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I. Introduction 
In Fig. 1 two linearly elastic strings So and S t of unstretched lengths l o and f t  

respectively are represented, one end of each being joined at P, the other end of So 
being tethered at Po andthe remaining end of St at P r  The distances d(PoP ) = m o  
and d(PPt)=~ t exceed fo and t 1 respectively. Suppose P is fixed somewhere on 
the straight line segment PoPt in such a way that  there can be no interaction 
between the strings and let the string tensions be T O and 7"1 respectively. Then 
the configurations of the two strings are in equilibrium and stabler; they will 
remain so upon freeing P, however, if and only if T O = T t. 

In Fig. 2 a horizontal tube with a closed stopcock in it is filled with liquid 1, 
which extends past the ends of the tube to form two equal spherical segments 

Fig. 1 

| 

Fig. 2. Two identical banoon (spherical cap) interfaces between fluids 1 and 2, each of equal 
density, isolated by the closed stopcock. When the stopcock is opened, the interfaces will change. 

1 We assume that there is no external body force such as gravity acting on the strings. 
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which interface with liquid 2 immiscible with liquid 1 but of equal density p. The 
spherical segments are each larger than hemispheres. The barrel of the stopcock 
is also filled with liquid 1. 

Elementary considerations show that the configurations of the fluids are 
stable and that the quantity p + p g z  (where p is the hydrostatic pressure and z is 
the height above a horizontal datum plane) is equal at points A and B; never- 
theless it is well known to students of capiUarity that upon opening the stopcock 
the configurations will alter. (A common result is that fluid will pass through 
the stopcock (in a direction depending on initial disturbances), until one of the 
free surfaces is less than a hemisphere, and of the same radius as the other surface, 
volume being conserved.) 

We have mentioned above examples of how the stability of disjoint systems 
may be influenced if constraints on them are relaxed so that they may interact. 
In the first case the right hand end of So was fixed as was the left hand end of 
$1 in the disjoint case, but in the interacting case these end points were merely 
required to be the same point, being otherwise free. In the second case the volumes 
V~ and V~ of the disjoint regions R a and R~ were both fixed, at values VA and V s 
say, but upon opening the stopcock these were merely required to satisfy the 
equation Va + VB = Va + VB. 

Both of these examples (and many others) may be identified with members 
of an abstract structure which we shall develop in this paper. We shall prove a 
theorem of central importance concerning how the stability of an interacting 
collection of systems may be deduced from information about the systems it 
comprises, and we shall apply the theorem to a number of examples in capillarity, 
providing (in particular) the theory for a hitherto unexplained experimental 
result of PLATEAU [22]. This theorem is of wide applicability in stability theory 
and the fact that our examples are confined for the most part to capillarity should 
not be considered a limitation. The theorem will be formulated in an abstract 
fashion but is mathematically very simple. The advantages of abstract formulation 
are obvious. We shall need to introduce some primitive concepts first. 

H. Primitive Concepts 

A. Unit, Simple Element. A unit is an ordered pair (T, H)  where ~ is a topo- 
logical space called the configuration space, and where H is a real valued functional 
on ~ called the energy functional. 1 Each element C in r~ is called a configuration, 
and the value H(C) is called the energy of C. A configuration C of a unit is said 
to be stable if it is locally minimizing for H, i.e., 

H(C)<H(C) VC~(C), C,C 

where J / ' (C)  is a neighborhood of the configuration C. If C satisfies the relation 

H(C)<H(C) V CE~r(C) ,  

then it is called weakly stable. 

1 We use the symbol H for the energy functional because, in many examples, H turns out to 
be the Helmholtzfree energy functional of the physical system considered. 

11" 
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P.o. . . . .  c .. ~ ,P~ P 

Fig. 3 

Remark. The above definition is not restricted to equilibrium configurations; in 
fact equilibrium cannot necessarily be defined on configuration spaces in general. 
However, in cases for which equilibrium can be defined independently of energy 
considerations, such as in the theory of statics, we find that stability (based on 
the above definition) implies equilibrium. 

For  an example of a unit with a stable configuration consider a linearly 
elastic string of unstretched length :0, its ends fixed at the points Po, P1 in ]R 3, 
the two points being at a distance ? apart, where # > r (see Fig. 3). Let S be the 
totality of segments of smooth curves in ]R 3 joining Po and P~. We define a 
topology on S by defining convergence in S. First we define the functional i b 
taking the ordered pair (CI, C2) of elements of S to ]R. Let x 1, x2 be points of 
1R 3 belonging to the curves C1 and C2 respectively. 

Then 
b (C1, C2)--- max el(x1, C2)-- max (rain d(xl ,  x2)) 

xIECl  XleCI  x2~C2 

where d is the Euclidean distance function on R 3. Given a subset S of S, and 
(? e S, then a sequence C1, C2 ... (7, ... 6 S converges to ~ if and only if b (Cn, t~) ~ 0 
as n ~ 00. S is defined to be closed if and only if all sequences in ~/which converge 
have limits in ~/. The collection of closed sets thus defined satisfies the closed 
set axioms for a topology on S. Let cf be the associated topological space, and 
H be the strain energy functional � 8 9  2 where # is the arc length of any 
curve C6C~, k being the positive elastic constant of the string. 2 By a well known 
result in Euclidean geometry, the configuration C" defined by the straight line 
PoPI is stable. 

A constrained unit is an ordered trio (~, H, V), where cs and H form a unit, 
and where V is a continuous mapping 

called the constraint mapping. We can provide an example of a constrained unit 
as follows: Consider a (straight) half line L in Fig. 3 starting at P0, passing 
through P1, and continuing to ~ .  P is an arbitrary point of L at a distance more 
than :o f rom Po. ~ is the set of all such points, c# is the totality of segments of 
smooth curves with one end point at P0 and the other end point belonging to ~ .  
Let _P be the end point in ~ of any t~Ecg. Then V(t~) will be defined as the length 
of the straight line PoP, and H ( C )  will be defined as before in terms of the arc 
length ? of the curve C: H(C)=�89 2. We define the topology on ~ by 

1 The functional b is not a metric, being unsymmetrical and not satisfying the triangle in- 
equality. 

2 This choice of energy functional corresponds to a physical situation for which body forces 
are absent, and the strings are in a state of uniform strain. The uniform strain will be discussed 
further in a later section on examples. 
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defining convergence in cg in terms of b(Ca, C2), as in the preceding example. 
Then it can be verified easily that V is a continuous function on ft. 

For a constrained unit suppose there exists a configuration C" with con- 
straint V (i.e. V (C)=  V) such that 

H(C)<H(C) 
for all C which satisfy 

C ~ X ( C ) ,  C~:C, V(C)=V; (1) 

then and only then the configuration C will be termed stable. In view of (1) it is 
convenient to introduce the notation C(V) to represent any configuration with 
constraint V, i.e. 

V(C(V)) = V. 

Then C(V) is stable if and only if 

H(C(V))<H(C(V)) VC(V),C(V), 
We are now in a position to define a simple element. A simple element is a 

constrained unit with the following additional properties: 

1) There exists a base configuration C(V) with the base constraint V such that 

U (V) = V(JV" (C (V))). (2) 

2) For each V~N(V) there exists a configuration C(V)~JV(C(V)) such that 

H(C(V))<H(C(V)) V C(V) E JV'(C(V)), C(V)+-C(V). (3) 

Here N(V) denotes a neighborhood of Vin ~R, i.e., an interval containing V 
as an interior point. 

