Solutions in L_r of the Navier-Stokes Initial Value Problem

Yoshikazu Giga & Tetsuro Miyakawa

Communicated by H. Brezis

Introduction

In this paper we discuss the existence and uniqueness of strong solutions in L_r spaces $(1 < r < \infty)$ of the initial value problem for the Navier-Stokes equations

(I)

$$\frac{\partial u/\partial t + (u, \nabla) u - \Delta u = f - \nabla p \quad \text{in } D \times (0, T), \\ \text{div } u = 0 \quad \text{in } D \times (0, T), \\ u = 0 \quad \text{on } S \times (0, T), \\ u(x, 0) = a(x) \quad \text{in } D.$$

Here D is a bounded domain in \mathbb{R}^n $(n \ge 2)$ with smooth boundary S; $u = \{u^{j}(x, t)\}_{j=1}^{n}$ and p = p(x, t) denote, respectively, the velocity and pressure, while $f = \{f^{j}(x, t)\}_{j=1}^{n}$ and $a = \{a^{j}(x)\}_{j=1}^{n}$ denote the given external force and initial velocity.

There is an extensive literature on the solvability of the initial value problem for the Navier-Stokes equation in L_2 spaces; see LADYZHENSKAYA'S monograph [18] and further papers cited there. HOPF [13] proved the existence of a global weak solution, using the Faedo-Galerkin approximation and an energy inequality, but the uniqueness and regularity of his solution are still open problems for $n \ge 3$.

Another approach to problem (I) is to use semigroup theory. KATO and FUJITA [5], [16] and SOBOLEVSKII [24] transformed equation (I) into an evolution equation in the Hilbert space L_2 . They proved the existence of a unique global strong solution for any square-summable initial velocity when n = 2. On the other hand, when n = 3 they proved the existence of a unique local strong solution if the initial velocity has some regularity (roughly speaking, they assumed that the initial velocity has square-summable half derivatives). Other contributions to the problem also have assumed some regularity of the initial velocity, see for example SOLONNIKOV [27] and HEYWOOD [12].

Our aim in this paper is to prove the existence of a unique strong solution without assuming that the initial velocity is regular. To do this, we develop an L_r

theory generalizing the corresponding L_2 theory of KATO and FUJITA. The L_n case is the most important because we need only to assume that the initial velocity has an integrable *n*-th power. In addition, SERRIN [23] has raised the question of existence of strong solutions if n > 4. Our present work also answers his question.

Recently VON WAHL [28] and MIYAKAWA [21] have discussed L_r theory (r > n). Their treatments depend on the fact that the Stokes operator generates a bounded holomorphic semigroup in L_r spaces. This result was derived by SOLONNIKOV [27], VON WAHL [29], and MIYAKAWA [21] from the estimate of SOLONNIKOV [26]. Moreover, a completely different proof and a more precise result were obtained in [9]. Our present work indeed relies on this more precise conclusion. Finally we improve their L_r theory by using the results of [10]. (We note that Weissler's treatment [30] of L_r theory is weaker than ours, and additionally assumes that D is a half space of \mathbb{R}^n .)

The essential step in our work is to estimate the nonlinear term $(u, \nabla) u$ in (I). In [9] GIGA constructed the resolvent of the Stokes operator, applying the calculus of pseudodifferential operators. Moreover, the paper [10] characterizes explicitly the domains of fractional powers of the Stokes operator; see also [11]. Using this result, we shall estimate the term $(u, \nabla) u$ (Lemma 2.2 in Section 2). This estimate generalizes that of KATO and FUJITA ([5], [16]) and SOBOLEVSKII [24]. Finally in Section 3 we show that our solutions are smooth up to the boundary if the external force is smooth.

In [4], FABES, LEWIS and RIVIERE discussed the Navier-Stokes initial value problem by using parabolic singular integral operators. They proved the existence and uniqueness of a local weak solution in L_r (r > n). We show in Section 2 that their solutions exist globally if the data are small.

In [25] SOBOLEVSKII announced results similar to ours, but without complete details.

We express our thanks to Professors DAISUKE FUJIWARA and ATSUSHI INOUE for suggesting to us the use of L_r theory for the Navier-Stokes initial value problem. We also wish to thank Professor WOLF VON WAHL who kindly permitted us to see [29] in pre-publication form. The authors are grateful to Professor EDWIN HE-WITT for expository advice.

1. Preliminaries

In this section we recall some results on the Stokes operator. Let D be a bounded domain in \mathbb{R}^n $(n \ge 2)$ with smooth boundary S. Let $W_r^s(D)$ $(s \in \mathbb{R}, 1 < r < \infty)$ be the Sobolev space of order s such that $W_r^0(D) = L_r(D)$ (see [19]), and let $\|w\|_{s,r}$ be the norm of w in $W_r^s(D)$. Set

$$X_r = \text{closure in } (L_r(D))^n \text{ of } \{u \in (C_0^\infty(D))^n; \text{ div } u = 0\},\$$

$$G_n = \{\nabla p; p \in W_r^1(D)\}.$$

We then have the following Helmholtz decomposition (see FUJIWARA and MORI-MOTO [8])

(1.1)
$$(L_r(D))^n = X_r \oplus G_r \text{ (direct sum).}$$

Let P_r be the continuous projection from $(L_r(D))^n$ to X_r associated with this decomposition, and let B_r be the Laplace operator with zero boundary condition, i.e.,

$$B_r = -\Delta$$
 with $D(B_r) = \{v \in (W_r^2(D))^n; v|_S = 0\}.$

We define the Stokes operator A_r in X_r by $A_r = -P_r \Delta$, with domain $D(A_r) = X_r \cap D(B_r)$.

CATTABRIGA [3] showed that A_r has a bounded inverse and that A_r is a close linear operator in X_r ; see also [9]. Concerning the semigroup $\{e^{-tA_r}; t \ge 0\}$ we have

Lemma 1.1 ([9], [21], [27], [29]). The operator $-A_r$ generates (in X_r) a bounded holomorphic semigroup of class C_0 .

