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Abstract. Probabilistic models of the cell cycle maintain that cell generation 
time is a random variable given by some distribution function, and that the 
probability of cell division per unit time is a function only of cell age (and 
not, for instance, of  cell size). Given the probability density, f(t) ,  for time 
spent in the random compartment of  the cell cycle, we derive a recursion 
relation for ~b,(x), the probability density for cell size at birth in a sample of 
cells in generation n. For the case of exponential growth of  cells, the recursion 
relation has no steady-state solution. For the case of  linear cell growth, we 
show that there exists a unique, globally asymptotically stable, steady-state 
birth size distribution, $ , (x ) .  For the special case of the transition probability 
model, we display ~b,(x) explicitly. 
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I. Introduction 

Under the right conditions cells from all types of  organisms will begin to prolifer- 
ate. Before long, cell number is increasing exponentially, N = Noe k', and all other 
extensive properties of  the cell culture (such as protein content, DNA content, 
membrane surface area) are increasing at the same specific growth rate,/c Though 
the macroscopic variables describing the culture behave deterministically, the 
properties of  individual cells show wide variations around the culture means. 
For instance, the doubling time for cell number is fixed at In 2/k, but the generation 
time (i.e., the time transpiring between birth and division) of individual cells is 
typically distributed with standard deviation/mean -~ 20%. Similarly, the average 
mass of a cell is a well-defined, constant property of the culture, but the "momen- 
tary" mass of  indivdual cells at a certain stage in the cycle (e.g. birth) is typically 
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distributed with standard deviat ion/mean-~ 10%. Despite the variability of cell 
generation time and momentary  size, the distributions are constant properties of  
the culture, and if growth conditions are changed, the culture will rapidly 
approach new, characteristic distributions of  generation time and momentary  
size. The stability of  these distributions is the subject of  this paper. 

The origin of  diversity in generation time and cell size of  individual cells has 
long been attributed to probabilistic, events in the cell division cycle. These 
stochastic events are postulated to be completed with certain probabilities per 
unit time, and upon complet ion of a certain number  of  events (anywhere from 
one to hundreds) the cell is irrevocably committed to division (after a fixed time 
lag). In this view the generation time of a cell can be written as T = TA + Tz, 
where TA is a random variable, the time necessary to complete the probabilistic 
events, and TB is a constant, the fixed time lag. The distribution of  generation 
time is 

where 

f ( T )  = ~0, T <  Ts 
( f (  T -  Tn), T ~  Tn 

(l) 

I T2f(t) dt=Prob{Tl < TA < 7"2}. 
Tj 

The form of  f ( t )  depends on the specific hypotheses concerning the random 
events in the cell cycle. We shall assume that 

f ( t )  > 0 ,  0 < t < o o .  (2) 

This assumption is true of  the distributions of  TA commonly seen in the literature 
(see e.g. Hannsgen et al., 1985). 

In Sect. l I  we derive a recursion relation for distribution of cell mass at birth 
in a sample of  cells in generation n, given the distribution in generation n -  1. 
In Sect. I I I  we treat the case of  exponential growth, where no nontrivial steady 
state exists. In Sect. IV we treat the case of  linear growth, using a theorem of 
Lasota and Yorke to prove the existence of a unique, asymptotically stable, 
limiting size distribution. For the Smith-Mart in model we display this distribution 
explicitly in Sect. V. 

II. Reeursion relation 

We assume that individual cells of  size x grow according to the growth law 

dx/dt = V(x). (3) 

I f  x(0) = Xo = size at t = 0, then we denote the solution of (3) by x = X( t ,  Xo) = size 
at t >t 0. Furthermore,  we assume that cells divide exactly in half. Thus, at time 
t = T = generation time, a "mother"  cell of  size X (  T, Xo) divides into two daugh- 
ters of  equal size X(T,  Xo)/2. 

