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1. Introduction 

The motivation for the present article is two-fold. On the one hand, the aim 
is to investigate the connection between the symmetric part of a linear operator 
and the stability-instability boundary determined by the methods of linear theory 
(see CHANDRASEKHAR [2]) and of nonlinear energy theory (see JOSEPH [10-14], 
SERRIN [25, 26], GALDI [8]). On the other, we wish to derive sufficient conditions 
for nonlinear energy stability in a convection-like problem involving the gravity 
dependent motion of a suspension of swimming micro-organisms. 

In certain hydrodynamic stability problems the linear and nonlinear boundaries 
coincide. Such a case is the conventional Brnard problem, a result first demon- 
strated by JOSEPH [10-11]. However, there are many other stability problems for 
which little is known of the nonlinear limit, or progress is possible only by very 
subtle use of coupling parameters (see JOSEPH [12]). Our goal here is to show that 
one of the essential connections between linear and nonlinear theory is the idea 
of symmetry of the operator associated with the linearized theory. This connection 
was recognised by DAVIS [5, 6], although we believe the results contained herein 
are new and clarify the overall situation. 

More exactly, it is shown here that, provided exchange of stabilities holds 
in a precise sense, one can probably provide a well defined link between the linear 
and nonlinear boundaries even in cases where the linear operator appears non- 
symmetric at the outset. The method of procedure employs an idea from the re- 
formulation of energy theory due to DAVIS & VON KERCZECK [7] together with 
changing the energy norm by a suitable spatial weight which renders the resulting 
linear spatial operator symmetric. The addition of the weight has, in general, 
the effect of weakening, the decay of perturbations in the sense that only conditional 
nonlinear stability is obtained, cf. JOSEPH & HUNG [13, 15]. It is worth pointing 
out, however, that the present study is not simply an alternation of work of previous 
writers; a new approach is presented which should prove helpful in many nonlinear 
stability problems. 

After describing a general theory for the connection between linear and non- 
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linear stability in w 2, we illustrate our approach by studying the B6nard problem 
between spherical shells and the magnetohydrodynamic B6nard problem in w 3. 
This is followed in w 4 by a more general theory using the concept of weighted 
energy. Throughout, the emphasis is on finding quantitative stability results e.g. 
critical values for the Rayleigh number in convection problems. Thus when con- 
ditional stability is derived an accurate value for the size of the allowable initial 
energy is presented. Our energy stability results rely on finding the maximum of a 
certain quotient; in w 4 sufficient conditions are given for the demonstration of 
existence of the maximum. This is important because a formal calculation of the 
necessary Euler-Lagrange equations does not take into account the fact that the 
maximum may not exist. 

To complete the paper we investigate the energy stability boundary for the 
movement of micro-organisms in a suitable growth medium [3, 4, 17]. The relevant 
system of equations gives rise to a basic equilibrium solution which is nonlinear. 
This in turn necessitates a new approach to the study of  energy stability. Since 
many other convection problems possess this feature we believe that the present 
contribution may prove of  value in several other areas. 

2. Symmetry, linear and nonlinear stability 

The concept of stability for continuum systems is closely connected to the 
choice of the norm adopted for measuring the "size" of perturbations to a given 
basic motion. For  instance, it can happen that a motion which is stable with 
respect to a given norm nl is unstable with respect to another norm n2. In this 
case the appropriate choice of norm is often suggested by the physics involved. 
On the other hand, it is also known that if nl is equivalent to n2 the stability proper- 
ties of the basic motion remain unchanged. Therefore, when a stability result is 
obtained with respect to nl there is usually no need to investigate further stability 
with respect to a different but equivalent norm n2. 

Let n be a given norm and denote by 8(n) the class of norms equivalent to n. 
In this paper we shall show how it is possible to obtain'an immediate connection 
between linear and nonlinear stability by choosing n* appropriately, within the 
class 8(n). (Earlier studies which inevstigated the linear-nonlinear connection 
in the standard norm are due to PRODI [21] and SATTINGER [24]). 

Let H be a Hilbert space endowed with a scalar product ( , )  and associated 
norm [. ]. We consider in H the following initial-value problem, 

(2.1) ut : Lu  + N(u) + O, u(O) =- Uo. 

Here L represents a linear operator (possibly unbounded), and N is a non-linear 
operator with N(0) : 0 in order that (2.1) admits the null solution. We assume: 

(i) L is a densely defined closed operator such that (L - - 2 I )  -1 is compact 
for some 2 E C (I is the identity operator in H), that is L is an operator with com- 
pact resolvent; 

(ii) The bilinear form associated with L is defined (and bounded) on a space 
H ,  which is compactly embedded in H (the norm in H ,  will be denoted by 1. ],); 
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(iii) The non-linear operator N verifies the condition 

(2.2) (N(u), u ) ~  O, for all u in D(N), 

where D(.)  denotes the domain of the associated operator. 

Thanks to (i) the following result is true (cf. KATo [16], pp. 185-187). 

Theorem 1. The spectrum of the operator L consists entirely of  an at most 
denumerable number of  eigenvalues (0",},~rz with finite (both algebraic and geometric) 
multiplicities and, moreover, such eigenvalues can cluster only at infinity. 

Since the operator L is in general non-symmetric the eigenvalues are not 
necessarily real; they may however be ordered in the following manner: 

(2.3) re (o'i) ~ re (a2) ~ . . .  ~ re (o'n) ~ ... 

In accord with standard literature on stability theory we include the following 
definitions. 