Concerning the dual operators A_r^* , P_r^* and the dual space X_r^* , we have (see [8])

(1.2)
$$A_r^* = A_{r'}, P_r^* = P_{r'}, X_r^* = X_{r'} \qquad (1/r' = 1 - 1/r).$$

Lemma 1.1 allows us to define the fractional powers A_r^{α} ($\alpha \in \mathbf{R}$) in the usual way. We introduce a scale of Banach spaces $\{D(A_r^{\alpha}); \alpha \in \mathbf{R}\}$ by defining

(1.3)
$$D(A_r^{\alpha}) = D(A_{r'}^{-\alpha})^* \text{ for } \alpha < 0.$$

Since $(A_r^{\alpha})^* = A_{r'}^{\alpha}$, $(\alpha \in R)$ by (1.2), we see that $D(A_r^{\beta})$ ($\beta < 0$) is the completion of X_r under the norm $||A_r^{\beta}v||_{0,r'}$, namely the space $H^{\beta,r}$ of WEISSLER. On the other hand, Lemma 1.1 implies

Proposition 1.2. $||A_r^{\alpha}e^{-tA_r}|| \leq C_{\alpha}t^{-\alpha}$ for $\alpha \geq 0$, t > 0. It follows that $\{e^{-tA_r}; t \geq 0\}$ extends uniquely to a bounded holomorphic semigroup in $D(A_r^{\alpha})$ for all $\alpha \in \mathbf{R}$. Concerning $D(A_r^{\alpha})$, $\alpha \geq 0$, we have

Lemma 1.3. ([10], [11]). For any α , $0 \leq \alpha \leq 1$, the domain $D(A_r^{\alpha})$ is the complex interpolation space $[X_r, D(A_r)]_{\alpha}$.

Lemma 1.3 shows that $D(A_r^{\alpha}) = X_r \cap D(B_r^{\alpha})$ (see [10]), a fact proved earlier by FUJITA and MORIMOTO [6] for r = 2. Moreover FUJIWARA [7] showed that $D(B_r^{\alpha})$ ($\alpha \ge 0$) is continuously embedded in the space of Bessel potentials $(H_r^{2\alpha}(D))^n$ Thus we get

Proposition 1.4. For any $\alpha \ge 0$, the domain $D(A_r^{\alpha})$ is continuously embedded in $X_r \cap (H_r^{2\alpha}(D))^n$.

2. Existence and Uniqueness in X_r

In this section, we study the Navier-Stokes initial value problem (I) in the space X_r . Applying P_r to (I), we get

(II)
$$du/dt + A_r u = Fu + P_r f, \quad t > 0; \quad u(0) = a,$$

where $Fu = -P_r(u, \nabla) u$. We consider this equation in integral form

(III)
$$u(t) = e^{-tA}a + \int_0^t e^{-(t-s)A} \{Fu(s) + Pf(s)\} ds, \quad t > 0.$$

(Here and in the sequel we drop the subscript r attached to A and P.) To estimate Fu we need

Lemma 2.1. For each j, $1 \leq j \leq n$, the operator $A^{-1/2}P(\partial/\partial x_j)$ extends uniquely to a bounded linear operator from $(L_r(D))^n$ to X_r .

Proof. According to Proposition 1.4, $(\partial/\partial x_j) IA^{-1/2}$: $X_r \to (L_r(D))^n$ is continuous for each r, $1 < r < \infty$, where I denotes the injection $X_r \subset (L_r(D))^n$. Since $I^* = P_{r'}$, we get the desired result from duality and (1.2).

Lemma 2.2. Let
$$0 \le \delta < 1/2 + n(1 - r^{-1})/2$$
. Then
 $\|A^{-\delta}P(u, \nabla) v\|_{0,r} \le M \|A^{\theta}u\|_{0,r} \|A^{\varrho}v\|_{0,r}$

with some constant $M = M(\delta, \theta, \varrho, r)$, provided that $\delta + \theta + \varrho \ge n/2r + 1/2$, $\theta > 0, \ \varrho > 0, \ \varrho + \delta > 1/2$.

Proof. Assume that $0 \le \varepsilon < n(1 - r^{-1})/2$. Proposition 1.4 and the Sobolev embedding theorem imply that the operator

$$A_{r'}^{-\varepsilon}: X_{r'} \to D(A_{r'}^{\varepsilon}) \to X_{s'}, 1/s' = 1/r' - 2\varepsilon/n, 1/r + 1/r' = 1,$$

is bounded, since $(L_{s'}(D))^n \cap X_{r'}$ is the same as $X_{s'}$. By duality, this implies that $A_r^{-\varepsilon}$ extends uniquely to a bounded operator from X_s to X_r , where $1/s = 1 - 1/s' = 1/r + 2\varepsilon/n$.

Consider first the case $\delta \ge 1/2$. Since $P(u, \nabla) v$ is bilinear in u, v, it suffices to prove the estimate on a dense subspace. From now on we may therefore assume that u and v are smooth. Since div u = 0, we get

$$(u, \nabla) v = \sum_{j=1}^n \partial(u^j v) / \partial x_j.$$

Take $\varepsilon = \delta - 1/2$ and recall that $A_r^{-\varepsilon}$ is a bounded operator from X_s to X_r . Lemma 2.1 implies that

$$\|A^{-\delta}P(u,\nabla)v\|_{0,r}=\left\|\sum_{j=1}^nA^{-1/2-\varepsilon}P\,\partial(u^jv)/\partial x_j\right\|_{0,r}\leq C\,\|\,|u|\cdot|v|\|_{0,s}.$$

By assumption we can take p and q such that

 $1/p \ge 1/r - 2\theta/n$, $1/q \ge 1/r - 2\varrho/n$, 1/p + 1/q = 1/s, 1 < p, $q < \infty$. Proposition 1.4 and the Sobolev embedding theorem yield

$$||u| \cdot |v||_{0,s} \leq ||u||_{0,p} ||v||_{0,q} \leq C ||A^{\theta}u||_{0,r} ||A^{\varrho}v||_{0,r}$$

which is the required result for $\delta \ge 1/2$. In particular,

$$\|A^{-1/2}P(u,\nabla) v\|_{0,r} \leq M \|A^{\theta}u\|_{0,r} \|A^{\beta}v\|_{0,r}, \quad \theta+\beta \geq n/2r, \theta>0, \beta>0.$$

Similarly we find

$$\|P(u, \nabla) v\|_{0,r} \leq C \|u\|_{0,p} \|\nabla v\|_{0,q} \leq M \|A^{\theta}u\|_{0,r} \|A^{\beta+1/2}v\|_{0,r'},$$

where 1/p + 1/q = 1/r, the required result for $\delta = 0$.

