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Abstract 

Let ~r be a positive self-adjoint elliptic operator of order 2m on a bounded 
open set /2 ( R  k. We consider the variational eigenvalue problem 

(P) ~r = ;tr(x) u, x E/2,  

with Dirichlet or Neumann boundary conditions; here the "weight" r is a real- 
valued function on /2 which is allowed to change sign i n / 2  or to be discontin- 
uous. Such problems occur naturally in the study of many nonlinear elliptic 
equations. In an earlier work [Trans. Amer. Math. Soc. 295 (1986), pp. 305-324], 
we have determined the leading term for the asymptotics of  the eigenvalues ;t 
of (P). In the present paper, we obtain, under more stringent assumptions, the 
corresponding remainder estimates. More precisely, let N• be the number of 
positive (respectively, negative) eigenvalues of (P) less than 2 > 0 (respectively, 
greater than 2 < 0); set r• = m a x ( i r ,  O) and /2• = (xE /2: r(x) ~ 0}. We 
show that 

k k - - I  

N• f (2r(x)) 2-z ~ , ( x )  dx + o(12[ 2.---7- +~ = ) as ;t--~ •  

where ~ > 0 and/x~(x) is the Browder-G~rding density associated with the 
principal part of zr How small ~ can be chosen depends on the "regularity" 
of the leading coefficients of ~r r• and of the boundary of /2•  These results 
seem to be new even for positive weights. 

I. Introduction 

In an earlier work [F1La], we have studied the eigenvalue distribution of 
elliptic boundary value problems with an indefinite weight function defined on 
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an open set f2 ~ R k, k ~ 1: 

i 
d u  = 2ru in f2 

(P) IBu = 0 on ~,q, 

where Bu = u or Bu = ~u/~n according to whether (P) is the Dirichlet or 
Neumann problem. Here d is a positive elliptic self-adjoint operator of order 
2m (m ~ 1), and the weight function r changes sign in s (i.e., is "indefinite"). 
Under appropriate assumptions, we have proved, in particular, that for ~2 bounded 
[F1La, Theorems 4.1 and 4.2, pp. 315 and 316], 

N+(2) ~ ~(r+, .Q, d )  2 k/2m as 2 ~ + o o ,  

where N/+(2) ---- N+(2; r, $2, ~ )  denotes the number of positive eigenvalues less 
than 2 > 0 of the variational Dirichlet (i----0) or Neumann (i----1) problem 
(P); further, 

alP(r+, ,Q, ~ )  : f (r + (x)) k/2m iz~(x) dx,  
~2 

where r+ is the positive part of r and #~,(x) is the Browder-Gfirding density asso- 
ciated with the principal symbol of  ~r 

In this paper, we establish remainder estimates corresponding to the above 
asymptotic formula in the case where s is a bounded open set in R ~. More 
precisely, we show that under suitable additional hypotheses, we have, as 
2--> +o% 

~2~n = k--12._..~ 
N+(2) --  ~(r+, f2, d )  O(2 +~), 

with O E (0, 1/2m]; how small 8 can be chosen will depend on the "regularity'" 
of  the boundary 8s of $2, of the weight function r, and of the leading coefficients 
of  the operator ~r Naturally, we also obtain analogous results for Ni (2) : 
N/-(2; r, ~2, d ) ,  the number of negative eigenvalues of (P) larger than 2 < 0. 

The above remainder estimate is well known in the classical case where 
r ~ 1. (Of course, Ni-(2) : 0 in this situation.) Early work in this setting is 
described in [CoHi, Section VI.5, pp. 443~,45]. Many further results on this 
subject have since been obtained, among which we mention, in particular, those 
in [AgKa, Ho 1, Mt, Ph, Se 1-2, Iv 1-2, Me]. Although the methods used in 
these references differ widely, they are essentially of two kinds: one is based on 
the study of the spectral function; for instance, the use of Fourier integral op- 
erators leads to sharp estimates for operators with smooth coefficients acting on 
smooth domains. (See [Ho 2], Vol. III, Section XVII.5 and Vol. IV, Chapter 
XXIX.) The second one relies on the "maximum-minimum principle" and its 
consequences; this method, also known by physicists as the "Dirichlet-Neumann 
bracketing", enables one to study operators with nonsmooth coefficients acting 
on irregular domains. (See [CoHi, Chapter VII, [Mt] and [ReSi, Section XVIII.15, 
pp. 260-279].) 

We use here an extension of the latter method to problems with indefinite 
weight functions. Such problems have received much attention over the last de- 
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cade, due in part to their importance in the study of semilinear elliptic partial 
differential equations (see, e.g., [HeKa], [dF], [GOLD], and the references there- 
in). For  example, once linearized about the origin, the nonlinear eigenvalue prob- 
lem 

d u  = 2f(x, u), x E O, 

under appropriate boundary conditions and with f (x ,  0) = 0, yields the above 
linear eigenvalue problem (P) with weight function r(x):--= (~f/Su)(x, 0); and, 
clearly, r need not keep a constant sign in O in this situation; further, r need 
not be continuous either. 

Indefinite problems have been used in numerous areas of  engineering, physics 
and applied mathematics (see, e.g., [FILa] and the references therein). They arise, 
for instance, in the study of  transport theory, laser theory, crystal coloration, 
hydrodynamics (flow through porous media), and reaction-diffusion equations 
of population biology. 

The first asymptotic estimates for the eigenvalues of indefinite problems in 
the multidimensional case were given by PLEIJEL [Pl] ; he considered the Laplacian 
with a continuous weight on a bounded domain in R 2. His work has been ex- 
tended to more general elliptic operators in [BiSo 1-2, Ro, La 1-2, FeF1, Fe, 
FILa, He]. Several of  these references deal also with indefinite problems with 
discontinuous weight functions on bounded as well as unbounded open sets (op- 
erators of  Schr6dinger type). We now intend to sharpen some of  these results 
by obtaining estimates for the remainder term. We note that our work seems to 
be of  interest even in the case of  positive weight functions. 

We conclude this introduction by briefly outlining the content of  this paper. 
After having introduced some basic definitions and stated our main results in 
Section II, we examine in Section I lI  the relatively simple but important case of 
the Laplace operator on a bounded open set. We then consider a general po- 
sitive elliptic operator with variable coefficients in Section IV. 

II. Notation and Main Results 

We use the same notation as in [F1La], insofar as possible. Throughout  this 

paper, 22 is a bounded open set in R ~ (k => 1), with boundary SO, closure s 
and k-dimensional Lebesgue measure 1221, and r is a measurable real-valued 
function on 22. We let r+ ---- max (r, 0) and r_ ----- max (--r ,  0) denote the posi- 
tive and negative parts of r. 

Given ~ = (~t, .-. ,  cr E N k, D ~ stands for the derivative of order 10~1 = 
or + ... + ~k; further, for ~ = (~:1 . . . . .  ~e)~ R k, we set ~e~ = ~,1 .. .  ~7~. 

Let m be a positive integer. By H'n(O) we mean the usual Sobolev space of 
all complex-valued functions u E L2(O) with distributional derivatives D~'u also 
in L2(O) for 1o~[ =< m, endowed with the Hilbert norm 

l~I<m 
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further, H6"(g2) is the subspace of Hm(ff2) obtained by completing C~~ [the 
space of  all infinitely differentiable functions with compact support in ~2] with 
respect to this norm (see, e.g., lAd] or lAg]). Similar notation will be used for 
functions defined on other open subsets of  ~.  

If  J is a finite set, we denote its cardinal by ~ J .  Moreover, if I Q J, J \ I 
stands for the complement of  I in J. 

We shall use various constants throughout the text; they will be denoted by 
c, Co, c', C, etc. Often, the same letter will be used to represent different constants. 

In order to establish our remainder estimates, we shall work locally on small 
cubes of  R k. We thus introduce the following definitions. 