Definition 1. The null solution of (2.1) is said to be linearly stable (hereafter 
referred to by the abbreviation LS) if and only if 

(2.4) re (al) > 0. 

Definition 2. The null solution of (2.1) is said to be nonlinearly stable (NS) 
if and only if for each e > 0  there is a 6 = 6 ( e )  such that 

(i) [Uo I < ~ ~ l u(t)[ < e, 

and there exists 7 with 0 < 7 ~< cx~, such that 

(ii) l Uo I < 7 -~ l im ]u(t) l : 0 .  

If  7 = ~ ,  we say the null solution is unconditionally nonlinearly stable (UNS). 

Our purpose is to investigate the relation between LS and NS. As indicated 
earlier, the operator L is in general nonsymmetric, though it allows a decom- 
position into two parts L1 and L2 such that 

(i) L = L1 4- L2, D(L2) ~ D(L 0 : D(L); 

(ii) L1 is symmetric, with compact resolvent;* 

(iii) L2 is skew-symmetric and bounded in H , .  

From (ii) it follows that L1 satisfies a theorem of the same type as Theorem 1. 
Moreover, because of  the symmetry, the eigenvalues {2,},e~ associated with Lt 
are all real and may be ordered 

21 ~ 2 2  ~ ... ~ 2 , ~ <  ... 

* Under extra assumptions on L (which are certainly fulfilled in most practical cases) 
it can be deduced that L1 is an operator with compact resolvent (cf. KATO [16], p. 337, 
Theorem 3.3). 



214 G. P. GALDI 8s B. STRAUGHAN 

Let L1 [cb, if], ff C H . ,  be the bilinear form associated with the operator L1, i.e., 

(L,cb, ok) -- L~[ck, ok], V eke D(L,).  

Under the above conditions, the following lemma is standard. 

Lemma 1. Let ~ be a (normalized) eigenfunction associated with the eigenvalue 
21. Then 

21 : L~ [~_ ~] : min L1 [~, ~______~] 

The following result establishes unconditional nonlinear stability. 

Theorem 2. Suppose 

(2.5) 2~ > 0. 

Then the null solution o f  (2.1) is unconditionally nonlinearly stable. 

Proof. Form the scalar product of (2.1) with u to obtain 

d 
(2.6) �89 -'~ I u I 2 § (Lu, u) + (N(u), u) -= O. 

(2.7) 

and so 

Since L2 is skew-symmetric and since by (2.2) N is non-negative, there follows 
from (2.6) 

d +Li[~l,2U][ul2 = �89 2 < 0 .  

With the aid of Lemma 1 we thus derive 

d 
�89165 2+211u1 

lu(t)l z luo[ 2 exp (--2210, 

In the light of (2.5), the theorem follows at once. 

From the above considerations it follows that while the linear stability problem 
is reduced to studying the eigenvalue problem associated with all of L, nonlinear 
stability involves the study of the eigenvalues of the symmetric part of L~ only. 
Moreover, whenever L2 = 0 the two eigenvalue problems coincide and linear 
stability always implies nonlinear stability. (It is easily seen that the converse state- 
ment also holds, that is 21 > 0 imples re (~1)> 0.) 

Perhaps the simplest situation where the above result applies is the homo- 
geneous Brnard problem for which a thermally conducting fluid, between two 
horizontal parallel planes and under the action of a vertical gravity field g, moves 
due to a temperature gradient provided by heating from below. The basic flow 
whose stability is to be investigated is the motionless state with a linear tempera- 
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ture profile. For  this system the eigenvalue problem for the operator L is (in the 
non-dimensional form of  JOSEPH [10, 11, 14]) 

- - a v  = - -Ap  + ROk + A v ,  

(2.8) --crPO = Rw-t- AO, 

V �9 v = 0; v = 0 = 0 on the boundary. 

In (2.8) v is the velocity field, 0 and p the perturbation temperature and pressure, 
k is the unit vector in the z-direction (opposite to g), w = v �9 k, P is the Prandtl 
number, and R is the Rayleigh number. It can be seen immediately that the opera- 
tor L which operates on (v, 0) is symmetric in the L2-product and, therefore, 
L 2 = 0. 

We remark that the coincidence of  L S  and UNS for the B6nard problem was 
originally established by JOSEPH [10, l l, 14] who employed an entirely different 
(and more complicated)* method of parametric differentiation. To relate the method 
of  JOSEPH and the present one we observe that the optimum "energy" parameter 
is suggested naturally if a suitable symmetrization of the linear operator exists. 

3. Two further examples of symmetric convection problems 

A. Convection between two spherical shells. For this important geophysical 
problem, let r = A, B (A < B) denote the two spherical shells containing between 
them a heat conducting linear viscous fluid. If  we denote by x i the spherical coor- 
dinates r, 0, 4~, and by g(r), b(r) the gravitational potential and temperature distri- 
bution in the motionless state, the equations governing the velocity perturbation 
u i and temperature perturbation 0 are (see JOSEPH [14], p. 83 and Ex. (59.3), p. 21) 
in covariant notation 

u i  �9 . , t  ~ -  UJIA~j __ij . . . .  1,1 i = - -g  l~,j ~- ~ g(r) rio + g ,mn, 

(3.1) PO,t + pukO,k = tli ri I~ b(r) + gkqO,kq, 

U~i = 0, 

where ~ ,  P are the Rayleigh and Prandtl numbers, ri is the contravariant vector 
with components 1, 0, 0 and gij represents the metric tensor. 

