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NAIVE REALISM ABOUT OPERATORS 

ABSTRACT. A source of much difficulty and confusion in the interpretation of quantum 
mechanics is a "naive realism about operators." By this we refer to various ways of taking 
too seriously the notion of operator-as-observable, and in particular to the all too casual talk 
about "measuring operators" that occurs when the subject is quantum mechanics. Without 
a specification of what should be meant by "measuring" a quantum observable, such an 
expression can have no clear meaning. A definite specification is provided by Bohmian 
mechanics, a theory that emerges from Schrrdinger's equation for a system of particles 
when we merely insist that "particles" means particles. Bohmian mechanics clarifies the 
status and the role of operators as observables in quantum mechanics by providing the 
operational details absent from standard quantum mechanics. It thereby allows us to readily 
dismiss all the radical claims traditionally enveloping the transition from the classical to the 
quantum realm- for example, that we must abandon classical logic or classical probability. 
The moral is rather simple: Beware naive realism, especially about operators! 

1. INTRODUCTION 

Traditional naive realism is the view that the world is pretty much the way 
it seems, populated by objects which force themselves upon our attention 
as, and which in fact are, the locus of  sensual qualities. A naive realist 
regards these "secondary qualities," for example color, as objective, as out 
there in the world, much as perceived. A decisive difficulty with this view 
is that once we understand, say, how our perception of what we call color 
arises, in terms of  the interaction of light with matter, and the processing 
of  the light by the eye, and so on, l we realize that the presence out there 
of  color per se would play no role whatsoever in these processes, that is, 
in our understanding what is relevant to our perception of  "color." At the 
same time, we may also come to realize that there is, in the description 
of  an object provided by the scientific world-view, as represented say by 
classical physics, nothing which is genuinely "color-like." 

We shall argue that the basic problem with quantum theory, more fun- 
damental than the measurement problem and all the rest, is a naive realism 
about operators, a fallacy which we believe is far more serious than tra- 
ditional naive realism: With the latter we are deluded partly by language 
but in the main by our senses, in a manner which can scarcely be avoided 
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without a good deal of  scientific or philosophical sophistication; with the 
former we are seduced by language alone, to accept a view which can 
scarcely be taken seriously without a large measure o f  (what often passes 
for) sophistication. 

The classical physical observables - for a system of  particles, their 
positions q = (qk), their momenta p = (Pk), and the functions thereof, 
i.e., functions on phase s p a c e - f o r m  a commutative algebra. It is generally 
taken to be the essence o f  quantization, the procedure which converts a 
classical theory to a quantum one, that q, p, and hence all functions f (q ,  p) 
thereof are replaced by appropriate operators, on a Hilbert space, o f  possi- 
ble wave functions, associated with the system under consideration. Thus 
quantization leads to a noncommutative operator algebra of"observables"  
Moreover, the fact that the observables in quantum theory form a noncom- 
mutative structure has traditionally been regarded as endowed with deep 
epistemological and or metaphysical significance and has variously been 
interpreted as the mathematical embodiment of  irreducible indeterminacy 
or uncertainty and intrinsic fuzziness. 

By  naive realism about operators we refer to various, not entirely sharply 
defined, ways o f  taking too seriously the notion of  operator-as-observable, 
and in particular to the all too casual talk about "measuring operators" 
which tends to occur as soon as a physicist enters quantum mode. What, 
after all, is meant by measuring an operator? If  this is to have a meaning, 
that meaning must be supplied - it is not at all expressed by these words 
as they are normally understood. But more on this later. 

Not many physicists - or for that matter phi losophers-  have focused on 
the issue o f  naive realism about operators, but Schrrdinger and Bell have 
expressed similar or related concerns: 

. . .  the new theory [quantum theory].., considers the [classical] model suitable for guid- 
ing us as to just which measurements can in principle be made on the relevant natural 
object . . . .  Would it not be pre-established harmony of a peculiar sort if the classical-epoch 
researchers, those who, as we hear today, had no idea of what measuring truly is, had unwit- 
tingly gone on to give us as legacy a guidance scheme revealing just what is fundamentally 
measurable for instance about a hydrogen atom!? (Schr6dinger 1935) 

Here are some words which, however legitimate and necessary in application, have no place 
in a formulation with any pretension to physical precision: system; apparatus; environment," 
microscopic, macroscopic; reversible, irreversible; observable; information; measurement�9 

� 9  The notions of"microscopic" and"macroscopic" defy precise definition . . . .  Einstein 
said that it is theory which decides what is "observable". I think he was right . . . .  "observation" 
is a complicated and theory-laden business. Then that notion should not appear in the for- 
mulation of fundamental theory . . . .  