Here and thereafter, given any r / >  0 sufficiently small, we consider a "tes- 
sellation" of  R k by a countable family of  disjoint open cubes (Qr162 k, with center 
xr and sides of  length r/, such that 

~Ez k 

Definition 1. Let  D be a bounded open set in R k. Given fl > 0, we say that 
the boundary OD satisfies the "'fl-condition" i f  there exist positive constants Co and 
~7o < 1 such that for all ~7 with 0 < ~ ~ 70, 

(1) :~(J \ !) < eona ' 

where 

(2-1) 
m 

I = I(D) : :  {r E Z k : Qr C D) 

and 

(2 -2) 
B 

J =  J(D) : =  (~E Z k : Q c A  D # 0). 

Remarks 1. (a) This condition will enable us to measure the regularity of  
the boundary of D. In some sense, when fl ~> k, it could be viewed as a quanti- 
tative version of the assumption that D is Jordan contented. (Roughly, a bounded 
subset of  R k is said to be "Jordan contented" if it is well approximated 
from within and without by a finite union of  cubes; see [LoSt, Chapter 6, 
w167 6-7] and [ReSi, p. 271].) Note that the coefficient fl allows us to measure the 
"smoothness" of  8D; indeed, the larger fl, the "smoother" gD. 

(b) The sets I and J defined by (2) are finite since D is bounded; we clearly 

have I C J. Moreover, it is easy to check that gD C k_J Qr and I g D ] =  0. 
~EJ~I 

Let D be a bounded open set in R ~ and let f E  Lkl2m(D) be a nonnegative 
function on D. 

For  (E I ( D) ,  we set 

(3) 
Qr 
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and 

(4) ~r = [ I f - - r  IIk/2m J r I ILk/2m(Qr 

Definition 2. Given 7 > O, we say that the function f satisfies the "y-condi- 
tion" on D i f  there exist positive constants c~ and 71 < 1, such that for  all 

E I(D) and a l l7  with 0 < ~1~ 71, 

(5) er ~ c~] v- 

Remarks 2. (a) Since, by (3), 

(6) fck[2,, = 1Qr ff~/2m, 
or 

fck/Zm is nothing but the mean value o f f  ~/2m over the cube Q;. We mention that 
the above condition should be compared with the assumptions made in [EdEv]. 

(b) Note that the coefficient y enables us to measure the "smoothness" o f f :  
the larger 7, the "smoother" f .  

(c) It clearly follows from Definitions 1 and 2 that, if the boundary 0D (re- 
spectively, the function f )  satisfies the "fl-condition" for some fl > 0 (respec- 
tively, the "y-condition" on D for some 7 > 0), then it satisfies it for any/3' 
with 0 < fl' ~ / 3  (respectively, for any  7' with 0 < 7' ~ y ) .  

Example 1. If  f ~  1 on D, then it satisfies the "y-condition" on D for any 
7 > 0 .  

More generally, we have: 

Example 2. If  a positive function f is HSlder continuous of order 0 and is 
bounded away from zero on D, wi th  0 > 0, then it satisfies the "7-condition" 
on D for any 7 with 0 < 7 <= k + (kO/2m). 

Indeed, there exists a positive constant L such that for all r E I and all x E Qr 

If(x) - f(x ) 1 _-< z lx - xd~ z(7  l /k) ~ 

Since f is bounded away from zero on D, it follows that for z/small enough and 
for all ( E I  and all xEQr 

0 < f(xr --  c7 ~ <=f(x) <=f(xr -f- c~t ~ 

Hence, by (3) or (6), 

f(xr -- c7 ~ <= f~ ~ f(xc) q- c7 ~ 

Finally, since I Qcl = ~/k, we conclude from (4) that 

or = f If(x) - -  fr  kl2m "~ Cl~ k+k(O[2m)" 
Qr 
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Actually, we can obtain a weaker conclusion by assuming that f is only con- 
tinuous: 

m 

Example 3. I f f  is positive and continuous on D, then it satisfies the "V-con- 
dition" on D for a n y ~  with 0 < v ~ k .  

In fact, since f is uniformly continuous and bounded away from zero on the 

compact set D, we can choose B so small that for all ~ E I and all x E Qr 

o < �89 < f (x)  < 2f(x:). 

We then continue just as in Example 2 and obtain o c ( f ) ~  cd7 k. 
We note that in the setting of Example 2 or 3, it would be more convenient 

in the following to define fr by f(x~), where x; is the center of Qr rather than by 
(3). 

We can now state our hypotheses and present our problem in a more precise 
form: 

(7) Let s be a bounded open set in R k with boundary ~.Q satisfying the "/3- 
condition" for some fl > 0. 

(8) Let rEL~176163 be such that s163 is of  positive 
Lebesgue measure and I/2+ \ ,(2 ~ = +[ 0. We assume in addition that /2 ~ has + 
the "segment property" [Ag, p. 11] (e.g., 8s is locally Lipschitz). 

(8') The same hypotheses as in (8) hold for r except with D+ replaced by 
s : =  {x E s r(x) < 0}. 

Remarks 3. (a) Here s • denotes the interior of s177 and 8s stands for the 
boundary of  s I f  r is continuous in s then s is open and the condition 
i/2• \ s I = 0 is automatically satisfied. 

(b) In (8) or (8'), one could replace the segment property by the weaker con- 
dition (C') defined in [Mt, p. 156]. (See [FILa, Remark 1, p. 312.]) 

For  technical reasons, we also need to introduce the following condition. 
(See the comment following Eq. (67) at the end of  Section IV.) 

( ~ •  There exists a positive constant c2 such that for all ~/sufficiently small 
o and all ~EI(s177 we have lr]~ ~ cz. 

Remarks 4. (a) By definition, the weight function r is certainly positive (re- 
spectively, negative) in s (respectively, s condition (~"• requires some- 
what more but still allows r to vanish at boundary points of s177 and to change 
sign in s 

(b) Note that condition (~t~• is automatically satisfied if r is bounded away 
from zero in s indeed, by (6), the assumption Ir I ~ c2 > 0 in s ~ implies 

I o that [rr ~ c2 for all ( E  (s177 It follows, in particular, that condition ( - ~ i )  

holds if r is continuous in ~ (or, more generally, in a compact neighborhood of  
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o! /2• The weight function r need n o t  be continuous, however; for instance, r 
defined as in Corollary 1 of Section III (in particular, r-~= -4-1 in D ~ )  satisfies 
both condition (o~ff+) and (gC_). 

(9) Let ~r be a positive, uniformly elliptic and formally selfadjoint operator 
of  order 2m (m ~ 1) defined on /2: 

~r = ~ (--1) I~! D~(z~a(x) De); 
I~] ~ m  
I/~l ~ m  

we suppose that ~ a =  ~~EL~176 for Io~l, Jill =<m, ~o ~ 0 ,  and that the 
associated hermitian form 

a,(u, v) = f ~a a,o,a(x) D~'uDav 

is coercive in H'(/2).  

(10) The coefficients of  the leading part d ,  e ~  with Ic~t ---- till = m, when 
they are not constant; are HSlder continuous of order a E [0, 1] on /2, with 
tr > 0; moreover, there exists d > 0 such that for all open sets o~ ( / 2 ,  

with 

~'~(u, u) ~ dlful[~m(o~ ) for all uE Hm(og), 

m 

~:~(u, v ) : =  f ~ ~a(x) D~'uD~v. 
Ic~i=l#l=m 

We consider the following variational eigenvalue problem: 

(P) d u  ='2r(x) u, x E/2 ,  

with Dirichlet or Neumann boundary conditions. 
More precisely, we say that 2 is an eigenvalue of the variational Dirichlet 

(respectively, Neumann) problem (P) if there exists a nonzero u E H~(/2) [re- 
spectively, u E Hm(~2)] such that 

~(u, v) = ~ f ru'~, 
El 

for all v E H~'(/2) [respectively, v E Hm(/2)], with z~ defined as in (9). (See, e.g. 
[F1La, w pp. 314-316]; see also [Wn] for an abstract formulation of similar 
variational problems.) 

