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Abstract 

A general method is presented for finding asymptotic solutions of problems in wave-propaga- 
tion. The method is applicable to linear symmetric-hyperbolic partial differential equations 
and to the integro-differential equations for the electromagnetic field in a dispersive medium. 
These equations may involve a large parameter 2. In the electromagnetic case 2 is a characteristic 
frequency of the medium. The parameter may also appear in initial data or in the source terms 
of the equations, in a variety of different ways. This gives rise to a variety of different types 
of asymptotic solutions. The expansion procedure is a "ray method", i.e., all the functions 
that appear in the expansion satisfy ordinary differential equations along certain space-time 
curves called rays. In general, these rays do not lie on characteristic surfaces, but may, for example, 
fill out the interior of a characteristic hypercone. They are associated with an appropriately 
defined "group velocity". In subsequent papers the ray method developed here will be applied 
to the analysis of transients, Cerenkov radiation, transition radiation, and other phenomena 
of wave-propagation. 

An interesting by-product of the ray method is the conclusion, derived in section 6.3, that 
the theory of relativity imposes no restriction on the speed of energy transport in anisotropic 
media. 
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1. Introduction 

In recent years asymptotic methods have been developed for the solution of 
certain boundary-value and intial-value problems for linear partial differential 
equations. These problems involve a parameter,  and the methods provide one or 
more terms of the asymptotic expansion, say for large values of the parameter, 
of the solution of the problem. They are often applicable to problems for which 
no exact solution method is known, and even for problems which can be solved 
exactly it frequently happens that only the asymptotic expansion of the solution 
is sufficiently simple to be useful in practical applications. Furthermore, it is 
invariably true that the methods which yield the asymptotic expansion directly 
are very much simpler than the procedure which involves first finding the exact 
solution and then its asymptotic expansion. 

An important class of asymptotic methods is characterized by the fact that 
certain curves, often called "rays",  play a central role in the theory. The rays are 
of fundamental importance because all of the functions which make up the various 
terms of the expansion can be shown to satisfy ordinary differential equations 
along these curves. Often these equations can be solved to yield explicit formulas 
for the asymptotic solution of a given problem. 

The " ray  method" has been extensively developed, primarily by J.B. KELLER 
and his co-workers at New York University, for certain linear elliptic partial 
differential equations involving a parameter. When applied to the reduced wave 
equation or the time-reduced form of Maxwell's equations the method yields a 
"geometrical theory of diffraction" [7] which generalizes the classical theory of 
geometrical optics. The extensive literature on the asymptotic theory of the reduced 
wave equation and Maxwell 's equations has recently been unified and sum- 
marized in [12]. 

More recently ray methods have been applied to linear hyperbolic partial 
differential equations [9, 10, 11, 13] such as the (time-dependent) wave-equation 

u t , - c 2 ( X )  Au--'-O. (1) 
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This equation involves no parameter, but a parameter may appear in the data of 
a problem or in a source term which is not indicated in (1). Other hyperbolic 
equations such as 

u , t -c2(X)  A u +it 2 b2(X) u =0 (2) 

may involve a large parameter 2. 

From the standpoint of the asymptotic method, (2) and (1) are the simplest 
representatives of two important classes of linear hyperbolic equations, namely 
the "dispersive" and "non-dispersive" hyperbolic equations that conserve energy. 
Ray methods for these two classes have several important differences, the most 
striking being the nature of the rays themselves. In both cases, the rays are space- 
time curves, but for non-dispersive equations they lie on "characteristic hyper- 
surfaces" and are called "bicharacteristics". For dispersive equations they do not 
lie on characteristic hypersurfaces, and may, for example, fill out the interior of a 
characteristic hypercone. Applications of the ray method to various problems for 
(1) and (2) have recently been treated in [11] and [10]. 

The purpose of the present paper is to study the application of the asymptotic 
theory to equations more general than (1) and (2), and to develop a method of 
solution which is applicable to a large variety of problems in wave propagation. 
In order to avoid undue complications and to maintain close contact with physical 
problems we have not attempted to find the most general class of linear hyperbolic 
equations to which our method is applicable. Most of the hyperbolic systems of 
equations which are important in mathematical physics fall in the class of "sym- 
metric-hyperbolic" equations [3]. We shall show, in section 2.3, that our method 
applies to "asymptotically conservative symmetric-hyperbolic equations". But our 
main emphasis in this paper is not on these equations. 

Perhaps the most important classical problems in wave propagation are con- 
cerned with electromagnetic waves. The electric and magnetic fields satisfy Max- 
well's equations which, for free space, are symmetric-hyperbolic equations. But 
for dispersive media the equations are not symmetric-hyperbolic, in fact they are 
not even differential equations. The time-dependent form of Maxwell's equations 
for dispersive media are integro-differential equations. They are discussed in 
section 2.1. In order to encompass this important class of problems we have 
formulated our theory in terms of a "general system of equations" which includes, 
as special cases, the integro-differential equations of electromagnetic theory as well 
as the symmetric-hyperbolic differential equations. The "general system" is de- 
scribed in section 2.2. 

As pointed out in section 2.1, in the electromagnetic case, the large expansion 
parameter 2 is a characteristic frequency of the medium. The true meaning of our 
asymptotic expansion is better understood, however, by introducing an equivalent 
dimensionless parameter 20=2 a/c>> 1. Here "a" is a characteristic dimension of 
the problem and c is the speed of light. 

Let us indicate briefly the steps involved in the asymptotic method which is 
described in chapter 3. For problems which can be solved exactly (such as those 
discussed in chapter 4) examination of the asymptotic expansion of the solution 
shows that it consists of a sum of terms, each of which is an asymptotic power 
series in 2- ~ involving a "phase function" and an infinite sequence of "amplitude 
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functions". For complex problems, we therefore assume that the solution is also 
given by a sum of such series. By inserting such a series into the general system of 
equations, we find first that the phase function satisfies a first order partial dif- 
ferential equation, the "dispersion equation", which can be solved by the method 
of characteristics. The characteristic curves are the rays which we have mentioned. 
The characteristic (ordinary) differential equations which define these curves will 
be called "ray equations". By the method of characteristics, the phase function 
can be obtained by integrating a simple ordinary differential equation along the 
rays. We also find that the amplitude functions satisfy ordinary differential equa- 
tions along the rays and that, in the most important cases, these "transport 
equations" can be solved. In order to find the rays, and the phase and amplitude 
functions, initial conditions for all these ordinary differential equations are required. 
In some cases the required intial conditions follow directly from the data of the 
problem. In others the initial conditions are obtained by an "indirect method". 
Here one solves a "canonical problem" which has the same local features as the 
given problem. It is, however, sufficiently simple to be solved exactly. The required 
intial conditions for the given problem are obtained by examination of the 
asymptotic expansion of the solution of the canonical problem. 

The indirect method was originated by J, B. KELLER for the solution of "dif- 
fraction" problems for the reduced wave equation. In these problems "diffracted 
rays" are produced when ordinary rays are incident upon edges or corners of 
boundary surfaces, or are tangent to smooth surfaces. Then the initial conditions 
for the diffracted rays are determined from a canonical problem involving a 
boundary with local features resembling those of the given problem. These canonical 
problems are often quite difficult because of the presence of the boundaries. In 
our work we consider systems of equations much more complex than the reduced 
wave equation. However we are concerned here with problems of "radiation" 
from sources, which are much simpler than the diffraction problems*. Thus the 
canonical problems we must consider are not complicated by the presence of 
boundaries. They are problems for the general system of equations with constant 
coefficients, in infinite space; whereas the original problem may involve variable 
coefficients and boundaries. Chapter 4 is devoted to the solution of the canonical 
problems which we require. 

In chapter 5 we find the asymptotic solution of two representative radiation 
problems. These two problems are intended only to illustrate the asymptotic 
method. A much larger variety of problems for (l) and (2) are discussed in [11] 
and [10]. Other problems for more general systems of equations are under investiga- 
tion by the asymptotic method. In particular, these involve intial-boundary value 
problems for symmetric-hyperbolic equations [4], and the very interesting problems 
of "Cerenkov radiation" [5] and "transition radiation" [2] for the electromagnetic 
field equations and other equations. 

In chapter 6 we investigate the special features of our asymptotic solutions 
which appear when the general system of equations is non-dispersive. In particular 
we find that we may then superpose asymptotic solutions to obtain one which 

* Problems involving reflection and refraction by surfaces and interfaces are considered 
in [4]. A diffraction problem for (2) is described in [1]. Diffraction problems for more general 
equations have not yet been investigated. 



Asymptotic Theory of Wave-Propagation 195 

involves an arbitrary "wave-form" function. Such "progressing wave" solutions 
have been studied for a variety of hyperbolic equations [3, 13]. In [11] progressing 
waves are applied to problems for the wave equation (1) involving amplitude- 
modulated waves, radiation from moving sources, and reflection by moving 
surfaces. Although specific problems are not treated in chapter 6, the discussion 
there illuminates the relationship between the dispersive and non-dispersive cases. 

The introduction of the general system of equations in chapter 2 was largely 
motivated by the electromagnetic field equations for dispersive media. In chapter 7 
we return to those equations in order to demonstrate that the general theory which 
we have developed is indeed applicable to the electromagnetic case. In section 7.2 
the solution of the transport equations for inhomogeneous isotropic media is 
analyzed in detail. This leads to a discussion of the rotation of the electric polariza- 
tion vector. 

Throughout the paper certain conditions are imposed on the equations con- 
sidered in order that the asymptotic method may be applicable. These conditions 
are listed for ready reference in appendix H. A brief summary of notation is given 
in appendix G. 

The historical development of the asymptotic theory of ordinary differential 
equations has proceeded in two stages. First methods were developed for obtaining 
formal series solutions of certain problems. In many cases this formal theory has 
been supplemented by an analytical theory, wherein the asymptotic nature of the 
formal solution is rigorously proved. The asymptotic theory of partial differential 
equations is still mainly in the formal stage, and the work presented here is 
entirely of that nature. Nevertheless there is abundant evidence of the validity of 
our methods. This evidence has been obtained mainly by comparing our results 
with the asymptotic expansion of the solution of numerous problems which are 
sufficiently simple to be solved exactly. In every case that has been examined the 
asymptotic expansion of the exact solution agrees perfectly with the results 
obtained by methods such as those presented here. These investigations [1, 4] yield 
not only confidence in the validity of our method but also an appreciation of its 
relative simplicity. 

2. The General System of Equation 

2.1. The electromagnetic field equations for dispersive media 
In Gaussian units, Maxwell's equations take the form 

0 D - c V x H = - 4 n J  f-f-[B+cVxE=O, (1) 
Ot 

V.D=4np,  V.B=O. (2) 

The source terms p(t, X) and J(t, X) must satisfy the continuity equation 

Op 

Ot 
From (1) and (3) we see that 

a 
O-7 (V. B)=0,  

Arch. Rational Mech. Anal., Vol. 20 

- - +  v .  I = o .  (3) 

~ t ( V .  D - 4 n p ) = 0 .  

14 

(4) 
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Hence the equations (2) are automatically satisfied if they are satisfied at any 
given time t. For a non-dispersive medium equations (1) and (2) are supplemented 
by the constitutive equations 

O=eE, B=pH. (5) 

Here ~, p are scalar or matrix functions of X = (xl, x2, xa) which characterize the 
medium. It is well known that the solution of (1, 2, 5) with given source terms p, 
J satisfying (3) is uniquely determined by the initial values E(O, X), H(O, X) of the 
electric and magnetic fields, say at t = 0. If the initial conditions satisfy (2), then 
those equations are satisfied for all t > 0. 

The fourier (time) transforms of E, H, D, B, p, ,/satisfy the "reduced equations" 
which are given by (1), (2), (3) and (5) with ~/Ot replaced by -io5.  Here t5 is the 
transformation variable. However, dispersive media are characterized by the fact 
that 8 and # are functions of tb as well as X. It is important to note that then 
equations (5) do not hold. For dispersive media, the constitutive equations for the 
time-dependent fields are convolution integral relations. If, for convenience, we 
replace E, H by U1, U2, D, B by g~, I:2, and e, # by ~ ,  k2, then for dispersive 
media the constituitive equations for the transformed fields are given by 

V~ (~, X) = ~v (o~, X) V~ (~, X), v = 1, 2. (6) 

It follows from elementary properties of fourier transforms that the time-dependent 
fields are related by 

V~(t,X)=~f~(z,X)U,(t-z,X)dz; v = l , 2 .  (7) 

The functionsf~(t, X) are, of course, fourier transforms of the dielectric permea- 
bility ~ = ~ and the magnetic permeability ~z = g :  

~,(t~,X)=~e'~'fv(t,X)dt, v = 1 , 2 .  (8) 

These equations, which are thoroughly discussed in [8], have an interesting physical 
interpretation: We see from (7) that at each point X, the fields V~ depend on the 
fields U~ only at earlier times, provided we assume that the real functionsf~ satisfy 
the causality condition 

f~(t,X)=O for t < 0 .  (9) 

This equation has important consequences for the analytical properties of the 
functions ~ which are discussed in [8]. 

In Gaussian units ~1 and ~2 are dimensionless. Since & is a frequency, ~ must 
be a function of ~/2 where 2 is a characteristic frequency of the medium*. Thus 
we may set 

~v(cS, X) =~v(co, X); co=c5/2. (10) 

Then from (8) we find that 

fv(t,g)= 2~ S e-~aot'~,(o~,X)dco; v = l , 2 .  (11) 

* Specific examples of ~1 are discussed in appendix D. 
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The time-dependent form of the electromagnetic field equations for dispersive 
media are now given by 

(~V 1 ~ V  2 a- -~- -  c 17x U2 = - 4 ~ J ,  a---/-+ c Vx U1 = 0 ;  (12) 

Vv(t,X)=~f~(z,X)Uv(t-z,X)dz ; v = 1 , 2 .  (13) 

Here we have omitted equations (2) since, as we have seen, those equations will 
be satisfied automatically if they are satisfied at a given time. It is clear that the 
initial values of the fields E = U1 and H = U2 do not uniquely determine the solu- 
tion of this system of equations, since the function V~ depends on the values of the 
functions U, for t < 0. In the absence of any existence and uniqueness theorems we 
assume that an appropriate problem for this system of equations is as follows: 
Source functions p and J satisfying (3) are given for all t and X. Prior to some 
initial time, say t=0 ,  fields V~ and U~ satisfying (2), (12), and (13) are given. We 
are then required to find the values of Vv and U, for t > 0. In the simplest case, the 
sources and fields are identically zero, for t<0 ,  and the sources are "switched on"  
at t = 0 or later. 

Much of our work in the later sections will be concerned with the solution of 
such a problem, asymptotically for 2-+00. (The functionsfv and ~'~ depend on this 
parameter.) Since 2 has the dimensions of a frequency, the physical meaning of 
our expansion will be clarified if we can find an equivalent dimensionless expansion 
parameter, 20. In order to do this we define a characteristic length*, a. We then 
introduce dimensionless space and time variables Xo = X/a, t o = c t/a, and set 

Vvo(to,Xo)=V~(t,X); U,o(to,Xo)=U,(t,X), 

Zo=CZ/a, ~ o(CO, Xo) =~,(co, X), 

Then (11), (12) and (13) become 

a 
f~ o(to, Xo) =--~-f~ (t, X), 

J o ( t o , X o ) = + J ( t , X ) .  

(14) 

'~0 fvo(to,Xo)=~--~Se-'~~176176 Xo)dco; v = l , 2 ;  (15) 

g V2o OVt~ VoxU2o=-4rCJo, - - - I -  Vo x Ulo =0 ;  (16) 
c3 to a t o 

Vvo(to,Xo)=Sfvo(%,Xo)U~o(to-zo,Xo)d%; v =1 ,2 ;  (17) 
where 

2 o = 2 a/c. (18) 

It is not difficult to see that if we find the asymptotic expansion for 20-+0o of a 
solution of (16, 17), the result is equivalent, under the above transformation, to 
the asymptotic expansion for 2--,00 of the corresponding solution of (12, 13). We 
conclude that the correct interpretation of our expansion is that it is valid for 
1~.2o=2a/c. 

* For problems with boundaries, we may choose a typical boundary dimension as the 
characteristic length, a. For problems involving inhomogeneous media we may use an average 

functions I ~v (co, X) . value of the 17~'v (co, X) I Then ~v changes by a small fraction of itself over distances 

small compared to a. 
14" 
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Before proceeding to our discussion of the asymptotic solution of (12, 13), we 
shall rewrite that system of equations in matrix form. The matrix notation has 
several advantages. It is not only compact and suggestive, but more important, 
it will enable us to include in our general discussion a large set of equations, of 
which (12, 13) is a special case. In particular, we will show that this set includes the 
important class of (weakly dissipative) symmetric hyperbolic partial differential 
equations. The notation used is explained in appendix G. We first introduce 
column vectors u, v, f with 6 components, defined as follows: 

U = ( U 1 ,  U 2 )  = (E, H) = (E 1 , E2, Ea, HI, H2, Ha) , 

v=(Vx, V2), f = ( - 4 r r  J, 0). 
(19) 

Corresponding to any 3-vector Z =  (zl, -72 , Z 3 ) ,  w e  introduce a 3 x 3 matrix (Z) 
given by 

[0 .Zo 1 (Z)=  z 3 0 I �9 (20) 
- - Z  2 Z 1 

Then if V is any 3-vector, in column form, (Z) V = Z x V. We now set K = (k l, k2, k3) 
and define three 6 x 6 matrices A l, A 2, A 3 by the equation 

3 , F 0 - c ( K ) l  
(21) 

Here we have used matrix block notation. (Since kl, k2, k 3 are arbitrary, we may, 
for example, choose k 1 = 1 and k2 =k3 =0.  Then (20) and (21) give A l, etc.) We 
now note that the matrices A v are constant and 

, F ~ -o(qF ,l L A'ux~=,--}],a--~( A" :Lc(V)o ALU2A=L c V x U , '  v = l  

hence (12) takes the form 
3 

v, + ~ A" uxv =f -  (23) 
V = I  

Next we set 

F ( t ,X )=  f '  X) 0 8(r . (24) 
f2 (t, X) ' 0 ~'2 (o9, X) 

For  anisotropic media ~, andfv are 3 x 3 matrices. In the isotropic case they are 
scalars, and in (24) they multiply the 3 x 3 identity matrix I 3 which we omit. 
Now (11) and (13) become 

F(t, X) = 2 ~  S e -i  z o~ t ~(og, X) d o9, (25) 

and 
v(t, X) = S r ( z ,  X) u ( t -  z, X) d z .  (26) 
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If we increase the number of space dimensions from 3 to n, then X = (xl . . . . .  x,) 
and (23) becomes 

v, + ~ A ~ uxv =f .  (27) 
v = l  

Equations (25 -27 )  are the matrix forms of (11 - 13). 

