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Introduction 

In this paper we discuss the existence and uniqueness of strong solutions in 
Lr spaces (1 < r < oo) of the initial value problem for the Navier-Stokes equa- 
tions 

~u/~t + (u, 7) u -- Au ----f--  Vp in D• T), 

div u = 0 in D • (0, T), 
(0 

u =  0 on S• T), 

u(x, O) = a(x) in D. 

Here D is a bounded domain in R n (n > 2) with smooth boundary S; 
t n u {u:(x, ))j=l and p = p(x, t) denote, respectively, the velocity and pressure, 

t n while f =  (f:(x,))~=1 and a = (aJ(x)}]=i denote the given external force and 
initial velocity. 

There is an extensive literature on the solvability of the initial value problem 
for the Navier-Stokes equation in L2 spaces; see LADYZHENSKAYA'S monograph 
[18] and further papers cited there. HoPF [13] proved the existence of a global 
weak solution, using the Faedo-Galerkin approximation and an energy inequality, 
but the uniqueness and regularity of his solution are still open problems for n ~ 3. 

Another approach to problem (I) is to use semigroup theory. KATO and FUJ1TA 
[5], [16] and SOBOLEVSKI1 [24] transformed equation (I) into an evolution equation 
in the Hilbert space L 2. They proved the existence of a unique global strong 
solution for any square-summable initial velocity when n = 2. On the other hand, 
when n = 3 they proved the existence of a unique local strong solution if the 
initial velocity has some regularity (roughly speaking, they assumed that the initial 
velocity has square-summable half derivatives). Other contributions to the prob- 
lem also have assumed some regularity of the initial velocity, see for example 
SOLONNmOV [27] and HEYWOOD [12]. 

Our aim in this paper is to prove the existence of a unique strong solution 
without assuming that the initial velocity is regular. To do this, we develop an Lr 
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theory generalizing the corresponding L 2 theory of KATO and FUJITA. The L~ 
case is the most important because we need only to assume that the initial velocity 
has an integrable n-th power. In addition, SERRIN [23] has raised the question 
of existence of strong solutions if n > 4. Our present work also answers 
his question. 

Recently VON WAHL [28] and MIYAKAWA [21] have discussed L~ theory 
(r > n). Their treatments depend on the fact that the Stokes operator generates 
a bounded holomorphic semigroup in L, spaces. This result was derived by 
SOLONNIKOV [27], YON WAHL [29], and MIYAKAWA [21] from the estimate of 
SOLONNIKOV [26]. Moreover, a completely different proof and a more precise 
result were obtained in [9]. Our present work indeed relies on this more precise 
conclusion. Finally we improve their Lr theory by using the results of [10]. (We 
note that Weissler's treatment [30] of L, theory is weaker than ours, and additional- 
ly assumes that D is a half space of R~.) 

The essential step in our work is to estimate the nonlinear term (u, V)u in 
(I). In [9] GIGA constructed the resolvent of the Stokes operator, applying the 
calculus of pseudodifferential operators. Moreover, the paper [10] characterizes 
explicitly the domains of fractional powers of the Stokes operator; see also [11]. 
Using this result, we shall estimate the term (u, V)u (Lemma 2.2 in Section 2). 
This estimate generalizes that of KATO and FUJITA ([5], [16]) and SOBOLEVSKII 
[24]. Finally in Section 3 we show that our solutions are smooth up to the boundary 
if the external force is smooth. 

In [4], FABES, LEWIS and RIVIERE discussed the Navier-Stokes initial value 
problem by using parabolic singular integral operators. They proved the existence 
and uniqueness of a local weak solution in L, (r > n). We show in Section 2 that 
their solutions exist globally if the data are small. 

In [25] SOBOLEVSKII announced results similar to ours, but without complete 
details. 

We express our thanks to Professors DAISUKE FUJIWARA and ATSUSHI INOUE 
for suggesting to us the use of L~ theory for the Navier-Stokes initial value problem. 
We also wish to thank Professor WOLF YON WAHL who kindly permitted us to 
see [29] in pre-publication form. The authors are grateful to Professor EDWIN HE- 
WlTT for expository advice. 

1. Preliminaries 

In this section we recall some results on the Stokes operator. Let D be a bound- 
ed domain in R" (n ~ 2) with smooth boundary S. Let W](D) (s E R,  1 < r < oo) 
be the Sobolev space of order s such that W~ = Lr(D) (see [19]), and let 
I[wl[s.r be the norm of w in WT(D). Set 

Xr ----- closure in (L~(D))" of (u E (C~(D))"; div u = 0), 

Gn = (Vp;pE W:(D)). 

We then have the following Helmholtz decomposition (see FUJIWARA and MORI- 
MOTO [8]) 

(1.1) (Lr(D)) n = X~ �9 Gr (direct sum). 
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Let Pr be the continuous projection from (L,(D))" to Xr associated with this de- 
composition, and let Br be the Laplace operator with zero boundary condition, 
i.e., 

Br = --A with D(Br) = (v E (W2(D))n; V[s = 0}. 

We define the Stokes operator A, in Xr by Ar = --Pr A, with domain D(Ar) ---- 
Xr/% D(Br). 