The two foregoing estimates show that the map $v \to P(u, \nabla) v$ can be regarded as a bounded operator from $D(A^{\beta})$ to $D(A^{-1/2})$ and from $D(A^{\beta+1/2})$ to X_r . Lemma 1.3 and (1.3) allow us to apply complex interpolation theory to obtain

 $\|A^{-\delta}P(u,\nabla)v\|_{0,r} \leq M \|A^{\theta}u\|_{0,r} \|A^{\theta}v\|_{0,r}, \quad \varrho = \beta + 1/2 + -\delta,$

for $0 \leq \delta \leq 1/2$. This completes the proof.

Remark. Lemma 2.2 generalizes the results given by a number of writers for the case r = 2. We list these results here for the reader's convenience.

	n	δ	θ	Q
 Като-Fujita [16]				
SOBOLEVSKII [24]	2	1/4	1/4	1/2
KATO-FUJITA [16]	3	0	1/2	3/4
FUJITA-KATO [5]				
SOBOLEVSKII [24]	3	1/4	1/2	1/2
Inoue-Wakimoto [14]	4, 5	0	$\theta > 0, \varrho > 1/2,$	
			$\theta + \varrho = (n+2)/4$	

We will use Lemma 2.2 to prove an existence theorem for the integral equation (III) in X_r ($1 < r < \infty$). To this end we introduce the iteration scheme

(2.1) $u_{0}(t) = e^{-tA} a + \int_{0}^{t} e^{-(t-s)A} Pf(s) ds,$ $u_{m+1}(t) = u_{0}(t) + \int_{0}^{t} e^{-(t-s)A} Fu_{m}(s) ds, \quad m \ge 0.$

The following argument is similar to that of KATO and FUJITA [5], [16]. We denote the norm in X_r by $\|\cdot\|$. Moreover, for a Banach space Y, C(I; Y) denotes the space of Y-valued continuous functions defined on an interval I.

Theorem 2.3. (i) (Existence). Fix γ and choose $\delta \ge 0$ such that

 $n/2r-1/2 \leq \gamma < 1, \quad -\gamma < \delta < 1-|\gamma|.$

Assume that a is in $D(A^{\gamma})$, and that $||A^{-\delta}Pf(t)||$ is continuous on (0, T) the initial data and satisfies

$$\|A^{-\delta}Pf(t)\| = o(t^{\gamma+\delta-1}) \text{ as } t \to 0.$$

Then there is a local solution u(t) of (III) such that

(a) $u \in C([0, T_*]; D(A^{\gamma})), u(0) = a,$

(b) $u \in C((0, T_*]; D(A^{\alpha}))$ for some $T_* > 0$,

(c) $||A^{\alpha}u(t)|| = o(t^{\gamma-\alpha})$ as $t \to 0$ for all $\alpha, \gamma < \alpha < 1 - \delta$.

(ii) (Uniqueness). Any solution of (III) satisfying (a) and

(b') $u \in C((0, T_*]; D(A^{\beta})),$

(c')
$$||A^{\beta}u(t)|| = o(t^{\gamma-\beta})$$
 for some β , $|\gamma| < \beta$

is unique.

Remarks. Theorem 2.3 improves the result of WEISSLER [30]. He considered equation (III) with Pf = 0 when D is a half-space and proved the local existence of solutions when $n/2r - 1/2 < \gamma$, $-1/3 < \gamma < 1$, a more restrictive assumption on γ than ours. We will show that our solution exists globally if a and Pf are small.

The case r = 2 of Theorem 2.3 was treated by KATO and FUJITA [16], who proved (i) for n = 2, $\delta = 1/4$ and n = 3, $\delta = 0$, and by INOUE and WAKIMOTO [14], who treated the cases n = 4, 5.

Proof of Theorem 2.3. (i) We begin by estimating the term $u_0(t)$ in (2.1). Proposition 1.2 gives

$$\|A^{\alpha}u_{0}(t)\| \leq \|A^{\alpha}e^{-tA}a\| + \int_{0}^{t} \|A^{\alpha+\delta}e^{-(t-s)A}\| \|A^{-\delta}Pf(s)\| ds$$
$$\leq \|A^{\alpha}e^{-tA}a\| + C_{\alpha+\delta}\int_{0}^{t} (t-s)^{-\alpha-\delta} \|A^{-\delta}Pf(s)\| ds$$
$$\leq K_{\alpha 0}t^{\gamma-\alpha} \text{ for } \gamma \leq \alpha < 1-\delta,$$

with

(2.2)
$$K_{\alpha 0} = \sup_{0 < t \le T} t^{\alpha - \gamma} \| A^{\alpha} e^{-tA} \| a + C_{\alpha + \delta} NB(1 - \delta - \alpha, \gamma + \alpha),$$
$$N = \sup_{0 < t \le T} t^{1 - \gamma - \delta} \| A^{-\delta} Pf(t) \|,$$

and where B(a, b) is the beta function. Here we have used the assumption $\gamma + \delta > 0$.