Note. The first property is essential for the proofs which we shall make later on. 
This property is not a consequence of the continuity of the constraint mapping! 

We shall use the notation E=(Cg, H, V, V, C(V)) for a simple element. The 
linearly elastic string provides an example of a simple element, C(V) being simply 
the straight line segment PoP of length V for each P e ~ .  

Now we shall motivate the next two important concepts by means of another 
simple example. These concepts are multiple element and ensemble. Consider the 
following elementary mechanical problem. Two linearly elastic strings of un- 
stretched lengths, fo and ti ,  and energy functionals Ho=�89 2 and 
Ha = �89 ( m a - t l )  2 (where too, ma are the respective stretched lengths) are joined 
as shown in Fig. 1 and described in the introduction. The problem is to investigate 
the stability of various proposed configurations, and in particular to determine 
whether a given proposed location of the junction point P belongs to the stable 
configurations when P is free. The criterion for stability is that the configuration 
taken up by the strings should locally minimize the "ensemble" energy functional 
H -  H I +/-/2. Putting aside for the moment the fact that we know the rather obvious 
intuitive solution which is that the only stable configuration has each string 
rectilinear with P between Po and P~ on the straight line joining them, and so 
disposed that To=ko(-~o-to)=kaC-~l-Ea)=T a, where mo and ml are the 
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Fig. 4 

(straight line) lengths of the two strings, we examine by what logic we may conclude 
this. First let us simplify the problem by assuming that P lies between Po and PI 
on the straight line joining them (we will later indicate how to remove this as- 
sumption). Next we shall show how the concept of a simple element may be used. 

If we consider each string separately, it is convenient to take as origins of 
one dimensional coordinate systems the ends of the strings Po and Pl which in 
the problem are attached to the points Po and P1- Then we have two simple 
elements Eo=(Cgo, Ho, Vo, Vo, Co(Vo)) and El=(cgl, Hi, V1, V1, CI(V1) ) asso- 
ciated with the strings (see Fig. 4). Now we put the origins Po, P1 at Po, P~, 
respectively, in Fig. 1 and take the coordinate axes of the two one-dimensional 

> 

systems to have positive sense in the direction PoP~. If we take Vo=m o and 
V1 = - m l  (we also suppose that F o >fo, -V~ >tl) ,  then clearly, when P is fixed, 
the pair of configurations Co(Fo), CI(V1) is in no way coupled and certainly 
minimizes Ho and H~ locally. The question to be resolved concerns whether this 
pair still minimizes H if the constraint Vo=mo, V~ = - ~ 1  is relaxed to 

V o - V ~ = ~ o + ~ I = L ,  a constant. 

In considering pairs {Co(Vo), Cl(V1)} of configuration functions whose 
Helmholtz energy is to be compared with that of {Co(Fo), C~ (F1)) we note that 
because of properties 1) and 2) of the simple element we may ignore all except 
the pair of one parameter families of straight lines {Co (Vo), C1 (V1)}, so that it is 
sufficient to consider merely the energy function 

;,~(Vo)==- o~t~(Vo, Vo - L ) = H ( C o ( V o ) ,  C1 (Vo - L)) 

instead of the energy functional H(Co, C~). Then the derivatives evaluated at 
Vo-- Vo are 

dVo = ko(Vo - fo) + kl (V1 +[1) = To - T1, 

d2~ 
~Vo 2 =ko+k~. 

The positivity of ko and k 1 ensures the convexity of # which in turn guarantees 
the minimizing character of the equilibrium solution To = T1. 

It is with the development of the above reduction from a functional to a 
function that we shall be concerned in what follows. We note that we could 
remove the assumption that P lies on the line joining Po and P1 by using pairs 
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of three dimensional coordinate systems and corresponding three dimensional 
vectors Vo, and V~. The constraint relations would then read 

Vo- v~ = Po- P. 

where Vo-1:1 is the (constant) vector connecting Po and PI in Fig. I, and we 
would have to use the concept of a triple element rather than a simple element. 
A multiple element is defined precisely below, but roughly speaking it is generalized 
from a simple element upon replacing the scalar Vby the vector Vin an n-dimen- 
sional space. Of course for a multiple element, n > I. 

B. The i th Element. We shall be dealing with collections of multiple elements 
later, so for consistency of notation we shall define here the i th element E~, using 
subscripts for all quantities accordingly. We use the notation 

E,=(cd,, H,, g~, ~,  C'i(~)) (4) 

for the i th element. V~ is a vector in ]Rk' with components V~ i, Vz i . . . .  Vk,. ~. The 
following list of entities with the properties specified comprises the i th element. 

l) A topological space ~ called the configuration space. 
2) A continuous constraint mapping from c~ to Nk,, i.e., a collection of 

constraint functionals 

3) The energy functional from c~ i to IR, i.e., 

4) A base constraint Vi and a base configuration Ci = C~ (~) which is stable, i.e., 

H,(C,(~))<H,(C,(~)) V C,(~) e ~ ( C , ) ,  C,(~)  :t: Ci. (5) 

5) There exists a neighborhood Ni(F~ ) of Vi in ~k, such that 

N ( ~ )  = ~ (~ (C , (~ ) ) ) .  (6) 

6) For  each VieN,(~)3 C,(Vi) for which 

Hf(V~(~))<H,(Ci(F~)) VC,(~)e~r(C,(~)),  C , ( ~ ) *  C,(~). (7) 

Also, we define the reduced energy functional of the i th element on N ( ~ )  by 

= ~ ( ~ )  - H, (C',(E)). (8) 

C. Ensemble. A collection of elements together with a certain ensemble 
constraint, which we shall specify precisely below, will be called an ensemble. 

Consider a collection of elements El,  E 2 . . . .  E~ ... E,; we define 1 the ensemble 
configuration space c~ by 

r162 x~'2 ... x~i ... xCg, 

1 We use the usual product topology on ~ and on other Cartesian products defined here. 
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and the ensemble energy functional H(~), ~ e c g, by 

H(a)=~(H,(aa), H2 (a2) . . . .  Hr(a,)), a,e~,, (9) 

where q~ may be any strictly monotonic increasing function of r real variables. 