Since ~Q is bounded and I/2o, I ---- [/2• ] > 0, it is known that the "spectrum" 
(i.e., the set of  eigenvalues) of (P) is discrete and consists of  a double sequence 
of  eigenvalues (one positive and one negative) of finite multiplicity: 

. . .  =< g~-+, _<-~- =< .. .  _-<a~- _-<hi- > 0 < z ?  =<a~- =< .. .  ____~+ __< ~++~ <_- . . . .  

with I;t~l tending to -q-c~ as n tends to oo; here, each eigenvalue is repeated 
according to its multiplicity. 
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These eigenvalues are given by the "max-min formula" (see [F1La, Eq. (4.6), 
p. 314, in conjunction with w 4.B, pp. 315-316]): 

' {j } (11)  ~_ - -  m a x  m i n  r lu l  2 : ~ ( u ,  u) = 1 , 

where '~n is the set of n-dimensional subspaces of H~'(g2) [respectively, Hm(~Q)], 
in the case of the Dirichlet (respectively, Neumann) problem (P). Since ;tr = 
(--2) (--r), a similar formula holds for 2"-. 

In the following, we shall also need to consider the analogue (Po3 of problem 
(P), where /2 is replaced by an open set to Q/2. Given 2 > 0, we then denote 
by N+(2; r, to, ~r the number of positive eigenvalues 2 + less than 2 of the 
variational Dirichlet (i = 0) or Neumann (i = 1) problem (Po,). Similarly, for 
2 < 0, we let Ni-(2; r, to, ~r be the number of negative eigenvalues 2.- larger 
than 2 of the Dirichlet (i = 0) or Neumann (i ---- 1) problem (P~o). The notation 
N~(2; r, to, ~r indicates the dependence on the weight function r, the open set 
to and the operator ~r 

Observe that, by the aforementioned symmetry, N~-(2; r, to, ~r = 
N+(121; --r, to, ~).  Further, if r is nonnegative in to, then (Po,) does not have 
any negative eigenvalues; in this case, Ni-(;t; r, to, ~r = 0 and we simply write 

N+(2; r, w, ~r = N/(2; r, to, ~). 

When no confusion may arise, we write (P) instead of (Pa) and Ni~:(;t) instead 
of N~ (2; r, .(2, ~r 

In [F1La, Theorems 4.l and 4.2, pp. 315 and 316], we have established the 
following asymptotic formula: 

(12-0) N/~:(2; r , /2,  d )  ~ #( r •  d )  121 k/2m as ;t -+ ~ o ~ ,  

or 1 and 

~)(r • /2, ,.~) :--- f (r • (X)) k]2m I.IPxI(X) dx,  

where i = 0 

(12-1) 

with 

(12-2) /~(X):=(2~)k{ ~ERk: l~k=Eal=m ~ a~a(x) ~+a  ( 1}l; 

note that ~,~ depends only on the leading part ~ '  of ~ .  

('~'= i~,l ~l=m (--1)lml D~(z~#(x) De)). 

Further, since by (8), [/2• \ ~ : ]  = 0, we clearly have 

~( r •  d )  ---- ~(r , /2~,  d ) .  

We next state our main results, in which we obtain the remainder estimates 
associated with (12-0). 
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Theorem 1. We suppose that s r and d satisfy (7), (8) and (9)-(10) as well 
as condition (~r+), that ~s + satisfies the "fl-condition'" and that r+ satisfies the 
"7-condition" on s with fl > 0 and 7 ~ k. Set v = min  (fl, 7 -- k, ~). Then, 
for all 6 E [1/2m(v 4- 1), 1/2m], there exist positive constants C and 20 such that 
for all 2 ~ 20 : 

N+(2 ;  r, ~ , . ~ ) - -  ~(r+, s < C2 2m +~, 

where i = 0 or 1 according to the boundary conditions, and q~(r+, D, ~ )  is given 
by 0 2 - 1 ) .  

Remarks 5. (a) According  to our  assumpt ions ,  we have v ~ 0; further,  
v = 0 i f  and only if  y : k ;  in this case, the only possible choice o f  ~ in Theo-  
r em 1 is ~ :  l/2m. 

(b) The  cons tant  C in the s ta tement  of  Theo rem 1 depends on k, s [1 rlJL~176 
max  II a~a IIL~), as well as on the constants  o f  un i form ellipticity and  un i form 

Ic~[,[fll~m 
coercivity o f  ~r and  on the constants  Co and c~ which enter  in the definitions of  
the "/~-condition" and  o f  the "y-condi t ion" .  A similar r emark  holds for  20. 

(c) I t  should be clear f rom the context  whether  we work  with the scalar fl 
or  with the mult i- index fl ---- (fl~ . . . . .  ilk). 

By changing r into - - r  in Theo rem 1 and noting that  ( - - r )+  ---- r_, we obtain  
an analogous  result for  N/-(2)-----N~-(2; r, s162 

Theorem 1'. We assume that the hypotheses of Theorem 1, except with (8) 
replaced by (8') and the subscript " 4 - "  replaced by " - - " ,  are fulfilled. Then, for 
all 2 <= --~o < 0, we have for i : O or 1: 

k k - -1  +~  

N~-(2; r, .Q, ~r --  cP(,~.; r_, s ~ )  12l ~ ~ C I 2 [  2m �9 

where (), C and 2o are as in Theorem 1. 

Remarks 6. (a) In  order  to obta in  good remainder  estimates,  we want  to choose 
a small ~; since v = min  (fl, 7 - -  k, a) and ~ ~ 1/2m(v + 1), this implies tha t  
fl, ) , -  k and  a mus t  be large. Consequent ly,  this means  that  the boundar ies  
0s t3s the weight functions r•  and the leading coefficients o f  ~r have to be  
" s m o o t h " .  (See Remarks  1.a, 2.b and 2.c.) 

(b) I f  the leading coefficients o f  d are constant ,  then we may  set a ---- 4-cx~ 
and hence v = rain (fl, y - -  k). Recall  tha t  in the other  cases we assume tha t  
cr E (0, 1] in (10). Fur ther ,  as will follow f rom the p r o o f  o f  Theo rem 2, condi-  
t ion ( ~ •  does not  need to be  assumed if d has cons tant  coefficients. 

(c) I f  r •  is H6lder  cont inuous o f  order  0 on s and is cont inuous  on -Q, it 
follows f rom Example  2 tha t  r• satisfies the "y -cond i t ion"  on -(2 with y - -  k = 
kO/2m. Observe that  r~  is H61der cont inuous  of  order  0 on s provided,  for  ex- 
ample,  tha t  r is H61der cont inuous  of  order  0 on s and there exists a posit ive 
cons tant  T such that ,  for  all x E s177 we have r(x) <= T[d(x, .Q~)]0, where 
s :---- {x E s : r(x) ~ 0} and s :---- (x E s : r(x) <~ 0}. Remainder  est imates 
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for the Laplacian with an indefinite weight were obtained under similar--although 
stronger--hypotheses in [La 2, Theorem 3.1]. 

(d) If  r• is only continuous on ~ (for instance, if r is continuous on ~),  it 
follows from Example 3 that r• satisfies the "y-condition" o n / 2  with y -- k ---- 0; 
in this case and without further information on r, we must have ~ = 1/2m, ac- 
cording to Remark 5.a. 
[The preceding remarks apply, with the obvious changes, to the case of the 
Laplace operator studied in Section III.] 

We note that in [FILa, w 4] we have proved the asymptotic formula (12-0) 
under much less stringent assumptions on r, /2 or eft. For the Dirichlet problem, 

/2~ it suffices to assume tha t / 2  is an arbitrary bounded open set such that I • I > 0 
and ]/2• \ / 2 ~ ]  = 0 ,  and that rELP(/2), with p > k / 2 m  if k=>2m and 
p = 1 otherwise [FILa, Theorem 4.1, p. 315]. For the Neumann problem [F1La, 
Theorem 4.2, p. 316], we also suppose that I~t)l = 0 (which, in view of  Re- 
mark 1.b, is always true if ~/2 satisfies the "fl-condition"), and that $2 has the 
"segment property".  It is clear, however, that the additional "smoothness" as- 
sumptions that we have made in order to obtain the above remainder estimates 
are not just of a technical nature. 