2.2 The general system of equations 

In the succeeding sections of this paper we shall discuss systems of equations 
of the form (2.1.26, 7) where u, v are column vectors of dimension m and A v, 
F and o ~ are m x m matrices. The matrices A v are hermitian and, in general, may 
be functions of X. In this paper we require that A v and # be smooth* functions of 
X in the infinite X-space. If appropriate boundary conditions are specified on 
boundary surfaces, or if A ~ and g are discontinuous at interior surfaces called 
interfaces, our methods must be modified by introducing reflected, transmitted, 
and diffracted waves. These features are discussed in [1, 2, 4, 7, 11, 12]. 

In addition the function ~ = 6~ (co, X; 2) is required to satify five "basic condi- 
tions" which are listed in appendix H. The significance of these conditions (and 
the other "special conditions") are best appreciated by examining the role they 
play in later sections. For  the electromagnetic field equations in isotropic media, 
examples of the dielectric and magnetic permeability functions satisfying these 
conditions are discussed in appendix D. 

2.3. Symmetric-hyperbolic partial differential equations 

In this section we shall show that, for an appropriate choice of o ~, consistent 
with the basic conditions, (2.1.26, 7) reduce to a system of symmetric-hyperbolic 
partial differential equations. We first note that (2.1.25, 6) yield 

v( t ,X)=IF( t -s ,X)u(s ,X)ds=2~Ie- i~~ (1) 

and the fourier integral theorem implies that 

We now set 

u(t,X)= 2-~ ~ e-i a~'('-~) u(s,X)d o2 ds. (2) 

o~=d ' - ( i2 )  -~ .~, 8 = A ( X ) +  iB(X___~), ~ =  C(X____)) , (3) 
(D tO 

where A is positive definite and B is anti-hermitian (i.e. B* = - B). It follows then 
from (I) and (2) that 

v t = A u t + 2 B u + C u ,  (4) 

A smooth function posesses sufficient continuity or differentiability properties to justify 
the operations performed with it. 

** The matrix Q is positive definite (or non-negative) if (x, Qx)> 0 [or (x, Qx)>= 0] for every 
non-zero vector x. 
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hence (2.1.27) becomes 
tl 

Au,+ ~ AV uxv+ABu+Cu=f. (5) 
v = l  

Since d is positive definite and the A ~ are hermitian, (5) is a "symmetric hyperbolic" 
system [3]. The asymptotic theory of such systems is discussed in [4]. There we 
see that the condition that B be anti-hermitian is essential. Such systems will be 
called "asymptotically conservative". 

Since 

A~ ~-b~-(o9 8 ) = A ,  

it is easy to see that (3) satisfies conditions 1, 2, and 4 of appendix H. To see that 
condition 5 is satisfied we note that G=~-coA,  where ~r AV-iB. ~l is 
hermitian because B is anti-hermitian. Thus the roots o)=h of det G = 0  are 
"principal values" of the hermitian matrix ~1, with respect to the positive definite 
matrix A; and it follows that such roots are real. Condition 3 imposes an additional 
restriction on the matrices A ~, A, and B. 

3. Asymptotic Solution of the General System of Equations 

3.1. The asymptotic expansion 
In this section we shall develop a method for obtaining asymptotic solutions 

of the general system of equations (2.1.26), (2.1.27) with f=O. For convenience 
we introduce the summation convention (see appendix G), and frequently we shall 
not indicate explicitly the dependence of various functions on the variable X. 
Thus we may write the general system of equations in the form 

vt+AV uxv=O, (1) 

v(t) = S F(z) u ( t -  z) dz. (2) 
From (2.1.25) we see that 

F ( z ) = 2 ~ ( 2 z ) ,  ~/t~(y)=2-~Se-tO'Y~(o~)do). (3) 

If we introduce the transformation 2~=y,  then (2) becomes 

v (t)  = ~ oW (y )  u (t - y/)~) d y .  (4) 

We now assume that (1) and (2) have solutions given by asymptotic power 
series of the form 

u(t,X)=e ~s(t'x) ~ (iA)-mzm(t,X). (5) 
m = O  

We shall determine the phase function s and the amplitude function z = z o by 
inserting (5) in (1) and (2)*. We introduce the convenient notation** 

kv = sxv (t, X), co = - s,(t, X), (6) 

* Presumably ,  the lower order  terms,  z 1, z 2 . . . . .  can  be obta ined by a s imilar  procedure .  
** This  no ta t ion  is mot iva ted  by the considera t ion  of "p lane-wave"  solut ions.  (See the  foot-  

note  to section 3.2.) 
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and expand u(t-y/2)  for  large 2. In order  to do so we first note that  

ei~S(t-y/a)=ei~(t)+io, r Y sit -2 , (7) 

and 

( i2)-"Zm(t--y/2)=z(t)+(i2)- l[zl( t )-- iyzt( t )]+O(2-2).  (8) 
m = O  

Hence 

u(t-y/2)=eiaSm+'~r{z( t )+(i2)- l[zx( t ) - iyz , ( t ) - �89 (9) 

F rom (3) we see that 

8(to)=Se'~ ~o,=Siyei~ ~,oo,=-~y2 e"~ sct~(y)dy, (10) 

and we apply condit ion 1 : 

d;(~) = g (to) - (i 2) -  ' ~ (to) + O (2-  e). (11) 

Then (4), (9), (10), and (11) yield 

v(t)=e 'xs(t) {r (og) z + ( i 2)- l[ ~ (to) zi -- ~ (to) z--8~zt + �89 stto~o~z] + O( 2- 2) } . (12) 

By differentiating (12) and (5) we obtain 

vt(t)=eia* { - i  2to• z + 

[ 1 },,3, (.0 ~-I  
"[- N Zt--(-DN Zl"~'toN Z"l"tot~toZt--"~SttNojejg q-~toOtZ "~-O(A ) , 

and 
A" nx =e'~'{iAk,  A" z +[A" zxv+k,A" z,]+O(2-1)}.  (14) 

We may now insert (13) and (14) in (1) and equate to zero the coefficients of 2 
and 2 o. The resulting equations can be written more  simply if we introduce the 
matrices 

G = k v A ' - t o g  =kvAV(X)-tog(to, X) (15) 
and 

A ~ =(to g),~ = - G~,. (16) 
Then  

o o [o9 go, o + 2j,o~ ] (17) At = Ao~tot= --Sit 

and (1), (13), and (14) yield 
Gz=O (18) 

and 
Gzt+A~ zt+AV zxv+�89176 z + t o ~ z = O .  (19) 

F r o m  (18) and (19) we shall derive the equations which determine s and z. In 
order  to do so we must  first examine some properties of G. 

3.2. The eigenvectors of G 

From (3.1.18) we see that  the vector function z can be non-trivial only if 

det G = d e t  [k,A'(X)-ogg(o~, X)] = 0 .  (1) 
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For  real values of 09, X, and K, this equat ion defines a functional relation between 
these quantities which we call the dispersion relation*. The same functional relation 
can also be expressed in the form 

o2-- h ( r ,  X). (2) 

Then, in general, h is a multiple-valued function of K and X, defined by (1). 

For  each value 09=h, the hermitian matrix G is singular, therefore there exists 
a positive integer q < m, and q linearly independent null eigenvectors r 1 . . . . .  r q of G, 
such that  

G r J = 0 ;  j = l  . . . . .  q .  (3) 

The integer q is the nullity (or the multiplicity of the zero eigenvalue) of G. The 
nullity corresponding to each value of (2) may  be different. In  our  work we shall 
require that, for each value of (2), q is independent of K, so that  we may  differen- 
tiate (3) with respect to k v. This requirement is a consequence of condit ion 3 of 
appendix H. 

By condit ion 2 the matrix .4 0 is positive definite for  all real 09. Therefore for 
each value of (2) we may or thonormal ize** the null eigenvectors by the condit ion 

(r i, A ~ r J) = 6ij; i, j = 1 . . . . .  q .  (4) 

The inner product  used here is defined in appendix G. 3ii is the Kronecker  symbol. 

If we differentiate G = kv A ~ -  o2 8 with respect to trv and recall that  

= ~  (09 8 ) ,  A o 

we obtain 
Gkv = A ~ -  gv A ~ v = 1 . . . . .  n;  (5) 

where 
009 Oh 

- -  (K, X); v = 1 . . . . .  n .  (6) 
g ~ -  0 k~ - a kv 

Hence differentiation of (3) yields 

a r[v + ( a  ~ - g~ A ~ r ~ = 0 ,  (7) 

and f rom (4) 
(r~,.4"rJ)=gvfij;  i , j = l , . . . , q ;  v = l , . . . , n .  (8) 

This basic identity will be used repeatedly in our further work. F r o m  (4) we see 
that  it holds also for v = 0, if we define 

go = 1. (9) 

The eigenvectors r 1 . . . . .  r q are not  completely determined by (3) and (4), for 
if we set 

q 

~ ' =  y'fli~rV; i = 1  . . . . .  q ,  (10) 
v = l  

* In case A ~ and g are independent of X, and 6;-- g, the dispersion relation can be obtained 
by assuming "plane wave solutions" of (3.1.1, 2) of the form u= z exp (i 2 (kv x v -  o2 t)} where 
z, k v, and o9 are constants. 

** This orthonormalization may, for example, be accomplished by the Gram-Schmidt method 
using the inner product Ix, y ]=  (x, A~ 
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where (fl~) is any q-dimensional unitary matrix, the ~i still satisfy (3), (4), and 
even (8). Let us now suppose that condition 6 of appendix H is satisfied. Then if 
we set ~ j = ( r  i, co~rJ), the q-dimensional matrix (~qj) is hermitian. If we should 
now take (fl~) to be the unitary matrix which diagonalizes (~i~), then we would 
find that the new eigenvectors pi would satisfy the identity 

(r ~, co ~ r j) = qj (~ij "~ i, j = 1 . . . . .  q. (11) 

Therefore, if condition 6 holds, we may choose eigenvectors r ~ . . . . .  r q which 
satisfy (3), (4), (8), and (11). 

3.3. The dispersion equation and the ray equations 

The dispersion relation, introduced in the last section, is a functional relation 
between co, K, and X. Since co= - s t  and kv=s~v (3.2.1 or 2) is also a first order 
partial differential equation for the phase function s(t, X). We call that equation 
the disperion equation. Some readers may find it convenient to view the dispersion 
equation in the form (3.2.2) as a Hamilton-Jacobi equation. In any case it may be 
solved by the "method of characteristics" [3]. Thus we introduce the characteristic 
(Hamilton's) equations 

dx~ Oh dk~ 3h . 
dt  - g v - ~ k ~ ;  dt  - (gx~' v = l , . . . , n .  (1) 

An immediate consequence of these equations, and the fact that the hamiltonian h 
is independent of t, is 

dco dh 3h dk~ 3h dx~ 
d~  - d~  - ~ kv d ~  t O x~ d ~  = O " (2) 

From (1) we see that 

where f is the lagrangian 

ds 3s dx~ 3s 
dt  - Ox~ dt  - I - -~-=f ,  (3) 

Oh 
f = k v g v - c o = k v ~ - ~ - h .  (4) 

(1) is a system of 2n first order ordinary differential equations for the 2n functions 
xv(t), k~(t). Each solution of this system defines a curve [t, X(t)] = [t, x I . . . . .  x,] 
in space-time which we shall call a ray*. 

If initial values for X and K are known, then, in many cases, the ray equations 
(1) may be solved to determine a ray: Along this ray we see from (2) that co is 
constant and from (3) that s may be obtained by integration. In this process it 
is clear that we require initial values for X, K, co, and s. Let us examine how 
such initial values are obtained: 

We shall find that in typical problems the values of s are known on some 
manifold** . g .  Thus, for example, ~g may be an n-dimensional hypersurface given 

* Sometimes the term "ray" is used for the projections X(t) of these curves into X-space. 
** The manifold ~ '  is closely related to the source region. The discussion in this section will 

be clarified by examining the concrete examples in section 5. 
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parametrically in terms of n parameters �9 =(qh . . . . .  ~0.) by 

X=Xo(a~), t=~(~). (5) 
Then s is given by 

s IT (@), Xo (~)]  = So (~/i) (6) 

where So is a known function. By differentiating (6) we see that 

0r  + k  OXo~ ~So 
- o9 ~ v 0 q~j - O q~j'  (7)  

and then for each ~ (7) and the dispersion relation provide n + 1 equations for the 
determination of the initial values o9 o, ko~ . . . .  , ko. of the n + l  quantities to, 
k 1, . . . ,  k. .  

But, in general, the manifold ./t' may be of dimension r<n. Then, for the 
purpose of our asymptotic method, we shall require the solution s of the dispersion 
equation which is equal to So on J/r and for which the corresponding rays all 
emanate from ./g with increasing t. This solution is, in general, multiple-valued, 
not only because the dispersion relation defines o9 as a multiple-valued function 
of K and X, but also because, for each value of o9, more than one ray emanating 
from ./t' may pass through a given space-time point (t, X). In order to construct 
this solution, s we note that (7) and the dispersion relation with X = Xo (~)  now 
provide r + 1 equations relating the n + r + 1 quantities 

~~ . . . .  ,q~r, COo, kol . . . . .  ko . .  (8) 

We may then introduce any n of these quantities or any n functions 

~j = ~j (q~l, ..., q~r, COO, ko 1 . . . . .  leo ,) (9) 

of these quantities as independent parameters, provided the n + r +  1 equations (9), 
(7), and the dispersion relation, can be solved to obtain the quantities (8) as 
functions of F=(~I  . . . . .  V,). The functions (9) can, in general, be so chosen that 
q~ . . . . .  cp,, COo, kox . . . . .  ko, will be single-valued functions of F. Then, from (5) 
and (6) we shall have the initial values Xo, ~, So, o9o, Ko given as single-valued 
functions of F. Furthermore, to each value of F, there corresponds one branch 
of the multiple-valued function h for which COo(/" ) =h  [Ko(/3, Xo (/3]. With this 
branch of h we may solve the ray equations (1) and obtain the solution 

X=X(t; /3, K=K(t; /3. (10) 

This solution satisfies the initial conditions X ( r ; / 3  = Xo (/3, K ( z ; / 3  = Ko (/3. 
The parameters F lie in a certain parameter space ~ which is determined as 

follows: In (5), the point (t, X)=(~,  Xo) ranges over the manifold . / /  as ~ =  
(cp~ . . . . .  q~,) ranges over some space St. Then ~ consists of all values F = (Yl . . . . .  ~,) 
assumed by the functions (9) when �9 ranges over St and co o, Ko take on all real 
values that satisfy (7) and the dispersion relation. 

For F in ~ ,  and t>~( /3 ,  the equation (t, X)=[t ,  X(t;/3] defines an n-para- 
meter family of rays. On each ray, co has the constant value 

og=ogo(/3=h[K(t; /3, X(t; /3]. (11) 
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Now if we set 
g~(t; F)=hkv[K(t; r),  x(t; F)]; v=l ,  ..., n (12) 

and 
t(t; F)= k~(t; F)gv(t;/')-COo(/'); (13) 

then (3) yields by integration 
t 

s(t; r)=s[t, x(t; r)]=so(r)+ S e(c; r)dt'. (14) 
r(F) 

This equation provides the required multiple-valued solution of the dispersion 
equation which is equal to So on ./t', and for which the corresponding rays all 
emanate from ./r with increasing t. 

Note. In this and succeeding sections the symbol / ( t  ; /O denotes the value of 
the functionf(t, X) on the ray [t, X(t; F)] at time t; i.e. 

f(t; / ')=fit, X(t; r)].  (15) 

For fixed t, f(t, X) may be multiple-valued although f(t; F) is single-valued because 
more than one ray may pass through the point (t, X). 

3.4. The ray transformation 
For each fixed value of t, the function X=X(t; F) defines a transformation 

from the parameter space ~ to X-space. The jacobian j(t; F) of this ray trans- 
formation is defined by 

j(t; F)=det [ . O x ~  r).]. (1) 

The jacobian may vanish at certain space-time points called caustic points. The 
locus of all such points is called the caustic of the ray family. 