Since gU is symmetric and its covariant derivative is zero, it is easy to verify 
that when g(r)c~z b(r) the linear operator corresponding to the above system 
is symmetric. Hence for this special case the linear and nonlinear stability bound- 
aries coincide, a result obtained by JOSEPH [14], p. 84, using his theory of coupling 

parameters. 

* JOSEPH'S ideas of parametric differentiation and coupling parameters apply to a 
very wide class of problems which moreover certainly need not be symmetric. The power 
of the technique may be gauged from the works of DAVXS [6] and JOSEPH [12-14]. 
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B. The magnetohydrodynamic B~nard problem. Here we apply energy stability 
theory to a special case of the more complicated magnetohydrodynamic B6nard 
problem. 

Our starting point is to assume that the electric field E is always derivable from 
a potential, i.e. E = --V4~; thus we are considering a type of "quasi-static" 
approximation. The magnetic and electric fields, H, E, satisfy Maxwell's equations 
(see ROBERTS [23], pp. 7-8, for example) 

(3.2) curl H = j ,  

aB 
(3.3) curl E =  -- ~---}-, 

where ] is the current and B = / ~ H  is the magnetic induction. From (3.3) we 
immediately see that B = Bo(x ) only. Henceforth we consider only the case 
B = Bole, that is, B directed in the upward z-direction, with the fluid occupying 
the layer 0 < z < d .  

Here d ivB = 0 and d iv ]  =-0. Therefore since 

(3.4) j = o'(--V~ + u •  

where cr is the electrical conductivity, we obtain 

(3.5) 0 = a(--A~b -1- Bo �9 V •  -- u .  V • 

Suppose now that the vertical component of vorticity in the perturbed motion is 
zero, i.e. e~2 = 0, where oJ = curl u, then the second term on the right of (3.5) 
is zero. Moreover, from (3.2), 

1 
curl B o = ~ (--V~ + u • Bo) , 

where r / ( =  1//za) is the resistivity. Assuming the finiteness of grad qS, u, Bo, 
if we allow ~/--~ cxD (i.e. the magnetic Prandtl number P m =  r/~ ~ {3) then 
curl B o ~ 0, whence Bo = (0, 0, Bo), where Bo is constant. Hence in this limit 
(3.5) reduces to 

(3.6) A~ = 0. 

We require this equation to hold everywhere, and so for sufficiently strong spatial 
decay in 4~ we necessarily have 4~ ~ 0. Therefore, for this model j = ~r(u• 

The above derivation shows that in the "quasi-static" electric field approxima- 
tion, if Pm ~ 0 and if we consider only motions for which ~o2 = 0 (this certainly 
includes two-dimensional rolls), then the equation for the magnetic field may be 
dispensed with and the Lorentz force in the momentum equation takes the appeal- 
ing form 

(3.7) j • B = ~(u • Bo) • B o . 

If  we introduce the non-dimensional variables 

x = ~ d, t = t d2/v, Pr = v/~, ~ = 1/[~g/5 d*/~v], 
1 1 

u = Ufi, m = Bo d[a/~v] 2, T = TU[Pr fl/goc] ~, 



Nonlinear Stability 217 

where ^ denotes non-dimensional, M is the Hartmann number and T and U are 
a typical temperature and velocity, then the equations for the perturbation 
(u, 0, p) in the layer 0 < ~: < 1 become (from here on we omit the non-dimen- 
sional sign) 

Ui,t ~- UjUi, j : --P,i + dui + Oki - -  M 2 [ k X ( u x k ) ] i ,  

(3.8) Pr (Or + uiO,i) = ~tw + AO, 

Ui, i ~ O~ 

cf. ROBERTS [23], p. 198. On the boundaries z = 0, 1 we have 0 ~ - u i ~  0. 
Under these conditions it is not difficult to show the linear operator in (3.8) is 
symmetric for perturbations (u, 0, p) which are periodic in x and y. Thus again 
we may conclude that the linear instability boundary coincides with the nonlinear 
energy one. (in fact, it is possible to weaken the periodicity conditions, but the 
present ones suffice for our needs.) 

For  completeness, we include a linear stability analysis. Perturbations of the 
linear system corresponding to (3.8), of the form e~ 0(x),p(x)) necessarily 
have tr E R, due to symmetry. Hence it is sufficient to study the linear problem 
with a ---- 0. 

Standard analysis with u(x) = e i ( k x + m y )  u(g), etc., and with D ---- d/dz, yields 
from (3.8), 

(D 2 - a 2 )  2 W = ~ a 2 0 + M  2D 2W, 
(3.9) 

(D 2 -- a 2) O = - - ~ W ,  

where (U, V, W ) =  u(z) , /9=6~(z)  and a 2 = k  2 - / m  2, a being the non- 
dimensional wavenumber. Therefore, W satisfies, 

(3.10) (D 2 -- a 2) [(D 2 --  a2) 2 --  M 2 D 2] W = --~2a2W. 

Equation (3.10) is just equation (135) of CHANDRASEKHAR [2], p. 165. For  example, 
the solution for two free boundaries is given in equation (165) of the same work, 
namely 

(re2 + a2) 2 a2)2 
(3.11) ..~2 _ ~ .  [(z~ + + z~ZM2]. 

From (3.11) using energy theory we recover the effect that the magnetic field 
stabilizes B6nard convection, see for example the curve of  critical Rayleigh number 
against the square of  the Hartmann number given by CHANORASEKHAR [2], 
p. 171, figure 39. If  the conventional energy approach is employed on the full 
magnetohydrodynamic system from the outset then this effect is not obtained, see 
RIONERO [22]. 