Suppose that for some $m \ge 0$, $u_m(t)$ is defined and satisfies

(2.3)
$$||A^{\alpha}u_{m}(t)|| \leq K_{\alpha m}t^{\gamma-\alpha} \quad (\gamma \leq \alpha < 1-\delta)$$

We shall estimate $||A^{\alpha}u_{m+1}(t)||$ by using (2.1). To estimate the term $||A^{-\delta}Fu_m(s)||$ we choose θ and ϱ so that

$$egin{aligned} & heta+arrho+arrho=1+\gamma, \quad \gamma< heta<1-\delta, \quad \gamma0, \quad arrho>0, \quad \delta+arrho>1/2. \end{aligned}$$

This is possible because $\delta < 1 - |\gamma|$. Since $\gamma \ge n/2r - 1/2$, $n \ge 2$, and $\delta < 1 - \gamma$ we easily find that θ, ϱ, δ satisfy the assumptions of Lemma 2.2. Using Lemma 2.2 and (2.3), we get $||A^{-\delta}Fu_m(s)|| \le MK_{\theta m}K_{\varrho m}s^{\gamma+\delta-1}$. Therefore (2.1) implies that

$$\|A^{\alpha}u_{m+1}(t)\| \leq K_{\alpha 0}t^{\gamma-\alpha} + C_{\alpha+\delta} \int_{0}^{t} (t-s)^{-\alpha-\delta} \|A^{-\delta}Fu_{m}(s)\| ds$$
$$\leq K_{\alpha,m+1}t^{\gamma-\alpha} \quad (\gamma \leq \alpha < 1-\delta)$$

with

$$(2.4) K_{\alpha,m+1} = K_{\alpha 0} + C_{\alpha+\delta} MB(1-\delta-\alpha,\gamma+\delta) K_{\theta m} K_{\varrho m}.$$

Thus $u_m(t)$ is well-defined for each $m \ge 0$ as an element of $C([0, T]; D(A^{\gamma})) \cap C((0, T]; D(A^{\alpha}))$ for all α such that $\gamma < \alpha < 1 - \delta$; moreover $u_m(t)$ satisfies (2.3) with $K_{\alpha m}$ defined recursively by (2.2) and (2.4).

Put

$$k_m = \max \{K_{\theta m}, K_{\varrho m}\}, \quad C_1 = \max \{C_{\theta+\delta}, C_{\varrho+\delta}\},$$
$$B_1 = \max \{B(1-\delta-\theta, \gamma+\delta), \quad B(1-\delta-\varrho, \gamma+\delta)\}.$$

Then (2.4) implies that

$$k_{m+1} \leq k_0 + C_1 M B_1 k_m^2.$$

An elementary calculation shows that if

(2.5)
$$k_0 < 1/4C_1MB_1$$

then for each $m \ge 1$,

(2.6)
$$k_m < K \equiv \{1 - (1 - 4C_1MB_1k_0)\}/2C_1MB_1 < 1/2C_1MB_1,$$
$$K_{\alpha,m+1} \leq K_{\alpha 0} + C_{\alpha+\delta}MB(1 - \delta - \alpha, \gamma + \delta) K^2 \equiv K_{\alpha},$$
$$\|A^{\alpha}\mathbf{u}_{m+1}(t)\| \leq K_{\alpha}t^{\gamma-\alpha}.$$

Assuming (2.5), we prove that the sequence $\{u_m(t)\}$ converges. Set

$$w_m(t) = u_{m+1}(t) - u_m(t) = \int_0^t e^{-(t-s)A} \{Fu_m(s) - Fu_{m-1}(s)\} ds \quad (m \ge 1).$$

The estimate

$$\|A^{-\delta} \{Fu_m - Fu_{m-1}\}\| \leq M(\|A^{\theta}w_{m-1}\| \|A^{e}u_m\| + \|A^{\theta}u_{m-1}\| \|A^{e}w_{m-1}\|),$$

together with an induction on m, gives

$$\|A^{\alpha}w_{m}(t)\| \leq 2KC_{\alpha+\delta}(2C_{1}MB_{1}K)^{m-1}B(1-\delta-\alpha,\gamma+\delta)t^{\gamma-\alpha}$$

for each α such that $\gamma \leq \alpha < 1 - \delta$. Since $2C_1MB_1K < 1$ by (2.6), this implies the existence of

$$u(t) \in C([0, T]; D(A^{\gamma})) \cap C((0, T]; D(A^{\alpha})) \quad (\gamma < \alpha < 1 - \delta)$$

such that

$$\|A^{\gamma}\{u_m(t)-u(t)\}\| \rightarrow 0$$
 uniformly on [0, T],

$$||A^{*}[\{u_{m}(t) - u(t)\}|| \rightarrow 0$$
 uniformly on every $[\varepsilon, T]$ $(0 < \varepsilon < T)$

as $m \rightarrow \infty$. Moreover

$$\|A^{\alpha}u(t)\| \leq K_{\alpha}t^{\gamma-\alpha} \quad (\gamma < \alpha < 1-\delta).$$

This in turn yields for $s \in (0, T)$

$$\|A^{-\delta}\{Fu_m(s) - Fu(s)\}\| \le M(\|A^{\theta}(u_m - u)\| \|A^{\varrho}u_m\| + \|A^{\theta}u\| \|A^{\varrho}(u_m - u)\|) \to 0$$

as $m \to \infty$, and

$$\|A^{-\delta}Fu_m(s)\|\leq Cs^{\gamma+\delta-1},$$

with a constant C > 0 independent of m.

Applying the dominated convergence theorem to the scheme (2.1), we see that u(t) is a solution on [0, T]. Thus we have proved the existence of a solution under assumption (2.5). Since $a \in D(A^{\gamma})$, Proposition 1.2 implies that $t^{\alpha-\gamma} || A^{\alpha} e^{-tA} a || \rightarrow 0$ as $t \rightarrow 0$ for $\alpha > \gamma$. If T > 0 is chosen sufficiently small then $K_{\alpha 0}$ ($\gamma < \alpha < 1 - \delta$) becomes small and k_0 satisfies (2.5). This shows the existence of $T_* > 0$ with the desired properties (b) and (c).

We now prove (ii). First note that for any simple of numbers λ , μ , ν with $1 < \lambda < \mu < \nu$ the estimate

$$||A^{\mu}v|| \leq C ||A^{\lambda}v||^{\theta} ||A^{\nu}v||^{1-\theta}, \quad \theta = (\nu - \mu)/(\nu - \mu)$$

holds with a constant C independent of $v \in D(A^{\nu})$. This follows immediately from Lemma 1.3, (1.3), and the convexity property of norms on interpolation spaces ([2]).