In [F1La, w 5, Theorem 5.1, p. 318, and Proposition 5.4, p. 321], we have also 
determined the asymptotic distribution of the eigenvalues of Schr6dinger operators 
of  order 2m acting on unbounded open sets with indefinite weight functions. We 
intend to obtain the corresponding remainder estimates in a later work. 

III. The Laplace Operator 

In this section, we examine the case of the Laplacian on a bounded open set. 
In Section IV, we shall then study the case of  a general positive elliptic selfadjoint 
operator of  order 2m. This division should make the arguments easier to follow. 
Further, the case of the Laplacian is of independent interest because of  its im- 
portance in analysis and differential geometry. 

III.1. Remainder estimates 

We consider the variational eigenvalue problem 

(P) --Au = 2r(x) u, x C/2,  

with Dirichlet (i = 0) or Neumann (i = 1) boundary conditions (see [F1La, 
k 

w 3, pp. 309-314]); here A = ~ b2/Ox~ stands for the distributional Laplacian 
y=l 

in R k. 
Since ~r = --A is only nonnegative, 2 = 0 is an eigenvalue of  the Neumann 

problem (Po) for o ) ~  /2; consequently, we interpret N+(2; r, o9,--A) [respec- 
tively, Ni-(2; r, o9, --A)] as the number of  nonnegative (respectively, nonpositive) 
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eigenvalues less than ;t > 0 (respectively, less than 2 < 0) of  the Neumann 
problem (Po3; when r is nonnegative, a similar convention applies to Nt(2; r, o), 
--A). 

We introduce the following hypothesis: 
Of ' •  For co = /2 \ / 2 •  the eigenvalue 0 of  the Neumann problem (Po3 has 
finite multiplicity. 

Remarks 7. (a) Note that in Section II (and Section IV below), the operator ~r 
is required to be positive and hence, for all open sets o) ~ D, 0 is not an eigenvalue 
of  the Neumann problem (P~). On the other hand, condition (oY'+) or (oY'_) will 
not need to be assumed in Theorem 2 or 2' below, just as for operators with 
constant coefficients (see Remark 6.b). 

(b) In [F1La, w 3], in order to deal with the zero eigenvalue, we tacitly replaced 
--A by --A + ~ (with ~ > 0) in our derivation of the asymptotic formula [F1La, 
Theorems 3.1 and 3.2, pp. 310 and 312]. (See [F1La, Remark, p. 314].) This 
substitution does not affect the result since for /2 bounded, it yields a compact 
perturbation of  --A. 

(c) Hypothesis ( ~ •  holds, for example, if /2 \ D• has a finite number of 
connected components, each of  which is simply connected and has piecewise 
continuously differentiable boundary. 

(d) If  r is positive in /2, then /2 \ 12--'~ = 0 and hypothesis (o~+) is trivially 
satisfied. 

In the present situation, ~ = --A, m = 1, /~'_~(x) = ( 2 ~ ) - k ~ k  and 

k/2 = (2~) - k  ~ k  Lk/2(O• t/i(r• /2, --A) = (2z0--kNk II r •  Lk/2c~ ~ r kZ2 . 

here we have used (12-1) and (12-2) and let ~k = z~k/2/F( 1 + (k/2)) denote the 
volume of  the unit ball in R k. 

We can now state the analogue of Theorem 1 for the Laplace operator. 

Theorem 2. We suppose that Q and r satisfy (7), (8) and hypothesis (W+), 
that 8D ~, satisfies the "fl-condition" and that r+ satisfies the "y-condition" on /2, 
with f l > 0  and 7 >=k. Set v = m i n ( f l ,  7 - k ) .  Then, for all 6E [1/2(v + 1), 
1/2], there exist constants C and2o such that for all ;t ~ 20 and for i = 0 or 1 : 

k]2 k -- N/+(2; r , /2,  --A) -- (2~)-k ~k [lr+ Lk/2(a),~ =< C2 k~l +~ 

Similarly, by substituting r for --r,  we obtain: 

Theorem 2'. We assume that the hypotheses o f  Theorem 2 hold, except with (8) 
replaced by (8') and the subscript " + "  replaced by " - - " ,  are fulfilled. Let  6, 20 
and C be as in Theorem 2. Then, for all 2 <= --20 < 0, we have for i = 0 or 1 : 

k] k--l+~ 
NF(2; r, /2, --A) (2~) - k  r k[2 

- -  "~k I1 -- IlLk/2r I'~ I ~ ~= C] ~ l -~ 
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When r ~ 1, Theorem 2 yields the remainder estimates associated with the 
classical HERMANN WEYL'S formula. (See, e.g., [CoHi, w VI.5, pp. 443-445], [Mt, 
w VI, pp. 194-199], [Iv] and [Ho 2, Vol. III, w XVII.5, pp. 42-62 and Vol. IV, 
w XXIX, pp. 249-275] for instances of such estimates.) 

More generally, it is instructive to consider the following example. L e t / 2  be 
a bounded open set in Rk; let/2• be measurable subsets o f /2  such that [/2~: ] > 0, 

o = [/2• \ /2 •  0, and /2~_ has the "segment property" (for instance, ~ = is 
locally Lipschitz continuos) and satisfies hypothesis (oeg+) [see Remark 7.c above 
for a simple sufficient condition]. Define a weight function r o n / 2  by r(x) = -- 1 if 
x 6/2_,  + 1 if x E/2+, and 0 otherwise. In view of  Example 1, we then obtain 
from Theorems 2 and 2' the remainder estimates associated with the "signed 
HERMANN WEYL'S formula", thereby sharpening [La 1, Corollary 2, p. 266] and 
[FILa, Corollary 3.1, p. 312]: 

Corollary 1. Suppose that 8/2, ~/2~+ and 8/2 ~ satisfy the "'t-condition" for 
some fl > O. Then, for any ~ E [1/2(/3 q- 1), 1/2] and for i : 0 or 1, we have: 

k k - - I  

(2 :0  1/21 I + 0(I, 1 - 7  : ), 

as 2-+ ~:<x~, respectively. 

111.2. Proof of  Theorem 2 

We shall establish Theorem 2 in two steps: first, in the case of  a positive weight 
(Section III.2.A) and then, in the case of an indefinite weight (Section III.2.B). 

III.2.A. Positive weight 

We suppose here that r is a (strictly) positive weight function. We shall prove 
the following result, which, under our assumptions, does not seem to be known 
for r ~ l .  

Proposition 1. Theorem 1 holds i f  r is positive on /2. 

We note that in this case, the problem (P) does not have any negative eigen- 
values; moreover, r = r+, r = 0, /2 = /2+ = /2+, /2_ = 0 and 
N+(2; r, oJ, s l )  --- Ni(2; r, to, ~r for ~oC/2  and i = 0 , 1 .  

According to Remark 7.d, hypothesis (~r does not need to be assumed in 
Proposition 1. 

Proof of Proposition 1. It is well known (see, e.g., [CoHi, Section VI.4] and 
[ReSi, Proposition 2, pp. 266-267]) that for a cube Qr with side of length ~, there 
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exists c ~ > 0  such that for all 2 > 0  and for  i = 0  or 1: 

Ni(2; ) ~k~k2k < k--1 1, Q: , - -A --(2~) -k = c t ( l  +Q,~72) 2 ); 

here the constant ct is independent of 2, ~/, ~, or the number rc introduced below. 
Since N~(2rr 1, Qr --A) = N~(;t; re, Qr --A), it follows that if r: is a positive 

number, then for i----0 or 1 and all 2 > 0 :  

(13) N~(2; re, Qc, --A) -- (2r0 -k &k~7~(2rr z <= Ct(1 + (2rr 2) ).  