It is not difficult to combine the two subsections (A) and (B) and obtain an 
equivalent result for the magnetic B6nard problem between two spherical shells. 
Another interesting example to which the theory of w 2 may be applied is thermo- 
haline convection, see SHIR & JOSEPH [27], p. 69. We may deduce immediately 
the result (6B.12) of  that work, that there are no subcritical instabilities in the 
"heated below "salty above" situation. However, the "heated and salty below" 
case still necessitates the difficult analysis of  JOSEPH [12]. 



218 G. P. GALDI d~; B. STRAUGHAN 

4. Non-symmetric operators and stability 

In this section we return to the abstract equation. We commence by observing 
that the symmetry of a given operator L in a Hilbert space H depends critically 
on the scalar product adopted. In other words it may be that L is non-symmetric 
with respect to the scalar product ( , )  but nevertheless becomes symmetric if we 
replace the latter with a new product ( , )  whose associated norm i[. r[ is equivalent 
to I-1- A necessary condition for this symmetrization to hold is that the operator 
L have real eigenvalues. In the language of  linear stability theory this means that 
the principle of exchange of  stabilities holds. (Strictly, this principle is more general 
in that if the linear time dependence is e at for (r = p + iq, p, q E R, then exchange 
of stabilities is said to hold if q @ 0 implies p < 0, see DAvis [5]. However, 
we shall here deal with the restricted definition for which exchange of stabilities 
means q = 0.) 

We assume henceforth that exchange of stabilities holds. We suppose, moreover, 
that we can introduce in H a new scalar product ( , )  with respect to which L 
is symmetric, i.e. 

(4.1) (L4~, ~p) = (ep, Lye), V ep, y~ E D(L) .  

Fundamental to our development is the following idea. Assume that the bi- 
linear form L'[~b, ~p] associated with L in the new scalar product admits the de- 
composition: 

L'[4), Y)] ---- I(~b, ~0) + D(~b, ~0) (4.2) 

where 
I and A 

I and D are symmetric, bounded bilinear forms in H*,  

(4.3) I((b, ~) _--< cl I~l 1~1., V ~ n . ,  

O(r ~) _> c 1~12,, V ~bE n , ,  

where c, cx are positive constants. 
Because L is symmetric in ( , ) ,  its eigenvalues {a,} are real and the following 

lemma, analogous to lemma 1, may be established. 

Lemma 2. Let  ~ be a normalized eigenfunction associated with (rl. Then 

L'[(b, qS] 
al ---- L'[4,, 4)] = min 

, ~ M .  I1r ~ 

All energy studies we are aware of  depend heavily on the existence of the func- 
tional maximum of - - l /D;  in the following lemma this existence is established 
provided conditions (4.3) hold (cf. GALDI [8], RIONERO [22]). 

Lemma 3. Provided the conditions (4.3) hold there exists a function 
such that 

m g x  = . 
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Proof. From (4.3) follows the existence of  a constant ~ E R such that 

_ I (9 ,  9 )  < ~ .  

D(9, 9 ) =  
Thus 

{ 1(9, 9) / �9 
Under the normalization 

1 

9 ~ 9 /D: (9 ,  9),  

the proof  reduces to showing the existence of  ~ E H ,  with D(~, v~) = 1 such 
that 

- z r  ~ )  = t. 

To this end we note that since I < oo there exists a sequence {9,} _C H ,  (maxi- 
mizing sequence) such that 

(4.4) lim -- I(~., 9.) = l, D(9., 9.) = 1 V n E N. 
. - - +  o o  

On the other hand, because of (4.3)3 and the compact embedding H .  --+ H, we 
may select from {9.} a subsequence, which we continue to denote by {9.}, such 
that 

9n ~ ~ weakly in H , ,  

~n-+ ~ strongly in H.  

Along this sequence 

(4.5) lI(9,,  9,) -- I(~, ~v)l = [ l ( 9 , - -  ~, 9 , - -  ~) + 2l(~, W,,-- ~-,v)j. 

Since (4.3)2 holds, it follows for n sufficiently large that 

(4.6) ] I(~0n --  ~, 9n -- ~)] ~ cl ]9, -- ~l ]9, --  ~1, < e. 

In addition, for fixed Z E H , ,  I(Z, w) is a linear form on H , .  Hence by the Riesz 
representation theorem there exists ~ E H ,  such that for fixed ~ E H ,  

IC~, 9.  -- ~) = (~,  ~n -- ~ ) , ,  

where ( , ) ,  is the scalar product in H*. Since 9,  ~ ~ weakly in H ,  we conclude 
from the preceeding relation that for n sufficiently large 

(4.7) I I(~, 9 .  - ~)t < e. 

Collecting (4.5)-(4.7) we thus deduce with the aid of (4.4) that 

lim -- I(9,, 9,) = --I(~,  ~) = l. 
. ---> o o  

Obviously, D(~, ~) -~ 1 and the theorem follows. 
To associate linear stability with the energy boundary we must relate the 

positivity of al to the size of RE. This is done in the next lemma. 
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Lemma 4. The eigenvalue at and the number RE are such that 

al > 0 i f  and only i f  R~ 1 < 1. 