Let u, v be two solutions corresponding to the same quantities Pf and a. By the above estimate, we may assume without loss of generality that there exists \varkappa , $|\gamma| < \varkappa < 1 - \delta$, such that

$$||A^{\alpha}u(t)|| = o(t^{\gamma-\alpha}), \quad ||A^{\alpha}v(t)|| = o(t^{\gamma-\alpha}) \ (t \to 0)$$

for all α , $\gamma < \alpha \leq \varkappa$. Set

$$w(t) \equiv u(t) - v(t) = \int_{0}^{t} e^{-(t-s)A} \{Fu(s) - Fv(s)\} ds$$

and $\delta' = 1 - \varkappa$; then $|\gamma| < \varkappa$ implies $\delta' < 1 - |\gamma|$. Note that $\gamma + \delta' > \gamma + \delta > 0$. As in the proof of (i), we can choose θ and ϱ , $|\gamma| < \theta$, $\varrho < \varkappa$ such that

(2.7)
$$\|A^{\alpha}w(t)\| \leq C_{\alpha+\delta}, M \int_{0}^{t} (t-s)^{-\alpha-\delta'} \{ \|A^{\theta}w(s)\| \|A^{\varrho}u(s)\| + \|A^{\theta}v(s)\| \|A^{\varrho}w(s)\| \} ds$$

for $\gamma < \alpha < \varkappa$.

Let $K(t_0)$ $(t_0 \in (0, T_*])$ be a constant such that, for $\alpha = \theta$ and $\alpha = \varrho$ we have

$$||A^{x}u(t)|| \leq K(t_{0}) t^{\gamma-\alpha}, ||A^{x}v(t)|| \leq K(t_{0}) t^{\gamma-\alpha}, (t \in (0, t_{0}]),$$

where

$$K(t_0) \rightarrow 0$$
 as $t_0 \rightarrow 0$.

By induction, we see that (2.7) implies

$$\|A^{\alpha}w(t)\| \leq 2K(t_0) (2K(t_0) C_1 M B_1)^m t^{\gamma-\alpha} \quad (t \in (0, T_0])$$

for each $m \ge 1$ and for $\alpha = \theta, \varrho$. Choosing $t_0 > 0$ sufficiently small, we may assume $2K(t_0) C_1 M B_1 < 1$. Hence $w(t) \equiv 0$ on $[0, t_0]$. Repeating this argument on $[t_0, T_*]$, one finds a sequence $t_0 < t_1 < t_2 < ...$, such that $w(t) \equiv 0$ on $[0, t_j]$ for any j. Since $A^x u(t)$ and $A^x v(t)$ ($\alpha = \theta, \varrho$) are continuous on the closed interval $[t_0, T_*]$, it is easily seen that the sequence $\{t_j - t_{j-1}\}$ is bounded away from 0. Thus we have $w \equiv 0$ on $[0, T_*]$, which completes the proof.

Proposition 2.4. Let u be the solution given by Theorem 2.3. Then A^*u ($\gamma < \alpha < 1 - \delta$) is Hölder continuous on every interval [ε , T_*] ($0 < \varepsilon < T_*$).

Proof. It suffices to prove the Hölder continuity of $A^{x}v$, where

$$v(t) = \int_0^t e^{-(t-s)A} \{Fu(s) + Pf(s)\} \, ds.$$

Using the estimate $||(e^{-hA} - I) A^{-\mu}|| \leq C_{\mu}h^{\mu}$ ($0 \leq \mu \leq 1$), which was obtained in [5], we have for h > 0,

where $C_{\varepsilon} = \sup_{\varepsilon \le t \le T_{*}} \{ \|A^{-\delta}Fu(s)\| + \|A^{-\delta}Pf(s)\| \}$. This completes the proof.

Theorem 2.5. If $Pf: (0, T] \rightarrow +X_r$ is Hölder continuous on each subinterval $[\varepsilon, T]$ $(0 < \varepsilon < T)$, the solution u of (III) given by Theorem 2.3 satisfies equation (II) on $[0, T_*]$. Moreover we have $u(t) \in D(A)$ for $t \in (0, T_*]$.

Proof. We need only show the Hölder continuity of Fu(t) on each subinterval $[\varepsilon, T_*]$ $(0 < \varepsilon < T_*)$. An elementary calculation shows that $u(\varepsilon) \in X_r$ and

$$u(t) = e^{-(t-\varepsilon)A}u(\varepsilon) + \int_{\varepsilon}^{t} e^{-(t-s)A} \{Fu(s) + Pf(s)\} ds,$$

 $t \in [\varepsilon, T_*]$. Since Pf is continuous on $[\varepsilon, T]$ we have $||Pf(t)|| = o((t - \varepsilon)^{-\alpha})$ $(t \to \varepsilon)$ for any $\alpha > 0$. The uniqueness of u(t), ensured by Theorem 2.3, shows that

$$u \in C([\varepsilon, T_*]; D(A^{\eta})) \cap C((\varepsilon, T_*]; D(A^{\alpha})),$$
$$|A^{\alpha}u(t)|| = o((t-\varepsilon)^{\eta-\alpha}) \quad (t \to \varepsilon) \text{ for } \eta < \alpha < 1$$

where $\eta = \max{\{\gamma, 0\}}$. Thus Proposition 2.4 implies that $A^{\alpha}u(t)$ $(\eta < \alpha < 1)$ is Hölder continuous on every subinterval $[\varepsilon, T_*]$ $(0 < \varepsilon < T_*)$. Since we can choose θ, ϱ such that

$$\theta + \varrho = 1 + \eta, \quad \eta < \theta < 1, \quad \max{\{\eta, 1/2\}} < \varrho < 1,$$

Lemma 2.2 (with $\delta = 0$) shows that Fu(t) is Hölder continuous on every $[\varepsilon, T_*]$ $(0 < \varepsilon < T_*)$. This completes the proof.

From (2.2) and (2.5) we get the following result.