A complete study ofj( t ;  F) would require the solution of the ray equations to 
obtain the function X(t; F). However, we can obtain valuable information about 
the behavior of j near J// by means of an expansion of X(t; F) for small 
[ t -z(F)] .  From the ray equations (3.3.1) we obtain 

x,(t;r)=xov(r)+[t-~(r)] h~v[Ko(r),Xo(r)]+o[(t-~)2]. (2) 
Then 

t~Xv OXov h k +O(t-z) .  (3) 

From (1) it follows that 

j(z)=j[z(r); r ]  =det [ ~ -  ~, h~] .  (4) 

If j ( z )=0  for some value of F then the point (t, X)= [~, X(z; F)] is a caustic 
point, and we find from (3) that there is a positive integer v such that 

j(t;/ ')=(t-T)'j(~; F)+O[(t-~)~+ 1], (5) 
where 

)'(T; F) = lira ( t -  z)- "j It; F].  (6) 
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The quantity j is non-zero and finite. It can be obtained from further terms of the 
expansion (3). It is of practical importance to note that v and f can be obtained 
from the ray equations (3.3.1) and the initial conditions Xo(F), Ko(F) without 
solving the ray equations explicitly. In general, the integer v, which is the order 
of the zero ofj(t) at t =  z(F), is a function of F. I f j ( z ) #  0 then the point [~, X(z; F)] 
is not a caustic point. However (5) and (6) remain trivially valid with v = 0  and 
f(T;  F )= j (~ ;  F). Thus v and f a r e  defined at all points on every ray, and in general 
v is a non-negative integer. 

It is interesting to note that, since gv = hkv, 

m 

1 gl "'" g~ 

~Xol C~Xo. 

j ( z ) = d e t  ... (7) 
. . .  

t3Xot t3Xon 

This equation follows from (4) by simple determinant operations. From the ray 
equations, we see that the first row-vector of (7) is tangent to the ray [t, X(t; F)] 
at t =  , (F) .  The remaining row-vectors are tangent vectors of .g .  If, at a given 
point, the n tangent vectors are linearly dependent, then either that point is a 
singular point of ~ or d / i s  of dimension less than n. In either case J (O vanishes 
there, hence the point is a caustic point. If at a given point, the n tangent vectors 
are linearly independent, then we see from (7) that j (z)  vanishes if and only if 
the ray at that point is tangent to ~r 

3.5. The transport equations 

In the preceeding section we have seen that the phase function s can be obtained 
by solving a system of ordinary differential equations, the ray equations. In this 
section we shall show that the amplitude function z can also be obtained by 
solving a system of ordinary differential equations. 

From (3.1.18) we see that the vector z lies in the null space of the matrix G, 
hence is a linear combination of the null eigenvectors r 1, . . . ,  r r of G. Thus there 
exist coefficients al ,  . . . ,  a s such that 

q 
Z= E am rm" (1) 

r a = l  

If we take the inner product of (3.1.19) with r e and note that (r t, G z , )=  (Gr t, z 1)= 
(0, z l )=0 ,  we obtain 

(r t, A j Zx) + �89 (r  t, A 0 $) + (r  t, (.0 ~ Z) = 0,  

Here, for convenience, we have set 

Xo=t. (3) 
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We now insert (1) in (2) and simplify the resulting equation by using the basic 
identity (3.2.8). Thus we obtain 

gj(at)xj+(r',AJr~'~)am+�89176 o g ~ r ' ) a , = O ,  ( ~ o ,  ~q ) .  J , (4) 

But from (3.3.1) we see that 

dx j  dat 
gj(at)x~=(a,), + ~ (at)x, -- j=o j=l dt  dt  ' 

hence (4) may be written in the form 

dae q 
d---i--+ ~. ztmam=O; t = l  . . . . .  q (5) 

ra= l 

where 
n 

Tt rn = E ( rt" A j  rxml) -[- �89 ( rt' A~ r~) + ( rt, 09 ~ r m); r m = 1 ....  , q. (6) 
j = O  

(5) is a system of q first order ordinary differential equations for the coefficients 
al . . . . .  aq which determine z. These equations are called the transport equations. 
The solution of (5) yields the values of a 1 . . . . .  aq, hence the value of z, along a 
ray. In the next four sections we shall obtain the solution of the transport equations 
in several important special cases. From (3.2.11) we see that if condition 6 holds, 
the last term in (6) is 

(r e, 09 ~ r ~) = ~/t tSt ,.. (7) 

3.6. Homogeneous media 

We shall say that our general system of equations (2.1.26, 7)describes the 
propagation of waves in a homogeneous medium if the matrices A ~, 8, and ~ are 
independent of X. In this case it is possible to show that if condition 6 holds, the 
system of q equations (3.5.5) uncouples. In fact it follows from the theorem of 
appendix A that 

T,m=[�89 r  ~(gv)x~; (1) 
v = l  

and we obtain the uncoupled equations 

dat ~_[�89 / '=1, q. (2) 
dt "" '  

For homogeneous media h and gv are independent of X. It then follows from 
the ray equations that the functions k, are constant on each ray, i.e. 

k,(t; F) = k, o(F). (3) 
Then, of course, 

o~(t;r)=o~o(r)=h[Ko(r)], g,(t;r)=gvo(r)=hk~[Ko(r)], (4) 

and the solution of the ray equations (33) is given by 

x,=x,(t;F)=X~o(r)+[t-T(r)] gv o(F). (5) 

Thus the rays form an n-parameter family of straight lines in space-time. 
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From (3.3.4) we see that the lagrangian has the constant value 

t(t ;  F) = t~o (F) = kv o gv o -~Oo (6) 

on each ray, hence (3.3.14) becomes 

s(t; r) = so(r) + [ t -  z(r)]  Co(r). (7) 

The solution of (2) is given in (12) of appendix C. There we see that 

t t F[J ( t~  ~ at( ; / ' )=~rt(o; ) ~ exp{-(t- to)tk(r)};  t = l  . . . .  ,q .  (8) 

Here j is the jacobian defined by (3.4.1), and qt is given by 

r/,(/') = [rl(/'), O9o ~(O9o) rt(/ ')]; rl(r)=rl(ogo,Ko); 
(9) 

COo = O9o (r);  Ko = Ko ( r ) .  

(8) provides the value of at at any point on the ray [t, X(t; r)]  in terms of its value 
at a given point t = t o . From (3.5.1) and (3.2.8) we see that tr,, = (r m, A ~ z), therefore 
(3.5.1) and (8) yield 

z (t) = 2 exp { -  ( t -  to) t/,~} am (to) r m 
m=l (10) 

= [ ~ ] ~ = l e x p { - ( t - t o ) q , , } [ r m ,  A~ 

Here, for the sake of brevity, we do not indicate the dependence on the para- 
meters r .  If condition 7 of appendix H is satisfied the functions t/m; m = 1, . . . ,  q; 
are all equal. Then (10) becomes 

z ( t ) = [ ~ ] ~ e x p { - ( t - t o ) t l }  Z(to). (11) 

These equations provide the explicit solution of the transport equations for 
the case of homogeneous media. 

It is interesting to note that for homogeneous media 

ax,(t, F) =(x ,  o - z  gv'o)r~ + (g, o)r,, t (12) 
O~ 

hence the jacobian (3.4.1) is a polynomial in t with coefficients which are functions 
of F. The degree of the polynomial is at most n. If zl(F) . . . . .  "r,(r) are the roots 
of this polynomial, then the factor j(to)[j(t ) which appears in (8), (10), and (11) 
is given by 

j(to) = (to-Z1)... ( to- Z,) (13) 
j(t) ( t - 'q ) . . . ( t -x , )  " 

(If the degree of the polynomials is less than n then some of the roots zj in (13) 
are infinite.) The points t=zj(r) are, of course, caustic points. At those points 
(13) becomes infinite and our formulas for the amplitude z are invalid. In the 
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neighborhood of a caustic point, a different asymptotic representation of the 
solution is required*. If t and to are separated by one or more caustic points then 
(13) may be negative. In such cases the factor [j(to)[j(t)] ~t in (8), (10), and (11) 
is ambiguous. The ambiguity may be removed by the "phase-shift rule" which 
will be discussed in appendix F. 

3.7. The energy density 
We turn now to a consideration of the transport equations (3.5.5) without 

assuming that A v, ~ and ~ are independent of X. We first note that the basic 
identity (3.2.8) implies 

t' 0 m t 0 m I 0 (r ,  A r t ) + ( r  t , A r ) + ( r ,  A, r m) = ( r  t, A ~ rm)t=(6t,,,)t=O; (1 )  

hence, from (3.5.6) and (3.2.8) 

zt,, + r*t = ~ [(r t, A v " t rx)  + (rx., A" r ' ) ]  + It ' ,  o~(~ + ~*)  r m] 
v=t (2) 

n 

�9 .-,5~ [(r t, A ~ m r v m = r ) x ~ - ( r , A x . r  ) ] + [ r ' , ~ ( ~ + ~ * ) r ' ]  
V = I  

= .  (v. G) g, ,. + [ / ,  oJ(:~ + ~ * )  r m] -- ~ (r t, A~v r"), (3) 

where 

V. G =  ~ (gv)x. �9 (4) 
V = I  

Next we introduce the energy density function 

w = (z, A ~ z) = ~* a, (5) 
t 

which is discussed in appendix B. (The second equation in (5) follows from (3.5.1) 
and (3.2.8).) The transport equations (3.5.5) now yield 

dw 
- a~(~tm+x~t)am. (6) dt 

Comparison of (6) and (3) shows that we may obtain a single ordinary differential 
equation for w provided conditions 7 and 8 are satisfied. (We note that condition 8 
is trivially satisfied if the matrices A ~ are independent of X. Furthermore, con- 
ditions 7 and 8 are obviously satisfied if the nullity is q=  1.) 

Under these conditions, (6) now becomes 

d w + [V. G+2(Req+f l ) ]  w=0 ,  (7) 
dt 

and the solution of this equation is given in appendix C. From (C.10) we see that 

w(t; F)=w(to; F) J(t~ F) { i } j ( t ;F)  exp - 2  [Retl( t ' ; f ' )+fl( t ' ;F)]dt '  . (8) 
to 

�9 See [6]. 
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As in the preceding section we note t ha t j  vanishes at caustic points and therfore w 
becomes infinite at such points. Except for the exponential factor, (8) would imply 
that w(t; F) j ( t ;  F) is constant; i.e. independent of t. Let dX(t) be an element of 
space, each point of which moves according to the solution X=X(t; F) of the 
ray equations. Then dX(t)=j(t; F) dF, and the element of energy w(t; F) dX(t)= 
w(t; F) j ( t ;  F) dF is independent of t. Thus energy is conserved in dX(t). Since 
dX(t) vanishes at a caustic point, it is not surprising that the energy density 
becomes infinite there. 

The energy density w is by definition a non-negative real quantity. However 
j(to)/j(t ) may be negative if to and t are separated by a caustic point. In this case 
the derivation of (8) in appendix C is not valid. However, it follows from the 
discussion of appendix F that (8) is valid for all t except caustic points, provided 
we replace the ratio of jacobians by its absolute value. 

In this section we have obtained a formula for the energy density w, but not 
for the amplitude function z. For many purposes this formula suffices. (We recall, 
e.g., that often optical intensities, i.e. average energy densities, are measurable 
whereas the corresponding fields are not.) As we shall see in the next two sections, 
further progress can be made in the important special cases q = 1 and q=2.  

3.8. Nullity one 
If q=  1 then conditions 7 and 8 are trivially satisfied with 

n 

~/(o9) = It ,  o) ~ r] and fl = - �89 ~ (r, A~, v r). 
V = I  

From (3.5.5, 6) we see that the transport equation becomes 

da 
dt t-T~ =0  

where 

Let 9 = arg a. Then 

and (2) yields 

to = ~ (r, A j r~) + �89 (r, -4 ~ r) +,7. 
j=O 

a = l a l e  i~, 

d~ 

By taking the imaginary part of (5) we find that 

d8 t 
dt = - I m p ~  hence ~( t )=O( to) -SImzo( t ' )  dt'. 

IO 

From (3.7.5) we see that [a[ =Vw, hence (3.7.8) yields 

I~r(t)l=[a(to)l [ ~ ] ~ e x p { - i  [Rerl(t')+fl(t')]dt'} �9 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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Thus from (4), (6), and (7) 

a(t)=a(to)[~]�89 (8) 

Since (3.1.17)shows that At ~ is hermitian, we see that (r, A~ is real. Hence, 
from (3), 

Re~/+i lmTo=~/+i~ (9) 
where 

= I m  ~ (r, A i rx) .  (10) 
j=0 

(lf A x . . . . .  A n and 8 are real, then the eigenvector r is real and ~=0.) 

From (3.5.1) and (3.2.8) we see that 

z = a r  and a = ( r , A  ~ (11) 

Therefore (8), (9), and (11) yield 

L j(t) ] ( ,o [r/( t ' )+fl(t ' )+ [r(to),A~ 

Here, for the sake of brevity we have not indicated the dependence on F of all 
the functions in (12). Again the ambiguity of the factor [j(to)/j(t)] ~ may be removed 
by the "phase-shift rule" of appendix F. 

We note that the eigenvector r is determined only up to a unitary factor e i ', 
where ~ is an arbitrary real number. It can be shown*, however, that (12) is 
independent of ~. 

3.9. Nullity two 
In important applications of our theory, such as the electromagnetic field 

equations for isotropic media, the nullity q of the matrix G is two. In such cases it 
is possible to solve the coupled transport equations, provided we impose condi- 
tions 6, 7, 8, and 9. Then we may choose the eigenvectors r I and r 2 to be real, 
and it follows from (3.5.6, 7) that rtm is real. In this case (3.7.2) implies that 

z l t = z 2 2 = z l  (1) 
where 

z:= �89 G+r/+fl. (2) 

Similarly, wc sec from (3.7.2) that z 12 + z2t = 0, hence (3.5.6, 7) yield 

T12 = --T21 =~2 (3) 
^ 

* Suppose ~=ei~r. Then ~=t/, fl=fl, and ~x~=ioLx~e~r+e~rx~. Hence (~,AJrxj)= 
(r, AJrx~)+ i~xj gj, where from (3.2.8)g./= (r, Air). It follows that 

^ d~x  t 

~=~+-d t -  and i~(t')dt'=S~(t')dt'+o~(t)-~(to). 
to to 

But 

exp { --i I-~(t)-- ~(to)]} It(to), A~ z (to)-[ #(t) = [-r (to), A~ z (to)-[ r(t). 
Arch.  Rat ional  Mech.  Anal . ,  Vol. 20 15 
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where 

z2 = ~ (r 1, A i r 2) + �89 (r t, A ~ r2). 
j=O 

The transport equations (3.5.5) now take the form 

d 0" t d0"2 
dt bZl aa +Z2 0-2=0' dt T2 0-X +Zl 0-2=0" 

These equations can be simplified by introducing the quantities 

0"1 0"2 

Then, since p2= w, we see from (3.7.7) that 

2p ~-~Pt +IV.  G+2(rl+fl)]p2=O, 

hence (2) yields 
dp 
dt ~-za p =0.  

By inserting (6) in (5) we obtain 

d i l l  .[_~2fl2_~0 dfl2 _T2flt=O, 
dt ' dt  

and it is easily seen that the solution of (9) is given by 

//1(0 =//1(to) cos 6(t)-13 2 (to) sin 6(t), 

//2 (t) = fit(to) sin 6 (t) +//2 (to) cos 6 (t) 
where 

t 
~5(t) = S zz(t')dt'" 

to 

Here f l l( t)=flx(t;  F) is the value of fit at the point [t, X(t; F)], etc. 

Now, from (6) and (3.7.5) we see that 

I//x12 + I//212 =(w) -x [-10"112+ 10"212-] = 1, 

while (3.5.1) and (6) yield 

z (t) = 0-1(0 rl (t) + 0"2 (t) i ,2 (t) : V w  (t) Jill(t) r 1 ( t )  --}- f12 ( t )  r 2 (t)]. 

Furthermore (6), (3.5.1), (3.2.8) and (3.7.5) imply that 

(r m, A ~ z) (r m, A ~ z) 
tim- Vw ] / ( z , ~ ) )  ' m = l , 2 .  

By inserting (3.7.8) in (13) and by using (3.7.5) we obtain 

J(t~ �89 ' dt'} [Z(to),A~ x z ( t ) = [  j---~-] e x p { - ~  [q(t')+fl(t')-] Z(to)] ~r 

x [//,(t) rl(t) -4- f12 (t) r 2 (t)-]. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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We now set 

/~m(t) = [z(t0), A~ z(to)]�89 
Then/~i and/~2 satisfy (10), while (14) and (15) yield 

tim(to) = [rm(to), A ~ (to) z( to)]  ; m = 1, 2 (16) 
and 

z(t)=[~l'exp{-i[rl(t')+p(t')]dt'}[fl,(Or'(t)+fl2(t)r2(t)-I. (17) 

Thus if Z(to) is given, (16) and (10) yield/~1 (t) and/~2 (t), and then (17) determines 
z(t). 

3.10. Generalized formulas for the amplitude, z 
In sections 3.6, 3.8, and 3.9 we have derived formulas for the amplitude func- 

tion z (t; F) in terms of its values z (to; F) at some point t = to (F) on each ray. 
We have seen that z becomes infinite at caustic points because the jacobian 
vanishes there. Thus our formulas are valid only if t o is not a caustic point. 

In section 3.3 we derived the formula (3.3.14) for the phase function s in terms 
of its values on the manifold ~/t', which consists of those points on the family of 
rays for which t =  z (F). In general, these points may be caustic points. 

For  applications of our theory we require formulas for z and s in terms of 
their values on the same manifold ~r If t = z (F) is not a caustic point, we can 
merely set to=Z in our formulas for z. However, if t = z  is a caustic point z(z, F) 
is infinite and we must modify our formulas for z appropriately. That is the object 
of this section. 