(In particular examples we shall use H =  ~ Hi, but the above definition is ade- 
quate for the general theory.) i=, 

r 
We put n = ~ ki, and let { U 1 ... U,} = U be a vector in IR" with coordinates 

i=1 
U1, U 2 ... U, defined by arranging V u in order: 

{(VI1,  V21 . . . .  Vkl l )  . . . .  ( V l  l . . . .  Vkii)  . . . .  ( V l r  , . . .  Vk~.r)}. (10)  

is obtained by replacing Vii in the above list with Vii. The constraint functional 
U : ~  ~ ~ "  is the Cartesian product of the element constraint functionals, i.e., 
U (a) has the n coordinates U1 (a), U2 (a) . . . . .  U, (a) given by the list 

{ ( V i i  ( ~ 1 ) . . .  Vk, 1 (0~1)) . . . .  (Vli(O~i) . . .  gk , i (~ i )  ) . . . .  (glr(O~r) . . .  gkrr (~r ) ) } .  (11) 

A neighborhood of a in ~g will be denoted JV'(a), and a neighborhood of 0 
in IR" will be denoted N(U). The product structure together with relation (6) 
guarantee the existence of a neighborhood N(U) such that 

N ( 0 ) =  U(W(C)) ,  

where C is of course (C1, C2, ... C,). As before we denote by C(U) any con- 
figuration in ~ having the constraint U, i.e., 

C(U) =(C~ (V,), ... C,(V~)). 
We put 

c ( u )  = ( v , ) ,  ... c , ( v , ) )  
and 

c(O) = (cl  # 0 , . . .  c ,#r))  = (c , ,  G ... e,). 

C(U) will be called the base configuration and U the base constraint. 
So far we have defined a collection (~, H, U, U, C(U)) which is no more 

than a "composi te"  element formed by the Cartesian product of E,, i=  1, 2 ... r. 
Suppose, however that a new ensemble constraint is introduced as follows" 

i) A neighborhood W ( C )  is assigned. 

ii) An f dimensional ( 0 < t < n )  manifold F in U(W(C))  containing U as an 
interior point (with respect to the relative topology of the manifold) is 
assigned. 

Then if cgr is that subset of ~ whose image under the constraint mapping is F, 
the collection 

e = ( ~ L  H, U, U, C(U), r) 

will be called an ensemble; any element ~erg r will be called a configuration of the 
ensemble. By rgv, cgv, and cgr we denote subsets of Y ( C ( U ) )  whose images under 
the constraint mapping are U, U, and 1", respectively. From ii) we have 

c ~  r. 
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HI. Stability of the Base Configuration of an Ensemble 

A. General Result. From (7), (9), (10), and (11), we have 

H(C(O))<H(C) V C . C ( U ) ,  C e f  v. (12) 

We can therefore say that the base configuration of the ensemble g is stable 
over f v .  However, we shall call the base configuration of an ensemble g stable 
if and only if it is stable over f r  at the point U, i.e., 

H(C(O))<H(C) VC.C(O),  C e l l  (13) 

This definition shows clearly the role of the ensemble constraint which is charac- 
terized by the manifold F. 

Remark. If some configuration ccef  v satisfies (13) with ~ replacing C(U), i.e., 
H(a)<H(C) VC#e, C e f  r, then it necessarily satisfies (12) since f v c f r .  But 
C'(U) is unique among configurations belonging to f e  and satisfying (12). Thus 

= C(U). Our focus of attention on C(U) rather than on some other configuration 
belonging to ode is therefore justified. 

Now consider the relation 

~i(e(O))<n(e(v))  v v . u ,  v e r .  (14) 

If (13) holds, then clearly (14) also holds because C(U), for UeF, certainly 
belongs to fir. In other words (14) is just an/-dimensional  special case of (13). 
The general result of this paper is that the converse is also true. That  is to say, if 
(14) holds, so does (13). To facilitate the proof we introduce the notation fv , ,  
i=  1, 2 . . . .  r, to mean the subsets of W(C~(~))  for which V~(f v') = V~ and 1 - I f [  ' 

i 
to mean their Cartesian product. Next, we note that because of the relations (7), 
(10), and the monotonicity of ~b, the following relation, 

H(C(U))<H(C), (15) 

holds V C # C ( U ) ,  Cel-[f  v' and thus V C # C ( U ) ,  Ce(1-[f v', Ver). Hence, in 
i i 

view of the product topology, (15) holds u C e f  v, UeF. But then, 
using (14), we have 

H(C(tI))<H(C), C#r Ce~ v, VeF, 

which is no more than the relation (13). 

An ensemble is thus reducible. That is to say the variational problem asso- 
ciated with the stability of the ensemble can be reduced to a minimization problem 
over a finite dimensional manifold F in lR". 

It is convenient to define the reduced energy functional ~ (U) on F by 

~g (U)-  H (C(U)). (16a) 

Suppose that Z=(Z 1, Z2 .... Zt) is a set of coordinates on F such that any point 
U of F has the representation U =  19(Z), and i~ -x (/-)= WeIR t. Then we define 
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the energy function ~ ( Z )  to be the representation of ~ on W, i.e. 

~r (Z) = ~ (0(Z))  = H(C-" (0(Z))). (16b) 

Also, we put Z - / ~ - 1  (~). By the analysis following the preceding remark, we 
have proved the abstract result whose representation in terms of Z is 

Theorem 1. The base configuration C(U) of  an ensemble 8 is stable i f  an only i f  
the function o f t  variables, Y,~ (Z  1, Z2 . . . .  Zt), has at the point Z = 7, a local minimum. 

B. Ensembles ot Smooth Curvature. If Yg(U) has continuous second deriv- 
atives on F and /~(Z) has continuous second derivatives on W, the ensemble 
will be said to have smooth curvature. Theorem 2 below follows from Theorem 1 
and elementary calculus. 

Theorem 2. The base configuration of  an ensemble of  smooth curvature is stable i f  

0--~=0,  (17a) 

and 
(q, ~,r Vq=l=O, q~lR e, (17b) 

where ~ is the matrix of  second derivatives o f  ~ and all derivatives are evaluated 
at the point Z = Z .  I f  in (17b) the > sign is weakened to >, then equations (17) 
become necessary conditions for stability. 

Remark. Equation (17a) corresponds of course to the usual conditions of equilib- 
rium. 

C. Linear Ensembles. Suppose that for an ensemble ~, the manifold F is 
contained in an t dimensional linear subspace of IR". Then 8 will be called a 
linear ensemble. Let ~ t  be the subspace containing F. d / t  has the representation 

Biy(Uj-Uj)=O; i = 1 , 2  ... k; k< n ,  (18) 
j = l  

where k = n - L  The coefficient matrix [Bij], where i is the row index, has full 
rank k. 

Note. A linear ensemble is not necessarily an ensemble of smooth curvature, but 
if it is we have 

Theorem 3. The base configuration of  a linear ensemble of  smooth curvature is 
stable i f  

. O~r 
i ~-1 ~ sl = 0 (19) 

and 
11 

= j=l aU~OUj s : j ,  (2>0 (20) 

where the derivatives are evaluated at U = U and the relations must hold for all 
nonzero vectors s (whose coordinates are sl, s2 .... s,) which belong to the right 
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hand null space of the matrix [Bij ]. I f  the base configuration of  a linear ensemble 
of  smooth curvature is stable, then (19) holds together with Q>O. 

We denote the Hessian matrix ~ as 

= F  O2Jg 

; ' ~ - [  OU, OUj v,=V,]" (21) 

There is another form of the relations (20) which is sometimes useful. This 
is well treated by HANCOCK [16]. The result may be stated as follows: 

Theorem 4. I f  B is a real m x n matrix (n > m > O) of  rank m, s is any non-null 
(real) column vector in its right hand null space and ;,@ is a real symmetric matrix, 
then 

sr;,~as----(s, ~ s ) > 0  (22) 
i f  and only i f  the determinant 

i B T ~ . . . . . .  . . . . . . . .  .01 (23) 
vanishes for positive values of  I~ and only for positive values of  #. In (23) 0 is the 
m x m null matrix and I the n x n unit matrix. It can be shown that D(#) is a poly- 
nomial of  degree n - m ,  

n - - m  

D (#) = ~] c i I ~i, 
i=O 

with exactly n - m  real zeros. These will all be positive i f  and only i f  the coefficients 
c o, c, . . . . .  c._ m are non-zero and alternate in sign. 