On this list of bad words from good books, the worst of all is "measurement". It must 
have a section to itself. (Bell 1990) 
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We agree a lmos t  ent irely with Bell  here. We insist, however ,  that  

"obse rvab le"  is jus t  as bad  as "measurement , "  m a y b e  even a little worse .  Be 

that  as it may,  after listing Di rac ' s  m eas u rem en t  postulates  Bell  cont inues:  

It would seem that the theory is exclusively concerned about "results of measurement", 
and has nothing to say about anything else. What exactly qualifies some physical systems 
to play the role of "measurer"? Was the wavefunction of the world waiting to jump for 
thousands of millions of years until a single-celled living creature appeared? Or did it have 
to wait a little longer, for some better qualified system.., with a Ph.D.? If the theory is to 
apply to anything but highly idealized laboratory operations, are we not obliged to admit 
that more or less "measurement-like" processes are going on more or less all the time, more 
or less everywhere. Do we not have jumping then all the time? 

The first charge against "measurement", in the fundamental axioms of quantum mechan- 
ics, is that it anchors the shifty split of the world into "system" and "apparatus". A second 
charge is that the word comes loaded with meaning from everyday life, meaning which is 
entirely inappropriate in the quantum context. When it is said that something is "measured" 
it is difficult not to think of the result as referring to some preexisting property of the object 
in question�9 This is to disregard Bohr's insistence that in quantum phenomena the apparatus 
as well as the system is essentially involved�9 If it were not so, how could we understand, for 
example, that "measurement" of a component of"angular momentum".., in an arbitrarily 
chosen direct ion. . ,  yields one of a discrete set of values? When one forgets the role of the 
apparatus, as the word "measurement" makes all too likely, one despairs of ordinary logic 
�9 hence "quantum logic". When one remembers the role of the apparatus, ordinary logic 
is just fine. 

In other contexts, physicists have been able to take words from ordinary language and 
use them as technical terms with no great harm done. Take for example the "strangeness", 
"charm", and "beauty" of elementary particle physics. No one is taken in by this "baby 
talk".. . .  Would that it were so with "measurement". But in fact the word has had such 
a damaging effect on the discussion, that I think it should now be banned altogether in 
quantum mechanics. (Ibid.) 

While  Bell  focuses  direct ly here on  the misuse  o f  the word  "measure -  

men t "  rather  than on that o f  "observable ,"  it is wor th  not ing that the abuse  
o f  " m e a s u r e m e n t "  is in a sense inseparable  f rom that o f  "observable ,"  

i.e., f r o m  naive real ism about  operators.  Af ter  all one  wou ld  not  be  ve ry  

l ikely  to speak  o f  m eas u rem en t  unless  one  thought  that something,  some  

"obse rvab le"  that  is, was  s o m e h o w  there to be measured.  

M o r e  Bell :  

The concept of 'measurement' becomes so fuzzy on reflection that it is quite surprising to 
have it appearing in physical theory at the most fundamental level. Less surprising perhaps is 
that mathematicians, who need only simple axioms about otherwise undefined objects, have 
been able to write extensive works on quantum measurement theory - which experimental 
physicists do not find it necessary to read . . . .  Does not any analysis of measurement require 
concepts more fundamental than measurement? And should not the fundamental theory be 
about these more fundamental concepts? (Bell 1981) 

�9 .. in physics the only observations we must consider are position observations, if only the 
positions of instrument pointers. It is a great merit of the de Broglie-Bohm picture to force 
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us to consider this fact. If you make axioms, rather than definitions and theorems, about 
the 'measurement' of anything else, then you commit redundancy and risk inconsistency. 
(Bell 1982) 

If  our feeling that Bell's words are thoroughly compelling were widely 
shared, by physicists and philosophers, there would perhaps be little point 
in continuing this paper. But it is not, so we continue! Moreover, we wish 
in any case to focus on what Bell calls "the de Broglie-Bohm picture" - 
what we prefer to call Bohmian mechanics -  for the light it sheds on naive 
realism about operators. 

We wish to do two things here: We wish to elaborate on why we think 
what we have called naive realism about operators (taking operators too 
seriously as observables) is bad, and we wish to relate this issue to Bohmian 
mechanics. Briefly stated, the relevant connections between naive realism 
about operators and Bohmian mechanics are the following: 

l. A frequent complaint about Bohmian mechanics, in which positions 
play a fundamental role, is expressed in terms of  questions like "What 
about other observables?" 

2. Bohmian mechanics allows the inadequacy, indeed the utter wrong- 
headedness, of  naive realism about operators to emerge with stark 
clarity. 

2. BOHMIAN MECHANICS 

According to orthodox quantum theory, the complete description of a 
system of  particles is provided by its wave function. It is rarely noticed that 
even this statement is somewhat problematical: If "particles" is intended 
with its usual meaning-point- l ike entities whose most important feature is 
their positions in space - the statement is clearly false, since the complete 
description would then have to include these positions; otherwise, the 
statement is, to be charitable, vague. Bohmian mechanics is the theory 
which emerges when we indeed insist that "particles" means particles. 