We shall make use of the analysis of the behavior of the jacobian near dr ,  
discussed in section 3.4. In particular we shall use (3.4.6). Thus if we let t o - Z  
tend to zero through positive values in (3.7.8), we find that 

where 

.., j (z ;  F ) { - 2 '  F)]dt'} w(t; r )=  exp ! [Rer/(t ' ;  r ) + ~ ( C ;  , (1) 

# ( T ; F ) =  lim (t-zfw(t;F). (2) 
(t-O~O+ 

(The limit is taken through positive values of t o - z  in (3.7.8) because if t o < T < t, 
then to and t are separated by a caustic point and (3.7.8) is not valid.) 

The positive function ~ describes the asymptotic behavior of w as t~z .  If 
v=0,  then t = z  is not a caustic point, ~(r,  F )=w(z ;  F), j = j ,  and (1) reduces to 
(3.7.8). Equation (1) is valid under conditions 7 and 8. 

If we let ( to-C) tend to zero through positive values in (3.9.10, 11, 16, 17), we 
obtain 

z(t)=[~]~exp{-![rl(t')+fl(t')]dt '} [fl,(t)rx(t)+fl2(t)r2(t)]; (3) 

15" 
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where 

/~m(Z)= lim (t--z)�89176 r e = l , 2 ;  (4) 
(t-T)--*O + 

i(z)=~'(z;  F ) =  lim (t-z)�89 F); (5) 
and (t-,)~o+ 

fit(t) = fla(z) cos 6 (t)-/~2 (T) sin 6 (t) t t 
; 6 ( 0 = !  z2(t')dt'. (6) 

fl2(t)=fll(z)sint~(t)--fl2(~)cost~(t) J 

Equations (3), (4), and (6) are valid under conditions 6, 7, 8, and 9, for the case 
of nullity q=2 .  If ff'(z; F) is known, then (4) gives the values of flr,(Z), (6) gives 
the values of tim(t), and (3) determines z(t; F). If v = 0  then ~=z ,  j=j, and the 
formulas reduce to those of section 3.9, from which they were derived. 

If we let (to-Z) tend to zero through positive values in (3.8.12), we obtain 

](z) 

where ~, is again given by (5). Equation (7) is valid for the case of nullity q = 1. It 
provides the value of z(t) directly in terms of i (O,  and reduces to (3.8.12) if v=0.  

For the case of homogenous media, we may let ( t o - z )  tend to zero through 
positive values in (3.6.10, 11). Then if condition 6 holds, we obtain 

. .  FjCz)  7 + (8) m~= lexp {--(t--'c)/'Ira)[rm, A~ z(z)] Ir m ~ {-t) ~ L j ' ~ J  
from (3.6.10). Here ?/m, rm, and A ~ are constant on a ray and qm is given by (3.2.11). 
If condition 7 is also satisfied (3.6.11) yields 

z ( t ) = [ ~ ] ' e x p  {-(t-~)~l} ~:(z). (9) 

In (8) and (9) ~" is again given by (5). If v = 0  (8) and (9) reduce to (3.6.10, 11). 
From (3.4.6) we see that j(t) and f(z)  have the same sign provided z<t<z', 

where t=T ' ( r )  is the location of the next caustic point on the ray X(t; F). For t 
outside this  interval f(z)/j(t) may be negative. We assume then that (1) remains 
valid with j/j replaced by IJ/JI. We also assume that the other formulas of this 
section may be interpreted according to the "phase-shift rule" of appendix F. 

It is interesting to note that for homogenous media co, K, r ' ,  I/,, and A ~ are 
constant on each ray, while fl = 0. Then it is easy to demonstrate that (3) reduces 
to (9). (The demonstration follows from (3.6.1) which implies that z2 =0,  and from 
(6) which implies that fll and f12 are constant.) It is also easy to show that (7) 
reduces to (9) if condition 6 is satisfied, for in this case the theorem of appendix A 
shows that z o is real and (3.8.9) implies that ( = 0 .  

3.11. Asymptotic Solutions 
Equations (3, 4, 6), (7), (8), and (9) of the preceding section provide formulas, 

valid under different conditions, for the amplitude function z(t; F) in terms of 
~,(z; F). In addition (3.3.14) provides a formula for s(t; I') in terms of the value 
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So(F) of s on ./L By inserting these results into (3.1.5), we obtain 

u,~e  i ~stt; r) z ( t ;  F) (1) 

for the leading term of the asymptotic expansion of u. This equation, and the 
equation 

x = x ( t ;  r ) ,  (2) 

which is obtained by solving the ray equations, provide a parametric representa- 
tion of u(t, X) with n parameters F=(~q . . . . .  y~). For  a given value of (t, X) (2) 
may have zero, one or more solutions F. It is understood that for each (t, X) (1) 
is to be summed over all values of F which satify (2). (In geometric terms, we sum 
over all rays of the n-parameter family which pass through a given space-time 
point.) 

We have yet to answer a very important question: How do we determine the 
functions So(F ) and ~,(z; F) which we need to determine s and z? It is possible to 
give at least a partial answer here. 

Obviously s o and ~, must be determined from the data of a suitable problem for 
our system of equations (2.1.26, 27). Often these data consist of the values of the 
source function f .  In problems involving boundaries, the boundary values also 
provide data. In initial value problems, which are appropriate for systems such 
as those described in section 2.3, the initial conditions also are part of the data 
of the problem. 

In some cases, the values of s o and ~, can be determined directly from the data. 
This is true, e.g. for initial-value problems with "oscillatory initial data" discussed 
in [1, 4, 9, 10]. 

In other cases, such as those which we shall discuss in chapter 5, ~ is of 
dimension r<n hence consists of caustic points. The values of So on ,,It' can be 
deduced from the data of the problem, but z is infinite on .g ,  and the values of ~" 
must be obtained by an indirect method. In that method, we complete the con- 
struction of the solution (1, 2) with the function ~,(r; F) unspecified. Then we 
specialize our problem to one with constant coefficients, i.e. with A v and ~ (co) 
independent of X, in unbounded X-space. (The constant values chosen for A v 
and dT(co) are the values of Av(X)and r X) at the point X=X(r ,  F).) Thus for 
each different value of X(z; I') we obtain a problem with constant coefficients. 
This canonical problem* is, however, much simpler than the original problem; 
and it can be solved exactly. (This is done in chapter 4.) Then the asymptotic 
expansion of the solution of the canonical problem is found to be identical to 
the result obtained above (and specialized to constant coefficients), except that 
~,(z;/ ') is now given explicitly. If we assume that ~, depends only on the local 
value of the coefficients, the ~" obtained for the canonical problem can be used to 
complete the construction of the asymptotic solution of the original problem. The 
details of the indirect method are best understood by examining it in specific 
applications such as those of chapter 5 and [1, 2, 4, 5, 7, 10, 11, 12]. 

* The term "canonical problem", and the idea of the "indirect method" were introduced by 
J.B. KELLER in studying asymptotic solutions of the reduced wave equation and the phenomenon 
of diffraction [6, 7, 12]. 
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4. Exact Solution of the System of Equations with Constant Coefficients 

4.1. The fourier integral representation 
In chapter 3 we presented a method for obtaining asymptotic solutions of the 

system of equations (2.1.26, 27). With constant coefficients that system becomes 

vt+ ~ A~ u~=f(t,X), (1) 
V=I 

r(t, X) =S F(z) u ( t -  z, X) dz. (2) 

Here u and v are column vectors of dimension m, X=  (xl, . . . ,  xn), and 

F(t) = 2-~ ~ e-i ~ o,t ~(to ) do. (3) 

The constant m x m matrices A v are hermitian, and the m x m matrix ~(co) satisfies 
conditions 1 - 5 of appendix H. As explained in section 2. I, we consider the follow- 
ingproblem for (1, 2): The source functionf is identically zero for t < 0. It is required 
to find a function u(t, X) which satisfies (1, 2) and the "initial condition" 

u(t,X)-O for t < 0 .  (4) 

It can be shown that the leading term of the asymptotic expansion of the 
solution u of this problem is determined by the first two terms of the expansion 

((.O; 2) = ~ ((D) -- (i ~.) - 1 ~ ((.0) "-[- O ( 2 -  2) (5) 

of ~ The "dissipation term" ~(co) introduces considerable difficulties into the 
exact solution of the problem. Since the modifications of the asymptotic solution 
produced by this term can be obtained by the method of chapter 3, we shall take 

= 0 in this chapter. Therefore we may replace ~ by d" in (3) 
In order to solve (1, 2, 4) we set K=(kl .... , k~) and introduce the fourier 

transform 
~(~o, K)--$ exp{-i;t(kvx~-cot) } u(t,X)dtdX. (6) 

Then 
/ ,l. \ n+ l  ,, 

u(t,X)=t-~-~ ) lexp{i2(k,x~-cot)}u(co, K)dcodK. (7) 

Similarly we introduce the fourier transforms ~(o~, K) and f(o~, K). From (3) we 
see that ~(a~)=~f(co) is the one-dimensional fourier transform of F(t). Because 
of the convolution integral relation (2), it is easy to show that 

From (1), we find that 

hence from (8), 
-i2aJ~+i2k~A~ ~.=i, 

(8) 

(9) 

G~=(iX)-lf , (10) 
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where 
G=kvA~-o98(to)=G(to, K). (11) 

Thus, from (7) we obtain the representation 

1 ( 2 " ~  "+'  u(t,X)=(i2)- Sexp{i2(kvx~-wt)}G-'(w,K)f(to, K)dwdK. (12) 

We assume that f(t, X) is sufficiently well-behaved as [ X ] --* o9 to justify the 
interchanges of integrations we have performed. For the behavior o f f  as t--}o9 we 
require only that each component f ,  of the column-vectorf  is such that for all X 

o0 

.[ I f~(t, X)l e -z'~ o9 (13) 
0 

for some ~o>__0. Then f( to,  K) is an analytic function of to in Im to> ~o. 

In (12) it is understood that the variables k~ . . . . .  k, are integrated over the 
real axis from - o9 to + o9. The variable to is integrated over a countour C parallel 
to the real axis, and lying in the region Im to>~o. From condition 4 we see 
that g and hence G are analytic in that region, and it follows from condition 5 
that G-~(to) is also analytic there. If we now insert (12) in (1, 2) we obtain 

vt+aVuxv=~-~--~) IdK!dtoexp{i2(k,x,-totl}f(to, K)=f(t,X), (14) 

by standard theorems on fourier integrals. Thus equations (1) and (2) are satisfied. 

Since f - 0  for t<0 ,  
ao 

f(to, K)=Sd~d~exp{-i2(k~-toz)}f(~,~)d~d~; Im to>~o.  (15) 
o 

We now insert (15) in (12). This yields 

u(t,X)= IdKd~exp{i2[k~(x~-~O]}Jdzg-(t-z,K)f(~,~), (16) 
0 

where 
1 

9-(a, K) =-2~i-n / c ~ exp { - i 2 to tr} G-  x (to, K) d o9. (17) 

For  a < 0  we may close the contour C by an infinite semi-circle in the upper half 
of the to-plane*. Since G-  ~ is analytic in Im to > %,  we conclude that 

Y - = 0  for a < 0 .  (18) 

From (16) and (18) we see that u = 0  for t<0 ,  i.e., u is the required solution of 
the problem (1, 2, 4). We also see that for t > 0  

u(t,X)= IdKd~exp{i2[k,(x,-~)]}IdzJ-(t-z,K)f(z,r (19) 
0 

* From condition 4 we see that, uniformly with respect to arg co in 0_<arg co<n, det G---- 
o(oe.), as Icol--'og, while the cofactors of G are of order corn-1. It follows that G-S(co)--*0 as 
I c o l ~ ,  and the integral over the infinite semi-circle vanishes, by Jordan's Lemma, [15]. 
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In section 4.3 we shall evaluate the integral (17) asymptotically by obtaining 
residue contributions from the singularities of G-l(o~). It is clear that, for 
Imo9>2/~o(/~o<0), these singularities occur either at the zeros of det G(og) or 
at the poles of 8(co). We shall demonstrate that the poles of r which (by 
condition 4) are all real, do not produce singularities of G- 1 (co): From condition 1 
we note that r and hence G(co) is hermitian for real co. Therefore there exists 
a unitary matrix U(og) such that G=  UFU* and F(co)=(y~ fi~i) is a diagonal 
matrix. The reciprocals 1/?j(og) are bounded in a neighborhood of each pole. 
Since the elements of a unitary matrix are bounded in absolute value by unity, 
G - I = U F  -~ U* has singularities, in Imo~>2/~o only at the (real) zeros of 
det G (co). 

4.2. The eigenvalue problem for G 

In order to obtain the residue evaluation of (17), we shall introduce the 
representation of G-  ~ in terms of the eigenvectors and eigenvalues of G. 

For  real co and K, G = k, A ~ -  co 6r(o~) is hermitian, therefore posesses a complete 
set of mutually orthogonal eigenvectors r 1 . . . . .  r "  such that 

GrJ=TJrJ; (r~, r J )=0;  i , j = l , . . . , m .  (1) 

Let T(og)= T(o~, K)= T 1 . . . . .  T ~ be an eigenvalue of multiplicity q. By condition 3 
of appendix H, q is independent of co. By differentiating (1) with respect to co 
we find, for j = 1 . . . . .  q, that 

_ A  ~ rJ+ J _ J J G r o -  To~ r + ? r o , (2) 
where 

A ~ = - G o = (co ~)~.  (3) 

�9 j i Then, since (r ~, Gr~)=(Gr', r~ , )=?( r ,  r~), we see from (2) that 

( ri, A~ rJ)= - ~ , o  ( rf, rJ); i, j = 1, . . . ,  q .  (4)  

Since, by condition 2, ,4 0 is positive-definite, we may normalize the eigen- 
vectors by the condition (r J, ,4o r j) = 1. Then (4) yields 

- To, ( ri, rJ) = ( ri, A~ r J) = cSij; i, j = 1 . . . . .  q,  (5) 
and 

7~o = - [( r j, rJ)] - t; j = 1, . . . ,  q. (6) 

Of course, if co = h (K) is a zero of 7 (co), then, at o~ = h, 

G r J = 0 ;  j = l , . . . , q .  (7) 

4.3. Residue evaluation of the integral representation 

For an arbitrary column vector f ,  and for real co, we may introduce the ex- 
pansion o f f  in terms of the complete set of eigenvectors of the hermitian matrix 
G (co): 

f =  ~ bj(og) rS(co). (1) 
j = l  
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Then  

G- 1(o9) f= ~ [bj(o9)l~,j(o9)] tj(o9). (2) 
j = l  

At least one eigenvalue T j vanishes at each real root  o9=h of det G = 0 .  We order  
the eigenvalues so tha t  71 . . . . .  yq=y  vanishes at  o9=h. F r o m  (4.2.6) we see tha t  
7~,(h)4:0; i.e., 7(o9) has a simple zero at og=h.  

Fo r  a > 0  we shift the con tour  C in (4.1.17) to the line I m  o 9 = f l o < 0  below 
the real axis. This yields residue contr ibut ions f rom the singularities of G -  I (to), 
which, as we have seen at  the end of section 4.1, occur  only at  the (real) zeros of 
det G(o9). The  integral over  the new con tour  is a remainder  of order  e ~ 0 ,  which, 
since f lo<0,  we neglect* for  1-~oo. Since the contours  which yield the residue 
terms encircle the zeros in the clock-wise direction, we see f rom (4.1.17) and (2) 
that  the residue contr ibut ion f rom the point  o9=h to ~ K)f  is given by  

q 

- e x p  { - - i  i h tr} ~ [bj(h)/)%(h)] rJ(h). (3) 
j = l  

But, f rom (1) and (4.2.1, 6), 

(r j, f )  = bj(r i, r J ) = - bflT~,; (4) 

hence, summing  over  the real roots  o9=h(K)  of det G, we find that  

q 

oq'(a, K)f.~ ~ exp { - - i  2 o9 tr} ~, [rJ(og), f ]  rJ(og). (5) 
to=h j = l  

We now insert (5) in (4.1.19). The result is, for  t > 0 ,  

, 

u(t,X),,~ dKd~S dzx 
0 

q (6) 
x ~ exp{i  2[kv(x~-~v)-og(t-z)] } ~ [rJ, f(T,  ~)] r j. 

e~=h (K) j =  1 

Here,  for  each K, we sum over  the real roots  og=h(K)  of det G(og, K ) = 0 ,  and then 
over  j =  1 . . . . .  q; where q is the nullity of G(h, K) and r 1 . . . . .  r ~ are the null 
eigenvectors of G(h, K). F r o m  section (4.2) we see that  they satisfy the equat ions 

G (h, K) r j =  0, I-r/, A ~ (h) r ~] = 6i j"  ~ i, j = 1 ..... q. (7) 

The  eigenvectors are uniquely determined by  (7), up to a uni tary  t rans format ion  

( o f  the fo rm ri=~'JrJ 'where(~ij)  isaunitarymatrix) 

of (6) unchanged.  Since equat ions (7) are identical to (3.2.3, 4), we may,  for  the 
case of constant  coefficients (and ~ = 0 ) ,  identify the eigenvectors of chapter  3 
and this chapter.  Fo r  that  reason we have used the same nota t ion  in bo th  chapters.  

* From (4.1.19) we note that ~r= t - - r  lies in the interval 0 <_ tr_< t. Therefore, in a neighbor- 
hood of a =  0, the neglect of the remainder would be questionable. However, we shall be interested 
only in points (t, X) outside of the "source region", i.e. the support of the function f. Because 
of the finite time of propagation, u at such points cannot depend on f(z, r for values of r in a 
neighborhood of r =  t. Hence we may delete a neighborhood of a = 0 ,  and the neglect of the 
remainder is justified. 
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Our asyptotic solution (6) of the problem (4.1.1, 2, 4) is the main result of 
this chapter. For  various choices of the source functionf(t ,  X) (which may depend 
on 2), the integrals with respect to K, ~, and z in (6) may be evaluated asyptotically 
by the method of stationary phase, leading to formulas for u which are free of 
integrals. Two representative examples are discussed in chapter 5. Others are 
treated in [2, 4, 5]. 