IV. Linearly Elastic String Simple Element 

The linearly elastic string has already been used to provide an example for a 
unit, a constrained unit, and a simple element; cf. Sections I and II. We assumed 
there that the configurations were uniformly strained; we show here that each 
uniformly strained configuration is itself the minimizing configuration of a unit 
whose configuration space includes all configurations of smooth non-uniform 
strain, thereby justifying our earlier assumption. 

We start with a straight unstrained string of length t o. Suppose that one end 
of the string is fixed at a point Po and that a given material point P is at a distance 
x from Po- Then let the string be strained (the material points remaining in a 
straight line) in such a way that the distance Po P becomes x+~(x) .  Let S be 
the space of real-valued C 1 functions with uniform norm whose domain is [0, to], 
and let ~ be the subset whose elements take on the value 0 at x=  0 and the parti- 
cular value e at X=~o. Then we require ~ .  Thus ~ is the configuration space. 
We define the Helmholtz functional 

H - � 8 9  where ~e~ ,  

to , d~ 
J(~)=S(~'(x))2dx,  and ~(x)=-d-~-. 

0 

Then (8, H) form a unit. 



160 R.D. GILLETTE & D. C. DYSON 

TO show that this unit has a stable configuration C given by the function 
- e x  

= ~ - o '  we compute the difference K(~)=J(~)-J(~) where ~ Z .  This is facili- 

tated by putting ~ = ~ + ~/, where r/s S with ~/(0) = r/(fo) = 0. We obtain 

to t /'o 

Hence J(~+~/) is minimized by ~/=0. 

This argument may be applied to a curved segment; the same formulae can 
be used if x is taken as the arc length from one end of the string. 

V. Axisymmetric Capillary Simple Elements 

The motivation for this section is the analysis of the stability of some capillary 
systems, e.g. two immiscible fluids enclosed in a rigid container maintained at 
constant temperature and so disposed that  there is one, connected interface 
between the two fluids, the remaining boundary points of the fluids being also 
boundary points of the rigid container. We consider the fluids and solid to be 
mutually inert, incompressible, and not acted upon by external flields, such as 
gravity. Then, according to a well known principle of thermodynamics, a given 
configuration of the system will be stable if and only if it is locally minimizing 
for the Helmholtz free energy. We consider here a special case, known as the case 
with fixed contact line, for which it is proper to consider the Helmholtz free 
energy to be proportional to the area .4 of the liquid-fluid interface 

H=aA. 

a is a positive constant called the interfacial tension. We distinguish two cases. 

A. Simply Connected Surface through a Fixed Contact Circle. In Fig. 5, 
D is the edge view of a single circular hole of radius y in a rigid lamina L. C(V) 
is a smooth surface segment which lies entirely on one side of L (except for its 
boundary points which are the edges of D) and which together with D enclose a 
simply connected region of volume V. ~+ is the totality of such surfaces for 
V~(0, oo). C(0) is any smooth surface whose projection onto L covers D and only 
D, and which together with the surface D forms a collection of disjoint regions 
such that the sum of the volumes of the regions above L equals that of those 

. . . . . . . . . . . . . . . .  . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . .  L 

Fig. 5 
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Fig. 6. Spherical cap interface C"(V) of altitude ,~ between liquids 1 and 2, bounded by the edge 
of circular gap E. No body forces act, and Vmay be altered by displacing pistons simultaneously 

up, or down. 

below L. ~o is the totality of such surfaces. ~o is ~o u{surface D}. ~_  is formed 
by reflecting c~+ in the plane of D. By convention we take V ( C _ ) = -  V(C), 
where CeC~+ and C_ is the reflection of C. ~K is c~+ UCKoWC~_, and c~r is the 
subset of ~ with volume V. C'(V) ~c~ v is a spherical segment. We define a topology 
on c~ by defining convergence in ~ in the same way as in the first example. That  
is, first we define the functional 

b(CD C2)- max d(x 1, C 2 ) -  max (min d(xl ,  x2)) 
�9 .~1 E C l  .-gl ~ C I  Jr E C2 

where d is the Euclidean distance function on the physical space. Then we say 
that a sequence C1, C2 ... C , s ~  converges to (~s~ if and only if b(C,, (~)-*0 
as n ~ oo. The topology on ~ is thus fixed. 

Let A be the area of an arbitrary surface Ce~ .  Then we define 

H-aA. 

If Vis any real number, then from the well known fact that a sphere has minimum 
area for given volume we conclude that the collection E = ( ~ ,  H, V, V, C(V)) here 
described is a simple element. The family C(V) (or at any rate that part of it 
for which I V[ is conveniently modest) can be realized in practice with soap films, 
or with equipment such as that shown in Fig. 6. The spherical interface C(V) 
between two fluids of equal density is terminated at the circular gap E in the 
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Fig. 7. if-- 17 plot for the physical system of Fig. 6 

equipment shown 1. V may be altered by moving both pistons upward or downward 
each sweeping out the same volume, z Elementary theory tells us that C(V) with 
fixed V minimizes the Helmholtz functional H. 

Suppose that body forces are absent. Then if AP is the pressure difference 
between fluid 1 and fluid 2, R is the radius of the interface when 6 > 0  and minus 
the radius when &<0, and ,4 is the area of the spherical cap, we have 

V=-~-(372 +62), (24) 

d.~ AP 2 46 
d V -  a R y~r~r-, (25) 

dZA 1 d ( A P ) /  dV 8(~2-& 2) 
a d6 / - d - $ -  (26) ~(~2 + 62)3. 

In particular, when V= 0 the quantity given by (26) has the value 

8 
x---~" (27) 

We shall need these formulae for the treatment of the stability of some en- 
sembles. A plot of r 3 against r/=AP?/a is shown in Fig. 7. This may be 
easily constructed (using 6/~,, as a parameter) from relations (24) and (25). For  
values of q outside the range [ - 2 ,  2] there are no corresponding values of ~; 
while for values of q belonging to ( - 2 ,  0 ) u  (0, 2) each r/ corresponds to two 
values of ~, for example ~1 and ~z as shown in Fig. 7. It can be shown easily that 

dr/ 
- ~  r - ~ 1 r  (28) 

1 The contact line in this case is the edge of the circular gap E. 
2 By suitable preparation of the solid surfaces it is possible to ensure that the contact line 

remains fixed when V varies. 
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r corresponds to the case 131< ~ which will be called the dlsh branch, and ~2 to 
I J I > ~ which will be called the balloon branch. 

B. Doubly Connected Surface Through Fixed Contact Circles. 
a) Preliminary Classical Theory. First we shalldiscuss the case where the configu- 

ration space is limited, for purposes of simplification, to contain only axisymmetric 
members. This problem has a long history. (See the literature cited in the works 
mentioned in references 10, 13, 14 of this paper.) The classical development is far 
too lengthy to reproduce in detail here. Within the context of the theory developed 
in this paper the problem may be defined as follows. 