We now consider the tessellation (Qr162 of R k by cubes of sides of length % 
as defined at the beginning of Section II; throughout the remainder of the proof 
of Proposition 1, we set, as in (2), 

(14) I = I(O) and J : J(.Q). 

~a o . . . .  By using the method of lrlclalet-Neumann bracketing", we obtain: 

(15) N0(2; r, Qr --A) ~ No(A; r, Q, --d) ~ N~(2; r, [2, - -d )  

~ N~(2; r, Qr - A )  -j- ~ N1(2; r, Qr A [2, - A ) .  
r CEJ~I 

We briefly pause to explain the steps leading to (15). Define two disjoint open 
sets by 

(16) ~1 = ~J Qr and /22 ---- ~ (Qr A [2). 
r ~EJ~I 

In view of [FILa, Lemmas 4.3 and 5.1, pp. 315 and 317], the middle inequality 
of (15) is immediate while that on the left results from the inclusion [21 ~ .(2 
and that on the right follows from the fact that O = f2r L/[2z, up to a set of 
Lebesgue measure zero. (We mention for later use that these results in [F1La] 
also hold for indefinite weight functions as well as for more general elliptic op- 
erators; for an exposition of the method of "Dirichlet-Neumann bracketing", 
we refer to [CoHi, Chapter VI] and, in the classical case where r --= 1, to [Mt] or 
[ReSi, Section XVIII.15].) 

Set 

(17-1) r = ( 2 ~ )  - k  ~k  2k]2 f r k/2 

and, for e E L  

07-2)  9)(2, r = (2~)  - k  ~k3,kf:rlk~/2, 

where rr is defined by (3) [except withfreplaced by r]; note that since r is positive 
(Lebesgue almost everywhere) in -(2, it follows from (3) that re > 0 for every 
( C L  
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According to (15), we have: 

(18) Y~ No(i; r, Qr --A) -- 99(it) 
eel 

No(it; r, .Q, --A) -- 99(it) ~ N~(it; r, .(2, --A) -- 99(it) 

~] Nt(it; r, Qc, --A) -- 99(2) + y~ Nl(it; r, Qr #~ D, - A ) .  
eel ~EJ\I 

We shall now first find a lower bound for No(it; r, .('2, - -d)  -- 99(it) by use of 
the left-hand side of (18); then we shall obtain an analogous upper bound for 
N~(it; r, Q, - -d)  -- 99(it) by means of the right-hand side of (18). 

(19-0) 

where 

(19-1) 

(19-2) 

and 

(19-3) 

Step 1: a lower bound. We write 

A ----- ~ No(2; r, Qr --A) -- 99(2) = A~ q- A2 q- A3, 
eel  

A~ = ~'~ [No(2; re, Qr --A) -- 99(2, 01, 

A2 ---- Y, 99(2, ~) -- 99(2), 
CEI 

Aa = ~ [No(2; r, Qr --A) -- No(2; re, Qr --A)]. 
tEl 

Although the lower bound is only concerned with the Dirichlet boundary 
conditions, we shall work both with Dirichlet (i----0) and Neumann (i = 1) 
boundary conditions in order to avoid repeating an analogous calculation in the 
study of the upper bound. 

It follows from (13) and (17-2) that there exists e~ > 0 such that for all 
E I a n d  i = 0 o r  1, 

k-- I  

IN, O; rr Qr - A )  - 99( , r < <(1 + 

Since r is bounded on .Q, it follows from (6) that 

(20) 

Hence 

(21) 

sup re ~ IlrllL~(~ ) = : M <  + ~ .  

k - I  

[Ni(2; re, Qr --A) -- 99(2, O[ =< c(l + (2~/2) 2"'), 

where c does not depend on 2, ~/ or ~ E L 
Then, according to (21), 

k- - I  

(22) ~ [N,.(k;rr162 I "< c(:t~:I) (1 q- (2"r/=) 2 ).  
eel  
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By (2-1) and (14) and since ]Qr = zl k, 

(23) q~: l~  ~7-k I QI; 

thus, choosing, for 2 large enough (4 >= 1), 

(24) ~ /=  2 -"  with 0 < a =< 6, 

we deduce that 

(25) 
k - I  k--! +6 

(q~:i1(1+(2~2) 2 ) ~ lal (2~+2 ~ ). 

Since ~ =< 1/2 (by hypothesis of Theorem 2) and k ~ 1, we have: 

k - - 1  
~ k =  2 + ~ - ( k -  1) (�89 -- ~) ~ k -- 1 

2 + ~ ;  

and hence, by combining (19-1), (25) and (22), with i = 0, we obtain, for 2 
large enough: 

k--I ....... +6 
(26)  t A1 ] ~ C2 2 

We now find an upper bound for 1.451. By (14), (16), (17) and (19-2), 

- A 2  = ~(2) - ~ ~(2, r 
eel 

= (2~)--k ~k2k/2 [ f rk`2 - :,,IZ Q(S 1~[2] 
= (2~)-" ~,,2 "~ ~ f I.r '~ - r?J:l + (2~)-" ~,,2 "~ ~ f ~ .  

In the last equality, we have used implicitly the fact that the cubes Q~ are disjoint 
and that ~ and Q2 in (16) form a partition of s up to a Lebesgue null set. 

By the very definition of r~ [see (3) or (6)], we have 

f [r k/2 -- r~/2] : 0 for all ~ E I, 
Qr 

and so, 

I A~_ I : (2z0 -~ ~k 2k/2 ~ f rk/2. 
CEJ\I Or 

Since ~ and r are bounded, we deduce that 

I A21 <= C2kl2~Tk r~_(J \ I). 

Since gO satisfies the "fl-condition", we obtain by combining (1), (14), (23) and 
(24) that 

(27) q~-(J\I) <= Co 1~91 ~ - *  --- Co It212--a(fl--k), 
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for sufficiently large 2. Consequently, 

k k--1 
- -  - a / ~  - -  + 6  

(28)  IA2I  =< cA 2 =< c,~ 2 , 

>• provided that a : t3 [3 -- 6]; since ~ : :  min (13, V -- k) ~ fl, this latter condi- 

tion will certainly hold if we choose a positive a such that 

1 
(29) - - ( 3  -- 6) =< a ~ 6. 

1 
Note that such a choice is possible since by hypothesis of Theorem 2, 2(~ + 1-----~ ~ 

1 
6"< �89  and hence - -  (3 -- 6) ~ 6. (If 6 : 3 ,  then we let a = � 8 9  in (29).) 

From now on, we assume that ~ /=  2 -a with a satisfying (29). 
Observe that (27) holds for ~ / ~  ~o, by (1), and thus, we must consider 

2v 

2 ~ 2 1  with 2 1 ~ i f l o )  I-2~. (If 6 = 3 ,  we set ;h ----- 07o)-2.) 
We now consider As. Since r = (r --  re) + re, we deduce from the "max-min 

formula" (11) and the monotonicity of the eigenvalues with respect to the weight 
(see, e.g., Eq. (3.2) and Lemma 3.2, p. 310, in [FILa], and the proof  of  Lemma 2.3 
in [La2])  that, for c E I  and i = 0  o r i :  

(30) Ni(2; r, Qc, - -A)  <= Ni(2; r~, Qr --A)  + Ni(2; Ir -- rr Q~, --A ). 

Therefore 

(31) [N~(2; r, Q r 1 6 2 1 6 2  ~ N i ( 2 ,  [r -- rc[, Qc, - A ) .  

By (4) and by [FILa], Theorem 3.1, p. 310, or 3.2, p. 312, for i ----- 0 or I, respec- 
tively, there exists c' > 0 such that for all ;t large enough and all ~" E L 

(32) Ni(2; [r -- re ], Qr - -d )  "< c' ,~k/2or ) . 