CATTABRIGA [3] showed that A, has a bounded inverse and that Ar is a close 
linear operator in Xr; see also [9]. Concerning the semigroup (e-tA'; t >= O) we 
have 

I_emma 1.1 ([9], [21], [27], [29]). The operator --At generates (in Xr) a bounded 
holomorphic semigroup of  class Co. 

Concerning the dual operators A*, P* and the dual space X*, we have (see 
[8]) 

(1.2) A* --- At,, P* = Pr', X* -~ Xr, (1/r' = 1 -- I/r). 

Lemma 1.1 allows us to define the fractional powers A; (o~ ~ R) in the usual way. 
We introduce a scale of Banach "spaces (D(A~'); o~ E R) by defining 

(1.3) D(A~) = D(A;7~) * for o~ < 0. 

Since (A,~) * ---- A}, (o~ E R) by (1.2), we see that D(Aa,) (fl < 0) is the completion 
of Xr under the norm [IA,%l[0,,,, namely the space H a'r of WEISSLER. On the other 
hand, Lemma 1.1 implies 

Proposition 1.2. [[A;e-tAr][ <= C~t -~ for o~ => 0, t > 0. 
It follows that (e -tAr, t ~ 0) extends uniquely to a bounded holomorphic semi- 
group in D(A~) for all 0~ E R. Concerning D(A~), o~ >~ O, we have 

Lemma 1.3.([10], [ l l ]). For any ~x, 0 <-- c~ <~ 1, the domain D( Ar) is the complex 
interpolation space IX r, D(Ar)]~. 

Lemma 1.3 shows that D(A~) = Xr/% D(B;) (see [10]), a fact proved earlier 
by FUJITA and MOmMOTO [6] for r = 2. Moreover FUJ1WARA [7] showed that 
D(B~) (or ~ 0) is continuously embedded in the space of Bessel potentials (H2~(D)) ~ 
Thus we get 

Proposition 1.4. For any ~ >= O, the domain D(A~) is continuously embedded 
in X r f~ (m~Z~(O)) ". 

2. Existence and Uniqueness in X~ 

In this section, we study the Navier-Stokes initial value problem (I) in the 
space .Yr. Applying Pr to (I), we get 

(II) du/dt q- Aru : Fu @ Prf, t > O; u(O) : a, 



270 

where 

(III) 
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Fu = --Pr(u, V)u. We consider this equation in integral form 

u(t) = e-tAa -~ i e-(t-s)A {Fu(s) + Pf(s)} ds, t > O. 
o 

(Here and in the sequel we drop the subscript r attached to A and P.) To estimate 
Fu we need 

Lemma 2.1. For each j ,  1 <=j <: n, the operator A -mP(~ /~x j )  extends uni- 
quely to a bounded linear operator f rom (L,(D))" to ,Yr. 

Proof. According to Proposition 1.4, (O/8xj) IA  - i/2: X , -+  (L,(D))" is continuous 
for each r, 1 < r < o% where I denotes the injection Xr Q (L,(D))". Since 
I* ---- P~,, we get the desired result from duality and (1.2). 

Lemma 2.2. Let  0 =< ~ < 1/2 + n(1 -- r-1)/2. Then 

L[A-~P(u, 7 )  Vi[o,r <_ m [Ia~ I[A~ 

with some constant M = M(6,  O, ~, r), provided that ~ + 0 + ~ >~ n/2r + 1/2, 
0 > 0 ,  ~ > 0 ,  0 + ~ > 1 / 2 .  

Proof. Assume that 0 =< e < n(1 -- r-1)/2. Proposition 1.4 and the Sobolev 
embedding theorem imply that the operator 

A,,-~'.X,,--~ D(A~,) -+ Xs,, 1/s' = 1/r' - -  2e/n, 1/r + 1/r' = 1, 

is bounded, since (Ls,(D))" A X,, is the same as X~,. By duality, this implies that 
A; -~ extends uniquely to a bounded operator from X~ to X,, where 1Is = 1 - -  1Is' 
= 1/r + 2e/n. 

Consider first the case b ~ 1/2. Since P(u, V) v is bilinear in u, v, it suffices 
to prove the estimate on a dense subspace. From now on we may therefore assume 
that u and v are smooth. Since div u = 0, we get 

(u, V) v = ~ e(u~v)/Oxj. 
y=l 

Take e ----- 6 -- 1/2 and recall that A; -~ is a bounded operator from X~ to X,. 
Lemma 2.1 implies that 

By assumption we can take p and q such that 

l ip >= 1/r --  20/n, 1/q >= 1/r - -  2o/n, l ip + 1/q = 1/s, 1 < p, q < oo. 

Proposition 1.4 and the Sobolev embedding theorem yield 

Ill u[ �9 [ v I Ilo,s --< II u [Io,p I[ vlio,q --< c II A~ I[o., II A ~ Ilo,, 

which is the required result for 6 ~ 1/2. In particular, 

IIA-1/2P(u, V) Vllo. , < M IlA~ IIWv" = = tto,,, 0 + ~ > n/2r, 0 > O, {3 > O. 
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Similarly we find 

liP(u, V) vii0,, :< c tlull0,p IlVv]10,q :< M IIA~ Ilaa+I/2Vllo,r,, 
where lip + 1/q : I/r, the required result for ~ = 0. 