Suppose we start, at t = 0, with a sample of  newborn cells of  various sizes. 
The distribution of birth size in this sample is denoted Oo(X), where the subscript 
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signifies the zeroth generation of cells. Let us follow these newborn cells until 
each one divides. The sample of daughter cells at birth defines a new distribution 
of birth sizes, ~b~(x), the distribution in the first generation. Continuing in this 
fashion, we define a sequence of birth size distribution functions, ~/,n(x), n = 
0, 1, 2 , . . .  By definition of a distribution function, S~ ~bn(x) dx is the probability 
that a cell of  the nth generation is born with size between ul and u2(ul < u2). 
Obviously, 

fo o ~n(x) ~ 0 for all x ~> O, and On(x) dx=l .  (4) 

We intend to relate On+l(X) to On(x) and to show that in certain cases ~n(x) 
approaches a unique limit, ~ , (x) ,  as n ~ oo. 

Let xo = birth size of a cell of the zeroth generation and x~ = birth size of  this 
cell's daughters in the first generation. Then, if T = generation time of the cell 
under consideration, Prob{Xl/> x l Xo = y} = Prob{ r >! r(x, y)} where r(x, y) is 
given by the condition X(~, y ) =  2x. We assume that z(x, y) is sufficiently well- 
behaved for our purposes in what follows. For the specific examples treated later, 
w(x, y) is an analytic function in both x and y, x, y ~  (0, oo). From (1) and (2), 

Prob{ T ~  > w} = Prob{ TA ~> w-- TB} = ~1, 
if w< T~ 

I F ( ~ -  TB), if 7>i T~, (5) 

where 

I 
cr 

F(t) = f (s )  ds. (6) 
t 

where 

In general, 

On+,(x) = K(x,y)~bn(y) dy (10) 

[ 0  if y >  Y(x), 
K (x, y) = ( f (  7(x, y) - TB)Or/Ox, i f 0 < y  ~< Y(x). 

(11) 

N o w  

Prob{Xl~ x} = Prob{Xl~XlXo=y}Oo(y) dy 

f?x, 
= F(w(x,y)-T~)~bo(y)dy+ ~o(y) dy (7) 

Y(x) 
where Y(x)  is the largest possible size at birth consistent with producing daughters 
of size x at birth, i.e., 

X(T~, Y(x)) = 2x. (8) 

Now Prob{Xl ~>x} =Ix  ~ ~bl(y) dy, so 

Io Y(x) 8 ~bl(x) = f(r(x,  y) - Tn) -~x z(x, y)~l,o(y) dy. (9) 
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The kernel, K(x,  y), of the integral equation (10) is positive semi-definite and 
norm-preserving, i.e. S~ ~b,+l(X) dx = ~o ~bn(y) dy, because 

io K(x,  y) dx = f ( r ( x ,  y) - TB) Or/Oxdx 
J X(TB, y ) /2  

I Io ~ = f (~ ' -  Tz) dr = f ( s )  ds = 1. 
TB 

ThUS, ~b~+~(X) will be a probability density, satisfying (4), if ~b,(x) is a probability 
density. 

IlL Exponential growth 

If  V(x )=  kx in (3), then X(t ,  y ) = y  e ~t, r(x, y )=  k -~ ln(2x/y) ,  and Y ( x ) =  
2x e -kT€ Thus 

= f O, if Y > 2x e-kTB 
K(x,  y) i f (k_  1 l n ( 2 x / y ) -  Ts)/kx,  i f 0 < y  < 2 x  e -kT", 

(12) 

and 

1 f2xe-krB [ 1 [ 2 X \  -- TB) dy. 
Jo rt, k lnt,7--) r (y) (13) 

By the line of reasoning in Hannsgen, Tyson and Watson (1985), it can be 
shown that (13) has no steady state solution ~b,+l(x)--~b.(x)---~b.(x) satisfying 
(4). By different methods Trucco and Bell (1970) have proved more generally 
that, for growth laws of the type X(t ,  Xo)=Xog(t) with g ( t ) > 0  and g(0)= 1, 
there does not exist an asymptotically stable birth-size distribution for probabilis- 
tic (age-dependent) models of the cell cycle; on the contrary, as the population 
proceeds from generation to generation the variance of the size distribution 
increases without bound. 