Theorem 2.6. Let $a \in D(A^{\gamma})$ and $Pf \in C((0, \infty); X_r)$ be as in Theorem 2.3. Then the solution u(t) given by Theorem 2.3 exists on $[0, \infty)$ provided that

$$|C_0||A'a|| + C_1 \sup t^{1-\gamma-\delta} ||A^{-\delta}Pf(t)|| < 1/4C_1MB_1$$

Here $C_0 = \max \{C_{\theta-\gamma}, C_{\rho-\gamma}\}$, and $C_{\alpha-\gamma}$ is the constant given in Proposition 1.2.

Remark. In Theorem 2.3 we considered only the case n/2r - 1/2 < 1. When $n/2r - 1/2 \ge 1$, our iteration argument fails. In the latter case, however, since Sobolev's Theorem shows $D(A^{\gamma}) \subset X_n$ if $\gamma \ge n/2r - 1/2 > 0$, we can appeal to X_n -theory.

3. A Regularity Theorem

The purposes of this section is to show that the solutions given by Theorem 2.3 are smooth on $\overline{D} \times (0, T_*)$ if Pf is smooth on $\overline{D} \times (0, T)$. For simplicity, we assume Pf = 0; the proof when $Pf \neq 0$ is essentially the same. First we give some lemmas.

Lemma 3.1. ([3]). Let $u \in D(A)$ and Au = f. If f is in $(W_r^m(D))^n$ $(1 < r < \infty)$ for some integer $m \ge 0$, then u is in $(W_r^{m+2}(D))^n$ and satisfies

$$||u||_{m+2,r} \leq C_{m,r} ||f||_{m,r}$$

with a constant $C_{m,r} > 0$ independent of u and f.

Let $C^{\mu}([0, T]; X)$ denote the space of Hölder continuous functions on [0, T] with exponent μ and with values in a Banach space X. Similarly let $C^{\mu}((0, T]; X)$ denote the space of functions which are Hölder continuous on every subinterval $[\varepsilon, T]$ of (0, T], with exponent μ . The following result is proved in [5], Lemma 2.14.

Lemma 3.2. Let f(t) be in $C^{\mu}([0, T]; X_r)$, for some $0 < \mu < 1$. Then the function

$$v(t) = \int_0^t e^{-(t-s)A} f(s) \, ds$$

is in $C^{\nu}((0,T]; D(A)) \cap C^{1+\nu}((0,T]; X_r)$ for every ν such that $0 < \nu < \mu$.

Lemma 3.3. (i) If $u \in (W_r^m(D))^n$ $(1 < r < \infty)$ for some integer $m \ge 0$, then Pu belongs to $(W_r^m(D))^n \cap X_r$ and satisfies

$$||Pu||_{m,r} \leq C_{m,r} ||u||_{m,r},$$

where $C_{m,r} > 0$ is independent of u.

(ii) For m > n/r, there exists a constant $C_{m,r} > 0$ such that

 $||P(u, \nabla) v||_{m,r} \leq C_{m,r} ||u||_{m,r} ||v||_{m+1,r}$

for every $u \in (W_r^m(D))^n$, $v \in (W_r^{m+1}(D))^n$ $(1 < r < \infty)$.

(iii) When r > n, we have

$$\|P(u, \nabla) v\|_{0,r} \leq C_r \|u\|_{1,r} \|v\|_{1,r}$$

for all $u, v \in (W_r^1(D))^n$.

Proof. (i) When m = 0, the assertion is obvious from (1.1). When $m \ge 1$, it is known [8] that $Pu = u - \nabla p$, where p is a solution of

(3.1)
$$\Delta p = \operatorname{div} u \text{ in } D, \ \partial p / \partial v = v \cdot u \text{ on } S.$$

Here v is the unit outward normal to S and $v \cdot u = \sum_{j=1}^{n} v^{j} u^{j}$. Since div $u \in W_{r}^{m-1}(D)$ and $v \cdot u \in W_{r}^{m-1/r}(S)$, the equation (3.1) admits a solution $p \in W_{r}^{m+1}(D)$ which is unique up to an additive constant, such that

$$\|\nabla p\|_{m,r} \leq C(\|\operatorname{div} u\|_{m-1,r} + \|u\|_{W^{m-1/r}(S)})$$

(see e.g. [20]). Since the right hand side is bounded above by $||u||_{m,r}$, the result follows.

(ii) It is known (see [1]) that $W_r^m(D)$ forms an algebra if m > n/r. Thus the assertion follows immediately from (i).

(iii) Since r > n, the Sobolev embedding theorem shows that $W_r^1(D) \subset C(D)$, with a continuous injection. We thus find

$$\|P(u, \nabla) v\|_{0,r} \leq C \|(u, \nabla) v\|_{0,r}$$

$$\leq C \|u\|_{L_{\infty}(D)} \|\nabla v\|_{0,r} \leq C \|u\|_{1,r} \|v\|_{1,r}.$$

Our main purpose in this section is to prove

Theorem 3.4. If Pf = 0, the solution of equation (III) given by Theorem 2.3 belongs to $(C^{\infty}(\overline{D} \times (0, T_*)))^n$.

In proving this result, we may restrict ourselves to the case r > n, $a \in X_r$. To see this, note that the solution u(t) given by Theorem 2.3 satisfies

(3.2)
$$u(t) = e^{-(t-\epsilon)A} u(\epsilon) + \int_0^t e^{-(t-s)A} Fu(s) ds$$

on every subinterval $[\varepsilon, T_*]$ $(0 < \varepsilon < T_*)$. (See the proof of Theorem 2.5.) Theorem 2.5 shows that $u(\varepsilon) \in D(A)$. Suppose now that $1 < r \leq n$. Since $0 \leq n/2r - 1/2 \leq \gamma < 1$, we have $D(A^{\gamma}) \subset X_n$ so that $D(A) \subset X_s$ for some s > n. This means, by (3.2), that we may assume r > n and $a \in X_r$ for some r > n.

Thus we have only to prove the following

Proposition 3.5. Let r > n and let $a \in X_r$. Assume that the solution u(t) of (III) (with Pf = 0) given by Theorem 2.3 exists on [0, T]. Then $u \in (C^{\infty}(\overline{D} \times (0, T]))^n$.