5. Radiation from Sources 

In this chapter we consider the problem 

vt+ ~ AV uxv=f(t,X), v ( t , X ) = S F ( z , X ) u ( t - z , X ) d z ;  (1) 
v = l  

u ( t , X ) - 0  for t < 0 .  (2) 
Here f( t ,  X)-- 0 for t < 0 and 

;t 
F(t, X) = ~ S e -~ ~'~ ~ (~, X) d ~o. (3) 

The matrix ~ and the hermitian matrices A v are smooth functions of X in all of 
X-space, and ~ satisfies conditions I -  6. The source function f may depend also 
on 2. It is possible to obtain the leading term of the asymptotic expansion for 
2 ~ oo  of the solution u(t, X) of (1, 2) for a variety of types of source functions/'. 
In order to illustrate our theory, and in particular to demonstrate the "indirect 
method" outlined in section 3.11, we shall consider two representative examples 
in this chapter. Others are discussed in [1, 2, 4, 5, 10]. 

5.1. Rapidly varying source 

The source function f will be called "rapidly varying" if it is of the form 

f( t ,  X) = 2" + 1 g [2 (t - z), )l (X - Xo) ] (4) 

where z is a positive constant and X o is a constant vector. An important example 
of (4) is obtained by setting 

g(t, X) = 6 (t) 6 (xl)...6 (x,) go = 6 (t) 6 (X) go, (5) 

where go is any constant vector. Then, since ;t 6(2x)=6(x), (4) becomes 

f( t ,  X) = 6 ( t -  z) 6 ( X -  Xo) go. (6) 

In general we shall assume that the function g(t, X) has "compact support",  
i.e., vanishes outside of a bounded region in t, X-space*. Then as 2--*0o the 
support of f ( t ,  X) shrinks to the manifold •t consisting of the single point (t, X) = 
(z, Xo). We now proceed as outlined in section 3.3: Since ca' consists of a single 
point, s has some constant value So on J//. This constant value may be absorbed 
into the undetermined function s therefore it is convenient to take So = 0. Since 
the dimension r of ~r is zero, there are no conditions (3.3.7) and we may choose 

* This assumption can be weakened. It is sufficient to assume that g decays sufficiently 
rapidly at infinity for the integral (31) to exist. 
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as our parameters 
~ j=koi ;  

This yields the initial conditions 

X = X o ( r ) -  Xo, t = ~(r)-- ~, 

The initial value 
tO=tOo(r) 

j = l , . . . , n .  

K=go(r)-r, S=So(r)-o. 

(7) 

(8) 

(9) 

g,(t; F)=hkv[K(t;F) ,  X(t; r)]; v = l  . . . .  , n .  (14) 

Here X(t;  F), K(t; F) is the solution of the ray equations (3.3.1) with initial 
conditions (8). From these equations we find, as in section 3.4, that 

x v (t; F) = x o ~ + (t - r) hk~ (F, No) -I- 0 [(t - ' t ' ) 2 ]  , (15) 

0X~ =(t-z)  h~vk.(r, Xo)+O [(t-z)2], (16) 

and 
j (t; IV) = ( t -  r)" det [hk~ k, (F, Xo) ] + O [(t-- z)" + 1]. (17) 

It follows that v = n and 

r )=  det [h,v R~,(F, Xo)" 1 . (18) 

We recall that, in chapter 3, we were able to solve the transport equations if 
the nullity q of G is 1 or 2. If q = l ,  z ( t ) = z ( t ; F )  is given by (3.10.7). If q = 2  
then z(t)  is given by (3.10.3, 4, 6) provided conditions 6, 7, 8, 9 are satisfied. In 
either case it is necessary to determine ~,(z; F) which appears in these formulas 
for z. Let us suppose that we have determined z. Then with s given by (12), the 

* To be more precise each space E n is restricted to those values of F for which the correspond- 
ing value of (11) is real. 

where 

and 
:(t; F) = k~(t; F) gv(t; r ) - tOo(r )  (13) 

is determined by the dispersion relation (3.2. I) or (3.2.2) in the form 

det G = det [Yv AV (Xo)-  tOo 8 (tOo, Xo)] = 0 (10) 
o r  

tOo(r) = h Jr,  Xo]. (11) 

(11) is, in general, a multiple-valued function of the vector F which may be thought 
of as a point in n-dimensional space, E". We may make tOo a single-valued function 
of F, by letting F be a point in a parameter space 9 ~ consisting of several duplicates 
of E", one for each value of (1 I)*. By this simple device we conform to the presenta- 
tion of chapter 3, in which Xo, r, K o, So, and tOo were assumed to be single- 
valued functions of F. 

From (3.3.14) s is given by 
t 

s(t; F)=S :(t' ; F)d t '  (12) 
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asymptotic solution of (1, 2, 4) is given parametrically by 

u ~e ~s~t; r) z(t; r ) ;  (19) 

x=x(t; r). (20) 

(As in section (3.1 l), for each point (t, X), (19) is to be summed over all values of 
r which satify (20), i.e. over all rays through (t, X).) 

To determine ~, we use the "indirect method" outlined in section 3.11. We first 
consider the "canonical problem" with constant coefficients, AV=AV(Xo) and 
~(to)=~(to,  Xo). For this problem, we find (as in section 3.6) that the solution 
of the ray equations is given by 

kv(t; r )  =~:v; x~(t; r)=Xo~+(t-z) gv; g,=hk~[r; Xo], (21) 

and (13) becomes 
f(t;  r)=yv g~-to, (22) 

with to given by (11). Now (12) takes the form 

s(t; r ) = ( t -  T) : = ( t - r )  [r g , - t o ]  �9 (23) 

As pointed out at the end of section 3.10, z is now given by (3.10.9), i.e. 

z(t) = - z )  q} ~(z). (24) 

We see from (21) that ( 1 5 -  18) now hold exactly with no remainder terms, hence 

[ J(Z) T r_  (t ~q-�89 (25) 
76YA - " - - "  

Thus (19) and (20) become 

u ~exp {i 2 [ ( t -  T) (V~ gv - to) ]  - ( t - z )  q]} ( t -T)  -~" ~,; (26) 

x~ = x o v + ( t -  ~) g~. (27) 

The next step in the indirect method is to compare (26, 27) with the asymptotic 
expansion of the exact solution of the same problem*. To do this, we first insert 
(4) in (4.3.6). Then 

u~2"+~ IdYIdr ld~r  E exp{i2[y~(x~-yv)-to(t-o)]} • 
o ,o=h (28) 

• r~(r); t > 0 .  
2 

Here we sum over every real zero to=h(F ;  Xo) of det [y, A'(Xo)-to g(to, Xo)] =0,  
and then o v e r j =  1, 2 if q=2.  If q =  1 we may omit the index j. We now introduce 
the transformation 

t ' = 2 ( t r -T ) ,  X'=2(Y-Xo),  dt'=2dtr, dX'=2"dY, (29) 

�9 As in chapter 4 we now take ~ = 0 .  Then, to make the comparison, we shall take q--=0 
in (26). 
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in (28). The result is 

u~ -~  Idr E exp{i2[y,(x~-xvo)-h(t-z)]} ~ [ri(F),a(h,r)] ri(r) (30) 
to=h j 

where 
~ . ( t - ~ )  

a(h,F)=SdX' j dt' exp(i[ht'-~,x'~]} g(t',X')~ 
--23 

0 for t < z  / (31) 
O0 

"~ SdX'_Sdt' exp{i[ht'-~x']}g(t',X') for z<tJ 

We note that (the asymptotic form of) a is simply the fourier transform of g. 
It is independent of 2. For  the special case (6) we see from (5) and (31) that 
a (h, F)  ~ go. 

We now apply the method of stationary phase* to obtain the asymptotic 
expansion of the integral (30): We introduce the function 

tp (F) = y, (x, - xv o) - h (t - z). (32) 
Then 

tpr=x.-X~o-(t-z)g~; g .=  hkv(F; Xo). (33) 

Stationary points are determined by the condition that (33) vanish for v = 1 . . . . .  n. 
At the stationary points, 

xv=xo~+(t-~)g~, 

and 
tp=(t-z)[yvg~--COo], CO=h(r; Xo), 

(34) 

(35) 

(36) q~  ~ = - ( t -  z) hk~ k~ (F; Xo). 

Therefore, for �9 < t the stationary phase formula yields 

u"~( 2~)�89 ~ [,det(hk~k~),]-~ x 
,~=h (37) 

X exp {i ;t [(t -- z) (Yv gv -- COo)] -- i zt/4 sig (hkv k)} ~ [ r j, a (h, r ) ]  r j. 
J 

Here sig(hk~k~) denotes the signature of the matrix (hk~k~). At each point (t, X) 
we must sum over all r satisfying (34). Alternatively, if we adopt the extended 
definition of the parameter space introduced earlier in this section, we may omit 
the first summation sign in (37). It is then understood that (37) is to be summed 
over all F in ~ that satisfy (34), as well as over the index j. 

We now compare (34, 37) with (26, 27) for ~/=0. We find that they are identical 
provided 

z(~; F)=(--~ )�89 e-''/4a''hk.k,) ~ [ri, a(h,l')] r j. (38) 

�9 A simple discussion of this method, in n dimensions, is given in [lOl. 
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Here 
(~2 

h=h(F, Xo) and h k ~ k - d k  ak h(K, Xo)]~= r, 

where co = h (K, Xo) is the (multiple-valued) solution of det [kv A v (Xo) -  co r Xo)] 
=0.  Furthermore, we see from (4.3.7) that the vectors r J=  rJ(F) satisfy the equa- 
tions 

Gr~=0;  j = l  . . . .  ,q ;  G=?~AV(Xo)-h~(h, Xo); (39) 
and 

(r i, A ~ (h) r j) = cSij; i, j = 1, ..., q.  (40) 

These equations determine the r ~ except for a unitary transformation which leaves 
(38) invariant. 

With ~, given by (38) we may now, in principle, complete the solution of 
(1, 2, 4). Of course this requires the solution of the ray equations, which is not 
in general possible by analytic means. Under special assumptions about the 
functions (A~(X) and 6'(02, X) this is sometimes possible* and our method leads 
to explicit formulas for the asymptotic solutions. We shall not carry out the 
details of this procedure here for any problem with non-constant coefficients. 

5.2. Oscillatory source 

In this section we shall, for convenience, restrict our attention to three- 
dimensional space (n=3)  and we shall assume that the dispersion relation is 
isotropic, i.e. 

co=h(K,X)=h(k,X); k=[K]. (1) 

We further assume that the multiple-valued function (1) has (for each X) a single- 
valued inverse 

k = m (o2) = m (co; X); m' (co) 4= 0. (2) 

The function (2) is defined for co in some subset f2(X) of the real axis. For  each X, 
f2(X) consists of all (real) values which (1) assumes when K takes on all real 
values (or k takes on all non-negative real values). We shall see in chapter 7 that 
the above assumptions are suitable for electromagnetic waves in isotropic media. 

We now consider source functions of the form 

f(t,X)=23g[A(X-Xo),t]e-i~q~176 g--O for t < 0 .  (3) 
If we take 

g (X, t) = c5 (X) go (t), (4) 
then (3) becomes 

f (t, X) = 6 (X - Xo) go (t) e-~ x qo (o. (5) 

(5) represents an oscillatory point source. If go is constant and qo(t)=~k t, the 
source is time-harmonic with frequency ~/2. If go is not constant but qo(t)=~k t, 
we may call it an amplitude-modulated time-harmonic source of frequency ~ 2. 

* See ,  e .g . ,  [1]. 
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We assume that, in general, g(X, t) has compact support* for each t. Then as 
2--,00 the support of (3) shrinks to the one-dimensional manifold ./4, defined 
parametrically (with parameter z) by 

X=Xo, t=z; ~>0. (6) 

From (3) it is reasonable to assume that on J/, s is given by 

s IT, Xo] = - qo (r). (7) 

We shall verify this assumption shortly by comparison with the solution of the 
canonical problem. Differention of (7) yields 

~=~oCT). (8) 
Proceeding as in section 3.3 we choose, as independent parameters, r = (~, ~, 7), 
where a and 7 are polar angles defined by 

[cosa, sinacosT, sinasinT]=Ao=Ko/ko; ko=lKol .  (9) 

The initial values of X, t, s, co, K are then given as functions of r by (6), (7), (8), 
and 

Ko=koao; ko = m(co; Xo)= m [qo(z); Xo]. (10) 

Since m (co) is single-valued, all the initial values are given as single-valued functions 
of F, as required in section 3.3, and the parameter space ~ consists of all values 
of F for which qo (z) is in f2 (Xo) , T > 0, and the polar angles are in the intervals 
0___ c~< re, 0<7<27r.  

We now denote by X=X(t; F), K=K(t; F) the solution of the ray equations 
(3,3.1). (For each value of F=(z, ct, 7) we use, in the ray equations, that value 
of the multiple-valued function (1) for which h [m(qo, Xo); Xo] = qo (T).) We note 
that, since co is constant, (8) holds along every ray, and we set 

A(t;F)=(al, a2,aa)=k-lK(t;F)={m[co;X(t;F)]}-lK(t;F), (11) 

g,  ~- hkv = h' (k) a~ = I'm' (co)] - 1 a~; 
(12) 

G--(gl,  g2, g3)-- (m' [09; X(t; r)]}-la(t; r ) ,  
and 

Then 

[(t; r )=K.  (?,-co= re[co; X(t; r)] 
m'[co; X(t; r)] ~" (13) 

t ,~ I 
s(t; r )  = - qo (0  + ~ (t' ; r )  d t'. (14) 

As in section 3.4 we see that the ray equations may be used to obtain the 
expansion 

X(t; r ) =  (xl, x2 ,x3) 
t-.t- 

= Xo + m' [~)o (z); Xo] [cos 0~, sin 0t cos 7, sin ~ sin r] + O [ ( t -  z)2]. (15) 

* It is sufficient to assume that g--+0, as I X I--* oo, sufficiently rapidly so that the integral (30) 
converges. 
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By differentiating (15) we find that  

OX=( Oxl Ox2 Ox3.'~ 
dz az  ' dz ' a z  ] (16) 

= [l+(t-z)m"il'o/m'] [cos~,s inotcosy ,  s i n ~ s i n y ] + O ( t - z )  
/.nt 

dX=(0xl dx2 dx3~ t - T .  
d~ d o t '  d o t '  ~ - ~ ] = T  L - s i n o t ' c ~ 1 7 6 1 7 6  

and 

dX=(Oxt dx2 dx3~ t - T  
Or ~r '  d r '  Or ] = ~  [O'-sin~176 (18) 

F r o m  these equat ions it is easy to compute  the jacobian,  

l Oxl Ox2 dx3 
Oz Oz dz 

j(t;F)=det 0xl  dx2 0x3 (19) ~ Oot 0e  dot 

.dXl  0X 2 dX 3 

\ or or or / 
The result is* 

- sin ot . -2 j(t; F ) = ~  ~t-z) [l+(t-z)m"il'o/m']+O[(t-z) a] (20) 

or  
- sin 0~ 

j (t; r )  = ~ ( t -  z) 2 + 0 [(t - z)3]. (21) 

I t  follows tha t  v = 2 and 

- sin ~ - sin ot (22) 
j(~; r )  = ~ - {m' E,io(~); Xo]}' " 

Just  as in section 5.1 we can now, in principle, complete  the asymptot ic  solution 
of our  p rob lem if q =  1, or if q = 2  and condit ions 6, 7, 8, 9 are satisfied; except 
that  ~,= ~,(z; F)  is undetermined.  

In  order  to determine ~,, we again consider the canonical  problem.  We set 
AV=AV(Xo) and ~(co)=~(co ,  Xo). Then m(co)=m(o~;  Xo), and on each ray, 

W=qo(~ ), k=m(w)=m[~o(Z)], K=kA, 
(23) 

A = Ao = [cos ~, sin ~ cos 7, sin ot sin 7] .  
Fur the rmore  

G=A/m'(co), s =  - q o ( ' 0 + ( t - z ) t ;  ~=[m(og)/m'(w)]-w, (24) 

* In (16) and (20) the term (t--r) m'" ~o/m' could be omitted since it is of the same order as 
the remainder. We keep it to facilitate our later discussion of the problem with constant coef- 
ficients. 
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and the rays are given by 
x = Xo + ( t -  ~) A/m'(o~). (25) 

We now find that (16-20) are valid for all t>  ~ with the remainder terms equal 
to zero. Hence 

I J(~) 1 ~ = (t - ~)-1 [ 1 + (t - ~) m" (4 o) iio/m'(4 o)] - �89 (26) J- -J 
Now (3.10.9) yields 

z( t )=( t -r ) - l [ l+( t -r )m"(4o) / l"o /m' (c io)]-~exp{-( t -T)q}  i(~) (27) 

and from (3.11.1, 2) we have 

u ~ ( t - 0 - '  [1 + ( t -  u) m"(qo) iiolm'(G)] -�89 x 

X = Xo + ( t -  ~) A/m' (qo). 