According to Bohmian mechanics (Bohm 1952, Bohm et al. 1993, 
Bell 1987, Diirr et al. 1992, 1996, Holland 1993, Berndl et al. 1995), 
the complete description of an N-particle system is provided by its wave 
function ~b and its configuration Q = ( Q 1 , . . . ,  QN), where the Qk are 
the positions of  the particles. The wave function, which evolves accord- 
ing to SchrOdinger's equation, choreographs the motion of the particles: 
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these evolve - in the simplest manner possible - according to a first-order 
ordinary differential equation 

dQ 
d t  - 

whose right-hand side, a velocity vector field on configuration space, is 
generated by the wave function. Considerations of space-time symmetry-  
Galilean and time:reversal invariance - then determine the form of v r = 
(v1r yeN) (Dfirr et al. 1992), and we arrive at the defining (evolution) 
equations of Bohmian mechanics: 

dQk _ vkC(Ql,. . . ,QN) 
(2.1) dt 

_-- 2 k  I m ~ - - - ~  ( Q 1 , . . . ,  QN) 

and 

0 r  
(2.2) ih~ t  = H e  

where H is the usual Schr6dinger Hamiltonian, containing as parameters 
the masses m l , . . . ,  mN of the particles as well as the potential energy 
function V of the system. 

For an N-particle universe, these two equations form a complete speci- 
fication of the theory. There is no need, and indeed no room, for any further 
axioms, describing either the behavior of "other observables" or the effects 
of "measurement." 

Bohmian mechanics is the most naively obvious embedding imaginable 
of Schr6dinger's equation into a completely coherent physical theory! If 
one didn't already know better, one would naturally conclude that it can't 
"work," i.e., that it can't account for quantum phenomena. After all, if 
something so obvious and, indeed, so trivial works, great physicists would 
never have insisted, as they have and as they continue to do, that quantum 
theory demands radical epistemological and metaphysical innovations. 

Moreover, when we think about it, how could Bohmian mechanics have 
much to do with quantum theory? Where is quantum randomness in this 
deterministic theory? Where is quantum uncertainty? Where are operators 
as observables and all the rest? 

Be that as it may, Bohmian mechanics is certainly a theory. It describes 
a world in which particles move in a highly non-Newtonian sort of way, 
and it would do so even were it the case that the way they do move in this 
theory had absolutely nothing to do with quantum mechanics. 
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It turns out, however, that a remarkable consequence (!) of the Equations 
(2.1) and (2.2) is that when a system has wave function ~b its configuration 
is random, with probability density p given typically by p = I~b[ 2, the 
quantum equilibrium distribution. In other words, it turns out that systems 
are somehow typically in quantum equilibrium. Moreover, this conclusion 
comes together with the clarification of what precisely this means, and also 
implies that a Bohmian universe embodies an absolute uncertainty which 
can itself be regarded as the origin of the uncertainty principle. We shall 
not go into these matters here, having discussed them at length elsewhere 
(D~rr et al. 1992, 1996). We note, however, that nowadays, with chaos 
theory and nonlinear dynamics so fashionable, it is not generally regarded 
as terribly astonishing for an appearance of randomness to emerge from a 
deterministic dynamical system. 

It also turns out that the entire quantum formalism, operators as observ- 
ables and all the rest, is a consequence of Bohmian mechanics, and since 
this is relevant to the issue of naive realism about operators, we do wish to 
spend some time sketching how this comes about. 

3. THE QUANTUM FORMALISM 

Information about a system does not spontaneously pop into our heads, 
or into our (other) "measuring" instruments; rather, it is generated by an 
experiment: some physical interaction between the system of interest and 
these instruments, which together (if there is more than one) comprise the 
apparatus for the experiment. Moreover, this interaction is defined by, and 
must be analyzed in terms of, the physical theory governing the behavior 
of the composite formed by system and apparatus. If  the apparatus is well 
designed, the experiment should somehow convey significant information 
about the system. However, we cannot hope to understand the significance 
of  this "information" - for example, the nature of what it is, if anything, 
that has been measu red -  without some such theoretical analysis. 

Whatever its significance, the information conveyed by the experiment 
is registered in the apparatus as an output, represented, say, by the orienta- 
tion of a pointer. Moreover, when we speak of an experiment, we have in 
mind a fairly definite initial state of the apparatus, the ready state, one for 
which the apparatus should function as intended, and in particular one in 
which the pointer has some "null" orientation. 

For Bohmian mechanics we should expect in general that, as a con- 
sequence of the quantum equilibrium hypothesis, the outcome of the ex- 
periment - the final pointer orientation - will be random: Even if the 
system-apparatus composite initially has a definite, known wave function, 
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so that the outcome is determined by the initial configuration of system 
and apparatus, this configuration is random, since the composite system is 
in quantum equilibrium, i.e., the distribution of this configuration is given 
by [~(x, y)12, where �9 is the wave function of the system-apparatus com- 
posite and x, respectively y, is the generic system, respectively apparatus, 
configuration. There are, however, special experiments whose outcomes 
are somewhat less random than we might have thought possible. 