IV. Linear growth 

If  V(x) =/~ in (3), then X(t ,  y) = y + kt, z(x, y) -- (2x - y)//~, and Y(x)  = 2x - fcTB. 
Thus, 

fO, i f y > 2 x - - f c T B .  . 
K(x ,y )=((2 /k ) f ( (2x_y_krB) /k ) , i fO<y<2x_~r  8 (14) 

and 

r 
2x-~T B 

~bn+l(X) = (2//~) f ((2x--y--~cTB)/fc)$,(y)  dy. (15) 
. / 0  

We wish to show that the size distribution ~bn(x) converges to some unique, 
steady state distribution $ . (x )  as n -~ oo. To this end we introduce the following 
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definitions and theorems (Lasota and Mackey, 1984). Let D be the set of all 
real-valued functions on [0, 0o) which satisfy 

0(x) ~>0 and ~(x) d x = l .  (16) 

Let K(x, y) be a function defined on x, y e [0, co) satisfying 

K(x,y)>~O, and K ( x , y )  d x = l f o r a l l y .  (17) 

Let the operator P: /.,l__~ L1 be defined by 

PO(x) = K(x,  y)~p(y) dy. (18) 

A function h will be called a lower bound function of P if, for every ~b ~ D, there 
exists an integer no(~b) such that 

P"~(x) >I h(x), n >! no(~b ). (19) 

h(x) is called nontrivial if 

io o h(x) >t 0 and h(x) dx > 0. (20) 

Theorem 1. (Lasota and Yorke, 1982; see Lasota and Mackey, 1984). I f  for a 
kernel K(x,  y) satisfying (17), there is a nontrivial lower bound function for the 
operator (18), then the equation 

fo o ~b(x) = K(x,  y)~b(y) dy (21) 

has a unique solution ~,  ~ 19, and moreover for any other ~b ~ D 

io o ! im W"~(x)  - ~ , ( x ) l  dx = 0. (22) 

Theorem 2. (Lasota and Mackey, 1984). Let K(x,  y) satisfy (17). I f  

fo~  dx~  yy+ 6, y>~O, (23) 

for some nonnegative constants y and 6, y <  1, and if 

fo ~ inf K ( x , y )  dx>O, (24) 
ye[O, a] 

for some a > 3/ (1 - y), then there exists a nontriviai lower bound function for the 
operator (18). 
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Thus, to prove existence and global asymptotic stability of the steady-state 
solution, ~b,(x), of (15), we must verify (23) and (24). First, 

xK (x, y) dx = (2x /g) f (  ( 2 x -  y -  ~rB)/~) dx 
y+~rs)/2 

= (y + ~ ( r ~ ) / 2 ,  

where  ( T ) = m e a n  generation time. Thus (28) holds with y =  1/2, ~ =  k(T}/2. 
Next, choose a =/~((T) + e) for some e > 0. For x </~((T) + TB + e)/2,  
infy~[o,,l g(x ,  y ) =  0, but for x > / ~ ( ( T ) +  T~+ e) /2 ,  

inf K(x ,y )= inf ( 2 / k ) f ( ( 2 x - k r B - y ) / k ) > O ,  
y E [ 0 , a ]  y ~ [ 0 , a ]  

where the inequality follows from our assumption (2) concerning f(t).  This 
implies (24). It should be obvious that the upper  limit on t in (2) need not be 
eo. I f f ( t )  = 0 for t >  T ~  ax, then (29) still holds as long as T]aX> T~,Ve + T~, where 
T~v~--- ~ ~ tf(t)  dr. 

V. Transition probability model 

We have demonstrated the existence and global asymptotic stability of a steady- 
state birth-size distribution function for probabilistic models with linear cell 
growth. For some special choices o f f ( t )  we can write down the solution, 4,,(x), 
explicitly. For example, Smith and Martin (1973) proposed that 

f ( t )  = p e - ' t  (25) 

where p is some constant (the probability per unit time that a cell in A-phase 
will make a transition to B-phase). This assumption is usually referred to as the 
"transition probability model." 