Two points: (Xo, Yo), (xl, Yt) are fixed in the y > 0  region R of the x - y  plane, 
with xl >Xo. We consider the totality c~ of smooth curves lying in R which join 
the two fixed points. We define a topology on c~ by defining convergence in ~, 
using the functional b defined in Section II. For  each curve C(t)ec~, tE[to, tl] 
with C (to) = (Xo, Yo) and C (t 1 ) = (x 1, Yl), we define the surface area integral 

tl 
A-$Fat; F=2 yV  +9 2 (29) 

to 

and the Helmholtz energy functional 

H =aA. 
The pair (~, H)  forms a unit. 

Now we consider the subset c~  of ~ consisting of all curves which give the 
integral V the fixed value 1~: 

tl 
V--~Gdt, G=7~y2yc. (30) 

to 

The trio (cg, H, V) now forms a constrained unit. 

Then the problem is to find, among curves in cgv, one which locally minimizes 
the integral A defined by (29) if indeed such a curve exists. Because of the nature 
of G the problem is normal [4], and the theory proceeds by consideration of the 
augmented function 

J - F + 2 G ,  (31) 

where 2 is a Lagrange multiplier. 

We note in passing a property of 2 which we shall need later on: If in fact A 
is minimized (for a given V) by some curve C, and if JC is a variation of C which 
will not in general keep V constant (i.e., C+6C belongs to c~ but does not neces- 
sarily belong to cgv), then, if 6A and 3 V are the corresponding first variations of A 
and V, 2 has the property that 

6A = -- 2 6 K (32) 

(See BOLZA [5]; FORSYTHE [11] shows that this result is true even for non-axi- 
symmetric variations.) 

Weierstrass's form of the Euler equation for the above problem is 

(2.i;-- 3350(2 2 + ~2)- ~-_ (2]y)(~2 + ~2)-�89 = 2. (33) 
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Fig. 8. One full period of nodoid integral curve of equation (33) 

The strengthened Legendre condition is satisfied by all curves in c~, so that the 
Euler equation is regular. 1 The form of (33) implies that the integral curves cor- 
respond to the meridional curves of surfaces of constant mean curvature. The 
relation 

2 = L  (P2 - P 1 )  = AP (34) 
ty ty 

for the jump in pressure across the solution interface then follows. 

Remark. The Euler equation is satisfied by some curves which fit given boundary 
conditions yet intersect themselves between the given boundary points, e.g. the 
nodoid shown in Fig. 8. Such curves are inadmissible for obvious physical reasons; 
non-self-intersecting portions of the nodoid are of course admissible. 

If .~(V) is the area function corresponding to C(V), then the result 

dA AP 
- - -  ( 3 5 )  
dV a 

which is due to GAUSS [12] holds and may be deduced from (32) and (34). 

The solutions of (33) all correspond to curves which are traced out by one 
focus of a conic section when the conic section rolls along the x axis [9, 25]. 
These extremal curves are well described elsewhere [9, 10, 13, 14, 19, 25]. HOWE [19] 
and HORMANN [18] independently applied Weierstrass's theory of the isoperi- 
metric problem (see e.g. BOLZA [6]) tO determine under what circumstances an 
extremal connecting (Xo, Yo) to (x~,yl)  and associated with a given volume 
actually minimizes A locally. They proved that an extremal is locally minimizing 
provided that the conjugate t* of the point to exceeds t 1. (t* > t, is well known 
to be a necessary condition for minimization. The case t* = t 1 is both difficult and 
of no practical importance.) HOWE derived a non-linear equation D(to, t*, 0)=0  
to be solved to find t* as a function of to and a shape parameter 0 for cases ). =1=0. 
He solved this equation for certain pairs of values (to, 0). GILLETTE [13] has 
given an extensive tabulation of solutions. 

1 All integral curves of (33) passing through points of R lie wholly in R, except for a family 
of semi-circles with cusps on the x-axis. It is known that  any segment of a curve of this family 
which includes a cusp is not minimizing of H over a set which is generalized from ~ v  upon 
permitting curves with discontinuous tangents. For  this reason we excluded the x-axis from 
the region of the y_>0 half plane at the beginning of this section. 
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There are two cases which present some difficulty if handled by the theory 
as developed by Howe or HORMANN. The first case is the cylinder y = a, which 
satisfies equation (33) for 2 = -  1/a. For this case HOWE and HORMANN both 
came to the correct conclusion, namely, stable for : /d< zr and unstable for t /d> ~. 
The second case is the catenoid 2=0, for which they came to no conclusion. 
(Howe and HORraANN actually studied the extremization of V for given A which 
is equivalent to the problem above provided 2 ~=0.) 

This problem for the case 2=0 has as its extremal the catenary y =  

cosh( -~-~) ,  but this problem is not the same as the problem of the minimum 0~ 

surface of revolution solved by LINDELOF [20] since for the latter problem there is no 
constraint on V. MAXWELL [21] recognized the former problem as distinct from 
the latter problem but gave the wrong solution. The correct solution of the 
former problem was first given in reference [10]. 

b) Determination o f  dAP/dV. The conjugate point theory also comes up in 
the determAnation of the derivative dAP/dV which we shall need for the investi- 
gation of the stability of ensembles. To this end, suppose that we have fixed the 
manner in which we wish to parametrize an extremal curve and have found 
the three parameter family of extremals 

x--  x( t, ~, fl, 2), (36) 

y =y(t ,  ~, fl, 2). (37) 

The volume integral V then becomes a function 

V= V( to, tl, oe, fl, 2). (38) 

Suppose that the base configuration C(V) corresponds to the variables to, tl, ~, 
fl, ;[, and that this configuration has end points (~o, Yo), (s Yl) and volume V. 
Then, formally, we may find the functions to(V), tl (V), ee(V), fl(V), 2(V) which 
will specify the family of stable configurations by solving for to, t~, 0e, fl, 2, the 
one parameter family of equations 

X(to, ~, ~, 2) =~o, 

x( tl, O~, fl, 2)= ~l, 

y(  to, ~, fl, 2) =;o ,  (39) 

y(t l ,  ~, fl, 2)=;1,  

V(to, tl, oe, fl, 2)= V 

with V as parameter, V~N(V).  The Jacobian of these equations is 

Xo, t 0 Xo, ~t X0, # Xo, 2 

0 X1, t Xl ,  a X1, # XI,;,  

A(to, t l ,~, f l ,  2)m Yo, t 0 Yo,~ Yo,# Yo, z (40) 
. . . .  o . . . . . . . . .  . . . . . .  . . . . . . .  y 1 , . . , .  . . . . . . . .  y 

i V ,  o v,, v: vp 
12 Arch. Rational Mech. Anal., Vol. 53 
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where the lone suffix and the right hand suffix indicate differentiation, and where 
the suffices 0 and 1 indicate the left and right hand end points respectively. If 
z~(to, h ,  ~, fl, 2) is the minor of this determinant formed by removing the last 
row and column of A, then formally we have 

d2 = 1 d(AP) = z/(to, tl, ct, fl, 2) (41) 
dV tr dV A(to, tl ,~,fl,  2)" 

Now, we suppose that the base configuration C(F) has the property that it 
satisfies strongly the conjugate point condition, i.e., to* > q ;  the conjugate point 
determinant has a form K(t o, t, 4, fl, ~) due to KNESER (see, e.g. BOLZA [7]) which 
can easily be shown to be 

K(to,  t, 4, ]3, ~) = a A (to, q ,  4, fl, ~), 

where a is a non-zero constant. Since t*>t  1 for C(V), it is clear that A(to, h ,  
4,/~, ~)*0.  