The two foregoing estimates show that the map v ---> P(u, V) v can be regard- 
ed as a bounded operator from D(A a) to D(A -1/2) and from D(A a+I/2) to -Yr. 
Lemma 1.3 and (1.3) allow us to apply complex interpolation theory to obtain 

[IA-~ V) vii 0 , r=  < M [IA~ [IA%][0,~, e = 3 + 1/2 + -- ~, 

for 0 ~< ~ --< 1/2. This completes the proof. 

Remark. Lemma 2.2 generalizes the results given by a number of  Writers for 
the case r : 2. We list these results here for the reader's convenience. 

n 6 0 

KATo-FuJITA [16] 
SOBOLEVSKII [24] 2 1/4 
KATO-FuJXTA [16] 3 0 
FUJITA-KATO [5] 
SOBOLEVSKII [24] 3 1/4 
INOUE-WAKIMOTO [14] 4, 5 0 

1/4 1/2 
1/2 3/4 

1/2 1/2 
0 > 0 ,  Q > 1/2, 
0 + ~ = ( n + 2 ) / 4  

We will use Lemma 2.2 to prove an existence theorem for the integral equation 
(III) in Xr (1 < r < oo). To this end we introduce the iteration scheme 

t 
uo(t) :- e -tA a + f e -('-s)'~ Pf(s) ds, 

0 
(2.1) 

t 
Um+l(t  ) : Uo(t ) -~ f e -(t-s)'~ Fum(S ) ds, m ~ O. 

0 

The following argument is similar to that of  KATO and FUJITA [5], [16]. We denote 
the norm in X, by II" II. Moreover, for a Banach space Y, C(I; Y) denotes the space 
of  Y-valued continuous functions defined on an interval I. 

Theorem 2.3. (i) (Existence). Fix y and choose ~ ~ 0 such that 

n/2r -- 1/2 ~ y' < 1, --), < ~ < 1 - I~,l. 

Assume that a is in D(A~), and that II A-oPT(t)JI is continuous on (0, T) the initial data 
and satisfies 

I IA-~Pf( t ) l l  = o(t ~+~-1) as t - >  O. 
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Then there is a local solution u(t) of  (III) such that 

(a) uE C([0, r , ] ;  D(A~)), u(O) = a, 

(b) u E C((0, T . ] ;  D(A~)) for some T .  > O, 

(c) [I A~u( t)[[ = o(F-~) as t -~ 0 for all o~, y < ~ < 1 -- 6. 

(ii) (Uniqueness). Any solution of  (III) satisfying (a) and 

(b') u~ C((0, 7",1; O(a~)), 
(c') IIAau(t)ll = o( tV- ' ) for  some fl, Irl < 

is unique. 

Remarks. Theorem 2.3 improves the result of WEISSLER [30]. He considered 
equation (III) with P f  = 0 when D is a half-space and proved the local existence 
of solutions when n/2r -- 1/2 < y, --1/3 < y < 1, a more restrictive assumption 
on y than ours. We will show that our solution exists globally if a and P fa re  small. 

The case r = 2 of  Theorem 2.3 was treated by KATO and FUJITA [16], who 
proved (i) for n = 2, 6 = 1/4 and n = 3, 6 = 0, and by INOUE and WAKIMOTO 
[14], who treated the cases n = 4, 5. 

Proof of Theorem 2.3. (i) We begin by estimating the term Uo(t) in (2.1). 
Proposition 1.2 gives 

t 

IIA~uo(t)ll <= [IA~e-taalj + f [[A~+~e-(t-*)AII IlA-6Pf(s)ll ds 
0 

t 

[IA%-tAaI[ + C~+6 f (t - s) -~ -~  I[A-~ ds 
0 

with 

(2.2) 

<=K~ot v-~ for y < = o ~ <  1 - - 6 ,  

K~o = sup t ~-r IlA%-tA[[a + C~+aNB(1 -- 6 -- ~, y + o0, 
O < t < T  

N = sup t 1-~-~ II A-oPf(t)ll, 
O < t ~ T  

and where B(a, b) is the beta function. Here we have used the assumption y + 
6 > 0 .  

Suppose that for some m ~ O, Um(t ) is defined and satisfies 

(2.3) llA~um(t)ll ~ K~m tv-~ (Y ~ o~ < 1 -- 6). 

We shall estimate I1A~Um+l(t)ll by using (2.1). To estimate the term [[ A-~Fu,,(s)ll 
we choose 0 and ~ so that 

0 + e + 6 = 1 + 7 ,  7 < o < 1 - 6 ,  ~ , < e < 1 - 6 ,  

0 > 0 ,  9 > 0 ,  6 + ~ > 1 / 2 .  
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This is possible because ~ <  1 - - ] 7 ] .  Since 7 _ > n / 2 r - -  1/2, n=>2,  and 
~5 < 1 -- ), we easily find that 0, Q, ~ satisfy the assumptions of Lemma 2.2. Using 
Lemma2.2  and (2.3), we get IIA-aFum(s)l[ <= MKomKQ,nS ~+~-1. Therefore (2.1) 
implies that 

t 

IIh~um+l(t)ll ~ K~o tv--~ + C~+~ f (t -- s)-~-al[a-~Fum(S)l[ ds 
0 

K~.m+l tv-~ O' ~ c~< 1 -- 6) 
with 

(2.4) K~,m+l = K~o + C~+~MB(1 -- ~ -- o~, 7 + t~) KomKom. 