Proof. Assume al > 0. From Lemma 2 and (4.2) we deduce 

( I(% ~o) 1 ) < 0  u  H , .  
D(% ~v) D(% 9) 

Let v~ be the maximizing function introduced in Lemma 3. Since 
we obtain from the preceeding inequality 

1 
- - - - 1 - -  1 < 0 .  
RE D(~, ~) 

Conversely, assume RE > 1. Then 

D(f ,  + o 

( l ( ~ b , r  1) D(~b, q b ) < ( I ( ~ , ~ )  ) 
- -a ,  = D($, •) = D(~, ~) 1 O(~b, 4)) 

- -  m 

: (R~ 1 -- 1) D(4,, 4)) < 0, 

where in the last step (4.3)3 was employed. 
We must now consider the nonlinear term in equation (2.1). Although (2.2) 

is satisfied in the "old" scalar product there is no reason why the same relation 
need be true in the new product ( , ) ;  indeed, in general it will not. We shall 
assume instead that either 

(4.8) 

for all e > 0 there exists a constant c : c(e) such that 

I (U(u) u) I<= ~ D(u, u) -~ c(~) II u II ~' 

for each u in D(N) and for some o, > 2; 

or  

(4.9) 
I(g(u), u) l k It nit D(u, u), 

for each u in D(N) and for some k,/3 > 0. 

Condition (4.9) arises naturally in the stability problem for bio-convection 
considered in the next section. Although we do not give any specific example of  
an N satisfying (4.8), an energy analysis of  Burger's equation gives rise to such a 
condition (this example is dealt with in [9]). 

We are now in a position to state our stabiity theorem correlating linear and 
nonlinear stability. 

Theorem 3. Suppose exchange of  stabilities holds, and that (4.1)-(4.3) and either 
(4.8) or (4.9) are satisfied. Then i f  the null solution of  (2.1) is linearly stable it is 
also nonlinearly stable. In particular, there exist constants A, 7, ~ > 0 such that 

1[ Uo [12 < y implies 11 u(t)[[2 .< A II Uo l[ z exp (--t~t) V t ~ 0. 
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The proof of this result is not given explicitly, since a proof under condition 
(4.8) is given in reference [9] while a demonstration appropriate to (4.9) is included 
in our discussion of bio-convection in w 5. 

5. Energy stability in bio-eonvection 

In this section we present an energy stability analysis for the continuum mode 
of bio-convection derived in [4, 17]. 

A n~iive exposition of the situation is as follows. Suppose that a suspension 
of micro-organisms is contained in a fluid layer, say the infinite layer between 
the planes z = --H, 0, and that a gravitational field acts in the negative z direc- 
tion. The organisms have a density greater than that of the containing fluid and 
also have a natural tendency to swim in the upward (increasing z) direction. If a 
sufficient number of organisms are present, eventually the situation arises where 
the upper layer of the fluid is dominated by micro-organisms. These in turn, 
being of density greater than the fluid, will tend to fall under the action of gravity. 
Hence an instability somewhat akin to Rayleigh-Taylor instability may develop�9 
The striking thing about this instability is that it does not happen in a haphazard 
manner; rather, the organisms tend to fall in discrete "chimneys" in a somewhat 
ordered pattern, although several pattern types are possible, see [4, 17]. 

The fact that such regular patterns are commonplace in many convection 
problems lends credence to our belief that the energy stability theory developed 
here may prove valuable elsewhere. In particular, another interesting convection 
mechanism which exhibits a distinct "chimney" structure, albeit with rising rather 
than falling plumes, is that caused by one component of a mixture being frozen out 
of a solution; a continuum theory for this phenomenon has been derived by 
LOPER &: ROBERTS [18, 19], who provide further details appropriate to the earth's 
core in [20]. 

The basic model we employ for the motion of microorganisms is derived by 
CHILDRESS, LEVANDOWSKY • SPIEGEL [4]. Letting c(x, t) denote the concentration 
of micro-organisms in the suspension, their equations are easily written in terms 
of a flux J given by 

(5.1) Ji = cU(c ,  z )  ~'i3 - Disca,  

where U is the upward swimming velocity of the organisms and D is the diffusion 
tensor given by 

(5.2) D = diag (u~(c, z), ux(c, z), u(c, z)) .  

Here u, x~ are positive functions of the indicated arguments. 
The required equations, based on a Newtonian fluid model, are then 

1 
ui : - -  - ~  P,i - -  g(l + e~c) (~i3 -~- 'lJ Al l i ,  

(5.3) uj, i---- O, 

/: = - J i . .  
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where Q is the density (constant), u the velocity, p the pressure, v the viscosity, 
while g denotes gravity and o~ is a positive constant which essentially expresses the 
ratio of  density of  a microorganism to that of  the growth medium. A superposed 
dot denotes material differentiation. 

The linear stability of  two classes of  equilibrium solutions is considered in [4], 
namely: 
Case L 

U = Uo, u = no, u~ = ~ o ;  Uo, ~, 6 constant. 

Case  I L  g / U  is not explicitly dependent on z; z~ is arbitrary. 
Here we are able to analyse a sub-class of  the more general Class II. To de- 

scribe this solution we need the following boundary conditions 

(5.4) J ' / ' 1  = 0, It = 0 when z = 0, - - H .  