We must now compare this result with the asymptotic expansion of the exact 
solution of the canonical problem. Therefore we insert (3) in (4.3.6). We then 
introduce the transformation X'=2(~-Xo) ,  dX'=23d~, of the integration 
variables. Thus we obtain 

3 '  

u( t ,X)~  IdK[dT2exp{i2[k , (xv--Xvo)--o~( t - -z) - -qo(z)]}x  
o ~, =h (29) 

x E [rJ(K), a (K, T)] rJ(K), 

where J 
a (K, T) = S e- i  k~ x; g (X', z) d X'. (30) 

In (29) we sum over all values of (1). If q=  1 we omit the indexj. If q = 2  we sum 
over j = 1, 2. In the special case (4) we find that a (K, z) = go (z). We now apply the 
method of stationary phase [10] to the 4-fold integral (29): We introduce the 
function 

t p=k , ( x , -  x v o ) - h ( t -  z)-qo(z) .  (31) 

Stationary points are determined by the conditions 

~ok =(x~-x ,o ) - ( t - z )g~=O;  v=1 ,2 ,3  
(32) 

(g~=hkv=h'(k) a,;  G=k~/k); 
and 

qh= h -  qo(~) = 0 .  (33) 
At the stationary points, 

q ) = ( t - z ) [ k , g ~ - h ] - q o ( z ) = ( t - z ) [ k h ' ( k ) - h ] - q o ( T ) ;  (34) 

and the second derivatives of tp are given by 

r a,; tP, r=  -- ~i'o (0 ;  (35) 
and 

q)k,, k~, = - -  ( t  - -  "r) h k ,  " k ,  = - -  ( t  - -  "0  h "  (k) a, a~.- t -  ~ tov u -- a, al, ) . (36) 

Arch. Rational Mech. Anal., Vol. 20 16 
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We now introduce the matrix 

/~Okx kl q)kl k2 ~Okl k3 q)k, t~  

#=lq~k2k, q~k2k2 q~k, k3 r l. (37) 

\q~,k, q)~k2 q~k3 q~ / 
By choosing a co-ordinate system in which A =(a l ,  a2, aa)=(1,  0, 0) (35) and (36) 
simplify greatly, and it becomes easy to evaluate the determinant of (37). We find 
that 

det ~ =  - ( t -T)2 (h')4 I (t-c) h" 2t"o ] 
k2 ,_ 1 - (h,) 2 j .  (38) 

In order to determine the signature of (~) we may find its eigenvalues. They 
are the solutions, x, of the equation det ( ~ - x  I ) = 0 .  This determinant is also 
easily evaluated, and the equation for x factors into the two equations 

h' "12 
and [ ( t - r ) - ~ - + x J  = 0 ,  (39) 

[(t - z) h" + x] [4"0 + x] - (h')2 = 0. (40) 

The two roots x = - ( t - z )  h'/k of (39) vanish at t = z, and for t > z sgn x = - s g n  h' 
= - sgn m' [40 (z)]. The two roots of (40) do not vanish at t = z and are given by 

2 x = - 4"0 - V(qo) 2 + 4 (h')2. (41) 

It is clear that one of these roots is positive and the other is negative. Hence in 
a neighborhood of t = z (t > z); i.e., up to the next caustic point, sig r = - 2 sgn h' 
= - 2  sgn m'(qo). 

The stationary phase formula now yields for (29) 

1 

x exp {i 2 [ ( t - z )  (k h ' - h ) - q o  ] - i rr/2 sgn h'} [rJ(K), a(K, z)] rJ(K), (42) 

h=qo(z ) ,  x~=X,o+(t-z)h'(k)a,; K=kA=k(al ,  a2,a3). 
Since 

1 m"(co) 
h ' (k)=  m'(oJ) and h " ( k ) = - ~ ,  

this becomes 

~" F ,, .. - 1 -~  
. m(ao) [,.'(ao)V L| + ( ' -  z)--e-2-,ff / • z J (43) 

{[ } xexp i2 ( t -O  -qo -qo -izr/2sgnm' [rJ(K),a(K,z)]rJ(K); 

K=m(~to)A; X=Xo+(t-z)A/m'(qo). 
In (42) u(t, X) is represented parametrically with parameters z, and K= (k~, k2, k3). 
These parameters are not independent, because they are related by the equation 
h=qo(x). In (42) the indicated sum is to be taken over the values of (1) as well 
as over the indexj  (if q=2). In (43), u(t, X) is represented parametrically by 3 
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independent parameters. These parameters are z and two angles which determine 
the unit vector A. They may be taken as in (23). In (43) the indicated sum is to be 
taken only over the index j (if q=2).  

We may now compare (28) (with q =0) and (43). We see that they agree 
exactly if we set 

~, (-c; F) = - ~ -  m(qo) [m'(qo)] z e - * ' ,  sg, m' (~o) ~ [rJ(K), a(K, z)] ri(K). (44) 
J 

Here K=m[dto(z)]A, A =[cos ct, sin ~ cos r, sin ~ sin r], and F = ( r ,  c~, ~). As in 
section 5.1, (44) may now be used to complete the asymptotic solution of the 
problem (5.1.1, 2), (5.2.3) for the case of non-constant coefficients. 

It is interesting to note that, for the case of constant coefficients the jacobian 
has not only the zero of order 2 at t = �9 but also a zero of order 1 at the caustic 
point t=tl>Z, determined by 

( t l - z )  h" q'o = 0 .  (45) 1 + ( t  1 - z )  m" (t'o/m'= 1 - (h,) 2 

Such a point exists if and only if h" qo>0. Then for t>t 1 the signature of �9 
changes. To find sig �9 we write (40) in the form 

x2WBx-FC=O; B=( t - z )  h"+q" o , C=( t - z )  h"q'o-(h') 2. (46) 
Then 

2 x =  -B+_VB2-4C,  (47) 

and sgn C=sgn(t-t~). Thus for t<t 1 the two solutions (47) have opposite 
signs, while for t >  tl they both have the sign of - B .  However (46) shows that 
sgnB=sgnh"=sgni?lo, since h" ~o>0. It follows from the stationary phase 
formula that, for t>t~, (43) must be multiplied by a factor 

�9 ~ - .  

e ~ �88 tz sg" (-B)1 = e - '  2 sg" q~ (48) 

Our result (48) can also be obtained by applying the "phase-shift rule" of 
appendix F. 

6. Dispersive and Non-dispersive Systems 

6.1. Non-dispersive systems 
We shall say that our general system of equations is non-dispersive if ~ = A (X) 

is independent of co. If, furthermore, o ~ = 8 - ( i 2 ) - 1 ~ ,  where 

g(co, X)=A(X), and ~(co, X)=C(X)[co, (1) 

then, from section 2.3, we see that the general system of equations (2.1.26, 27) 
becomes the symmetric-hyperbolic system 

I I  

A u,+ ~. A~u~+C u=f. (2) 
V = I  

We also see that A~ and the dispersion relation becomes 

det G = det (k, A ~ -  co A) = 0. (3) 

By condition 2, A must be positive-definite. 
16" 
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It is now easy to verify that the dispersion equation (i.e. the partial differential 
equation (3) for s, with co= - s t  and kv=sxv) is the characteristic equation*, the 
level surfaces of s(t, X) are characteristic hypersurf aces *, and the rays are the 
bicharacteristics* of (2). 

If we express the dispersion relation (3) in the equivalent form 

to = h (g;  X), (4) 

we see from (3) that the (multiple-valued) function h is homogeneous of degree 
one in K; i.e. for all real e 

h(eK; X)=e h(K; X). (5) 

From the Euler equation for homogeneous functions it follows that 

/=kv hk - h = K  . G-to=O, (6) 

hence from (3.3.3) we see that s is constant on rays. This verifies the fact that the 
rays are bicharacteristics, i.e., they generate the characteristic hypersurfaces. 
In section 3.3 we pointed out that the term "ray" is sometimes used for the 
projections X=X(t;  F) of the space-time curves (t, X)= [t, X(t; F)] into X-space. 
For non-dispersive systems we shall refer to the space-time curves as bicharacteris- 
tics and to their projections as rays. By differentiating (6) with respect to k~ 
we find that 

~ kv hkv k ,=0 ,  (7) 
v = l  

and from this equation it follows that the matrix (hk~k~,) is singular, i.e. 

det(hk~k,) =0 .  (8) 

Since a non-dispersive system is a special case of our general system, the 
results of this paper apply with very few exceptions, and we may construct asymp- 
totic solutions of (2) according to the general theory of the preceeding chapters. 
Of course, the parameter 2 no longer appears in the system of equations (2), 
but does appear in the data of the problem (i.e. the function f ,  initial data, boundary 
data, etc.). The asymptotic theory of (2) with f = 0 ,  and with oscillatory initial data 
of the form 

u (0, X) = e ~ ~ so (x) zO(X), (9) 

was first discussed by LAX [9]. 
It is interesting to note that although the non-dispersive system is certainly 

simpler than the general system, singularities appear in the special case which 
do not occur in general Thus, for example the discussion of section 5.1 is not 
valid for non-dispersive systems, for then we see from (8) and (5.1.38) that ~, is 
infinite. On the other hand, the discussion of section 5.2 is valid for non-dispersive 
(isotropic) systems, and the results in this case simplify considerably by virtue 
of the fact that h" (k)= 0. 

For non-dispersive systems the factor j(to)/j(t) which appears in all of our 
formulas for z has a special geometrical interpretation which is most easily 

* See [31. 
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examined in the case of 3 space dimensions (n =3):  Since s is constant  on bi- 
characteristics, 

s It, x ( t ;  r)] =so(r). (10) 

Let us choose our parameters F=(3'~, 3'2, 3'3) so that 

So (F) =3' 1 . (11) 

Then for each fixed value of 3'1, (t, X)=[t ,  X(t; 71, ?2, 73)] is the parametric 
equation of a characteristic hypersurface with parameters (t, ?2, ?3) and for each 
fixed value of (t, 3'~), X = X ( t ;  3'1, 3'2,3'3) is the parametric equation of a surface*, 
with parameters (3'2, ?3). The vectors 

c3X c~X 
X2= c33' 2 X 3 c33' 3 (12) 

are tangent to the phase-front. Now differentation of (10, l l )  yields 

c3X = K - X I = I ,  K . X 2 = K . X 3 = O  (13) K. ~?l 

hence K is orthogonal to X 2 and Xa; i.e. 

X 2 x X3 = b K,  (14) 
where b is a scalar. 

For  fixed 3'1, let 3'2 and 3'3 vary in infinitesimal intervals of length d?2 and d?3. 
Then, for fixed t, the point X(t; 3'~, 3'2,3'3) varies in an infinitesimal region on 
the phase-front of area da, and the rays vary in an infinitesimal " tube" of rays 
of cross-sectional area da. Since the vector G is parallel to the rays, it is easy to 
see that 

g d a = X 2 X X 3 �9 G d3' 2 d)' 3 = b K- G d3' 2 d?3 (15) 
and 

k d a=X2 x X3" K d3' 2 d3' 2 = b k 2 d?2 d?3 .  (16) 

Here g=[G] and k=lKI. Now, by definition, 

j ( t ) = j ( t ;  F ) = X  t .X 2 x X  a = b K . X l = b .  (17) 

Hence (6), (15), (16) and (17) yield 

g da _ 1 dtr . (18) 
]()_.t.=co d? 2 d? 3 k d3' 2 d?3 

Since co, d)~2, and d?3 are independent of t we find that 

j(to) _ g(to) da(to) k(t) d~(to) 
j(t) g(t) da(t) - k(to) dtr(t) (19) 

Here j ( t )= j ( t ;  F), k ( t ) = k ( t ;  F) and g( t )=g( t ;  F). da(t)  is the area of the 
portion of the phase-front intersected by the tube of cross-sectional area da(t). 
It is important to note that, since ?t was held fixed, the tube of rays is formed 
from rays associated with a single characteristic hypersurface, i.e., projections 
of bicharacteristics which lie on a single characteristic hypersurface. Since G 
is parallel to the rays and K is normal to the phase-front we see that if ~9 is the 

�9 This surface is called a "phase-front". See section 6.3. 
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angle between these two vectors, then 

da K.G 09 
d--Y = cos ~ = k g = k g (20) 

in agreement with (18). 

For the non-dispersive system, either of the expressions (19) may be sub- 
stituted for j(to)/j(t) wherever it appears in our earlier formulas. 

6.2. Progressing wave solutions of the non-dispersive system 

We have seen in section 3.3 that the function 

u=eiXS~t;r)z(t; F); X=X(t; F), (1) 

is the leading term of the asymptotic expansion of a solution of the (homogeneous) 
general system of equations. In the non-dispersive case that system of equations 
becomes (6.1.2) (with f - 0 ) .  Since, in that case, the equations are independent 
of 2, we may multiply (1) by an arbitrary function 3(2) and then integrate with 
respect to ft. Thus we obtain the formal solution 

u=e[s(t; I')] z(t; r ) ;  x = x ( t ;  r ) ,  (2) 

which involves the arbitrary "wave-form" function, 

e (s) = S b (2) e i ~s d ft. (3) 

(According to our usual convention, at each point (t, X), (2) is to be summed 
over all values of F for which X(t; F)=X, i.e. over all bicharacteristics which 
pass through the point.) 

Equation (2) is the leading term of a formal series solution of the non-dis- 
persive system. It is easy to see, from (3.1.5), that the successive terms of the 
series involve successive integrals of the function e(s). Such solutions are called 
progressing waves. Applications and interpretations of the formal series are dis- 
cussed in [11, 13]. Here we mention only that in using progressing waves to 
obtain solutions of specific problems for the non-dispersive system of equations, 
the data of the problem yield not only the initial values of s and z, as we have 
seen earlier, but also the wave-form function e(s). 

6.3. Group velocity, phase speed, and wave-speed for dispersive 
and non-dispersive systems 

In this section we return to the consideration of dispersive system, but we shall 
make some comparisons with the non-dispersive case. Many dispersive systems 
satisfy condition 10 of appendix H. The system of electromagnetic field equations, 
with a dielectric permeability function of the kind discussed in appendix D is 
of this type. For a system which satisfies condition 10, it is convenient to refer 
to the system with ~ replaced by its limiting value A and with D - 0  as the cor- 
responding non-dispersive system. (The latter system is given by (6.1.2) with C = 0.) 

From the ray equations (3.3.1) we see that the space point X=X(t;  F) which 

remains on a given ray as t increases moves with a velocity X= G=(gl , . . . ,  gn). 
The vector G is often called the group velocity (or ray velocitiy) vector, and its 
magnitude g is called the group speed (or ray speed). 
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From (3.1.6) we see that the vector K = ( k l  . . . . .  k,) is identical to the vector 
IZs=(sx~ . . . . .  sx~). Hence for each fixed t the unit vector 

A =(a l ,  . . . ,  a.),  a v = k J k ,  k 2 = K .  K; (1) 

is normal to the level surfaces of the phase function s(t, X). These level surfaces, 
which are defined by the equation 

s (t, X) = constant, t = constant (2) 

are called phase-fronts. As t increases the phase-fronts move through space. 
Let X = X ( t ) = ( x x  . . . . .  x.) be a point constrained to remain on a phase-front (2). 
By differentiating (2) with respect to t we find that 

- c o +  k A . X =  - co+  k a~% = - co+  kv x~=O. (3) 
The quantity 

IPI= k =(sgn ~- = (sgn co) A.  X = N .  X (4) 
co 

co) 

which is the component of the velocity X of the constrained point, in the direction 
of the unit normal vector N =  (sgn co)A to the phase-front, is called the phase 
speed. From the dispersion relation (3.2.1) we see thatp  is a solution of the equation 

det (av A v - p S )  = 0 .  (5) 

There is one phase speed corresponding to each value of h, i.e., corresponding 
to each value of the multiple-valued function s. For  the corresponding non- 
dispersive system the phase speeds are the normal speeds* Iv[ which satisfy 

det (a~ A ~ - v A) = 0 ,  (6) 
and from (6.1.6) we see that 

G. N = G .  K (sgn co) _ Ico[ _ l P l =  Ivl. (7) 
k k 

This equation, which asserts that the component of the group velocity in the 
direction of the normal to the phase-front is equal to the phase-speed, holds 
only in the non-dispersive case. For the general case (subject to condition 11) 
it is replaced by an inequality which we now derive: 

Since a,A v is hermitian and A is positive definite, there exist vectors s ~ . . . . .  s m 
such that 

(a~A~-vjA)sJ=O; (si, AsJ)=6ij; i , j = l , . . . , m .  (8) 

v~ . . . . .  v. are the roots of (6). An arbitrary vector r may be expressed in the form 
m 

r =  ~ pjs  j. (9) 
j = l  

It follows easily from (8) and (9) that 

(r,  a~ A r) = v 1p j ,  
Hence j = x 

[(r, avAV r) l<Vmax(r, Ar);  

* See [3]. 

(r, A r ) =  ~ p2. (10) 
j = l  

Vm,x = max l vii. (11) 
J 
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Now let r be one of the null eigenvectors of the matrix G (section 3.2). From the 
basic identity (3.2.8) we see that 

A �9 G=a~gv=(r, a~A'r) ,  (12) 

while condition 10 and the basic identity (with v=0) imply that 

(r, A r)< (r, A ~ r)= 1. (13) 

(11), (12) and (13) now yield the inequality 

I G ' N I  <v . . . .  (14) 

which is the required generalization of (7). It is well known that Vm, x is the normal 
speed of a wave front, i.e., a moving surface which represents the first arrival 
of non-zero values of a solution u(t, X) of (6.1.2). For this reason we refer to 
vm, x as the wave speed. Thus (14) implies that the component of the group velo- 
city in the direction of the normal to the wave-front does not exceed the wave 
speed of the corresponding non-dispersive system. [For the electromagnetic field 
equations, the wave speed is c.] For isotropic media, G, K, and N are parallel, 
and (14) implies that the group speed g does not exceed the wave speed. However, 
for anisotropic media, (7) and (14) impose no upper bound on the magnitude 
of the group speed. Since we have seen, in section 3.7, that energy is transported 
with the group velocity, we conclude that the theory of relativity imposes no 
restriction on the speed of energy transport in anisotropic media. 

