 352] 
to give 

Io(~*, e) ~ lim inflo(~s, es) = Io(~o, Co), (5.7) s-+0 

i.e., (r e) is a minimizer of Io. Since r is monotone and all minimizers of Io 
are given by (5.2), the only possible choice for S,  and 5'2 is 

S, = [--1, 1 q- 1~), $2 = (--1 q- l,, 1]. 

Thus, there is exactly one transition point at x = --1 + l,. [ ]  

Corollary 5.3. Suppose ~, E (O~o, flo)- There is a r,(7) > 0 such that for r < r,(7) 
the global minimizer of  Ir on ~r is monotone. 
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Proof. Fix ~, E (O~o, flo). From (5.3), 

I,(~(7), 7) = Io(~(~'), ~) > lo(eo, Co). 

Theorem 5.2 and (5.7) then imply that 

I o ( e r ,  F'r) < Io~(~'), ~') 

for r sufficiently small. Thus (~(7), 7) is not the global minimizer and by Theo- 
rem 4.3 the only choice for a minimizer is monotone. [ ]  

A method similar to the above has been used in [1], [2] for some problems in 
phase transitions in fluids. 

6. Incompressible materials and applications to specific elastic models 

If  the bar is composed of an incompressible material, then r and e are no 
longer independent but satisfy the pointwise constraint 

aS(x) e(x) = 1 ; 

cf. (1.3). Using this relation we can eliminate r r from W(ro', ~, e) to define a 
one-dimensional stored-energy function for an incompressible material, Q(re', e), 
by 

3 1 

[2(re'(x), e(x)) --- W (-- �89 re(x) 2 e'(x), e(x) 2,e(x)). (6.1) 

Smoothness, convexity and growth assumptions on .(2 are induced by hypotheses 
H1-H6 on Wthrough (6.1). In particular, we note that Opp(p, u) > 0 and O(p, u) 
is an even function of p. 

Since ~ and e are no longer independent, we must slightly alter the statement 
of  hypothesis H7, since the function ~ is no longer defined: 

H7' There are numbers 0 ~ ~z ~ 0~ d fit "< cx~ such that 

-(-2.(0, ~,) > Q.(O, O0 > ~.(0, fl,) > O, 

.q..(0, u) > 0 for u E (0, ~x) L/(ill, co),  

f2.u(0, u) < 0 for uE (~z, ill), 

Du..(0, u) < 0 for uE (0, 00 ,  

f2...(0, u) > 0 for uE (0~, oo). 

Hence, .(2.(0, u) is a non-monotone function (cf. Figure 1). Clearly, we can dis- 
regard hypothesis H8. 

The relevant variational problem to determine the equilibrium states is 

/ ' (P,~)' Minimize J,(e) = -1 f D(rd(x), e(x)) dx 

t = on g[,~, {eE Wt'l(--1,1):e>O a.e. ,  e satisfies (1.1) and J,(e) < cx~}. 
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By repeating the analysis of  sections 2-5 it is straightforward to show that the 
structure solutions of  (P,y)' is the same as that of  those of  (P,r). Thus, for all 
r > 0, y > 1 there is a smooth solution of  (Pw)' with e bounded away from zero 
and satisfying the Euler-Lagrange equations. Possible solutions of  these equa- 
tions are either constant, monotone or (periodic) non-monotone. Furthermore,  
the non-monotone solutions can never be minimizers of  Jr, whilst for a certain 
range of  y (determined by the Maxwell numbers for Q) and r sufficiently small 
the global minimizers of  J ,  will be monotone and "close" to the Maxwell solu- 
tion with one transition (c f  Section 5). 

We now consider some constitutive models for real elastic materials and deter- 
mine whether or not H7 or H7'  is satisfied by them. The case when H7 is not 
satisfied is of  some interest, especially if the functions W,(0, ~(v), v) or DuO, u) 
are monotone, since then no localized behaviour such as necking is possible. 

Hypotheses H7 and H7 '  are just concerned with the behaviour of  W for homo- 
geneous deformations. Let v 2, v 2, v 2 be the eigenvalues of  the (positive-definite, 
symmetric) Cauchy-Green deformation tensor FF r. For  an isotropic material 
there exists a symmetric function ~/t such that the stored-energy function q~ can 
be written as 

q~(F) = ~(v l ,  v2, v3). (6.2) 

I f  we set ~ ' ~  0 in the deformation gradient (1.3), then the principal stretches 
vl, v2, v3 of the deformation are 

vl : e, v2 : v3 = ~. (6.3) 

From (1.5), (1.8), (6.2) and (6.3) we deduce that 

W(0, ~, e) = ~(e ,  ~, 9) (6.4) 

and if the material is incompressible that 

~(0 ,  ~) = w(0,  ~-  �89 ~) = ~(~, ~-  �89 e - �89 (6.5) 

Thus, H7 or H7'  can be verified from the three-dimensional stored-energy func- 
tion. 

The well-known OGDEN constitutive model ([23]) for incompressible materials 
such as vulcanized rubbers has the form 

o, + 
j=t i=1 j=~ ~=~ 

where M ~ I ,  N = > I ,  a j > l  for I ~ j ~ = M ,  b j > 0  for I ~ j ~ N ,  
o~ ~ o~ 2 => ... o~ m ~ 1, fll ~ f12 > ... ~ flu > 0. Using (6.5) shows that  for an 
Ogden material, 

M ~j U ~: 
Q(O, e) --~ Z a:(d'i + 2e-  "-s --  3) + Z bj( e-t~ + 2e-  -~ - -  3) 

j = l  j = l  
and 

~ , ( 0 ,  e) = Y~ ajo~j (er i - -  1) e~) -2 + 7 t- 1 e -  T 
j = l  

I + Y~ bjflj (flj + 1) e-~'J -2 + - -  1 . (6.7) 
j=l 
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I f  

fll = 0 or fin => 2, (6.8) 

then from (6.7) we deduce that the equation -Qua(0, e) =- 0 will have no positive 
solutions. Thus, for Ogden materials satisfying (6.8), H7'  is not satisfied and the 
only stable equilibrium states are homogeneous. We note that the neo-Hookean 
(m---- 1, o~----2, t31 = 0 )  and Mooney-Rivlin ( M - - - - N =  1, ocL=2,  fil = 2 )  
materials satisfy (6.8) (el [24], [30]). 

I f  M = N =  1, 0ct----2 and fl~----- I, then a simple calculation (el [9]) 
shows that if b 2 > 64at(2at + bO, Fu,(O, e) = 0 will have exactly two positive 
solutions. Further, it is easy to check that the remaining parts of  H7'  are satisfied. 

The O~OEN constitutive model for compressible materials has the form 

7~(vl, v2, v3) + k-~h(vlv2v3) 

where ~ is given by (6.6), k > 0 and the function h(0) satisfies 

h E C2(0, co),  

h"(~) > 0 for ~ E (0, oo),  

(~h'(~))' > 0 for  ~ ~ (0, o~), 

h(~) -+ cx~ as 6 -+ 0, 

h(O)/O-+ ~ as  ~ -+ ~ .  

A lengthy calculation shows that if W satisfies H7'  then if k is sufficiently small 
(an "almost  incompressible" material), the compressible material (6.9) satisfies 
H7. 
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