We note that in this case, 

N+(2; [r  - rcl, Qc, - - d )  = N,(2; I r - rcl, Q:, - -d)  

since [r -- re] is nonnegative. 
By hypothesis, r satisfies the "V-condition" on .(2; thus, by combining (5), 

(23), (24), (29), (31) and (32), we have: 

k 

(33) Y', [Ni(2;r, a c , - - A ) - - N i ( 2 ; r c ,  O~, --A)] =< c'2T ~] ~(r)  

k k - - I  1 k - - I  

<~ c~c',~ -~ @(I) C ~ c~c" j t2 t 2 2 + -f-a(~-k) --<= C2 Z +~, 

provided that 

(34) 

(1/2) -- a(7 -- k) ~ 6 or, equivalently, 

a(v -- k) >= �89 ~ >: O. 
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This requires in particular that 7 ~ k, which is the case by assumption of Theo- 
rem 2. Now, by (29) and since ~ : =  min (fl, ~, -- k) =< 7 -- k, 

1 1 
a = > - - ( � 8 9  6) >__ k (�89 -- 6); 

hence (34) holds. (If  ~, = k, then 6 = a = �89 see Remark 5.a.) 
In light of  ( t9-3)  and (31) to (33), with i = 0, we obtain: 

k--1 - - + 6  
(35) I A~ I =< c2 z 

According to (19), (26), (28) and (35), we now have: 

k--I +a 
I A l = < a  2 

Consequently, we deduce from (18) and (19--0) the following lower bound:  

k--I +d 
(36) No(2; r, O, --A) -- q~(2) ~ --c2 2 , 

for all 2 large enough. 
This completes Step 1 and concludes the first part of the proof  of  Proposition 1. 

Step 2: an upper bound. We now find an upper bound for 

N1(2; r, ,Q, --A) -- 99(2). 

Much as in the previous part, we write 

(37-0) 

where 

(37-1) 

(37-2) 

(37-3) 

and 

(37-4) 

B = y,  N~(2; r, Qr - A )  -- ~(2) + ~ N,(2; r, Qr 75/2, --A) 
eEl ~EJ\I 

= BI. + Bz + B3 + B,,, 

B1 = Z [NI(~. ;  re, Qr --ZI) - -  ~(~., ~)1, 
eel 

B~ = y~ ~o(~, ~) - ~o(~), 
~EI 

B3 = ~ [Ni.(2; r, Qr - A )  - Nt(2; re, Qr --A)],  
t e l  

B4 -- ~ N~(2; r, Qr -(2, --A).  
CEJ~I 

The first three terms can be handled exactly as in Step 1. Note, in particular, that 
for j = 1 or 3, Bj in (37-j) is defined just as A i in (19-j), except with the sub- 
script 0 replaced by 1. 
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In view of (13), with i : 1, (17-2) and (37-1), we have: 

k- - I  
- -  + O 

(38/ I B I ] =  c2 z 

Moreover, B2 : A2 by (19-2) and (37-2), and so, by (28): 

k--1 

(39) I Bz ] :~ c2 2 
+ 6  

Finally, in light of (33), with i = 1, and (37-3), we obtain: 

k - I  

(40) I Ba I ~  c~ 2 

We now examine B4, which is a boundary term, characteristic of Neumann 
boundary conditions, and without counterpart in our study of the lower bound in 
Step 1. By Eq. (3.2), p. 310, and Theorem 3.2, p. 312, in [FILa], and by (20), 
there exists a constant c', depending only on k, such that for all ~ E J \ I and all 
2 sufficiently large, we have: 

NI(~,, r, Qr r~ .(2, --A) ~ c'2 k/2 f r k/2 -~ c ' ( M ~ 1 2 2 )  k/2 . 

Q~At~ 

Hence, by (1), (14), (27) and (37-4), and with the previous choice of ~ : 2 -s, 
we obtain: 

k 

I B,, [ ~ c~1"2 k/2 q~-(J \ I)  <= c2 T --aft 

Since a satisfies (29) we find, just as in (28), that 

k - 1  

(41) I B,  l ~ c2 2 

In view of (37) and (38) to (41), 

k- - I  

iB l<=c ~ 2 

Therefore, we deduce from (18) and (374)) the following upper bound: 

k--1 

(42) N1(2; r, ,(-2, - -d )  -- ~v(;t) ~ c2 2 
I + t~ 

for all 2 large enough. 

This completes Step 2. 
We now combine (17-1), (18), (36) and (42) to conclude that there exist posi- 

tive constants C and 20 such that for all 2 ~ 20 and for i : 0 or 1 : 

k--1 
k r k[2 ~ CX"-~ -+~ Ni(2; r, D, --A) -- (2:r) -k ~ k  2T I[ L~/2(a) = 

This establishes Proposition 1. [ ]  
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III.2.B. Indefinite weight 

We now establish Theorem 2. So we assume that the weight function r changes 
sign in -Q (i.e., is indefinite) and that (7), (8) and hypothesis (J/f+) hold. We also 
suppose that ~D~_ satisfies the "fl-condition" and that r+ satisfies the "~,-condi- 

o t ion" on -Q for 7 ~ k; according to Definition 2 and since r = r+ on /2+ ( / 2 ,  
this implies, in particular, that r satisfies the "~,-condition" on -Q~ for the same 
value of ~,. 

Proof of Theorem 2. We use an extension of the method of "Dirichlet-Neu- 
mann bracketing" to variational eigenvalue problems with indefinite weights 
[F1La, Lemmas 4.3 and 5.1, pp. 315 and 317] and obtain, for all positive 2: 

(43) No(2; r, -Q+, - -d )  ~ N+(2; r, /2, - -d )  =< N+(2; r , /2 ,  - -d )  

N~.(2; r, -Q~, - -d )  q- Nf (2 ;  r , / 2  \ -Q+, --A). 

According to hypothesis ( ~ + )  and since r =~ 0 almost everywhere in -Q \ -Q+, 
we have, for every positive ;t: 

N , ( t ;  r, -Q \ / 2 §  " d )  = l < +oo , 

where l denotes the dimension of the kernel of the distributional Laplacian acting 
on /2 \ / 2+  with Neumann boundary conditions. (By /2+, we mean here the clo- 
sure o f /2+  in -Q,) 

Since, on the open set /2~_, the weight function r is positive, we know from 
Proposition 1 that there exist positive constants C' and 2o > 1 such that for all 
2=~2o and for i----0 or 1: 

k/2 T < C',~ 2 . (44) Ni(,~ , r , /2+,  --A) -- (2~r) -k ~k I[rllLkz2~o% ---- , 

note that we use here the fact that ~/2+ satisfies the ."fl-condition" and that r 
satisfies the "V-condition" on /2~_, with ), ~ k; further, since I.(2+ \/2~_ [ = 0, 
we have 

k/2 k/2 : f rkl2 = f r ~  2 = [I r+ L k / 2 ( a  ) .  II rllLk/2(oo+) a+ a 

By combining (43) and (44), we thus see that for all t ~ ;to: 

k- -1  k 

--C'2 - ' ~  +n < N+(2; r, D, --A) -- (2~r) -k &k II r§ kz2 =~- = Lk/2(O) ~ 

k 
: r k[2 ~'2 < N+(2; r, /2, --A) -- (2~r) -k 9~k + L~/2(a) 

k - - !  k - -1  
- -  § t~ - -  § O 

~ C',~ 2 + l - < ( C ' + I ) 2  2 

It now suffices to let C = C'  q- 1 in order to obtain the desired conclusion of 
Theorem 2. [ ]  
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IV. Elliptic Operators with Variable Coefficients 

We now assume that the hypotheses of  Theorem 1 hold. In particular, ~r is 
a positive self-adjoint and uniformly elliptic operator of order 2m associated with 
a coercive form a satisfying (9) and (10). 

In the following derivation of  Theorem 1, we shall often refer to the proof  
of  Theorem 2 provided in Section III, in order to shorten or clarify our exposi- 
tion. Naturally, from a technical point of  view, the main additional difficulty 
lies in the fact that ~r has variable coefficients and is not homogeneous. 