7.  E l ec t romagn e t i c  W a v e s  in I so tropie  Media 

In chapter 2 we motivated the introduction of the general system of equations 
by discussing the electromagnetic field equations for dispersive media. We return 
now to those equations in order to see how our general results apply to them. 
We consider here only the case of isotropic media. This means that the dielectric 
and magnetic permeability ~'1 and %2 are scalar functions of co and X. Then from 
(2 .1 .24)  and condition 1 of appendix H we see that %, = e,  - (i 2)- 1 ~, + O (2- 2) and 

[8 3 0 1 , [-6113 0 I 13= 1 . 
~f= 1/ 8213 N = L  0 6213 ' 0 

We also impose conditions 2 - 5  which are listed in appendix H. They imply 
obvious contitions for 81 and ~2. Specific examples satisfying these conditions 
are discussed in appendix D. 

7.1. The dispersion equation and the null eigenveetors 

The matrix G = k ,  A V - w 8  may be obtained from the above expression for 
6' and from (2.1.21). Thus 

--6982/3- j . (1) 

Let us denote the null eigenvectors of G by r=(R1, R2) where R l and R 2 are 
3-vectors. Then the equation Gr=O becomes 

co~IRI+cKxR2=O , c K x R l - w 8 2 R 2 = O .  (2) 
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We first note that (2) is satisfied with co=0 and K x R t = K x R 2 = O ,  i.e., co-0  
is a root of the dispersion relation det G = 0. However for this root the group velocity 
G = ( g t ,  g2, g3) is zero because g,=Oco/~k,=O; hence the rays never leave the 
"source region" (i.e., the projection of the manifold . / / i n t o  X-space). Thus the 
zero root does not contribute to the asymptotic solution outside of the source 
region and is therefore uninteresting. 

If c~(co) vanishes for some real value co=coo, then (2) is satisfied with co-=coo, 
R2-0 ,  and R t parallel to K. For such solutions the group velocity is also zero 
(because co is independent of K), and the corresponding asymptotic solution is 
again uninteresting. We shall not consider either of the solutions 09-0 or co-coo 
further. 

If co e, # 0, (2) implies that 

and 
RI" K =  0 (3) 

c 
R 2 = K x R 1 . (4) 

CO5 2 

The last equation determines R 2 in terms of R1 and from (3) we see that there 
are two linearly independent eigenvectors r 1 =(R~, R2~), r 2 =(R~, R22); i.e., q=2.  
If we insert (4) in (2), expand the vector triple product, and use (3), we obtain 
(co251e2-c2k2) RI =0. This implies that the dispersion relation is given by 

0)2 51(CO, X) 52 (tO, X) = c 2 k 2. (5) 

The matrix A ~ is given by 

0 
A ~ = (coS)o=[  (co 50 )~ (CO52),o[3 1 , (6) 

hence the orthonormality condition (3.2.4) becomes 

( c o s ~ ) . e ~  J ~ �9 R 1 +(co 52)co R 2 �9 RJ2=c~ij.  (7) 
But (4) implies that 

�9 C 2 k 2 Rj = s t  R~. R j . (8) 

Hence 
�9 Rt  = R  2 �9 R 2 = 0 ,  (9) and R~ 2 t 

51(R J) 2 = 52 (R~) 2 -- ~ (10) 
where 

~ = [  (O)~:)t~ "~ ((D 52)to 1 - 1  -- (.D81 82 
52 J (CO 52) (CO 51)to + (CO 51) (CO/~2)to �9 (11) 

We also note that 

(r i, o9 .@ r j) = co [51 R~I �9 R~ + 52 R~ . R J2] = t 15 u . (12) 

Thus condition 7 is satisfied with 

F] ~---':" (D [~ l(UJ) 2 -t- ~2 (uJ)2]  ~--.~ co ~ / + / (,3) 
kSl 52/  

Conditions 6 and 9 are satisfied provided 5, and 6, are real; and condition 8 
is satisfied with fl= 0 because the matrices A" are constant. 
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From the dispersion relation (5) it is clear that co is independent of A = K/k. 
The function co = h (k, X) is defined implicitly by (5) and is in general multiple- 
valued. The inverse function is however single-valued and is given explicitly by 

k=m(co; X ) = - ~  -L ]/ /e-~.  (14) 

It is defined for all real co such that el(co ) e2 (co) _>_ 0. From (11) and (14) it is easy 
to show that 

m 
- 209 m' (m '=  m~). (15) 

Oh 
Since gv = a kv = h' (k) av, a m = k~/k, we see that 

G = (gl, g2, g3)  = h'(k) A = A/m'(co), (16) 
and 

1 4092 ~z 4c 2 ~z 
g2=G.G=--(-~=m-----~-~--= e l e 2  (17) 

Thus 
G=gT, T= [sgn m'(co)] A, (18) 

where g is the positive root of (17). 

7.2. The polarization vector 
In the preceding section we have seen that conditions 6, 7, 8 and 9 are satisfied 

with f l=0  and q given by (7.1.13). Furthermore we found that q=2.  Therefore 
the formulas (3.10.3, 4, 6) for z(t) are applicable. However, rather than use 
these formulas, we prefer to return to section 3.9 and derive equivalent formulas 
for z, in which the physical interpretation is emphasized. 

The unit vector T is a function of (t, X). Let T, N, and B be mutually ortho- 
gonal unit vector functions of (t, X) which satisfy* 

B = T x N ,  N = B x T ,  T = N x B .  (1) 

From (7.1.3) we see that we may choose any two directions for R~ and R 2 which 
are orthogonal to K= __.k Z Therefore we set 

R ~ = ~ F-~I B , R 2 - V-~t . (2) 

Then it is easily seen that 

R t2 = - ~ 2  N, R 2 = V-~2 B , (3) 

and (7.1.3, 4, 7) are satisfied. From (3.5.1) we note that 

z =(Z1, Z2) = al  r 1 +a2 r 2. (4) 
Therefore 

ZI=V~-~--~ (a lB+o,N) ,  Z 2 = ~  2 ( - a l N + a 2 B ) .  (5) 

* F r o m  (7.1.18) we see tha t  the  uni t  vector T is t angent  to (the space projection of) a ray. 
Later  we shall  take  N and  B to be uni t  n o r m a l  and  b inormal  vectors to the  ray.  
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We now introduce the (complex) polarization vector, 

P--(fl l  Bq-fl2 N) = P ' +  i P" ,  (6) 

where P'  and P"  are vectors with real components and ill, f12 are defined by 
(3.9.6). Then (3.9.12) implies that 

(p,)2 + (p,,)2 = p .  . p = l fll12 + { f1212 = l , (7) 

and from (1) and (5) we see that 

Zt  = w ~  p ,  Z 2 = ] / - - ~ A X P ' v  e2 (8) 

By taking the real and imaginary parts of (6) we find that 

e '  = fl'~ B + fl'2 N , P"  = fl'~' B + fl'2' N (9) 
where 

fl l = fl i + i fl i' , fl 2 = fl'2 + i fl'2 '. (10) 

It is clear that ill, fll and fl~', fl[' satisfy (3.9.10), therefore 

I P , i =V(fl~ ),2 +(/72)'2 =p, ,  I P"  I = ]/(ill')2 + (fl~')2 = p ", (11) 

where p' and p"  are independent of t. Thus 

P ' = p ' [ N c o s o ~ ' + B s i n o c ' ] ,  P " = p " [ N c o s ~ " + B s i n ~ t " ] ,  (12) 

where p' sin 0t' = fl~, p' cos ~' = fl~, etc., and from B 
(3.9.10) (with to replaced by z) we find that , / 4 p ,  

g 

0g(z) -e ' ( t )=0c"(z) -~"( t )  =~=Sz2( t ' )  dt'. (13) 

The real and imaginary parts P'  and P"  of the 
polarization vector are illustrated in Fig. 1. 

The lengths p', p"  of the vectors and the 
angle ~ ' ( t ) - ~ " ( t )  between them are fixed, 7- 

N 
but as t increases the pair of vectors rotates F~. t 
around the ray direction T, according to (13). 
[We shall shortly investigate the geometrical significance of the quantity zz that 
appears in (13).1 

From (3.10.1) we recall that the energy density w which appears in (8) is given by 

I } w(t )=#( r )  ~(~) - 2 ! r l ( t ' ) d t '  exp , (14) 

and if we let t - ~  in (3.7.5), (4), and (8) we find that 

~(z) = (~,, A ~ ~,)= [(co el)o, if.* �9 Z,~ + (co e2L, Z.* �9 Z2] ,  (15) 

~'= [Z~,Z2] ,  (16) 
and 

P'(z) + i P"(z) = P(z) = 1 / e ~  Z1. 
V w; ( 1 7) 
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Our results so far enable us to determine z(t)=(Zl,  Z2) along a ray in terms 
of the value of ~'(z). (The determination of s is discussed in section 3.11 and is 
illustrated in chapterS.) Let us summarize these results: From (15) we may 
determine ~. Then (17) and (12) (at t=z) may be used to determine the constants 
p', p" and ~'(~), ~"(~). Once '['2 is computed (13) yields the values of ~'(t) and 
~"(t),  (12) yields the values of P(t)=P'(t)+iP"(t) ,  and (8) and (14) provide 
formulas for Zl(t ) and Z2(t). 

It remains to compute the value of ~2 which, from (13), determines the rate 
of rotation of the real and imaginary parts of the polarization vector P: From 
(7.1.6, 9) we find that 

(r l, A ~ r 2) =0  (18) 
therefore (3.9.4) yields 

3 

(r 1 AVr 2 ~ (19) x2=(r',A~ r2)+ ~ , ,  . . . .  �9 
v = l  

But from (2.1.21), (2), (3), and (7.1.17) 

a (r' A ' r2~=c[R~ .VxR2-R~ .VxR2]= ~ [ N  17xN+B VxB] 
E k , x v l  - -  " �9 

, = I (20) 

= - � 8 9  17xN+B.  VxB].  

By using (E.13) of appendix E and (7.1.18), we now find that 

3 

Z C r ' ,  , 2 A r x , ) = - g N . ( T .  F ) B = - N . ( G .  F)B. (21) 
v = l  

From (7.1.6), (2), (3) we see that the first term of (19) is 

(r 1, A ~ r 2) = (o9 el)~, R~. (R2)t + (co 82)0, R~. (R2)t = ~1 B. N t - ~2 N .  B,, (22) 

where ~v=((/sv)(co ev)~,. From (7.1.11) we see that ~q +~2=1, therefore 

(r 1, A ~ r~)=~l(B.  Nt+N.  B t ) - N .  Bt=oq(B. N ) t - N .  Bt= - N .  B t. (23) 

By inserting (23) and (21) in (19) we obtain 

In (24) d/dt denotes differentiation, with respect to time, along a ray. We now 
choose N and B to be unit normal and binormal vectors to the projection of that 
ray, which is a space-curve. Since T is a unit tangent vector to the projection, 
T, N, and B satisfy the Frenet equations 

dT dN dB 
da = x N ,  do - r ' T + z ~  do - z ~  (25) 

Here x is the curvature and ~o is the torsion of the projected ray; tr denotes an 
arclength parameter. But (7.1.18) and the ray equations imply that 

dX dX 
d---t- = G = g T= g d a ' (26) 
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hence d a = g  dt. Thus (24) and (25) yield 
dB 

z2= - g N . -d-~a = g z o , 

and from (13), 

(27) 

t o(t) 

6=~ g z o d t ' =  S zoda .  (28) 
~(r) 

Thus we see that the rate of rotation of the vectors P '  and P "  is determined by 
the torsion z o of the projected ray. If this space curve is a straight line (as it is 
for a homogeneous medium) Zo is zero and the vectors P '  and P "  are constant 
on the ray. If the projected curve is a plane curve, z o is again zero and the vectors 
P '  and P "  remain fixed in the T, N, B-frame. 

Appendices 

A. A theorem for  homogeneous media 

Theorem. I f  A" (v = 1 . . . . .  n) and 8 are independent of  X and condition 6 holds, 
then 

zt m = [�89 G + tit] ~t ~ .  

Proof. Our assumptions imply that 

G= ~ k ,A ' -o) ,~(og)  
v = l  

is independent of X. Therefore the roots ~o=h(K) of det G = 0  are independent 
of X, and it follows f rom the ray equations (3.3.1) that k, ,  co, and G are constant 
on each ray. Thus the null eigenvectors r "  of G may be so chosen that they are 
constant on each ray, and 

m d 
~ g ~ r x = - d ~ r m = O ;  m = l  .. . .  , q .  (1) 

v = 0  

dco dh 
Since Go,= - A  ~ and g j =  dkj  - ~ k j '  G k j = A J - A ~  Hence 

C ,  A j r T )  = C ,  m , 0 . . Gks rxj) + (r ,  gj A rxj), #, m = 1 . . . .  , q, j = 1 . . . . .  n. (2) 

From (3.5.6, 7) and (2) 

t m ~'~ j m z tm_z  (r , AO )_ t l t6 tm=(r  t, o m A r~o)+ ~ (r t, A r~j) 
s=l (3) 

m m = (F, G,s %) + Z (F, g, .4 o r~) .  
j = l  v = O  

But from (1) we see that the last term in (3) vanishes. Furthermore, since G k J +  
G rtkj = (G rgk s = O, 

~, (rt, G,, r=m)= - ~, (rt,, G r=%). (4) 
j = l  i = i  

Hence (3) and (4) yield 

�9 , ~ ~ , ~ , = � 8 9 1 7 6  - (G ' , % ,  rk). (5) 
j = l  



240 ROBERT M. LEwis: 

Since kj = sxj is constant on a ray 

~=o f~kj = d k j  
sxJx~ = g" 3x~ dt = 0 ,  (6) 

therefore 
Okv G.~= ~= Gv Oxj -.=,(A~-A~ gOSx~x,=.=o 2 A' s ~ "  (7) 

Furthermore 
_ 6 . -  O k j _  ~ ~  . x+-#,- , , ,  ax--?-.,~,o,+,x+ r,,,. (8) 

Now (3.5.6), (8) and (7) yield 

Ttm -- �89 ( rt, A~ rm) - -  r/e ~t  m -- ~ ( rt, A' rx m) 
v=O 

= i 
v=O j = l  (9) 

= ( r ' ,  Gx, r+3)= - E ( G ,  c r D 
j=l  1=1  

~ ( G  t ., ~___ __ rxj, rkj) �9 

j=l  

(The last equation in (9) follows from the fact that G is hermitian.) 

We now compare (5) and (9) and find that 

Ttm=Zmt.  (10) 
Then (10), (3.7.3), condition 6 and (3.2.11) yield the required result, 

�9 , . = � 8 9 1 8 9 1 8 9  (11) 

B. Generalized energy density and Poynting vector 
If u is any real solution of the general system of equations (2.1.26, 7) we define 

the generalized Poynting vector S=(SI,  ..., S,) corresponding to u by 

Sv=2(u, AVu); v = l  . . . . .  n. (1) 

For real solutions u = (E, H) of the electromagnetic field equations we see from 
(2.1.21) that if K is an arbitrary vector, 

3 
K . S =  ~ k v S , = 2 c [ H . K x E - E . K x H ] = 4 c K . E x H  (2) 

V=I 
hence 

C 
S=167zS E, where Sn=--~--~nExH. (3) 

But Se is the usual "Poynting vector" of electromagnetic theory. For this reason 
we have called S the "generalized Poynting vector". 

For complex solutions we define S in terms of the real part of u. Thus 

S, =2(Re u, A' Re u) =�89 [(u + u*), A~(u + u*)] 
(4) 

=�89 ['(u, A" u)+(u*, A ~, u*)+(u*, A~ u)+(u, A~ u*)]. 
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Throughout  this paper we have studied complex asymptotic solutions of the 
form e ~xs z. For  such solutions (4) becomes 

Sv =�89 [(z, AVz)+(z *, A'z*)+e2iXS(z *, AVz)+e-2iaS(z, hV z*)] �9 (5) 

We note that the last two terms in (5) contain oscillatory factors, hence if we average 
(5) over a short time interval*, the average of the last two terms will be asymptoti- 
cally zero for 2~oo .  Thus the average value of S v is given by 

<S~> = �89 [(z, A v z) + (z*, A ~ z*)].  (6) 

If we assume that A" is real for v= 1 . . . . .  n, then (z*, A'z*)=(z, A'z)* =(A~z, z) 
=(z,  A~z), and (6) becomes 

<S,> =(z,  A" z). (7) 

The vector <S>=(<SI> . . . . .  (Sn>) is the average Poynting vector of the given 
asymptotic solution. 