The former expresses the condition that no material flows out of  the planes 
z = - - H ,  0, whereas the latter is the no-slip condition. To ensure uniqueness 
for the equilibrium solution it is also necessary to impose the following restric- 
tion on the mean concentration (cf. [4]), 

f c d x  = r = const. 
g 

The sub-class of  solutions of  Case II  which we study occur when u, U are 
dependent only on z, U' ~ 0, and u / U  = h -1 = constant. Here z ,  UE C I ( - - H ,  O) 
while ul E C ~ ( R 2 X ( - - H ,  0)), although x~ is otherwise arbitrary. The basic 
equilibrium solution u ~ 0, c =- K(z )  of  this sub-class is 

(5.5) K(z )  = Co exp (Uoz/~o),  z ~ [ - -H,  0], 

where 

(5.6) co = K(0), 

and Uo, Zo are the values of  U, z when z = 0. 
One conclusion immediately evident from (5.5) is that the basic equilibrium 

solution is nonlinear in z, so that an energy stability analysis is likely to be 
different f rom that required for such constant gradient problems as B6nard con- 
vection (see JOSEP~ [10, l l ,  14]). 

To study stability we let u : (u, v, w), c = do(x, t)  -}- K ( z )  and p = p q- P(z) ,  
where (u, do, p) are perturbations of  the equilibrium values (0, K, P). These pertur- 
bations satisfy, by (5.3), 

(5.7) 

1 
ui, t -]- ujui,j = - -  --7-p,i q- r A u  i - -  gocdo ~i3 ,  

l, li, i ~ 0 

do, t -k uido,i q- w K '  = (~ldox)x -}- (~Fby)y q- (xdo')' - -  (doU)', 
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where  ' ~  ~l~z. The boundary conditions are 

(5.8) ~ '  ---- $U, u~ = 0 when z = - - H ,  0, 

and we additionally assume that 

(5.9) ui, $ ,P  are periodic functions in x, y. 

An inspection of (5.7)3 reveals that the part  of  the linear operator L which is 
not symmetric arises from the terms 

(~r - ( r  

In [4] it is shown however that the eigenvalue a of  linear theory is real; we employ 
their ideas to formulate a new scalar product. To begin with, we divide (5.7)3 
by the positive quantity K '  and simultaneously introduce the non-dimensional 
variables 

1/ co l/ gcoh3 
ui = Uo~ti, C = Uo Fg~xh  ' R = , U = U U o ,  

~ 0  

(5 .10 )  i '  = Uoov tv 
~ 0 ~  

z t  ---- ~ o ,  a = V/Zo, K = I~co, h ---- ~o /Uo,  

where a is the Schmidt number, R is like a Rayleigh number and h is our unit of  
length. Furthermore we let 2 ---- H / h  and fcih = H + xi, i ---- 1, 2, 3, so that 
the layer z E ( - -H ,  0) becomes ~ E (0, 2). 

The resulting equations from (5.7) are (we omit the non-dimensional symbol A 
for simplicity) 

1 
lli, t -~ -~- lljlli,j : --P,i + Aui  - -  Rqb (~i3, 

(5.11) ui, i =  O, 

ar + u~% (r (~,r + (~x%)y (ur 
K '  - -  R w  K '  q- K '  + K - - - 7 -  

The boundary conditions are still (5.8) and (5.9), although (5.8) now holds on 
z ~-0,  2. We shall suppose the disturbance "cell", which we denote by V, is 
2~r periodic in x and 2z~s periodic in y, for positive constants r and s. 

To proceed according to the theory of w 4, we need to know the spaces H and 
H , .  The restriction (5.8) necessitates the choice H = (L2(ff2))  4, H ,  ---- (Hi(t2)) *, 
where the appropriate norms are understood to be weighted in the fourth compo- 
nent by (K') -1 while and the first three components are divergence free.* 

* If  we replace (5.8) by the more restrictive condition ~ = 0 on z = 0, 2, that 
is, if we are able to control the concentrations at the plates, then the analysis is much 
easier and we can use the space H .  = (Hg(t2))4; see [9]. 
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In the form (5.11), the linear operator L which acts on (u, v w, 40, is given by 

-A 0 0 0 

0 A 0 0 

0 0 d - -R  

1 
0 0 - -R ~ [e~(. ,  e . -  ) + b,(.  ~ .  ) -- ~ ( U . ) ]  

where the repeated o~ signifies summation over o~ = 1, 2. With the aid of (5.8) 
and (5.9) it is easily verified that L is symmetric, thanks to the weight K'. 

The natural energy to use is suggested by (5.11), namely 

~ 
(5.12) E(t) = �89 f u,ui + -~71 dx. 

Further calculation reveals the energy equation to be 

(5.13) = --2R f ~bw d x -  D(u ) -  

K' d X - - 2 h d  K dx, 

where we have omitted the volume identification V from the integral and where 
D(.) denotes the Dirichlet integral. 

To relate this equation to the work of w 4 we must specify the forms I and D 
in (4.2). To this end let ~ ,  o~ = 1, 2, be the vectors (u s, v ~, w ~, ff~); then we choose 

f (5.14) i(~t, ~2) = R (t~lw 2 + #)2w~) dx -- K--; (~1~2t -~- (~2~blt) dx, 

(5.15) D(~I, ~e2) : f ( V u  1 Vu 2 + Vv 1 Vv z + Vw 1 Vw2)dx 

{ 1 2 1 2  } f ~(~,~ep~ + 4~,4~,) + ~41'42' + U4'%2/h 
+ K' .dx .  

Recollecting that U, ~1, ~ are bounded both from above and below, it is not dif- 
ficult to see that (4.3) holds and that L' = - - I  + D is the correct form associated 
with L under conditions (5.8) and (5.9). 