Now we are in a position to show that we are dealing with a simple element 
and that (41) is valid. 

Theorem 5. I f  for given (Xo, Yo), (xl, Yl), and V= V there exists an extremal C(F) 
for which to*> tl, then the configuration C(F) is imbedded in a 1-parameter family 
o f  stable configurations C(V) whose domain is a neighborhood of  V. Consequently 
the collection {~, A, V, V, C(V)} forms a simple element. 

For the proof we need the following: 

Lemma. Suppose ~, fl and 2 in (36-38) are f ixed at values 4, t ,  ~ respectively so 
that the extremal arc is f ixed by to and t~. Then 

(i) 3 a point io<to~t~ (the conjugate of  io) exceeds tl. 
(ii) I f  D(to, t )=A(to,  t, ~, t ,  ~), then we have 

[D(t o, t)4=O for any t~(t o, tl]] <::- D'to < to ~ D('to, 04:0 for any t~(to, t l]  ]. 

The first of these is easy to prove. The second can be established by making 
use of a property of D(to, t) proved by HANCOCK [17]. The above results are 
true for ~=~(V),  fl=fl(V), 2=2(V)  for V in the closure of some neighborhood 
N(V) for io, to sufficiently close to to. Suppose them to have been chosen close 
enough. Let t ~ be the largest of these latter quantities, with t~ of course. 

Proof of Theorem5. -i*>71=~A(to, tl,~,fl,~)4=O , as noted above. But the 
functions on the left hand sides of (39) are differentiable arbitrarily many times 
with respect to their arguments. (This fact follows from the regularity of (33) 
and the existence theorems for differential equations [2].) Thus equations (39) 
have a unique one parameter family of solutions { to (V), t 1 (V), c~ (V), fl (V), 2 (V)} 
for values of V on some interval containing V guaranteed by the theorem on 
implicit functions [3]. Further, the members of the one parameter family are C ~ 
functions of V also. Now we use the lemma to show that this one parameter 
family corresponds to a family of stable configurations C(V). Taking to=to, we 
see that to*>tl together with (ii) of the lemma implies that A(t ~ t, ~(VO, fl(V), 
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Fig. 9. An ensemble comprising two parallel connected identical capillary simple elements 

2(V)):~0 for any t belonging to the closed interval [to(V), h(V)]. Hence, by 
continuity, the function A (to ~ t, ct(V), #(V), 2(V)) is non-zero Vte[to(V), tl (V)], 
VeN(VO, so, by (i) of the lemma, A(too, t, ct(V), #(V), 2(V)) does not vanish for 
any te(too, t~(V)], VeN(V) and hence, by use of (ii) of the lemma, A(to(V), t, 
ct(V),fl(V),2(V))~O for any te(to(V ), tl(V)] and for any VeN(V--). Hence 
C(V) is imbedded in the one parameter family of stable configurations C(V) 
characterized by the family (to(V), tl (V), ~(V), fl(F), 2(V)), as stated. 

Theorem 6. The formal relation (41) is valid for a simple element for which t*> tl, 
and the derivative d2/d V is differentiable arbitrarily many times. 

Proof. This is an elementary consequence of the theorem on implicit functions 
and Theorem (5). 

We may note a further result. If t 1 is replaced by t, then ,] can be shown to 
be equivalent to the conjugate point determinant for the problem: minimize 
tl 
~Jdt for fixed 2 without any constraint. Suppose t~ is the conjugate of t o for 
to 
this problem. Then BOLZA [6] proves that t'oe(to, t*] which is very plausible on 
intuitive grounds. There are cases where z~ is non-zero at t*, e.g. the constrained 
catenary [10] and cases where z] has at t* a zero of the same order as A has [13]. 

Suppose to, ~, fl and 2 are fixed. Then for t 1 in some neighborhood of t o it 
may be shown that d2/dV JeO. R~2CKER [24] has studied the case where Yo =Yl 
and has discussed how to find the first zero of d2/d V as a function of the para- 
meters of the problem. His work preceded the conjugate point theory of HOWE 
and HORMA~rt~. He established the necessity criterion dAP/dV>O for two equal 
interconnected liquid bridges between equal circular discs (Fig. 9) to be stable. 
In fact, because of BOLZA'S result mentioned above, his criterion, when trivially 
strengthened, is sufficient. 

c) Generalization of Configuration Space. The configurations considered so 
far are all axisymmetric. GILLETTE & DYSON [15] have proved the following 
result, however. If a minimizing arc x(t),  y(t) for the problem above has a repre- 
sentation y(x) where y is a single valued function of x, then y(x) is also minimizing 
over the neighboring collection of smooth surfaces {y(x,/9)} (where 0 is an azi- 

12" 
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muthal coordinate) provided of course that these surfaces pass through the end 
circles and enclose the given volume. 

The cylinder and the catenoid, which will be considered in detail next, both 
have this property. 

d) Determination o f  ddP/d  V for Cylinder and Catenoid. The derivatives which 
form the elements of d in these two cases are to be found in reference [10]. 

A cylinder of radius a and length 2va forms a simple element provided v< n  
[l, 10]. In this case 

1 ddP d2 cosy 
~- d---V = d--V = 4 n a 4 ( s i n v - v  cosy)" (42) 

Consider a catenoid interface of neck radius ( between two impervious disks 
of equal diameter d separated by a distance :. Let z=r 0 .  (The catenoid is 
supposed to be firmly attached to the edges of the disks.) Then for z < 2.23918... 
the catenoid will form a simple element (d must equal 2( cosh z, of course). This 
value of z is roughly twice the corresponding value (1.199...) for the case when 
there is a perforation in the end plates [10, 20]. 

We find 

1 dAP d2 
a dV dV (43) 

8 sinh z (cosh z - z sinh z) 
= 7ri~4 [3 z2 sinh z - z cosh z (1 - sinh 2 z) (1 - 2 sinh 2 z) + sinh z cosh 2 z (1+  4 sinh 2 z)]" 

We note in passing that d2/dV=O when z = c o t h  z. This equation has the 
solution (1.199...) mentioned above (LINDEL6r [20]). Thus if two identical 
catenoids are connected (as shown in Fig. 9), the ensemble is not stable unless 
each catenoid is also stable when the plates are perforated. 

VI. Parallel Connected Capillary Ensembles 

A. General Theory. It  is convenient to represent simple elements of the type 
described in the above section by a box diagram (Fig. 10). This conveys the 
essential in format ion- there  are two fluid regions separated by an interface [j 

E 
Fig. 10. Box diagram of capillary simple element 
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E 
...d 

t Et 
Fig. 11. Box diagram representing n parallel connected capillary simple elements 

which is a two sided surface (whether the surface is simply or doubly connected 
is irrelevant). Hj for the unit is simply 

Hj=crjAj, (44) 

where Aj is the interracial area 1. Vj is the volume of the shaded region. 