In fact, consider a measurement-like experiment, one which is repro- 
ducible in the sense that it will yield the same outcome as originally 
obtained if it is immediately repeated. (Note that this means that the appa- 
ratus must be immediately reset to its ready state, or a fresh apparatus 
must be employed, while the system is not tampered with so that its initial 
state for the repeated experiment is its final state produced by the first 
experiment.) Suppose that this experiment admits, i.e., that the apparatus 
is so designed that there are, only a finite (or countable) number of possible 
o u t c o m e s  oL, 2 for example, a ="left" and a ="right". The experiment also 
usually comes equipped with a calibration Aa, an assignment of numerical 
values (or a vector of such values) to the various outcomes c~. 

It can be shown (Daumer et al. 1996), under further simplifying assump- 
tions, that for such reproducible experiments there are special subspaces 
"Ha of the system Hilbert space 7 / o f  (initial) wave functions, which are 
mutually orthogonal and span the entire system Hilbert space 

(3.1) n=Ou , 
a 

such that if the system's wave function is initially in "Ha, outcome o~ 
definitely occurs and the value Aa is thus definitely obtained. It then follows 
that for a general initial system wave function 

(3.2) r  ~~r ~-'~Pn~' 
o~ c~ 

where PT/~ is the projection onto the subspace "H~, the outcome ce is 
obtained with (the usual) probability 3 

(3.3) Pc~ = I IP~r 2. 
In particular, the expected value obtained is 

(3.4) 

where 

(3.5) 

=  allP .r 2 = ( r 1 6 2  
a a 
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and ( . ,  �9 ) is the usual inner product: 

(3.6) (~b, ~) = f ~b* (x) qS(x) dx. 

What we wish to emphasize here is that, insofar as the statistics for the 
values which result from the experiment are concerned, the relevant data for 
the experiment are the collection (71~) of special subspaces, together with 
the corresponding calibration (Aa), and this data is compactly expressed 
and represented by the self-adjoint operator A, on the system Hilbert space 
7t, given by (3:5). Thus with a reproducible experiment ~ we naturally 
associate an operator A = Ae, 

(3.7) ~ ~ A, 

a single mathematical object, defined on the system alone, in terms of  which 
an efficient description of the possible results is achieved. If  we wish we 
may speak of operators as observables, but if we do so it is important that 
we appreciate that in so speaking we merely refer to what we have just 
sketched: the role of operators in the description of certain experiments. 4 

In particular, so understood, the notion of  operator-as-observable in no 
way implies that anything is measured in the experiment, and certainly 
not the operator itselfl In a general experiment no system property is 
being measured, even if the experiment happens to be measurement-like. 
(Position measurements are of course an  important exception.) What in 
general is going on in obtaining outcome a is completely straightforward 
and in no way suggests, or assigns any substantive meaning to, statements 
to the effect that, prior to the experiment, observable A somehow had a 
value Aa - whether this be in some determinate sense or in the sense of  
Heisenberg's "potentiality" or some other ill-defined fuzzy sense - which 
is revealed, or crystallized, by the experiment. 5 

Much of  the preceding sketch of the emergence and role of operators as 
observables in Bohmian mechanics, including of course the von Neumann- 
type picture of "measurement" at which we arrive, applies as well to 
orthodox quantum theory. In fact, it would appear that the argument against 
naive realism about operators provided by such an analysis has even greater 
force from an orthodox perspective: Given the initial wave function, at 
least in Bohmian mechanics the outcome of  the particular experiment is 
determined by the initial configuration of  system and apparatus, while 
for orthodox quantum theory there is nothing in the initial state which 
completely determines the outcome. Indeed, we find it rather surprising that 
most proponents of  the yon Neumann analysis of measurement, beginning 
with yon Neumann, nonetheless seem to retain their naive realism about 
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operators. Of  course, this is presumably because more urgent mat te r s - the  
measurement problem and the suggestion of inconsistency and incoherence 
that it entails - soon force themselves upon one's attention. Moreover such 
difficulties perhaps make it difficult to maintain much confidence about 
just what should be concluded from the "measurement" analysis, while in 
Bohmian mechanics, for which no such difficulties arise, what should be 
concluded is rather obvious. 6 

4. THE REALITY OF SPIN AND OTHER OBSERVABLES 

The canonical example of a "quantum measurement" is provided by the 
Stern-Gerlach experiment. We wish to focus on this example here in 
order to make our previous considerations more concrete, as well as to 
present some further considerations about the "reality" of operators-as- 
observables. We wish in particular to comment on the status of spin. We 
shall therefore consider a Stern-Gerlach "measurement" of the spin of  
an electron, even though such an experiment is generally believed to be 
unphysical (Mott 1929), rather than of the internal angular momentum of 
a neutral atom. 