We return to (5.13) and let ~e=(u,v,w,~b) and ~ = D ( ~ , ~ ) .  The key to 
energy stability is Lemma 4. For, if al > 0 then RZ ~ < 1 and we have a condi- 
tion necessary for nonlinear stability. Thus, it is sufficient to use the linear results 
of CHILDRESS, LEVANDOWSKY & SPIEGEL [4] to infer energy stability. We must, 
of course, prove the decay of the perturbations. To this end suppose that al > 0 
and let R~ = 1 - - R ~  1 > 0 .  From (5.13) we derive 

(5.16) 1 f we 2 . I 
= -k-r- ax  I . 
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Although we have gained by symmetrizing the problem it has been necessary 
to include in (5.16) a nonlinear term N = (l/2h) [ f K ' - I  w ~2 dxl. To deal with 
this term we note that K = Co exp (z -- 2), so coe ~ ~ K <= Co. By the Cauchy- 
Schwarz inequality, 

e 2 1 

(5.17) N <= 2Teo [f w2 dx]7 If  d~" dx] �89 

1 
ADAMS ([1], p. 104) shows that [[u[[L6 =< 22 4 ][u[[n, when the domain geometry 
is a rectangular box, as V is here. I f  we combine this with a simple application 
of H61der's inequality we find 

( f ~" dx) �89 <= 32" 21/3 ~t 1/3 (rs2) 1/6 f (~ § ~,~,~) dx. 

Hence from (5.17) we derive 

N ~ 16" 25/6 7t l/3hc 2(rS2)1/6 e ~ E�89 f ~2 § dx. 

Next, let U,, •  Ul, denote the lowest values for U, u, ul in V and set a = max 
{1, zi-, ~, u ,  ~, h/U,}. We finally obtain 

1 
(5.18) N ~ b ~ E 7, 

where 

(5.19) b = 16- 25/6 ~r 1/3 (rs2) 1/6 e~'a/hc~. 

Next, we combine (5.18) and (5.16) to deduce that 

(5.20) 

Suppose now that 

(5.21) 

k <= --N(R~ -- bE�89 

1_ 
E 2 ( 0 )  • 2hR~/b. 

1 
Then from (5.20) find that E2(t) satisfies (5.21) for every t ~ 0. 
from Poincar6's inequality 

~ 221E 

Furthermore, 

for some constant 21 > 0, whence (5.20) leads to 

b21 ~ --221RlE § -~- E 3/z. 

This inequality is easily integrated, yielding 

(5.22) 

1 

• 2hRIE~'(O) 
EZ(t) < 

= bE�89 § [2hR1 -- bE�89 exp (21Rtt) 



226 G. P. GALDI & B. STRAUGHAN 

Since (5.21) holds, it follows that E - +  0 as t -+  co. Thus we have shown that, 
when the initial energy satisfies (5.21) and the linear stability condition a~ > 0 
holds, the solution K(z) is also nonlinearly stable. 

Several interesting, conclusions may be drawn from the above analysis. In 
particular, if we look closely at (4.21)we find E ( 0 ) <  ke-2a2 -1/3 where k is a 
constant dependent essentially on the values at the upper plate. Since 2 = H/h 
we see that the larger is H the smaller must be E(0) before we can guarantee 
stability. Thi s agrees with the findings of  [5, 17] and more or less says that the 
greater the depth the more organisms will be present and therefore the greater the 
likelihood of instability. Another important point is that the energy decay is 
conditional and does not, therefore, preclude all subcritical instabilities; if R is 
near its critical value, then R~ 1 is close to 1 and so E(0) must be very small to 
ensure decay. Again, this agrees with the work of CHILDRESS & SPmGEL [3] who 
have constructed a two-dimensional solution which bifurcates subcritically. 

In conclusion we observe that the approach in w 4, especially Lemma 4, seems 
different from that adopted by most fluid dynamicists. It is more usual to calculate 
directly the Euler-Lagrange equations for max (--l/D), and then to verify by 
inspection that the equations obtained agree with those of linear theory. This 
approach is perfectly correct and equivalent to that used in w 4, though we again 
point out that the maximum must exist (otherwise the calculations are purely 
formal and possibly incorrect). In the interests of clarity, therefore, we include a 
calculation of the necessary Euler-Lagrange equations for the problem at hand. 

The functional to be maximised is --l/D, where, from (5.14), (5.15), 

- Ur162 
- - I =  --2R f 4m dx + 2 J - . -~ -ax ,  

1 
*) = f .i,,.,,, ax + f t-(+:. + + -(+') + v< 21hl ax. 

Following standard practice, if r/i, i = 1 . . . . .  4, denotes a perturbation from the 
maximising solution v = (ui, q>), then the maximum is given by 

f dx + A f  dx=O. 

Integrating by parts, formally, we find that 

(5.23) f ~h(R~b 5i3 -- A Aut + P,i) dx + A f nj~huiddA 
V dV 

(Ucb)' A (z~Cbx)x A (~l~)y (~r 

{ .] L [Azcb: -- US • + A - ~ , l ) d A  = O. +/~4 L K' + A - - ~ 7 -  A [vJ 

Here A = max (--l/D), i,j are to be summed from 1 to 3, and in the last term 
the subscripts x, y, z denote evaluation on the respective boundary sections of ~ V. 
The stability boundary is R~g ~ = 1 and so for the critical case we take A = 1. 
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Now, selecting rj E (C~(V)) 4, we derive immediately the equations of  linear theory 
with the time derivative terms zero. Thus we have shown that the Euler-Lagrange 
equations corresponding to max (--l/D) coincide with the equation.s for marginal 
stability of  linear theory. To derive the correct boundary conditions requires more 
technical analysis, but we note that they follow from what remains of  (5.23) for 
r/ again to be suitably selected. 