We shall discuss examples where such units are interconnected to form an 
ensemble. Obviously they may be connected in any way which does not lead to 
the creation of a new interface. This leads to a box diagram for the capillary 
ensemble; the one in Fig. 11 is intended to represent n simple elements connected 
in parallel. 

The examples we shall give all belong to this class so we shall prove a theorem 
concerning it. Let Ai(Vi) be the area function associated with Ci(Vi) for the ita 
element. Then 

= ~ trigl, (45) 
i=1 

0~u d.4j + 
=tr j -d~j = APj= Pj - PT, (46) dUj 

where P f  is the pressure beneath the j th interface and P j- above it. Also, ~" is 
the diagonal matrix whose ith element is 

dAPi (47) 
bi= dV~" 

It follows that the relations (18-20) become 

qa + q2 +'" "qn =0, (48) 

APj qj = 0, (49) 
j = l  

q2 bj>O. (50) 
j = l  

1 We consider here the case with fixed contact line; cf. Fig. 6. The case of a variable contact 
line can be treated by slight modification of (44) provided there is no hysteresis [13 Chapter 4]. 
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From (48) and (49) we conclude that 

APj=APk, j , k = l , 2 . . . n .  (51) 

This has the following obvious physical interpretation. Suppose the ensemble 
is isolated by placing n - 1  pistons suitably in the interconnecting tubes and 
fixing them so that Vj= VjVj. Then a requirement for the ensemble to be stable 
is that there be no jump in pressure across the pistons. The relations (48), (49), 
and (50) taken together have the physical interpretation that for a stable ensemble 
in order to displace the pistons distances dX~, dX2, ... dX,  (not all zero), positive 
external work must be done. 

The above interpretations can be shown to be true for the stability relations 
for any capillary ensemble; the box diagram may be replaced by a directed 
multiple graph and results from graph theory used to facilitate the proof of the 
validity of the interpretation. We shall not pursue these matters here, however. 

We shall prove a lemma concerning the relations (48, 50). Let the quantities 
b 1, b 2 ... b, be arranged in non-decreasing order from left to right, with due 
regard to sign, and labelled al, a2 . . . .  an. 

Lemma. q is a vector with coordinates {ql, q2 . . . .  qn} which belongs to ~n, n > 2; 
the coordinates {al, a2 . . .  a i  . . .  a n }  of  the vector a, a e ~ ,  satisfy 

al < a 2 < . . . a i < . . . a n .  

Q is the set o f  points other than the origin whose coordinates satisfy 

ql +q~ + "'" q~+ "'" qn =0. (52) 
The quadratic form 

n 

P(q)=  ~ a, q2 (53) 
i = 1  

is defined on Q. We use the notation P(Q)>0  to mean P(q)>0  VqeQ.  Then 

(1) a 2 > 0 ; a l ~  + 1 > 0  =*,P(Q)>0 
k = 2  

and ( . < ( 1 ) )  
(2) P(Q)>O=~e i thera l>O or a 2 > 0 ; a  1 + 1 > 0 .  

Proof of First Part.  If q l=0 ,  then a2>O=~P(Q)>O. Let q l = - e ,  a non-zero 
constant and y belong to a plane Y defined by 

Y={Y: (Yl = - e ;  Y2+Y3 "'" +Yn=e)};  

then Y c Q  so P is defined on Y. Further, because ai>O for i=2,  3 . . . .  n, P can 
easily be shown to attain on Y its minimum value at the point whose coordinates 
are 

e 
Y l = - - e ,  Yi = k=n 1 ' j = 2 , 3 , . . . n .  
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The minimum value is 

(i)) m i n P ( y ) = e  2 a l +  k=, 1 " 

k=2 
This minimum will be positive if 

a~ Z + 1 > 0 ;  
k=2 

since e is an arbitrary non-zero number, this proves the first part. The reader 
may easily prove the second part by exhausting the various cases. 

Theorem 7. I) ~In ensemble comprising n parallel connected simple capillary 
elements (Fig. 11) is stable i f  the following conditions are satisfied: 

1) AP~ =AP 2 . . . .  AP,. (54) 

_ d A P j  
2) With bj = ~ and the set {a j} formed from {by} by ordering the elements 

of  {b j} as in the lemma, 

a 2 > 0 ,  a l  E -u 1 > 0 .  (55) 
k=2 

II) l f  the ensemble in part I of  this theorem is stable, then the relation 1) is satisfied 
together with 

either al>O or a2>0,  ~ + 1 ~ 0  . (56) 
k=2 

Proof. Part I of this theorem is an immediate consequence of the lemma together 
with the sufficiency conditions of Theorem 3. Part II follows from the lemma 
together with the necessity conditions of Theorem 3. 

Corollary. For n--2, we have the relations 

AP 1 =AP 2, (57) 

dAP~ t- dAP2 >0, (58) 
d V  1 d V  2 

dAP~ d4P2 ^ 
dVa ~- --d-~2 >u" (59) 

Relations (57) and (58) together are necessary, and relations (57) and (59) together 
are sufficient for stability of the parallel connected capillary ensemble. 

In what follows we shall regard (54) as always satisfied unless otherwise stated. 
B. Examples. We shall apply Theorem 7 (or the corollary) together with the 

data obtained for the various capillary simple elements to deduce regions of 
stability in the ensemble parameter spaces. 

a) The Ensemble of  Fig. 2 i(with Valve Open!). Here the ensemble will be 
stable provided one of the two surfaces is a dish branch. This result follows from 
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~ ~I d - ,  d 

Fig. 12. Cylindrical interfaces of diameter dand lengths v 1 d, v 2d respectively between sharp edged 
parallel coaxial flat plates, interconnected in parallel to form an ensemble. Configuration shown 

has v I = ~r, v2= 1.35 corresponding to supremum of stable values of v I q-v 2. 

A e 

I 
4 \ ! B  

" / / / / / ' / / / / / J / / / / / / / / / ~ / / / / / / ~ , E  I ~ 1  E" I ~_ 
0 I 2 3 4 5 

~2 

Fig. 13. v 1 -  v 2 plane for ensemble of Fig. 12. Region enclosed by the curve OABCDEO 
corresponds to stable ensembles. 

the corollary to Theorem 7 together with (28). In the case where one of the surfaces 
degenerates to a hemisphere (then the other must also be a hemisphere by (57)) 
the ensemble can be shown by elementary methods to be stable. All other cases 
are unstable. 

b) Consider the case of cylindrical free surfaces of equal tension o, diameter d, 
and lengths v l d, v2 d, as shown in Fig. 12; condition (57) is then automatically 
satisfied. 

We may establish that all points in the triangular region OACEO in Fig. 13 
correspond to a stable ensemble, since in this region vl + v2<~ and the system 
shown is certainly more restrictive than a single cylinder of length (vl +v2)d. 
It is interesting, then, that for v l =  v 2 ROCKER [24] finds v~ > z~/2 corresponds to 
an unstable ensemble. This we deduce trivially from (59). 