We prove this in several steps. Let us fix r > n and write $\|\cdot\|_{0,r} = \|\cdot\|$. The proof of Proposition 2.4 shows that $A^{\alpha}u(t)$ ($0 < \alpha < 1$) is Hölder continuous on every subinterval [ε , T], with exponent μ , $0 < \mu < 1 - \alpha$. Lemma 3.3 (iii) implies that

$$Fu \in C^{\mu}((0, T]; X_r)$$
 for all μ , $0 < \mu < 1/2$.

Lemma 3.2 and Lemma 3.3 (ii) now imply

Lemma 3.6. $u \in C^{\mu}((0, T]; D(A))$ and $u' = du/dt \in C^{\mu}((0, T]; X_r)$ for all $\mu, 0 < \mu < 1/2$. Moreover Fu belongs to $C^{\mu}((0, T]; (W_r^1(D))^n)$.

Lemma 3.7. We have $u' \in C^{\mu}((0, T]; D(A^{1/2}))$ for all μ , $0 < \mu < 1/2$.

Proof. From (3.2) we get

$$A^{1/2}u(t) = e^{-(t-\varepsilon)A}A^{1/2}u(\varepsilon) + \int_{\varepsilon}^{t} Ae^{-(t-\varepsilon)A}A^{-1/2}Fu(s) ds$$
$$\equiv e^{-(t-\varepsilon)A}A^{1/2}u(\varepsilon) + v(t).$$

Since $e^{-(t-\epsilon)A}A^{1/2}u(\epsilon) \in C^{\infty}((\epsilon, T]; X_r)$, we need only consider v(t). Integrating by parts, we get

(3.3)
$$v(t) = \int_{\varepsilon}^{t} (d/ds) e^{-(t-s)A} A^{-1/2} Fu(s) ds$$
$$= A^{-1/2} Fu(t) - e^{-(t-\varepsilon)A} A^{-1/2} Fu(\varepsilon)$$
$$- \int_{\varepsilon}^{t} e^{-(t-s)A} A^{-1/2} (Fu)' (s) ds,$$

where
$$(Fu)'(s) = (d/ds) Fu(s)$$
. Since $u(s) \in D(A)$ $(0 < s \le T)$, we have
 $Fu(s) = -\sum_{j} P(\partial/\partial x_{j}) \{u^{j}(s) u(s)\}$. Hence by Lemma 2.1
 $||A^{-1/2} (Fu)'(s)|| = ||\sum_{j} A^{-1/2} P(\partial/\partial x_{j}) (u^{j'}u + u^{j}u')(s)||$
 $\leq C |||u'(s)| \cdot |u(s)||| \leq C ||u(s)||_{L_{\infty}(D)} ||u'(s)||$
 $\leq C ||A^{1/2} u(s)|| ||u'(s)||.$

This relation together with Lemma 3.6 shows that $A^{-1/2}(Fu)' \in C^{\mu}((0, T]; X_r)$. Lemma 3.2 and (3.3) now imply that $v' \in C^{\mu}((0, T]; X_r)$. The proof is complete.

Since $D(A^{1/2}) \subset (W_r^1(D))^n$, Lemmas 3.1, 3.6, 3.7 and the identity $u = A^{-1}(Fu - u')$ show that

(3.4)
$$u \in C^{\mu}((0, T]; (W_r^3(D))^n).$$

We complete the proof of Proposition 3.5 by induction. We shall say that u(t) has property $(P)_m$ $(m \ge 1)$ if

$$u^{(m)} \in C^{\mu}((0, T]; D(A^{1/2})),$$

$$u^{(j)} \in C^{\mu}((0, T]; (W_r^{m+1-j}(D))^n), \quad 1 \leq j \leq m-1,$$

$$u \in C^{\mu}((0, T]; (W_r^{m+2}(D))^n),$$

for all μ , $0 < \mu < 1/2$. Here $u^{(j)} = (d/dt)^j u$. Lemma 3.7 and (3.4) show that u(t) has property $(P)_1$. Proposition 3.5 follows immediately from

Lemma 3.8. $(P)_m$ implies $(P)_{m+1}$.

Proof. By Leibniz's rule we get

$$(Fu)^{(m)} = \sum_{j=1}^{m} \binom{m}{j} P(u^{(j)}, \nabla) \ u^{(m-j)},$$

so the assumption $(P)_m$ and Lemma 3.3 imply that

$$(Fu)^{(m)} \in C^{\mu}((0, T]; X_r)$$
 for all μ , $0 < \mu < 1/2$.

This allows us to differentiate the equation u' + Au = Fu m times with respect to t, giving

$$u^{(m)}(t) = e^{-(t-\varepsilon)A} u^{(m)}(\varepsilon) + \int_{\varepsilon}^{t} e^{-(t-s)A} (Fu)^{(m)}(s) ds$$

on all subintervals $[\varepsilon, T]$ $(0 < \varepsilon < T)$. Thus Lemma 3.2 implies that

(3.5)
$$u^{(m)} \in C^{\mu}((0, T]; D(A))$$
$$u^{(m+1)} \in C^{\mu}((0, T]; X_{\nu})$$

for all μ , $0 < \mu < 1/2$. As in the proof of Lemma 3.7, the conditions (3.5) give

(3.6)
$$u^{(m+1)} \in C^{\mu}((0, T]; D(A^{1/2})).$$

Since $u^{(j)} = A^{-1}((Fu)^{(j)} - u^{(j+1)}), 1 \le j \le m-1$, we obtain from (3.5) and Lemma 3.3 (ii) the relation

(3.7)
$$u^{(j)} \in C^{\mu}((0, T]; (W_r^{m+2-j}(D))^n), \quad 1 \leq j \leq m-1.$$

Now the property $(P)_m$ implies, by Lemma 3.3 (ii), that

 $Fu \in C^{\mu}((0, T]; (W_r^{m+1}(D))^n).$

Again using the identify $u = A^{-1}(Fu - u')$, the relation (3.7) with j = 1 gives (3.8) $u \in C^{\mu}((0, T]; (W_r^{m+3}(D))^n).$

Property $(P)_{m+1}$ follows from (3.5), (3.6), (3.7) and (3.8). This completes the proof. The following result is proved similarly.