Thus Urn(t) is well-defined for each m :> 0 as an element of C([0, T]; D(AO) 
/h C((0, T]; D(A~)) for all o~ such that V < o~ < 1 -- ~; moreover urn(t) satisfies 
(2.3) with K~m defined recursively by (2.2) and (2.4). 

Put 
km ----- max {Kom, KQm}, Ct ~- max {C0+a, Co+~ }, 

B1 = max {B(1--  ~ -- 0, y + ~ ) ,  B ( 1 - - ~ - - ~ , y + ~ ) } .  

Then (2.4)implies that 

km+l ~ ko + C1MBlk2,n. 

An elementary calculation shows that if 

(2.5) ko < 1/4CtMBt 

then for each m :> 1, 

km < g ~ {I -- (l --  4CIMBtko)}/2C~MB1 < 1/2C~MBt, 

(2.6) Ka,m+l ~ K~o + C~+eMB(1 -- ~ -- o~, 7 + tS) K 2 =_ K~, 

[1AaUm+t(t) l[ =< K~ tv-~" 

Assuming (2.5), we prove that the sequence {urn(t)} converges. Set 

t 

Wm(t ) = um+l(t) - -  Um(t ) : f e -r {Fum(S ) - -  FUm_l(S)} ds (m > 1 ) .  
o 

The estimate 

[IA-n{Fum -- Fum-x)ll ~ g(llA~ IIA~um[I + IIAOuI--tll IIAOWm-tl[), 

together with an induction on  m, gives 

IlA~wm(t)[[ ~ 2KCa+e(2C1MB1K) m-I B(1 --  ~ --  a, )' + ~) t e-~ 

for each ~ such that ), ~o~-<  1 -  c5. Since 2CIMBtK<:  1 by (2.6), this 
implies the existence of  

u(t) E C([0, T]; D(Ae))/h C((O, T]; D(A~)) (7 < o~ < 1 -- tg) 
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such that 

l[AV(um(t) - -  u(t)}ll ~ 0 uniformly on [0, T], 

I[A~[{Um(t) - -  u(t)}[l--~ 0 uniformly on every [e, T] (0 < e < T) 

as m ~ r Moreover 

IIa~u(t)[[ ~ K~ te-~ (7 < o~ < 1 --  ~). 

This in turn yields for s E (0, T) 

II a -a{Fum(S ) - -  Fu(s)} II < n( l [  A~ -- u)II II A~um II + II a ~ II II A~ --  u)II) ~ 0 

as m ~ o o ,  and 

Ita-OFum(S)lI < CS~ +~-1, 

with a constant C > 0 independent of m. 
Applying the dominated convergence theorem to the scheme (2.1), we see that 

u(t) is a solution on [0, T]. Thus we have proved the existence of a solution under 
assumption (2.5). Since a E D(A~), Proposition 1.2 implies that t ~-~ I[ A~e-tAa[I ---~0 
as t --> 0 for o~ > ~,. If  T > 0 is chosen sufficiently small then K~o (7 < o~ < 
1 -- 6) becomes small and ko satisfies (2.5). This shows the existence of T .  > 0 
with the desired properties (b) and (c). 

We now prove (ii). First note that for any simple of  numbers 2,/z, ~ with 
l < 2 < # < v  the estimate 

IIa"vll _--< C IlaavII o il A,vlll-O, 0 = O' - #)/0'  - #)  

holds with a constant C independent of v E D(A') .  This follows immediately 
from Lemma 1.3, (1.3), and the convexity property of  norms on interpolation 
spaces ([2]). 

Let u, v be two solutions corresponding to the same quantities P f  and a. By 
the above estimate, we may assume without loss of  generality that there exists u, 
[ y [ < u <  1 - - ~ ,  such that 

I[ A~u( t) ll ---- o(te-~), ]I A%(t)[[ = o(t e-~) (t ~ O) 

for all 0~, y <7 # ~ u. Set 
t 

w(t) =- u(t) --  v(t) = f e -(t-~)a (Fu(S) --  Fv(s)} ds 
0 

and ~ ' =  1 - - ~ ;  then [Y I <  ~ implies ~ ' <  1 - - [ 7 ] .  Note that 7 +  ~ ' >  
y + 8 > 0. As in the proof  of  (i), we can choose 0 and e, [Yl < 0, 0 < u such 
that 

t 

(2.7) IlA~w(t)li ~ C~+n, n f (t - -  s) -~-~" (llA~ IIA-~ 
: 0  

+ I1 h~ II a~ ds 
for 7 <  o~< u. 
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Let  K(to) (to E (0, 7'.,]) be a constant  such that,  for  o~ = 0 and o~ = q we 
have 

llA~u(t)ll <= K(to) t ~-~, 11-4~v(t)ll =< K(to) t ~-~, (t6_ (0, to]), 
where 

K(to) --~ 0 as to ~ 0. 