In the general case, we consider the inequality 

cos  v i >0, (60) 
i = 1  
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It  is easily shown that provided neither v 1 nor v 2 equals n/2, the above ine- 
quality is equivalent to 

(tan vl - Vl)- 1 + (tan Y 2  - -  V2)-- 1 > 0. (61) 

The domain in which this inequality holds is easily found by considering a plot 
of u against tan u. It  then turns out that  the case when v 1 or v2 equals 1r/2 falls 
into place by the obvious limiting procedure. In this way we find this ensemble 
stable provided the point (v j, rE) lies in the region shaded ABCDEOA of Fig. 13. 
The reason for the kinks at B and D is of course that these points represent the 
situation where the cylindrical surfaces no longer belong to simple elements. The 
locus of solutions of tan v a - v I + t a n  v2 - v2 = 0  continue along the broken lines, 
making intercepts with the axes of length approximately equal to 4.49. This value 
represents the supremum of v~ + v 2 since the points A', B, D & E '  are easily 
shown to be collinear. 

We also remark in passing that  if one considers the problem of "mak ing  a 
cylinder more s table"  by putting a perforated support  ring somewhere between 
its end plates, the worst one can do is to place the ring equidistant between the plates, 
where it has no effect. This seems a curious result, which becomes clear in the 
light of the work of ALMANSI [I ], who showed, by a direct method of the calculus 
of variations, that  the "critical eigenfunction" for a cylinder of v =  n + 0  has a 
node midway between the end plates. 

ROCKER tested his result for two equal cylinders experimentally. He failed 
to realize values of v 1 exceeding 1.25. This seems to be a poor  result, since for 
the single cylinder one can obtain more than twice this easily. (BoYs [8], however, 
appears to have obtained 1.5.) 

c) Plateau's Cylinder with Spherical End Caps. We outline here the result 
for the ensemble represented in Fig. 14A. Two thin parallel coaxial wire rings of 
common radius a are separated at a distance 2va. The ensemble comprises a 
cylindrical interface and two dish interfaces of common tension a. 

We assume that the at tachment of the interfaces to the wire rings is not in 
question. Then the application of the conditions (26, 42, 55) and 

leads to the inequality 

tan v - v 

re(O, ~) (62) 

~-(2+V3)2 V 3 > 0 .  (63) 

This is satisfied for all v in the range (62). Thus the end caps have no effect. 
This result has been noted experimentally by PLATEAU [22, 23]. 

We can also treat  the case represented in Fig. 14B which is the same as that 
in Fig. 14A except that  one dish interface has been replaced by a balloon inter- 
face. In this case we obtain, by the method already discussed, the equation 

tan v -  v = 8 (64) 

for the critical value of v. The root  of (64) is Vo = 1.46554... and we have the 
result that  the ensemble in Fig. 14B is stable for v <  Vo. 
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Fig. 14A and B. Two thin parallel coaxial wire rings Wand  W', of common radius a and separa- 
t ion 2va, with cylindrical interface and two spherical cap interfaces enclosing fluid 1. Fluid 2 
occupies the exterior. Two dish interfaces are shown in 14A for which v =  n, the stability supre- 
mum for the ensemble, and a dish-balloon combination in Fig. 14B, which has v =  1.46... the 

stability supremum for the ensemble. 

d) Ri~cker's Equal Interconnected Liquid Bridges. Consider a system of two 
equal axisymmetric elements such as the one shown in Fig. 9. ROCKER [24] has 
noted that 

dAP 
d------~>0 (65) 

is necessary for stability. It follows from (59) that 

dAP 
d----v->O (66) 

is sufficient. Regions in the t/d versus 4V/(ntd 2) plane and also in the f / (  versus 
t /d plane, where ~ is the neck radius and where (66) holds for axisymmetric simple 
elements, are displayed in [13] and [14]. 

e) The Catenoid Film Connected to a Bubble Manometer of Equal Tension. 
Consider the case shown in Fig. 15 of the ensemble comprising (i) a catenoid of 
neck radius ( connecting the edges of coaxial parallel plates of radius a and 
separation t, and (ii) a (plane) bubble gauge manometer with orifice radius % 
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o 

J 
Fig. 15. Ensemble comprising catenoid interface and plane interface (across circular hole), 

parallel connected. 
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Fig. 16. Stability results for the ensemble of Fig. 15. Curves giving supremum of set of stable 
values of [/~, and infimum of set of stable values of f/d, for all values of Z- 

W e  note  tha t  unless t /d~  0.6627...  there  is no  ca teno id  fi lm which can connec t  
these plates,  and  if t / d < 0 . 6 6 2 7  .... then there  are  two.  The  one with  the  larges t  
neck  is always stable since i t  is s table  in the  case with no vo lume cons t ra in t  (el 
LINDEL6F) [20]. Here  we discuss the  s tabi l i ty  of the  ca tenoid  which is never s table  
in the  case wi thou t  a vo lume cons t ra in t :  the  case of a ca tenoid  which is (under  
cer ta in  condi t ions)  s table  in the  conf igura t ion  shown in the f igure bu t  becomes  
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unstable if the manometric film is punctured. The conditions under which this 
ensemble is stable may be found by use of the formulae and the stability criterion 
for the ensemble. 

Let 
4" 

4" =-~-' •= 1+4," 

Then all positive values of 4" map onto the unit interval of X. In Fig. 16 we have 
plotted the results of our stability calculations: the supremum of the set of stable 
values of f / ( ,  and the infimum of the set of stable values of f /d versus X. We note 
that the limiting values when 4"--, ~ correspond to the limiting stable Lindel6f 
catenoid, while those when 4" --, 0 correspond to the case of the catenoid between 
flat plates [I0], as one might have plausibly inferred a priori. 

VII. Conclusions 

We have shown how the concept of an element and an ensemble can be 
used to reduce the burden of proof of stability, or lack of stability, of an interacting 
collection of systems. Perhaps it is worth pointing out here that stability is relative 
to the configuration space c~, and c~ is of course artificial. Whether a theoretical 
stability result found for a physical system (where cr is some space specified by 
the investigator) will turn out to be realizable (more or less precisely) in the 
laboratory will depend of course on the choice of cr and there is not much to 
be said a priori concerning how this choice should be made: in practice, of course, 
it will turn out to be some compromise arising from the investigator's con- 
flicting objectives to handle problems that  are both tractable and realistic. 

Concerning the examples from capillarity theory: We confined our attention 
to axisymmetric simple elements which had fixed contact lines. Variable contact 
line problems may also be treated in the same way provided there is no contact 
angle hysteresis. There is no theory of non-axisymmetric elements at the present 
time. Nevertheless Theorem 1 would of course be applicable to such elements. 
All that  needs to be done to use Theorem 1 is to establish that one is dealing 
with an element and to find the quantities AP~ and ~APJOVj. 

All this information could be obtained experimentally for every element of 
interest. The stability of an ensemble comprising these elements (and perhaps 
others for which the information can be supplied by purely theoretical work) 
could then be tested by application of Theorem 1. This would be a semi-empirical 
approach, which is all that can be expected for arbitrary non-symmetric configura- 
tions. 
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