Without any loss of  generality, we can take TB = 1 and/~--  1. In this case, the 
steady-state solution of  Eq. (15), with f ( t )  given by (25), satisfies 

~ 2x- - I  

d/,(x) = 2p e -p(2x-L) ePYqJ,(y) dy. (26) 
d l  

The lower limit in Eq. (26) is y -- 1 because, in the steady state, no cells are born 
with size less than 1. To see why, suppose there were a cell, taken from a 
steady-state culture, with birth size Uo < 1. This cell would give rise to daughters 
of birth size u~ i> (Uo+ 1 ) /2>  Uo. Since any cell of birth s ize< 1 would give rise 
to daughters larger than itself, such a cell could not have been taken from a 
steady-state culture. 

A nontrivial, normalized solution of  (26) is (Hannsgen, et al. 1985) 

~b,(x) = (p/N)  ~ (-1)"c,,2 "+1 e -2"+~p(x-l), x ~  1 (27) 
n=O 
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where 

and 

Co= 1, c, =[1 �9 3 , 7 - . .  ( 2 " -  1)]- '(n = 1 , 2 , 3 , . . . )  (28) 

N =  ~ ( -1 )"c , -0 .288788 .  (29) 
n = 0  

Equation (27) can be verified by substituting into (26), integrating term-by-term, 
and using the identity (Hannsgen, et al. 1985, Appendix) 

( -2)"c ,  = - 1 .  (30/ 
n = l  

From the treatment in Hannsgen, et al. (1985) one can, in a similar fashion, 
obtain an explicit solution for ~ , (x )  if f(t) is given by the more realistic 
two-transitions model of  Brooks, Bennett and Smith (1980)�9 We shall not display 
the solution here. 

The analysis presented here assumes that the fundamentally discrete histogram 
of cell birth sizes in a finite population can be approximated by a continuous 
probability density O,(x). To see how our analytical formula for ~ , (x )  might 
compare with a birth-size histogram from a finite cell population, we have 
simulated an ideal population by Monte-Carlo methods�9 In particular, 500 cells 
were allowed to grow and divide according to our assumptions of linear growth 
and exponentially distributed waiting times, TA. At division one daughter was 
removed from the culture, so that there were always 500 cells in each generation�9 

~ o ( X )  

.lO 

.08 

�9 06 

�9 0 4  

.02 .. ~ ,  .. 

x 

5 10 15 20 

Fig. I. Birth size distribution for the transition probability model with linear cell growth. Monte-Carlo 
simulations (histogram), analytic solution (solid line), and Pearson Type Ill distribution(dashed line) 
wi th  the  s a m e  m e a n  a n d  v a r i a n c e  as the  ana ly t i c  so lu t ion .  P a r a m e t e r  va lues :  T B = 1, k = 1, p = 0.1 
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From an initial arbitrary distr ibution o f  birth sizes o f  the 500 ceils, the culture 
was s imulated for  20 generat ions by which time the steady-state size distribution 
was attained. In  repeated simulations,  the popula t ion  always approached  (within 
5-10 generat ions)  the size distr ibution predicted by  (27), as judged  by the observed 
and expected mean  and variance o f  the distribution. A his togram of  birth sizes 
o f  500 cells in genera t ion 20 f rom a typical s imulat ion is plot ted in Fig. 1, in 
compar i son  with the analytical  probabil i ty densi ty funct ion (27) and an approxi-  
mat ion  to the analytical  solut ion provided  by a Pearson Type  I I I  distribution 
(Hannsgen ,  et al. 1985). Figure 1 illustrates the kind of  agreement  one can expect 
to find between theoretical  density funct ions and experimental  histograms in the 
best case where (1) the model  accurately reflects the laws of  cell growth and 
division and  (2) a large number  o f  cells are used to construct  the histogram. 
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