We must first explain how to incorporate spin into Bohmian mechanics. 
This is very easy; we need do, in fact, almost nothing: Our derivation 
of Bohmian mechanics (Dfirr et al. 1992) was based in part on rotation 
invariance, which requires in particular that rotations act on the value space 
of  the wave function. The latter is rather inconspicuous for spinless particles 
- with complex-valued wave functions, what we have been considering 
up till n o w -  since rotations then act in a trivial manner on the value 
space C. The simplest nontrivial (projective) representation of  the rotation 
group is the 2-dimensional, "spin g representation; this representation 
leads to a Bohmian mechanics involving spinor-valued wave functions 
for a single particle and spinor-tensor-product-valued wave functions for 
many particles. Thus the wave function of  a single spin--�89 particle has two 
components 

(4.1) r  (r162 

which get mixed under rotations according to the action generated by the 
Pauli spin matrices a = (az, ay, O-z), which may be taken to be 

(0,) (0 (10) 
(4.2) a z =  0 a u =  i 0 a z =  0 - 1  
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Beyond the fact that the wave function now has a more abstract value 
space, nothing changes from our previous description: The wave function 
evolves via (2.2), where now the Hamiltonian H contains the Pauli term, 
for a single particle proportional to B �9 or, which represents the coupling 
between the "spin" and an external magnetic field B. The configuration 
evolves according to the natural extension of (2.1) to spinors, obtained say 
by multiplying both the numerator and denominator of the argument of  
"Ira" on the left by r and interpreting the result for the case of spinor 
values as a spinor-inner-product. 

Let's focus now on a Stern-Gerlach "measurement of A = erz." An 
inhomogeneous magnetic field is established in a neighborhood of  the ori- 
gin, by means of a suitable arrangement of  magnets. This magnetic field is 
oriented more or less in the positive z-direction, and is increasing in this 
direction. We also assume that the arrangement is invariant under trans- 
lations in the x-direction, i.e., that the geometry does not depend upon 
z-coordinate. An electron, with a fairly definite momentum, is directed 
towards the origin along the negative y-axis. Its passage through the inho- 
mogeneous field generates a vertical deflection of  its wave function away 
from the y-axis, which for Bohmian mechanics leads to a similar deflec- 
tion of  the electron's trajectory. If its wave function r were initially an 
eigenstate of  az of eigenvalue 1 ( -  1), i.e., if it were of the form 

(,4.3) r162174162 (r162174162 
where 

(1) and (4.4) I J ' ) =  0 1 ' 

then the deflection would be in the positive (negative) z-direction (by a 
rather definite angle). For a more general initial wave function, passage 
through the magnetic field will, by linearity, split the wave function into an 
upward-deflected piece (proportional to ] ]" )) and a downward-deflected 
piece (proportional to I $ )), with corresponding deflections of  the possible 
trajectories. 

The outcome is registered by detectors placed in the way of these two 
"beams." Thus of the four kinematically possible outcomes ("pointer posi- 
tions") the occurrence of no detection defines the null output, simultaneous 
detection is irrelevant ( since it does not occur if the experiment is per- 
formed one particle at a time), and the two relevant outcomes correspond 
to registration by either the upper or the lower detector. Thus the calibra- 
tion for a measurement of az is ),up = 1 and Adown = --1 (while for a 
measurement of  the z-component of  the spin angular momentum itself the 
calibration is the product of what we have just described by �89 h). 
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Note that one can completely understand what's going on in this Stern- 
Gerlach experiment without invoking any additional property of the elec- 
tron, e.g., its actual z-component of spin that is revealed in the experiment. 
For a general initial wave function there is no such property; what is more, 
the transparency of the analysis of this experiment makes it clear that there 
is nothing the least bit remarkable (or for that matter "nonclassical") about 
the nonexistence of this property. As we emphasized earlier, it is naive real- 
ism about operators, and the consequent failure to pay attention to the role 
of operators as observables, i.e., to precisely what we should mean when 
we speak of measuring operator- observables, that creates an impression 
of quantum peculiarity. 

Bell has said that (for Bohmian mechanics) spin is not real. Perhaps he 
should better have said: "Even spin is not real," not merely because of all 
observables, it is spin which is generally regarded as quantum mechanically 
most paradigmatic, but also because spin is treated in orthodox quantum 
theory very much like position, as a "degree of freedom" - a discrete 
index that supplements the continuous degrees of freedom corresponding 
to posi t ion-in the wave function. Be that as it may, his basic meaning is, we 
believe, this: Unlike position, spin is not primitive, 7 i.e., no actual discrete 
degrees of freedom, analogous to the actual positions of the particles, are 
added to the state description in order to deal with "particles with spin." 
Roughly speaking, spin is merely in the wave function. At the same time, 
as just said, "spin measurements" are completely clear, and merely reflect 
the way spinor wave functions are incorporated into a description of the 
motion of configurations. 