By induction,  we see that  (2.7) implies 

II A~w(t) l[ ~ 2K(to) (2K(to) CxMB~) m t e-~ (t E (0, To]) 

for  each m >= 1 and for  o~ = 0, 0. Choosing to > 0 sufficiently small, we may  
assume 2K(to) C~MB~ < 1. Hence  w(t) =_ 0 on [0, to]. Repeat ing this a rgument  
on [to, T , ] ,  one finds a sequence to < tt < t2 < . . . .  such that  w(t) ~ 0  on 
[0, tj] for  any j .  Since A~u(t) and A%(t) (o~ = 0, ~) are cont inuous on the closed 
interval [to, T , ] ,  it is easily seen tha t  the sequence {tj - -  tj_l} is bounded  away 
f rom 0. Thus  we have w ~ 0 on [0, T,], which completes  the proof .  

Propos i t ion  2.4. Let u be the solution given by Theorem 2.3. Then A~u (y < o~ 
< 1 -- ~) is H6lder continuous on every interval [e, T , ]  (0 < e < T, ) .  

Proof .  I t  suffices to prove  the H61der continuity of  A~v, where 

t 

v(t) = f e -(t-~)~ (Fu(s) q- Pf(s)) ds. 
0 

Using the est imate [l(e -hA - -  l )A -" l l  <= C,h ~' (0 <= At <= 1), which was obtained 
in [5], we have for  h > 0 ,  

II A%(t  + h) - -  A~v(t)!l 

t 

=< f llA~+~(e -hA -- I) e -(t-~)~ II{IIA ~Fu(s)ll -t- I[A-~Pf(s)[I} ds 
0 

t + h  

+ f [IA~+~e -(t+h-')A II{t[A-nFu(s)[I + IlA-~Pf(s)ll} ds 
t 

t t+h  

<= Cu II(e -hA - I ) A - " I I  f (t - s ) -~ -e -"  se+'-X ds -[- C, f (t -1- h -- s) -~-~ ds 
0 t 

<= C~,h~B(1 -- t~ -- o~ -- At, y -t- ~) e ~-~-" q- C~h 1-~-~/(1 - -  d - -  o~), 

( 0 < # <  1 - -  t~ - -o~ ) ,  

where C~ = sup {llA-~Fu(s)I[-I-[[A-~Pf(s)ll}. This completes  the proof .  
e ~ _ t ~ T ,  

T h e o r e m  2.5. I f  Pf: (0, T]--~ q-Xr is H6lder continuous on each subinterval 
[e, T] (0 < e < T), the solution u of (III)  given by Theorem 2.3 satisfies equa- 
tion (II)  on [0, T, ] .  Moreover we have u(t)E D(A) for tE  (0, T , ] .  
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Proof. We need only show the H61der continuity of Fu(t) on each subinterval 
[e, T,] (0 < e .< T.). An elementary calculation shows that u(e) E Xr and 

t 
u(t) -~ e-(t-~)Au(e) q- f e -(t-s)A {Fu(s) q- Pf(s)) ds, 

tE [e, T.]. Since P f  is continuous on [e, T] we have Ilef(t)ll = o((t - e) -~) 
(t--~ e) for any 0~ > 0. The uniqueness of u(t), ensured by Theorem 2.3, shows 
that 

uE r,]; o(a"))n T,]; 

IlA~u(t)ll = o((t -- e) ~-~) ( t -+e)  for r / <  o~< 1, 

where ~ = max (7, 0}. Thus Proposition 2.4 implies that A~u(t) 0t < o~ < 1) 
is Hflder continuous on every subinterval [e, T,] (0 < e < T.). Since we can 
choose 0, ~o such that 

0 q- e = 1 q-r/, r / < 0 <  1, max (r/, 1/2} < 0 < 1, 

Lemma 2.2 (with ~ = 0) shows that Fu(t) is H01der continuous on every [e, T.] 
(0 -< e < T,). This completes the proof. 

From (2.2) and (2.5) we get the following result. 

Theorem 2.6. Let aE D(A ~) and PfE C((O, cx~); X,) be as in Theorem 2.3. 
Then the solution u(t) given by Theorem 2.3 exists on [0, co) provided that 

Co Ila'all + Cl sup t 1-7-6 [Ia-Oef(t)l[ < 1/4C1MB1. 

Here Co ~- max (Co-e, Co-e), and C,_~ is the constant given in Proposition 1.2. 

Remark. In Theorem 2.3 we considered only the case n/2r -- 1/2 < 1. When 
n / 2 r -  1/2 ~ 1, our iteration argument fails. In the latter case, however, since 
Sobolev's Theorem shows D(A ~) C Xn if y ~> n/2r - 1/2 > 0, we can appeal 
to X,-theory. 

3. A Regularity Theorem 

The purposes of this section is to show that the solutions given by Theorem 2.3 
are smooth on D•  (0, T,)  if Pf i s  smooth on D •  (0, T). For simplicity, we assume 
P f =  0; the proof when Pf=~ 0 is essentially the same. First we give some 
lemmas. 