Acknowledgments. The writers wish to thank S. CHILDRESS and E. A. SPIEGEL for 
providing a copy of [3] prior to publication. They are indebted also to P. H. ROBERTS 
and A. M. SOWARD for helpful conversations and in particular for suggesting the appli- 
cation to magnetohydrodynamics in w 3. This work of the first author was supported by 
a Senior Visiting Fellowship of the British Science Research Council in October 1981 
and a Visiting Professorship of the Italian Consiglio Nazionale delle Ricerche for the 
second author in September 1982. Finally, the work was completed at the Summer School 
in Ravello 1982; the writers deeply appreciate the kind hospitality of the directorS. RIO- 
NERO. 

References 

1. ADAMS, R. A., Sobolev Spaces. New York: Academic Press 1975. 
2. CHANDRASEKHAR, S., Hydrodynamic and hydromagnetic stability. Oxford University 

Press: i961. 
3. CHILDRESS, S. & E. A. SPIEGEL, Pattern formation in a suspension of swimming 

micro-organisms: Nonlinear aspects. Preprint. 
4. CHILDRESS, S., LEVANDOWSKY, M. & E. A. SPIEGEL, Pattern formation in a suspen- 

sion of swimming micro-organisms: equations and stability theory. J. Fluid Mech. 
63 (1975), 591. 

5. DAVIS, S. H., On the principle of exchange of stabilities. Proc. Roy. Soc. London A 
310 (1969), 341. 

6. DAVIS, S. H.. Buoyancy, Surface tension in stability by the method of energy. 
J. Fluid Mech., 39 (1969), 347. 

7. DAVIS, S. H. & C. VON KERCZEK, A reformulation of energy stability theory. Arch. 
Rational Mech. Anal. 52 (1973), 112. 

8. GALDI, G. P., Lectures on nonlinear stability in fluid dynamics. Ravello: Scuola 
Estiva 1980. 

9. GALDI, G. P. & B. STRAUGHAN, An immediate connection between linear and non- 
linear stability via an appropriate choice of the measure: application to convection 
problems. Proc. Symp. Waves and stability, Catania: 1981. 

10. JOSEPH, D. D., On the stability of the Boussinesq equations. Arch. Rational Mech. 
Anal. 20 (1965), 59. 

11. JOSEPH, D. D., Nonlinear stability of the Boussinesq equation by the method of 
energy. Arch. Rational Mech. Anal. 22 (1966), 163. 

12. JOSEPH, D. D., Global stability of the conduction-diffusion solution. Arch Rational 
Mech. Anal. 36 (1970), 285. 

13. JOSEPH, D. D., Stability of fluid motions I. Berlin-Heidelberg-New York: Springer 
1976. 

14. JOSEPH, D. O., Stability of fluid motions II. Berlin-Heidelberg-New York: Springer 
1976. 



228 G. P. GALDI ~r B. STRAUGHAN 

15. JOSEPH, D. D. & W. HUNG, Contributions to the nonlinear theory of stability of 
viscous flows in pipes and between rotating cylinders. Arch. Rational Mech. Anal. 44 
(1971), 1. 

16. KATO, T., Perturbation theory for linear operators. Berlin-Heidelberg-New York: 
Springer 1976. 

17. LEVANDOWSKY, M., CHILDRESS, S., SPIEGEL, E. A. & S. H. HUTNER, A mathematical 
model for pattern formation by swimming micro-organisms. J. Protozoology 22 
(1975), 296. 

18. LOPER, D. E. & P. H. ROBERTS, On the motion of an iron-alloy core containing a 
slurry. I General Theory. Geophys. Astrophys. Fluid Dyn. 9 (1978), 289. 

19. LOPER, D. E. • P. S. ROBERTS, On the motion of an iron-alloy core containing a 
slurry. II A simple model. Geophys. Astrophys. Fluid Dyn. 16 (1980), 83. 

20. LOPER, D. E. & P. H. ROBERTS, A study of conditions at the inner-core boundary 
of the earth. Phys. Earth Planet. Inter. 24 (1981), 302. 

21. PRODI, G., Teoremi di tipo locale per il sistema di Navier-Stokes e stabilit/t delle 
soluzioni stazionarie. Rend. Sem. Univ. Padova, 32 (1962), 374. 

22. RIONERO, S., Metodi variazionali per la stabilit~t asintotica in media in magneto- 
idrodinamica. Ann. Mat. Pura. Appl. 78 (1968), 339. 

23. ROBERTS, P. H., An introduction to magnetohydrodynamics. London: Longmons 
1967. 

24. SAT'rINGER, n.  H., The mathematical problem of hydrodynamic stability. J. Math. 
Mech. 19 (1970), 797. 

25. SERmN, J., Mathematical principles of classical fluid mechanics, article in "Handbuch 
der Physik", VIII]I Berlin-G6ttingen-Heidelberg: Springer 1959. 

26. SERmN, J., On the stability of viscous fluid motions. Arch. Rational Mech. Anal. 3 
(1959). 

27. SHIn, C. C. & D. D. JOSEPH, Convective instability in a temperature and concentra- 
tion field. Arch. Rational Mech. Anal. 30 (1968), 38. 

Istituto di Matematica 
Universita di Napoli 

and 
Department of Mathematics 

University of Glasgow 

(Received January 30, 1983) 