It might be objected that while spin may not be primitive, so that 
the result of our "spin measurement" will not reflect any initial primitive 
property of the system, nonetheless this result is determined by the initial 
configuration of the system, i.e., by the position of our electron, together 
with its initial wave function, and as s u c h -  as a function X ~  (q, ~b) of the 
state of the system - it is some property of the system and in particular it 
is surely real. Concerning this, several comments. 

The function X ~  (q, ~b), or better the property it represents, is (except 
for rather special choices of ~b) an extremely complicated function of its 
arguments; it is not "natural," not a "natural kind": It is not something 
in which, in its own right, we should be at all interested, apart from its 
relationship to the result of this particular experiment. 

Be that as it may, it is not even possible to identify this function 
X~ z (q, ~b) with the measured spin component, since different experimental 
setups for "measuring the spin component" may lead to entirely different 
functions. In other words X ~  (q, ~b) is an abuse of notation, since the 
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function X should be labeled, not by a~, but by the particular experiment 
for "measuring az". 

For example (Albert 1992, p.153), if ~b and the magnetic field have 
sufficient reflection symmetry with respect to a plane between the poles 
of our SG magnet, and if the magnetic field is reversed, then the sign of 
what we have called X~ z (q, ~b) will be reversed: for both orientations of 
the magnetic field the electron cannot cross the plane of symmetry and 
hence if initially above respectively below the symmetry plane it remains 
above respectively below it. But when the field is reversed so must be the 
calibration, and what we have denoted by X ~  (q, ~b) changes sign with 
this change in experiment. 8 

In general XA does not exist, i.e., Xe, the result of the experiment ~, 
in general depends upon ~ and not just upon A = Ae, the operator asso- 
ciated with ~. In foundations of quantum mechanics circles this situation 
is referred to as contextuality, but we believe that this terminology, while 
quite appropriate, somehow fails to convey with sufficient force the rather 
definitive character of what it entails: Properties that are merely contextual 
are not properties at all; they do not exist, and their failure to do so is in the 
strongest sense possible! We thus believe that contextuality reflects little 
more than the rather obvious observation that the result of an experiment 
should depend upon how it is performed! 

We summarize our comparison of the status of position with that of 
other observables in the following chart: 

Position Other observables 

Real Not real 

Primitive Not primitive 

Natural (kind) Not natural (kind) 

Noncontextual Contextual 

5. HIDDEN VARIABLES 

What about the "no-go" theorems for hidden variables? 9 These theorems 
show that there is no "good" map A ~ XA from operators to random 
variables (on the space of"hidden variables"), where by "good" we mean in 
the sense that the joint distributions of the random variables are consistent 
with the corresponding quantum mechanical distributions whenever the 
latter are defined. 
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As commonly understood, these theorems involve a certain irony: They 
conclude with the impossibility of a deterministic description, or more 
generally of  any sort of  realist description, only by in effect themselves 
assuming a "realism" of a most implausible variety, namely, naive realism 
about operators. For why else would a realist, even one who is also a 
determinist, expect there to be such a map? After all, the fact that the same 
operator plays a role in different experiments does not imply that these 
experiments have much else in common, and certainly not that they involve 
measurements of  the same thing. It is thus with detailed experiments, and 
not with the associated operators, that random variables might reasonably 
be expected to be associated. 

When faced with the inconsistency of possible values as expressed 
by the "no-go" theorems, how should one respond? As does a "typical" 
physicist, by declaring in effect that quantum mechanics does not allow 
us to ask the obvious questions? But even if we should chose to forbid 
ourselves from asking sufficiently many questions to notice it, the state of 
affairs described by the theorems nontheless logically implies the obvious 
conclusion, namely, that the incompatible joint values refer to different, 
and incompatible, experimental set-ups, just as Bohr told us all along. 
This mathematical incompatibility of "joint values" thus seems to attain 
genuine physical significance only to the extent that we are seduced by 
naive realism about operators. 10 

Referring to the axioms involved in the no-hidden-variables theorems, 
Bell says: 

A final moral concerns terminology. Why did such serious people take so seriously axioms 
which now seem so arbitrary? (Bell 1982) 

To this question we are tempted to respond that the answer, of  course, is 
that these "serious people" were deluded by naive realism about operators. 
However, what Bell is really asking is why they should have been so 
deluded, as is made clear by what he says next: 

I suspect that they were misled by the pernicious misuse of the word 'measurement' in 
contemporary theory. This word very strongly suggests the ascertaining of some preexisting 
property of some thing, any instrument involved playing a purely passive role. Quantum 
experiments are just not like that, as we learned especially from Bohr. The results have to 
be regarded as the joint product of 'system' and 'apparatus,' the complete experimental 
set-up. But the misuse of the word 'measurement' makes it easy to forget this and then 
to expect that the 'results of measurements' should obey some simple logic in which the 
apparatus is not mentioned. The resulting difficulties soon show that any such logic is not 
ordinary logic. 