I.emma 3.1. ([3]). Let u E D(A) and Au = f i  I f f i s  in (W~'(D)) n (1 < r < oo) 
for some integer m >- O, then u is in (W~+2(D)) n and satisfies 

rlullm§ ~ Cm,r Ilfllm., 

with a constant Cm,r > 0 independent o f  u and f .  



Initial Value Problem for the Navier-Stokes Equation 277 

Let C"([0, T]; X) denote the space of  Hflder  continuous functions on [0, T] 
with exponent # and with values in a Banach space X. Similarly let C"((0, T]; X) 
denote the space of functions which are HSlder continuous on every subinterval 
[e, T] of (0, T], with exponent/~. The following result is proved in [5], Lemma2.14. 

Lemma 3.2. Let f ( t )  be in C'([0, T]; X,), for some 0 < Iz < 1. Then the func- 
tion 

t 

v(t) = f e-~t-s)af(s) ds 
0 

is in C((O, T]; D(A)) ~% C 1 +v((0, T]; X,) for every v such that 0 < v < #. 

Lemma 3.3. (i) I f  uE (Win(D)) n (1 < r <  oo) for some integer m ~ O, then 
Pu belongs to (WIn(D)) n A X, and satisfies 

Ileullm,r <: Cm,, IlU[[m,,, 
where Cm., > 0 is independent of  u. 

(ii) For m > n/r, there exists a constant Cm,r > 0 such that 

liP(u, V) v[Im.~ =< Cm., H Ullm,, II Vllm+t., 

for every uE (Were(D)) n, v E (wm+l(D)) n (1 < r < oo). 

(iii) When r > n, we have 

liP(u, V) vlto., =< C, [lulh., Ilvlh., 
for all u, v E (W~(D)) n. 

Proof. (i) When m = 0, the assertion is obvious from (1.1). When m >-- 1, 
it is known [8] that Pu = u -- Vp, where p is a solution of  

(3.1) A p =  div u in D, Op/Ov = v . u  on S. 

Here v is the unit outward normal to S and v .  u = ~ v~u ~. Since div u E w~n-t(D) 

and v" u E Win-lit(S), the equation (3.1) admits a solution p E wm+1(D) which 
is unique up to an additive constant, such that 

IIV pllm., ~ C(lldiv UHm-l., + [[Ullw~-al,~s)) 
(see e.g. [20]). Since the right hand side is bounded above by [I u[Im,,, the result 
follows. 

(ii) It is known (see [1]) that W,m(D) forms an algebra if m > n/r. Thus the 
assertion follows immediately from (i). 

(iii) Since r > n, the Sobolev embedding theorem shows that Wl(D) C C(1)), 
with a continuous injection. We thus find 

liP(u, V) vii0., -<_ Cll(u, V) vii0,, 
-< C IlullLoo<o)IlVvllo., ~< C Ilulh., Ilvlll., 

Our main purpose in this section is to prove 
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Theorem 3.4. I f  P f  = O, the solution of equation (III) given by Theorem 2.3 

belongs to (C~~ 5< (0, T,])) ". 

In proving this result, we may restrict ourselves to the case r > n, a E X,. 
To see this, note that the solution u(t) given by Theorem 2.3 satisfies 

t 
(3.2) u(t) = e -(t-`}~ u(e) q- f e-r ds 

0 

on every subinterval [e, T,]  (0 < e < T,).  (See the proof of Theorem 2.5.) 
Theorem 2.5 shows that u(e) ED(A). Suppose now that 1 < r ~ n. Since 
O < = n / 2 r - - 1 / 2 ~ 7 <  1, we have D(A ~)CX~ so that D(A) CX~ for some 
s > n. This means, by (3.2), that we may assume r > n and a E ,Y, for some 
r > n .  

Thus we have only to prove the following 

Proposition 3.5. Let r > n and let a E 3(~. Assume that the solution u(t) o f  

(III) (with P f  ----- O) given by Theorem 2.3 exists on [0, T]. Then u E ( C~(D • (0, T])) n. 

We prove this in several steps. Let us fix r > n and write II'll0,, = I['ll. 
The proof  of  Proposition 2.4 shows that A~u(t) (0 < ~ < 1) is Hf lder  continuous 
on every subinterval [e, T], with exponent/~, 0 < / ~  < 1 -- or L e m m a  3.3 (iii) 
implies that 

FuECt'((O,T];Xr) for all /.t, 0 < # <  1/2. 

Lemma 3.2 and Lemma 3.3 (ii) now imply 

Lennna 3.6. u E C~((0, T]; D(A)) and u' = du/dt E C"((O, T]; Xr) for 
/t, 0 < / z  < 1/2. Moreover Fu belongs to C"((O, T]; (W](D))n). 

Lemma 3.7. We have u' E C"((0, T]; D(A1/2)) for all/z, 0 < / z  < 1/2. 

all 

Proof. From (3.2) we get 
t 

A1/2u(t) ~ e - ( t - r )AAl /2u(e)  Jr- f A e - ( t - s )  A .4-1/2 Fu(s) ds 

e -( t -e)A a 1/2 u(e) -J I- v ( t ) .  