Theorem 3.9. Let $f \in (C^{\infty}(\overline{D} \times (0, T]))^n$. Suppose a and Pf satisfy the assumption of Theorem 2.3. Then u belongs to $(C^{\infty}(\overline{D} \times (0, T_*]))^n$.

Remarks. In [22] Serrin proved that a weak solution of the Navier-Stokes equations is smooth in $x \in D$ if it belongs to $L_{r,q} = L_q(0, T; (L_r(D))^n)$ for some q, r such that n/r + 2/q < 1. This result was later improved by KANIEL and SHIN-BROT [15], who proved that the above assumption for weak solutions implies smoothness in $(x, t) \in \overline{D} \times [0, T]$ when n = 2, 3 if the initial data are smooth on \overline{D} . LADYZHENSKAYA [17] discusses interior regularity in (x, t). The solutions given by Theorem 2.3 belong to the above $L_{r,q}$ space if $n/2r - 1/2 < \gamma$, but not necessarily if $n/2r - 1/2 = \gamma$. It should be noticed that our solutions do not in general belong to the class of weak solutions if $n/2r - 1/2 \leq \gamma < 0$. Even in this case, Theorem 3.4 guarantees the smoothness of our solutions in $\overline{D} \times (0, T]$.

Note. This research was done at the Department of Mathematics University of Tokyo.

References

- 1. ADAMS, R. A., Sobolev spaces. New York: Academic Press 1975.
- 2. CALDERÓN, A. P., Intermediate spaces and interpolation; the complex method. Studia Math. 24, 113-190 (1964).
- 3. CATTABRIGA, L., Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31, 308-340 (1961).
- 4. FABES, E. B., LEWIS, J. E., & N. M. RIVIERE, Boundary value problems for the Navier-Stokes equations. Amer. J. Math. 99, 626–668 (1977).
- 5. FUJITA, H., & T. KATO, On the Navier-Stokes initial value problem I. Arch. Rational Mech. Anal. 16, 269-315 (1964).
- 6. FUJITA, H., & H. MORIMOTO, On fractional powers of the Stokes operator. Proc. Japan Acad. 46, 1141-1143 (1970).
- FUJIWARA, D., On the asymptotic behaviour of the Green operators for elliptic boundary problems and the pure imaginary powers of some second order operators. J. Math. Soc. Japan 21, 481-521 (1969).
- FUJIWARA, D., & H. MORIMOTO, An L_r-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo, Sec. I, 24, 685-700 (1977).
- 9. GIGA, Y., Analyticity of the semigroup generated by the Stokes operator in L_r spaces. Math. Z. 178, 297-329 (1981).

- GIGA, Y., Domains of fractional powers of the Stokes operator in L_r spaces. Arch. Rational Mech. Anal. 89, 251-265 (1985).
- 11. GIGA, Y., The Stokes operator in L_r spaces. Proc. Japan Acad. 57, 85-89 (1981).
- 12. HEYWOOD, J. G., The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639-681 (1980).
- 13. HOPF, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213-231 (1950-51).
- 14. INOUE, A., & M. WAKIMOTO, On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo, Sec. I, 24, 303-320 (1977).
- 15. KANIEL, S., & M. SHINBROT, Smoothness of weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 24, 302–324 (1967).
- 16. KATO, T., & H. FUJITA, On the nonstationary Navier-Stokes system. Rend. Sem. Mat. Univ. Padova 32, 243-260 (1962).
- LADYZHENSKAYA, O. A., The classical character of generalized solutions of nonlinear nonstationary Navier-Stokes equations. Proc. Steklov Inst. Math. 92, 113–131 (1966).
- 18. LADYZHENSKAYA, O. A., The mathematical theory of viscous incompressible flow. New York: Gordon and Breach 1969.
- 19. LIONS, J. L., & E. MAGENES, Problemi ai limiti non omogenei (III). Ann. Scuola Norm. Sup. Pisa 15, 41-103 (1961).
- 20. LIONS, J. L., & E. MAGENES, Problemi ai limiti non omogenei (V), ibid, 16, 1-44 (1962).
- 21. MIYAKAWA, T., On the initial value problem for the Navier-Stokes equations in L^p spaces. Hiroshima Math. J. 11, 9-20 (1981).
- 22. SERRIN, J., On the interior regularity of weak solutions of the Navier-Stokes equations Arch. Rational Mech. Anal. 9, 187–195 (1962).
- 23. SERRIN, J., The initial value problem for the Navier-Stokes equations. Nonlinear problems, R. E. Langer ed., University of Wisconsin Press, Madison, 1963, 69–98.
- 24. SOBOLEVSKII, P. E., On non-stationary equations of hydrodynamics for viscous fluid. Dokl. Akad. Nauk SSSR 128, 45-48 (1959), (in Russian).
- 25. SOBOLEVSKII, P. E., Study of Navier-Stokes equations by the methods of the theory of parabolic equations in Banach spaces. Soviet Math. Dokl. 5, 720–723 (1964).
- 26. SOLONNIKOV, V. A., Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations. Amer. Math. Soc. Transl. (2) 75, 1-116 (1968).
- 27. SOLONNIKOV, V. A., Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math. 8, 467-529 (1977).
- WAHL, W. VON, Regularity questions for the Navier-Stokes equations, Approximation methods for Navier-Stokes problems, R. Rautmann ed., Lecture Notes in Math. 771, 538-542. Berlin Heidelberg New York: Springer 1980.
- 29. WAHL, W. VON, A book to be published.
- WEISSLER, F. B., The Navier-Stokes initial value problem in L^p. Arch. Rational Mech. Anal. 74, 219-230 (1980).

Department of Mathematics Nagoya University Nagoya, Japan and Department of Mathematics Hiroshima University Hiroshima, Japan

(Received May 15, 1981; revised December 15, 1982)