Note, in particular, the sentence that ends with "in which the apparatus 
is not mentioned." This makes little sense without an implicit reference 
to naive realism about operators: Everyone would agree that, even if it 
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were not necessary to mention the apparatus p e r  se,  at least s o m e t h i n g  

would have to be mentioned; Bell is here criticizing the view that for this 
"something" the operator-as-observable that is being "measured" should 
suffice. 

Bell continues: 

It is my impression that the whole vast subject of 'Quantum Logic' has arisen in this way 
from the misuse of a word. I am convinced that the word 'measurement' has now been 
so abused that the field would be significantly advanced by banning its use altogether, in 
favour for example of the word 'experiment.' 

6. COMMENTS 

Let's reconsider a fragment of  one of  our previous Bell quotations: 

If you make axioms, rather than definitions and theorems, about the 'measurement' of 
anything else [other than position], then you commit redundancy and risk inconsistency. 

We would like to propose what we believe to be a small improvement. 
Replace "measurement" by "behavior." Then add to "redundancy" and 
"inconsistency" the further possibility of  irrelevance. In other words we 
are proposing the following amendment: 

I f  you make axioms, rather than definitions and theorems, about the behavior of anything 
else - beyond what is required to fully specify the behavior o f  positions - then either you 
commit redundancy and risk inconsistency, or you commit irrelevancy 

For example, suppose we add, say to Bohmian mechanics, some axioms 
governing the behavior of  "momentum." Then there are two possibilities: 

1. On the one hand, by "momentum" we may mean, say, mass times 
velocity, in which case we have either redundancy or inconsistency. 

2. On the other hand, if "momentum" is not given a meaning in terms of  
the behavior of  configurations- if  it is a brand new property as it were 

- then it is irrelevant! 

A related lesson of  Bohmian mechanics is one of  flexibility: Not only 
need we not consider "other observables" on a fundamental level, it is 
not even necessary that the primitive variables (what the theory is fun- 
damentally about )  - in Bohmian mechanics the positions of  the particles 

- be "observables" in the sense that they are associated with self-adjoint 
operators in the usual way. That they are for Bohmian mechanics is best 
regarded as an accident arising from incidental features (for example, the 
form of  the inner product) of  the mathematical structure of  nonrelativistic 
quantum theory.11 
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Let's now return to the objection, "What about other observables?" 
Since operators as observables are nothing more than a convenient math- 
ematical device for describing what is most relevant about certain special 
experiments, asking this question amounts to nothing more than asking, 
"What about special experiments?" But put this way, there is no longer any 
suggestion of inadequacy or incompleteness. 

7. OTHER INTERPRETATIONS 

In this brief section we wish to outline how some of the more familiar 
interpretations of quantum theory fare with regard to the fallacy of  naive 
realism about operators. We do so in the following chart: 

Guilty Not guilty 

Copenhagen (quantum orthodoxy) Copenhagen (Bohr) 

Many worlds I 2 Many worlds 13 

Quantum logic 14 Many minds 15 

Quantum probability 16 Spontaneous localization 17 

Modal interpretation 18 Stochastic mechanics 19 

Consistent histories 2~ Bohmian mechanics 

Note that, as is so often the case, the Copenhagen interpretation is hard to 
pin down! 

8. DIATRIBE 

Why should we (continue to) insist upon a metaphysics-  that observables 
or properties should somehow be identified with operators - which, while 
seeming to express the essential innovation of quantum theory, in fact con- 
flicts (or at least is strongly at odds with) the very mathematical structure of 
the theory itself?. What is the point of  multiplying properties, new properties 
irreducible to what we have already, when their mutual incompatibility has 
been enshrined in quantum orthodoxy from its very inception (the uncer- 
tainty principle, complementarity); when the no-hidden-variables theorems 
establish their joint impossibility; so that in order to save them one must 
resort to such expedients, contortions, and perversions as quantum log- 
ic and quantum probability (or, at best, to something like van Fraassen's 
modal interpretation of quantum theory (van Fraassen 1991), with all the 
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e n o r m o u s  complex i ty  its formula t ion  requires);  w h e n  they  add no th ing  o f  

subs tance  or  value  to our  unders tand ing  o f  the use o f  operators  as "observ-  

a b l e s " -  o f  the role o f  operators  in quan tum t h e o r y - w h i c h  is in fact  quite 

s t ra ightforward,  as a com pac t  express ion o f  the mos t  impor tant  or  relevant  

features o f  certain experiments ,  the analysis  o f  wh ich  reveals  that  wha t  

is go ing  on  dur ing such exper iments  is in general  not  a mea su remen t  o f  

the associa ted  o p e r a t o r -  wha t  wou ld  that m e a n  a n y w a y ?  - nor, indeed,  o f  

any th ing  else wor th  men t ion ing!?  
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NOTES 