Since e-(t-~}~A 112 u(e)EC'~((e, T]; X,), we need only consider v(t). Integrating 
by parts, we get 

t 
(3.3) v(t) = f (d/ds) e -{'-s}A A -  I/2 Fu(s) ds 

e 

---- A - 1/2 Fu(t) -- e -  {t- ~)A A - 1]2 Fu(e) 

t 
-- f e-(t-~}aA -x/z (Fu)' (s) ds, 
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where (Fu)' (s) = (d/ds) Fu(s). Since u(s) E D(A) (0 < s <= T), we have 
Fu(s) = -- ~ P(O/Oxj) {uJ(s) u(s)}. Hence by Lemma 2.1 

J 

IIA -l/z (Fu)' (s)ll = 1[ ~ a  -~/2 P(~/Oxj) (uJ'u + uJu ') (s)ll 

< f i l l  u'(s) l �9 [ u(s) l II < Cll u(s)IIL~<~,) II u'(s)II 

< ella m u(s)ll [lu'(s)ll. 

This relation together with Lemma 3.6 shows that A - m ( F u ) ' E  &(tO, T]; Xr). 
Lemma 3.2 and (3.3) now imply that v' E &((0,  7]; Xr). The proof  is complete. 

Since D(A 1/2) C tWO(D))", 
A- I (Fu -- u') show that 

(3.4) u E 

We complete the proof of 
u(t) has property (P)m (m >= 1) if 

u (m) E C"((0, T]; 

u ~ E & ( ( 0 ,  T]; 

uE C"((0, 7]; 

for all/~, 0 < / ~  < 1/2. Here 
u(t) has property (P)I. 

Lemmas 3.1, 3.6, 3.7 and the identity u = 

Cut(0, T]; (W3,(D))"). 

Proposition 3.5 by induction. We shall say that 

n(A'/b), 

(W,"+~-J(D))D, 

(W,~+2(D))3, 

u 0) = (d/dt) j u. 

l ~ j ~ m - - 1 ,  

Lemma 3.7 and (3.4) show that 
Proposition 3.5 follows immediately from 

Lemma 3.8. (e)m implies (P)m+l" 

Proof. By Leibniz's rule we get 

j=l 

so the assumption (P)m and Lemma 3.3 imply that 

(Fu)(~)E Cut(O, 7]; Xr) for all/~, 0 < / ~  < 1/2. 

This allows us to differentiate the equation u' -t- Au = Fu m times with respect 
to t, giving 

t 
u(m)(t) = e - ( t - ' ) a  u (m) (e) -~- f e -O- ' )a  (Fu) (m) (s) ds 

on all subintervals [e, T] 

(3.5) 

for all p, 

(3.6) 

(0 < e < T). Thus Lemma 3.2 implies that 

u(m~c c"((0, T]; D(A)) 

u(m+') E &(tO, T]; Xv) 

0 < / ~  < 1/2. As in the proof of Lemma 3.7, the conditions (3.5) give 

u(m +1) ~ C/~((0, T ] ;  D(A1]2)). 
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Since u ci) = A- I ( (Fu)  O~ - -  uU+i)), 1 --<j --< m --  1, we obtain from (3.5) and 
Lemma 3.3 (ii) the relation 

(3.7) u~ C'((0, T]; (wm+2-J(D))n), 1 ~ j  ~ m --  1. 

Now the property (P)m implies, by Lemma 3.3 (ii), that 

Fu C &((0,  T]; (WT+I(D))"). 

Again using the identify u = A - I ( F u  - -  u'), the relation (3.7) with j = 1 gives 

(3.8) U E CI~(( O, T]; (wrm+3(o))n), 

Property (P),n+l follows from (3.5), (3.6), (3.7) and (3.8). This completes the proof. 
The following result is proved similarly. 

Theorem 3.9. Let  f E  (C~(D • (0, T]))L Suppose a and P f  satisfy the assump- 

tion o f  Theorem 2.3. Then u belongs to (C~(/~• T.]))". 

Remarks. In [22] Serrin proved that a weak solution of  the Navier-Stokes 
equations is smooth in x E D if it belongs to L,,q = Lq(O, T; (L,(D))n) for some 
q, r such that n/r + 2/q < 1. This result was later improved by KANmL and SHIN- 
BROT [15], who proved that the above assumption for weak solutions implies 

smoothness in (x, t) E D • [0, T] when n = 2, 3 if the initial data are smooth 

on D. LADYZI~ENSKAYA [17] discusses interior regularity in (x, t). The solutions 
given by Theorem 2.3 belong to the above L,,q space if n/2r - -  1/2 < V, but not 
necessarily if n]2r --  1/2 = ~. It should be noticed that our solutions do not in 
general belong to the class of weak solutions if n/2r - -  1/2 ~ ~ < 0. Even 

in this case, Theorem 3.4 guarantees the smoothness of our solutions in D • (0, T]. 

Note. This research was done at the Department of Mathematics University of Tokyo. 

References 

1. ADAMS, R. A., Sobolev spaces. New York: Academic Press 1975. 
2. CALDEg6N, A.P., Intermediate spaces and interpolation; the complex method. 