Proofof Theorem 1. First, we note that we may assume that the weight func- 
tion r is positive in $2. Indeed, in view of [F1La, Lemmas 4.3 and 5.1, pp. 315 
and 317], the passage from the case of  a positive weight to that of  an indefinite 
weight can then be handled just as in the proof  of  Theorem 2 in Section III.2.B; 
actually, it is even easier since ~ being a positive operator, zero is never an eigen- 
value of the Neumann problem (P~) for ~o ( .(2 (so that ! : 0, with the nota- 
tion of  Section III.2.B). 

From now on, we suppose that r is positive in .(2. Consequently, r = r+, 
r_ : 0, .(2+ : .(2+ : .(2, ,(2_ : 0, N/-(2; r, o~, ~1) : 0 and N+().; r, w, ~1) : 
N/().; r, oJ, ~r for i = 0 or 1 and co Q .(2. 

We work as in Section III.2.A with the tessellation of  R k by cubes Q; with 
center x; and sides of  length ~/. We let, throughout the proof  of Theorem 1, 
I :  I ( ~ )  and J :  J(g2), as in (14). By means of  the "Dirichlet-Neumann 
bracketing" [FILa, Lemmas 4.3 and 5.1, pp. 315 and 317], we then obtain the 
counterpart of  (15): 

(45) No(A; r, Q;, d )  ~ No().; r, Qr ~1) ~ Nl().; r, ~ ,  M) 

y~ N~(2; r, Q;, d )  -? ~ N1(2; r, Q; f~ .Q, d ) .  
~EI ~EJ\I 

We set, by analogy to (17), 

(46-1) q0().) = ~(r,  9 ,  d )  ).~/2m 

and, for ~ C/,  

(46-2) ~p(2, ~) = ~(r;,  Qr d~)  2 k/2m = #;~k().r;)k/2m. 

Here ~ ( r , - Q , ~ )  and ~ ( r r 1 6 2  are defined as in (12-1); further, d ~  is 
the operator obtained by "freezing" the leading part d '  of  ~ at the center xr 
of  Q;, rr is given by (3) [with f replaced by r] and /~r : =  # ~ ( x )  • #~,(xr with 

#~, as in (12-2). Observe that 9~(2, ~) corresponds to the homogeneous operator 
of  order 2m and with constant coefficients, ~ ,  acting on the cube Q;, and with 
constant positive weight equal to r~. 



( 4 8 - 1 )  

(48-2) 

(48 -3) 

and where 

(48-4) 
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Proceeding as in (18), (19) and (37) and using similar notation, we derive from 
(45) the following inequality: 

(47) To,1%. To,2 -~- To,3 ~< No(A; r, s d )  -- q~(2) 

=< NI(Z; r, O, ~ )  -- ~(~) 

T1,1%. 7"1,2 + TI,3 %" TI,4, 
where, for i = 0  o r  1, 

7],- a = ~] [Ni(2; re, Qc, ~r - q~(~., ~)1, 

~ ,2  = ~ ]  ~ (a ,  ~) - ~(~), 
eel 

Ti,3 ~- ~a [Ni(2; r, Qr W) - Ni(~.; re, Q:, ~/)1, 

We assume that 

(49) 

T1.4 = ~;] N1(2; r, Qr A f2, ~ ') .  
CEJ~I 

= 2 -a with 0 < a ~ 8. 

The terms T/,3 (i = 0,1) and T1, 4 c a n  be handled exactly as their counterparts 
in Section III.2.B: 

We note that #(~ is bounded on s this results from (12-2) and from the 
uniform ellipticity of ~r As in the derivation of (41), it thus follows from [F1La, 
Theorem 4.2, p. 316] (see Eq. (12) above with i = 1) and (20), (27), and (48-4) 
that there exist positive constants c, c' such that for all 2 large enough, 

(50) I T1,41 ~ C"~k/2m~ k z~_(J \ I)  ~ c2 ~ ~ c2 2m , 

provided that (1/2m) -- aft ~ ~ or, equivalently, 

) (51)  p - ~ < a .  

As in the derivation of (35) and (40), we deduce from the "max-rain formula" 
(11) and [F1La, Theorems 4.1 and 4.2, pp. 315 and 316] that for all ~E I and 
i - - 0  o r l ,  

] N i(2; r, Qr d )  - N(2; re, Qr ~r ~ N+(2; I r --  re l, Qr d )  ~ e"2k/2mer 

with er given by (4). 
Consequently, since r satisfies the "y-condition" and according to (5), (23), 

(48-3) and (49), we have for i = 0  or 1: 

k k- -1  t k--1 

(52) I T i,3 [ < c'22m (:HzI) ~7 ~ < c2 2m 22m-a(v-~) - - + a  --- ~ C• 2m , 
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provided that (l/2m) -- a(y -- k) ~ ~ or, equivalently, 

(,3, ) 
~ , - - k  2--turn - ~  ~ a .  

(Recall that by assumption of Theorem I, y ~ k and d ~ 1/2m; further, ac- 
cording to Remark 5.a, if 7 = k ,  then ~ =  1/2m and we let a-----d= 1/2m. 
Note that a(~, -- k) => (1/2m) -- ~ and hence we must have 7 => k if ~ ~ 1/2m.) 

We now consider T~,2. We can proceed as in the proof of (28), except that we 
must take into account the fact that ~r has variable coefficients. According to 
(12-1), (12-2), (16), (46) and (48-2), we have successively, for i = 0 or 1: 

(54) --T~,2 -- p(2) -- ~ p(2, ~) 
eel 

= I~ k/2m f r(x)  k/2m #tez(X ) dx  - -  t~ k/2m Z f r~/2m#C dx 
0 CEI 0r 

= z ~/2"' ~ f r(x) k/zm [#~(x) --/~r dx 
eel Or 

@ ~kl2m Z f [r(x)k/2m - -  r~/2m]/Ar dx  
eel Or 

+ Z~/2m Z f r(x) ~2m #2,(x) dx. 
r Q~Ag2 

The last two terms in the last equality of (54) can be treated as in Section III: 
the second term vanishes, by definition of  re [see (3) or (6)]; moreover, since &(2 
satisfies the "fl-condition" and r and/z~  are bounded on .(2, it follows from (27) 

k 1 1 k - - 1  

that the third term is less than c2 2m + 5,7, ~ - -  which is less than c2 Z,n ~e , because, 
1 

by (51), ~ - - a f l < = ~ .  

We handle the last term of the last equality of  (54) as follows. Since, by (10), 
the leading coefficients of ~ are H61der continuous of order or, we deduce from 
(12-2) that there exist positive constants c~ and B~ such that for all r / ~  rh, all 

E I  and all xEQ~, 

(55) t t t7 

Consequently, according to (20) and (23), we have for all 2 large enough: 

k -- #r dx (56) ;t 2~ ?E f r(x) 2m [/z~(x) 
~EI 12r 

k 
<~ ct~~ (aM) 2m 

k - - I  1 k - - 1  

etq 2m ~-~m -aa ~ c~ 2m +5 
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provided that (1/2m) -- aa ~ 6 or, equivalently, 

1 1 

(57) --~-(~-mm- 6 ) ~ a .  

In light of (56), (54) and the discussion following it, 

k--1  

(58 )  I~-,~l --< c~ ~m , 

for i = 0 or 1 and for all 2 sufficiently large. 
Unless explicitly stated otherwise, we assume from now on that 

(59-1) ~ /=  k -a, 

where a is positive and satisfies the inequality: 

(59-2) - -  - - 8  ~ a - - < 6 ;  

1 
this choice of a is possible since by hypothesis of Theorem 1, 6 ~ ~ (v + 1) 

1 ( ~ m )  ( 1 1 ) and so - -  -- 6 < 6. If  6 ~ it is understood that a ----- in (59-2). 
= T in '  ~ m  

We note that since, by definition, v----min (fl, y -  k, a), (59) implies that 
(49), (51), (53), and (57) hold. 