We now introduce (3.5.1) in (7), and we use the basic identity (3.2.8)and the 
definition (3.7.5) of w. We find that 

<Sv> = g~ tr* at = w g,, (8) 
hence 

(S)=wG.  (9) 
We also find, from (3.7.7) that 

dw 
w,+V.(S)=w,+(w g~)x =--d-f+(gv)xvw=-2(Rerl+fl)w. (10) 

Thus if our system is conservative and the matrices A 1 . . . . .  A n are constant, 
then ~/= fl = 0 and 

w,+V. ( S ) = 0 .  (11) 

This equation is the well known energy-conservation equation. It explains why 
we have called w the "energy density". To be more precise we should call it the 
average energy density. From (9) we note that the Poynting vector ( S )  has the 
direction of the (projected) ray and the magnitude w g, where g is the group 
speed. Thus it is particularly clear in the asymptotic theory that the Poynting 
vector measures the energy flux. From (3) we see that the average energy density 
of the electromagnetic field is given by 

w~=w/167r. (12) 

It is interesting to note that equations 1, 4, 5, 6, 7, 8 remain valid with v = 0, 
hence w = ( S o )  where So=2(u ,  Aou ). Now the matrix Ao(co ) and the above 
quantity So are defined only for asymptotic solutions, because then c o = - s t  
is defined. For  exact solutions So is undefined unless the system is non-dispersive, 
for then A o = 8  is independent of co. For  the non-dispersive electromagnetic 
field, it is easy to show that So = 16n Son, where Sot. is the usual electromagnetic 
energy density, 

Son=_~__~l [eEZ +l~n2]. (13) 

�9 A space-average or space-time average will yield the same result. 
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For dispersive systems it does not appear to be possible to give a satisfactory 
definition of the energy density in terms of exact solutions, but only in the frame- 
work of the asymptotic theory. A similar remark applies to the group velocity 
vector, G. * 

As we have seen in section (3.11) an asymptotic solution is often given by a 
sum of terms of the form 

u(t, X)=~] u(j); u(j)=e iaS~:' z~j). (14) 
J 

(Each ray that passes through the point (t, X) contributes one term to this sum.) 
For such solutions, (4) becomes 

S~ = �89 ~ ~ {e ix [-s~> + S(m)l (Z(j) , A v Z(m)) "Ji- e ~x ts~,-s<~,~l (z~), A v Z~m)) + 
j m ( 1 5 )  

+ e' a t*,,, +,,,,,1 (z~), A" zo,o) + e' a t-s,~,-~,.,1 (zr A" Z?m))}. 

We assume that Isil,ls~l for j4=m. Then by averaging (15) we find that 

<S,> = �89 Z {(z<j), A" z(j)) + (z~.~, A" z~)} = X (zCj), A v z(j)). (16) 
Thus J J 

(S )  = ~  (S(j~) (17) 
J 

where (S(j)) is the average Poynting vector for the asymptotic solution utj)= 
e ~o~  z<j). If w(j) is the energy density of the same solution, then (I 1) implies that 

w~j), + V. (So.)) = 0. (18) 

Thus we see from (17) and (18) that 

w,+ F. (S )  =0  (19) 
where 

w = Y' wo. ) . (20) 
) 

From (19) and (20) we conclude that the energy density of an asymptotic solution 
consisting of a sum of terms (14) is the sum of the energy densities associated 
with each term. 

C. Solution of the equation for  the energy density 

The energy density function w satisfies the equation (3.7.7) 

dw 
dt ~ [ v .  G + 2 ( R e n + p ) ]  w = 0 .  (1) 

In order to solve this equation, we set 

w = ~ e ;  ~=exp R e q ( t ' ) + B ( t ' ) ] d t ' ;  (2) 

then it is easily seen that e satisfies the simpler equation, 

de 
dt ~-(V. G) ~ = 0 .  (3) 

* "Approximate" definitions, under special conditions, are sometimes given. See, e.g. [8]. 
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We now set t=Xo, go = 1 and introduce the (n + 1)-vectors 

G=(go ,  gx, . . . ,  g , )=(go,  G), 

~o  "Oxl ..... Oxv " 
Then from (3) 

6 + & a)=o. 
Let f9 be an arbitrary point set in the 

space # of parameters r which label 
the rays (t, X)=[t ,  X(t; F)]. Let J -  be 
the set of points in space-time filled by 
the " tube" of ray segments for which r 
is in ~ and tx<-_t<t2. The region 3-  is 
illustrated in Fig. 2. 

We now apply Gauss' theorem to the 
region 5r.. From (5) it follows that 

0 =  I [~" (0~ G) dx o dXl...dx . 
~- (6) 

(4) 

(5) 

,q 

Fig. 2 

where N is the unit outward normal vector to the surface 5" of ~ On that port!on 
of 5 ~ generated by rays G.  ~r=0. On the hyperplanes t=t 1 and t=t2 G. N= 
---go = + 1. Hence (6) becomes 

{ ~- ~} o: dxl...dx,,=O. (7) 
~2 t l  

But dxl ... dx,=j(t; iv) dT1 ... dy,=j(t) dF, therefore 

I [~(t2) j(t2)-u(q) j ( t l ) ]  d r = O ,  (8) 

and since if, tl and t 2 were arbitrary we conclude that ~(t)j(t) is constant on a 
ray, or 

~(t) =0t(to) J(t~ j(t) " (9) 

Now (2) implies that w(to)=~(to), therefore from (2) and (9) we find that the 
solution of (1) is given by 

w( t)= W(to) ~ exp { -  2 f [Re q( t') + fl (t')] d t'} . (10) 

In order to solve equation (3.6.2) we set w=e 2 and f l=0.  From (1) we find that 

dt q- 217"G+q a = 0 ,  (11) 
while (10) yields 

a( t )=a( to ) [~]~exp  { -  !q(t') dt'}. (12) 

Since (3.6.2) and (11) are the same, (12) is the required solution. 
Arch. Rational Mech. Anal., Vol. 20 17 
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D. The dielectric permeability function 

Theoretical derivations [14] of the dielectric permeability for isotropic media 
with a single "resonance frequency" lead to formulas of the form 

tp 2 
~1(03, X)  - -  1 = '0 2 _ 032 _ i v 03 " (1) 

Here, as in chapter 2 and 7, 03 denotes the frequency and ~1 denotes the dielectric 
permeability, q~2 is proportinal to the number density of oscillators of resonance 
frequency p, and v is proportional to the damping force, q~, p, and v may be 
functions of X, and v > 0. For  media with n resonance frequencies, the right side 
of (1) is replaced by a sum of n such terms. For  an isotropic plasma, (1) is valid 
with p = 0. Then tp is called the "plasma frequency" and v the "collision frequency". 

If (p is independent of X, we set ;t = (p. Otherwise we take 2 to be some average 
value of tp (or an average value of p) and we set r=p/2, p=~o/2. Then 

As in section 2.1 we set 

Then 

p=2r(X), ~ = 2 p ( X ) .  

co = 03/~; {,(co, x )  = ~,(03, x ) .  

(2) 

(3) 

(4) 

Thus we see that condition 1 of appendix G is satisfied. From (6) we find that 

a p2 (0)2 _[_ r 2) (8) 
aco (CO/31)=I"I" (CO2--r2)2 ' 

hence 

A~ =O--~- (CO 8) ~I6  ' 

where 16 is the 6 x 6 identity matrix. Since 

lim ~ = 16 
to--~ oO 

we see that condition 10 is satisfied with A =/6-  Condition 2 then follows from 
condition 10. Condition 4 is easily verified from (7) and (6). 

p2 

%t = 1 + r2 _ (.02 _ i 09 v/,~. " 

We now expand (4) for large 2 and find that 

~'1 = el - (i ~)-  1 ~t + 0 ( 2  -2) (5) 
where 

2 covp2 D -  
1 - -  ~ - - ~ - ~ 2 ,  ~1 = (CO2 r2)2" (6) 

If we take the magnetic permeability of the medium to be ~2 - 1, then from (2.1.24) 
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In order to examine condition 5 we may compute the roots of det G---0, 
with e2 = 1 and ej given by (6). Proceeding as in section (7.1) we find, in addition 
to the roots 

o9=0, to= ___ ]/,~r~--~; (9) 

which are independent of K (and therefore uninteresting); the roots co= +hx (k), 
o9= _+h2(k), where 

2(hl)2-~(c2 k2 +r2-4-p2)-4-~/'(c2 k2 +r2 + p2)Z-4c2 k2 r2. (10) 
2 

Since the roots are all real, condition 5 is satisfied. 

Condition 3 may be verified by explicit calculation of the eigenvalues of the 
matrix G. There are two eigenvalues of multiplicity one and two of multiplicity 
two. They are distinct except at o9--0*. 

E. Some vector identities 
We begin with the standard vector identity 

Vx(A2xA3)=A2(V'A3)-A3(V'A2)+(A3"IT)A2-(A 2"V)A 3. (1) 

If A1, A2, -43 are orthonormal then (1) yields 

A,. Vx(A 2 xA3)=A,-[(A 3 �9 V)A2-(A2. V)A3]. (2) 

We now apply (2) to the vectors T, N, B which satisfy (7.2.1). This yields 

N .  VxN=N. Vx(Bx T ) = N .  [(T. V) B-(B. V) T], (3) 

B. Vx B=B. Vx (Tx N)=B. [(N. V) T-(T. V)N], (4) 
and 

r .  V x T= r .  V x (N x B) = r .  [(B. V) N- (N.  V) B].  (5) 
But 

N. (r. V)B+B. (r. V)N=(T. V)(B. N)=0, (6) 

r. (B- V) N +N.  (B- V) T=(B- V) (N. T) =0, (7) 
and 

B.  (N.  V) T+ T. (N .  V) B = ( N .  V) (B. T) = 0 .  (8) 

If we add (3) and (4) and subtract (5) we find that 

N. Vx N +B. V x B - T .  Vx T=2N.(T.  V)B. (9) 

Now, by definition, K = k A, hence 

V x K = V k x A + k V x A  (10) 
and 

A. V x K = k A .  VxA .  (11) 
Therefore, since K = Vs, 

A ' V x A = I  A . V x K = I  A .VxVs=O.  (12) 

�9 The confluence of eigerwalues at special points is a phenomenon that requires further study. 
17" 
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But T =  +A;  therefore T. Vx T=O and (9) becomes 

N.  V x N  +B.  V x B = 2 N . ( T .  V)B. (13) 

F. The phase-shift rule 

In chapter 5, we have evaluated the integral (4.3.6) asymptotically, by the 
method of stationary phase, for two choices of the source function f= f ( t ,  X; 2). 
If we perform the integrations first with respect to ~ and r, we are led to a sum 
of integrals of the form 

u (t, X) ~ j" g (K) e ~ a ~ (K)d K,  (1) 
where 

q3 (K) = k, x, - h (K) t - f ( K ) .  (2) 

In fact, whenever the source function is such that the integrals with respect to 
and ~ can be performed (exactly or asymptotically) we are led to integrals of the 
form (1, 2)*. Furthermore, integral representations of the solution of initial-value 
problems for linear hyperbolic equations also lead to integrals of the form (1, 2) 
when all integrations except those with respect to K are performed*. 

We now evaluate (1) by the method of stationary phase [10]. At a stationary 
point, 

Otp Oh Of 
~o,- ok, - x , - - ~ -  t - - g g =  o, (3) 

hence 
a f  0h 

x~=~,+g~t; ~v= Ok, ' g'= Ok, ; 

Furthermore, at the stationary point, 

02~0 02---" h-~-h t 02f t~x,. 
q~'~--- Ok, Ok~ - Ok, Ok~ Ok, O k , -  Ok~ ' 

and 
q~ = (k, g , -h )  t+so(K) 

where 
of 

s o = k , ~ , - f = k , - - ~ - f  . 

The stationary phase formula then yields 

~;n _~ g i 2 {(kvgv-h) t+so}-i'~sigJ(t) 
u ~ I det ((,o~, ,) [ (k) e 

where sig J(t) denotes the signature of the matrix 

0x, 

v = 1 . . . . .  n .  ( 4 )  

, ,  u = 1 . . . . .  n ,  ( 5 )  

(6) 

(7) 

x ~ = ~ , + g , t ;  (8) 

We now suppose that K is a function of a parameter F =  (Yx . . . . .  T.) i.e. 

k, = k,(F).  

* See, e.g. [4, 5, 10]. 

(9) 
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Differentiat ing this equat ion  with respect to k~ yields 

O k  v O~j  
5 ~ =  a7~ Ok. " 

But 

Hence  

OX v __ OX v O~j  

3 k ~  OTj Ok u 

(lo) 

(11) 

O X v O X v 
O r j  ff " 

If  we introduce the new pa rame te r  F, we m a y  rewrite (8) in the fo rm 

u~elaS(';r)z(t; r ) ;  xv=~,+g , t ,  (13) 
where 

s=(kv g , - h )  t+s o , (14) 
and 

(12) 

1 - i  ~ sig J(t) 
e a(r). (15) z(t; r) = z ( t ) - - ~  

Here a (F) is independent  of t, and 

(?xv { Okv~ (16) J ( t ) = j ( t ; F ) = d e t ( ~ ) = d e t ( q ~ v ~ ) d e t k o , ,  / �9 

We now compare  (13) with (3.11.1) and (15) with (3.10.9.) (with r l=0) .  Fo r  
z < t < z' (where v' is the first caustic point  past  t = �9 on the ray), j (z)/j(t) is positive, 
and (3.10.9) and  (15) agree if we set 

- i ~ s l g J ( t )  ~ 
~,(r)=e a(r)/Ij(r)l; r < t < z ' .  (17) 

We note that  J(t) is constant  between caustic points,  but  may  change discon- 
t inuously at such points. Fo r  t larger than x' (but smaller  than  the next caustic 
point  z"),  (17) and (15) yield 

Z t - -  j ( T ) � 8 9  
( )-- j(t) , z '< t<z" .  (18) 

By compar ing  (18) with (3.10.9) we arive at  the following rule* for  the inter- 
p re ta t ion  of the ambigious  factor  [}(z)/j(t)] ~. 

Phase-shift rule*: 

j- j -- e 

�9 Note that the phase-shift rule has been derived here by examining the asymptotic solution 
of problems with constant coefficients. Since problems with variable coefficients may be 
approximated, in the neighborhood of a caustic point, by problems with constant coefficients, 
we assume that the rule remains valid for the general problem. (This, then, is another application 
of the "indirect method" outlined in section 3.11.) In general, the functions xv=xv(t; r) and 
kv=kv(t; I') which appear in (20), are the solutions of the ray equations of section 3.3. 
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For z < t < T', p = 0. p is constant between caustic points. At a caustic point t = z', 
p changes discontinuously by the amount 

[p']=p(z' +O)-p(z'-O)=�89 +O)-sigJ(z ' -O)] ,  (19) 
where 

(Since [sig J(z' + 0 ) -  sig J(z' - 0)] 

J(t) \ a k j }  " 

is an even number, p is always an integer.) 

G. Notation 

In the system of equations studied in this paper, the independent variables 
are t and X. X is a vector with n components. The dependent variables u and v 
are column vectors with m components. In general, A denotes an n-vector with 
components A~ . . . . .  An or aa, . . . ,  an. If n = 3, A is an ordinary 3-vector. a denotes 
a column vector with m components. To save space we often write the components 
horizontally rather then vertically. Thus a=(al . . . . .  am). A denotes an m xm 
matrix or a scalar. Thus A a is a column vector, a denotes a scalar or (rarely) an 
n x n matrix. 

The inner product of two column vectors a and b is a scalar defined by 

( a ,b )=  ~, a* bj. 
j = l  

The star denotes the complex conjugate (or the hermitian conjugate for matrices). 
The following properties of the inner product are used. They follow easily from 
the definition 

(a, b)*=(b, a); (ca, b)=c*(a, b); (a, cb)=c(a, b); 
(a, A b) = (A* a, b); if A is hermitian (a, A b) = (A a, b). 

The summation convention with respect to repeated indices is used. Usually 
the indices run from 1 to n. If not, a parenthetical note is inserted. Thus 

avbv denotes ~ a~b~, 
V=I 

a sbj, denotes ~ ajbj. 
j = l  j = l  

Some column vectors a with 6 components are defined by an ordered pair 
of two 3-vectors. Thus a=(A, B)=(A1, A2, A3, B1, B2, B3). The symbol (A, B) 
is not an inner product. Only column vectors a, b appear in inner products. 

H. Summary of conditions 

The following basic conditions are imposed throughout this paper: 

1. ~(o9, X; 2)=8(09, X) - ( i2 ) -1~(o9 ,  X)+O(2-2 ) .  For  real o9, g is hermitian. 

2. For  real o9, AO(og, X)= ~-~ (cog) is positive-definite. 
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3. Fo r  real 09 and for  K =  (k~ . . . . .  k ,)  with real components ,  the multiplici ty 
of each eigenvalue of the matr ix  G=kv Av(X)-coS(co, X) is independent  of to 
and  K. 

4. Fo r  each X, #(to, X) is a m e r o m o r p h i c *  funct ion of to in a region 
I m  co>2flo ( f lo<0)  which includes the upper  half-plane and the real axis, and 
all the poles lie on the real axis. As Icol-~oo, #(co, x)~/l(x) uniformly with 
respect  to arg 09 in 0 < arg co =< rc; where A (X) is positive-definite. 

5. Fo r  K=(k~ . . . . .  k,) with real componen t s  the solutions co=h(K,  X) of the 
de terminanta l  equat ion det G =  det [k, A'(X)-cog(co, X)] = 0 are real or  lie in the 
region I m  co < flo (flo < 0). 

Condi t ions  1, 2, and  3 are used repeatedly in the expansion procedure  of 
chapter  3. Condi t ions  4 and 5 are used in obtaining the fourier  integral represen- 
ta t ion of chapter  4 and its residue evaluation.  

The following special conditions are required for  certain purposes  ( r  ~ . . . . .  r ~ 
are null eigenvectors of G): 

6. F o r  real co, 9 is hermit ian.  

7. [r i, co~(co) r j] =~/(co) 6ij; i, j =  1 . . . . .  q. 

8. - - ~  (rt, A~xvrm)=2fl6tm; t , m = l , . . . , q .  
v m l  

9. The  hermit ian matrices AI(X) . . . . .  A"(X) and g(co, X) are real (hence 
symmetr ic)  for  real co. 

10. Fo r  real co, AO(co, X)>A(X); i.e., the matr ix  AO-A  is non-negative.  

Condi t ions 6, 7, 8, and  9 are required for  the solution of the t ranspor t  equa-  
t ions in the var ious cases discussed in sections 3 . 6 - 3 . 9 .  

Condi t ion 10 is used in section 6.3 to derive the inequali ty (6.3.14). 
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