Studia Math. 24, 113-190 (1964). 
3. CAr'rABI~6A, L., Su un problema al contorno relativo al sistema di equazioni di 

Stokes. Rend. Sem. Mat. Univ. Padova 31, 308-340 (1961). 
4. FABES, E. B., LEWaS, J. E., & N. M. RlVIERE, Boundary value problems for the Na- 

vier-Stokes equations. Amer. J. Math. 99, 626-668 (1977). 
5. FUJITA, H., & T. KArO, On the Navier-Stokes initial value problem I. Arch. Ratio- 

nal Mech. Anal. 16, 269-315 (1964). 
6. FuJIrA, H., & H. MORIMOrO, On fractional powers of the Stokes operator. Proc. 

Japan Acad. 46, 1141-1143 (1970). 
7. FUJIWARA, D., On the asymptotic behaviour of the Green operators for elliptic 

boundary problems and the pure imaginary powers of some second order operators. 
J. Math. Soc. Japan 21, 481-521 (1969). 

8. FUJIWARA, D., & H. MORIMOXO, An Lr-theorem of the Helmholtz decomposition 
of vector fields. J. Fac. Sci. Univ. Tokyo, Sec. I, 24, 685-700 (1977). 

9. GIGA, Y., Analyticity of the semigroup generated by the Stokes operator in L, 
spaces. Math. Z. 178, 297-329 (1981). 



Initial Value Problem for the Navier-Stokes Equation 281 

10. GI~3A, Y., Domains of fractional powers of the Stokes operator in L r spaces. Arch. 
Rational Mech. Anal. 89, 251-265 (1985). 

11. GIGA, Y., The Stokes operator in L r spaces. Proc. Japan Acad. 57, 85-89 (1981). 
12. HEYWOOD, J. G., The Navier-Stokes equations: On the existence, regularity and 

decay of solutions. Indiana Univ. Math. J. 29, 639-681 (1980). 
13. HOeF, E., fiber die Anfangswertaufgabe fiir die hydrodynamischen Grundgleichun- 

gen. Math. Nachr. 4, 213-231 (1950-51). 
14. INOUE, A., & M. WAKIMOTO, On existence of solutions of the Navier-Stokes equa- 

tion in a time dependent domain. J. Fac. Sci. Univ. Tokyo, Sec. I, 24, 303-320 (1977). 
15. KANIEL, S., & M. SHINBROT, Smoothness of weak solutions of the Navier-Stokes 

equations. Arch. Rational Mech. Anal. 24, 302-324 (1967). 
16. KATO, T., & H. FUJ1TA, On the nonstationary Navier-Stokes system. Rend. Sem. 

Mat. Univ. Padova 32, 243-260 (1962). 
17. LADYZHENSKAVA, O. A., The classical character of generalized solutions of nonlinear 

nonstationary Navier-Stokes equations. Proc. Steldov Inst. Math. 92, 113-131 
(1966). 

18. LADYZHENSKAYA, O. A., The mathematical theory of viscous incompressible flow. 
New York: Gordon and Breach 1969. 

19. LIONS, J. L., & E. MAGENES, Problemi ai limiti non omogenei (III). Ann. Scuola 
Norm. Sup. Pisa 15, 41-103 (1961). 

20. LIONS, J. L., & E. MAGENES, Problemi ai limiti non omogenei (V), ibid, 16, 1-44 
(1962). 

21. MIVAKAWA, T., On the initial value problem for the Navier-Stokes equations in 
L p spaces. Hiroshima Math. J. 11, 9-20 (1981). 

22. SERRIN, J., On the interior regularity of weak solutions of the Navier-Stokes equations 
Arch. Rational Mech. Anal. 9, 187-195 (1962). 

23. SERR1N, J., The initial value problem for the Navier-Stokes equations. Nonlinear 
problems, R. E. Langer ed., University of Wisconsin Press, Madison, 1963, 69-98. 

24. SOBOLEVSKn, P.E., On non-stationary equations of hydrodynamics for viscous 
fluid. Dokl. Akad. Nauk SSSR 128, 45-48 (1959), (in Russian). 

25. SOBOLEVSKII, P. E., Study of Navier-Stokes equations by the methods of the theory 
of parabolic equations in Banach spaces. Soviet Math. Dokl. 5, 720-723 (1964). 

26. SOLONNIKOV, V. A., Estimates of the solutions of a nonstationary linearized system 
of Navier-Stokes equations. Amer. Math. Soc. Transl. (2) 75, 1-116 (1968). 

27. SOLONNIKOV, V. A., Estimates for solutions of nonstationary Navier-Stokes equa- 
tions. J. Soviet Math. 8, 467-529 (1977). 

28. WAHL, W. VON, Regularity questions for the Navier-Stokes equations, Approxima- 
tion methods for Navier-Stokes problems, R. Rautmann ed., Lecture Notes in 
Math. 771, 538-542. Berlin Heidelberg New York: Springer 1980. 

29. WAHL, W. VON, A book to be published. 
30. WEISSLER, F. B., The Navier-Stokes initial value problem in L p. Arch. Rational 

Mech. Anal. 74, 219-230 (1980). 
Department of Mathematics 

Nagoya University 
Nagoya, Japan 

and 
Department of Mathematics 

Hiroshima University 
Hiroshima, Japan 

(Received May 15, 1981; revised December 15, 1982) 