Finally, we consider the term T/, t given by (48-t). We thus compare the 
operators ~ and d~,  acting on Qr and with constant positive weight re. We work 
as in [Mt, pp. 162-163, pp. 178-179 . . . .  ] although we must also take into account 
the fact that r~ ~ 1. We shall need the following two lemmas. 

Lemma 1. There exists a positive constant d' such that for all ~ small enough, 
all ~ E I and all u E H~(Qr 

~r u) > d' lt z 
' = ull~,~(o 0 ,  

with 

~(u, v) := Z f a~,t~(xr DC'uD~v dx. 
I~l=l /3l=m Qr 

This is a simple consequence of (10) and (55) because for all ~ / ~  ~/~, 

, , , a 2 > d '  2 Z~r U) ~ Z~Qr U) --  Cl(~]I  ) IIU[IHm(Qr : I1ull~=(or 
r cr p with d'  : :  d -  ct0h) ; here the positive constant ct is directly related to c~ 

in (55) and we choose r/t so small that d' > 0. Observe, for later use, that a~ 
is the (leading) form associated with the operator ~r 

Our next lemma provides the exact counterpart of the equation preceding 
(13). Its proof will be given in an appendix to this paper; we note that the case 
i : 0 corresponds to estimate (//) of [Mt, Proposition 4.1, p. 162]. In the state- 
ment of Lemma 2, the side r / o f  Qr is not necessarily assumed to depend on 2. 
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Lemma 2. There exists a positive constant CI such that for  all 2 > 0, 
~7 ~ 0, aH ~ E I and for  i ~ O  or 1" 

m~k~ k~ ~- 
N~(Z; t 1, Qr ~r - <~ C1 (1 -k ~/g 12 2m ) .  

all 

We can now continue the proof of Theorem 1. We proceed as in [Mt, pp. 178- 
179]. By means of (10), (55) and of the interpolation inequalities [Ag, p. 24], we 
see that there exist positive constants K and ~ such that for all z E (0, 1) and 
all ~E L we have: 

(60) l aQr u) --  a'r u)] 

-<- K(e -~ z)aQt(U, u) -k u[1 "1 2m ~_ ~l--2m] Ilull~=(~), 

for all u E Hm(Or [and hence for the restriction to Qc of any u E H"(O)];  
here we have set 

t r (61) e ~  c1~ 7 : c ~ 2  a~. 

It follows from (60) and [F1La, Lemma 4.2, p. 315] that 

N~(2; re, Qt, d )  ~ NI(Z'; re, Qr zr ~ Nt(A'rt; 1, Qr ~ ' t ) ,  (62) 

with 

(63) 2' :=  [1 + K(e + z)] 2 + - -  [q~l 2m _]_ ~I-2"]. 
re 

According to (46-2), (48-1) and (62), 

(64) Tl.l ~ Y~ {[Nl(2'rt; 1, at ,  d ~ )  - (2') k/2" q~(rr Qt, d~)] 
r 

-k [(2') k/2" -- 2 k/a"] q~(rt, Qt, ~r162 

By (20), (46-2), and Lemma 2, with i = 1, 

Qr dr 
& 

(65) Nt(2'rr ; 1, Qc, s~c't) - (2') z" ~O(rc, ' 

We note that, by (63), 

2'----2 

We choose 

(66-1) 

with u such that 

1 
(66-2) 

k 1 k--1 
C 1 (1 -k ~7 k l(~,'rr ) ~ C1 (1 -k ~/k-l( ,~, 'M) 2,. ) .  

~ [,I 2,. ] 1 -k K(e + z ) +  2 7  c + 9~1- -2 , . ]  �9 

~- 2 -u,  

1 
O ~'~-~m < U < 2m-------~ 

I1 I 
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Observe that these inequalities are compatible and that u > (1/2m) -- 
1 - -  u ( 2 m  - -  1) > (1/2m) -- & 

We deduce from (59-1) and (61) that 

and 

F q 
/1 + g[c~2  - ' ~  + 2 -~] q- ~ (2 ~'zm 1)-1 + ,~a(2m--l)--l)] ; 2 ' =  2 
L r~ J 

note that according to (57) and (59-2), 

since 

1 
- - - - O ~ a a < u  
2 m  

l[1 ] 
and trC [0, 1]. (The case when d = q - ~  is trivial; see Remark 6.b.) Moreover, 
since m ~  1, we have 

1 

2m 
- -  - -  c) ~ 1 - -  u ( 2 m  - -  1 ) >  1 - - a ( 2 m - - 1 ) .  

Consequently, there exist positive constants e, b and v, with v ~ (1/2m) -- 0, 
such that for all 2 sufficiently large: 

(67) 2(1 + b2 -v) ~ 2' ~ 2(1 Jr cA-V); 

we use here the fact that condition (~+) ,  introduced immediately after Eq. (8') 
in Section II, holds; indeed in view of (~r and (6), we have for all ~" E / ,  
rr ~ c2 > 0, where c2 is a constant independent of ~ or 2; this provides the, 
second inequality in (67). Moreover, we use (20) in order to obtain the first in- 
equality in (67). 

By combining (20), (23), (46-2), (64), (65) and (67), we obtain, for all large 2: 

k--1 k--1 k 

(68-1) T m <= c(:q~-I) + c(q~-I)~r}k~}-12 2m (1 + c2 -~) 2m + r v ] k ( : : ~ / )  

k- -1  k - - I  k--1 1 k I 
< C2 ak ~ -  C,~ 2"--~ + a - -  + a -- v 2 ~  + ~mm -- v = _~_ C,~2m -~- G c 2 2 m  +O, 

since ( 1 / 2 m ) - - v ~ d  and a < _ 6 < _ l / 2 m .  (Note that k a = ( k - -  1) a + a  
(k -- 1)/2m + 0.) 

A lower bound for To, 1 is obtained in exactly the same manner by deducing 
from (60) that 

t . 
No(2; 2"rr Qc, de )  ~ No(2", r~, Qr ~r = No(A"r:, 1, Qc, d~) ,  

with 

9r 
2" : =  [1 - -  K(e @ z)12 - -  ~ [~l-2m + ~l-2m],  
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We thus have for all 2 large enough: 

k--I 

(68-2) T0,1 ~ c22m 

In light of  (47), the conclusion of Theorem 1 now follows from (50), (52), 
(58) and (68). [ ]  

Appendix 

In this appendix, we establish Lemma 2 that was used in the proof  of  Theo- 
rem 2 towards the end of Section III.  

As was noted earlier, for Dirichlet boundary conditions (i = 0), Lemma 2 
is nothing but [Mt, Proposition 4.1, estimate (ii), p. 162]. 

For  Neumann boundary conditions (i---- 1), the desired conclusion follows 
essentially from the assumption of uniform coerciveness of  6 '  made in (10). We 
now briefly describe how this is achieved. We apply [Mt, Proposition 2.7, p. 138] 
with V = Hm(Qr 1Io ~ H~'(Q~) and H = LE(Qr Hence, with the notation 
of  MI~TIVIER [Mt] (we write Y instead of N), 

~/'(2, ; n m, L 2, ~z) = ~ ( 2  ", H~ ,  t 2, c~) -~ ~A/'(2 ; Z~, Z 2, 6 )  - -  dim (Z~ A n ~ ) .  

By means of Lemma 1 of Section I I I  (which results from the uniform coerciveness 
of  z~), we can replace [Mt, Eq. (4.15), p. 164] by 

~1 [{ u IlHm(o =< ~':(u, u) + II u 1I~2r162 for all u E Hm(Qr 

In turn, this enables us to replace [Mt, p. 165, 1.-8] by 

Jff(2; Za, L2(Qr 6) ~ j l r (#;  Za, L2(Qr 

with # : =  (2 + 1)/71; note that #, like 7~, is independent of  r E L 
In view of [Mt, Eq. (4.17), p. 165], we now conclude the proof  of  Lemma 2 

in case i = 1 by use of  [Mt, Propositions 2.7 and 4.1, pp. 138 and 162]. 
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