1 That we don't understand the last link in the causal chain leading to our conscious per- 
ception is not very relevant here. 
2 This is really no assumption at all, since the outcome should ultimately be converted to 
digital form, whatever its initial representation may be. 
3 In the simplest such situation the unitary evolution for the wave function of the com- 
posite system carries the initial wave function ~ = ~b | if0 to the final wave function 
~ f  = ~,~ ~b,~ @ ~/,,~, where q~0 is the ready apparatus wave function, and ff,~ is the appa- 
ratus wave function corresponding to outcome c~. Then integrating I~f 12 over supp~I,~, we 
immediately arrive at (3.3). 
4 Operators as observables also naturally convey information about the system's wave func- 
tion after the experiment. For example, for an ideal measurement, when the outcome is c~ 
the wave function of the system after the experiment is (proportional to) PT~ ~b. 
5 Even speaking of the observable A as having value )~,~ when the system's wave function 
is in ~,~, i.e., when this wave function is an eigenstate of A of eigenvalue )~,~, insofar as it 
suggests that something peculiarly quantum is going on when the wave function is not an 
eigenstate whereas in fact there is nothing the least bit peculiar about the situation, perhaps 
does more harm than good. 
6 It might be objected that we are claiming to arrive at the quantum formalism under some- 
what unrealistic assumptions, such as, for example, reproducibility. (We note in this regard 
that many more experiments than those satisfying our assumptions can be associated with 
operators in exactly the manner we have described.) We agree. But this objection misses 
the point of the exercise. The quantum formalism itself is an idealization; when applicable 
at all, it is only as an approximation. Beyond illuminating the role of operators as ingre- 
dients in this formalism, our point was to indicate how naturally it emerges. In this regard 
we must emphasize that the following question arises for quantum orthodoxy, but does 
not arise for Bohmian mechanics: For precisely which theory is the quantum formalism 
an idealization? (For further elaboration on this point, as well as for a discussion of how 
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"generalized observables" (Davies, 1976) naturally arise in Bohmian mechanics, see Diirr 
et al. 1996 and Daumer et al. 1996.) 
7 We should probably distinguish two senses of"primitive": i) the strongly primitive vari- 
ables, which describe what the theory is fundamentally about, and ii) the weakly primitive 
variables, the basic variables of the theory, those which define the complete state descrip- 
tion. The latter may either in fact be strongly primitive, or, like the electromagnetic field in 
classical electrodynamics, they may be required in order to express the laws which govern 
the behavior of the strongly primitive variables in a simple and natural way. While this 
probably does not go far enough - we should further distinguish those weakly primitive 
variables which, like the velocity, are functions of the trajectory of the strongly primitive 
variables, and those, again like the electromagnetic field, which are n o t -  these details are 
not relevant to our present purposes, so we shall ignore these distinctions. 
8 The change in experiment proposed by Albert is that "the hardness box isflipped over." 
However, with regard to spin this change will produce essentially no change in X at all. To 
obtain the reversal of sign, either the polarity or the geometry of the SG magnet must be 
reversed, but not both. 
9 The classical references on this topic are: von Neumann 1932, Gleason 1957, Jauch et al. 
1963, Kochen et al. 1967. For a critical overview see Bell 1966, 1982. 
10 This is perhaps a bit too strong: As is well known, Bell (Bell 1964) has shown that 
no-hidden-variables-type arguments, suitably applied, can be used to establish the rather 
striking physical conclusion that nature is nonlocal. 
11 For some steps in the direction of the formulation ofa  Lorentz invariant Bohmian theory, 
as well as some reflections on the problem of Lorentz invariance, see Berndl et al. 1996. 
12 Everett 1957. See also De Witt et al. (eds.) 1973. 
13 We are referring here to Bell's reformulation of Everett's theory (Bell 1981). 
14 'Quantum logic' was proposed by Birkhoffand von Neumann (Birldaoff et al. 1936). For 
more recent presentations and developments, see, e.g., Jauch 1968, and Beltrametti et al. 
1981. 
15 See Albert 1992. 
i6 That quantum mechanics has to do with a sort of'noncommutative' probability originat- 
ed probably with von Neurnann 1932. A comprehensive list of the recent literature would 
probably be out of place here. 
17 We are referring to the so called GRW-theory (Ghirardi et al. 1986, 1990, 1995), in 
particular, as presented by Bell (Bell 1987, p. 200). (See also the contribution of Ghirardi 
to this issue.) 
18 Kochen 1985~ Dicks 1991, and van Fraassen 1991. 
19 Nelson 1966, 1985. (See also Goldstein 1987.) 
20 Gell-Mann et al. 1993, Griffiths 1984, Omnes 1988. 
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