Existence in the Large of Periodic Solutions
of Hyperbolic Partial Differential Equations

LAMBERTO CESARI

The problem of existence of solutions ¢ (x, y) periodic in x and in y of period
T for a hyperbolic partial differential system of the form

uxy=f(x’ Ysu, Uy, uy)s (1)
where u=(u,, ..., 4,), and f=(fy, ..., f,) is periodic in x and y of period T, presents
a number of difficulties when no damping of any sort is assumed. In this paper
we analyze this difficult problem in the line of our previous work on ordinary
and partial differential equations. We conclude with criteria of existence for

solutions to the problem above. These criteria can then be used for the analogous
problem for the equation

Uy o — Uy, =g(X, Y, U, U, U,). 2)

1. The Modified Problem

1. Modified Problem. We shall first associate with (1) the following analogous
weaker problem or modified problem:
Given two periodic functions u,(x), ve(y) of class C! in (—o0, +o0) and of
period T,
ug(x+T)=uo(x), vo(x+T)=0y(x),

determine a function @(x, y) continuous with its partial derivatives &, ®,, @,,,
two functions m(y) and n(x) both continuous, and a constant p, such that
P(x+T, )=, )=2(x,y+T), mGx+T)=m(x), n@y+T)=n(y),

ITm(y)dy=0, an(x)dx=o, 3
0 0

and
¢xy=f(x’ya¢s(px3¢y)_m(y)_n(x)_u' (4)

For this modified problem we shall prove theorems of existence, uniqueness,
and continuous dependence on the boundary values and parameters. In (4) we
assume

S+ y,z,p,9)=f(x,y,z, ., 9)=f(x,y+T,z,p,q).

Then the function @ is a periodic solution of the original problem (1) if and only
if we can determine uy(x), vo(y) in such a way that

u=0, m()=0, n(x)=0.

Criteria for this occurrence are given in Sections 12—19.
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2. Theorem I (existence theorem for the modified problem). If 7>0, and
N,N,N,,L,b,,b,, M\, M,, M;20 are constants, if A and R are the sets
A=[0=x=<T, 0Ly<T],

R=[0=x=<T, 0Ly<T, [z|EM,, |p|EM,, |q|SM;],
if
M 2N+(N,+N)T)2+3LT?, M,2N,+3LT, Mi2N,+3LT, (5
if
uO(x)’ O_S_X§T, UO(y)s Oé})éTs

are vector functions which are continuous with ug(x), vo(¥), if

f&x 52,09, (x,5,2,p,9€R,
is continuous in R, and

uo(M=ue(0), vo(T)=0,(0)=0, ug(T)=uo(0), vo(T)=v5(0), (6)
[ug(OIEN, [ug(x)—uo (x| SN;y [x; = %31, [06(¥1) = o (YIIEN; [y —y.l, (D
f(Tsy,Z,P,4)=f(0,y,Z,PsQ), f(xsT’z’p’q)=f(x309z,Psq)5 (8)

If(x,y,2z, p. Q)| LL,
|f(x, v, 2, P1, 1) —f (%, ¥, 2, P2, @) by | py— P2 |+ b3 19— 42 ;
then for

®

2Th, <1, 2Tbh,y<l1, (10

there exist a vector function @(x,y), (x,y)€A, continuous in A together with
Qs Pys Py, continuous vector functions m(y), 0Sy=<T, n(x), 0Sx=T, and a
constant u, such that

(p(xs 0)=(p(xs T)=UO(X), (py(-xs 0)=(py(x’ T) ’ (11)
00, »)=0(T, y)=uo(0)+v,(y), .00, y)=0.(T, ), (12)
m@0)=m(T), n(0)=n(T), (13)

(pxy(x’ y)=f(x, Vs (P(x’ _V), (Px(x’ Y), ¢y(x’ y))—m()’)—"(x)—ﬂ, (14)

T T
gm(n)dn=0, gn(é‘)d€=0, (15)
TT
p= T_zb‘l (_!f(é, n, (P(é, 'I), (Px(éa '7)9 (Py(fa '1)) ¢ dr’ s (16)
T
m(y)= T"gf(é, Y, 0, 1), 0., ¥), 0, (&, ) dE—p, an

n(x)= T ! (,!f(x’ 1, q’(xs 'I)’ (px(x’ '7)’ ¢y(xs 'I)) dﬂ_/‘ s (18)
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Sfor all 0=x<T, 0Sy<T. Thus, by extending all functions ¢(x,y), m(y), n(x),
f(x, ¥, 2,p,9) for all —o<x,y<+o©, |Z|EM,, |[p|EM,, |q|£M;, by means
of the periodicity of period T in x and y, equation (14) is satisfied in the whole
x y-plane.

3. Proof of Theorem 1. First let us note that relations (11), (12), (14), (15),
imply (16), (17), (18). Indeed, by integration of (14) on A4, we deduce (16). Then,
by integration of (14) again on 0<x<T, or on 0=y =T, we deduce (17) and (18),
respectively. Note that (8), (11), (12), (17), (18) imply (13), and that (16), (17),
(18) imply (15).

Let us first prove that every vector function ¢(x, ), (x, y)ed, satisfying

o(x,0=0(x, T)=upg(x), @0, y)=0(T, y)=ux(0)+ve(y),

(19)
l@o (X1, Y1) =@ (%1, y2) = @(x2, 1)+ @ (X2, y2)ISO6LIxy — X3 | | y1 — Y2 l»
also satisfies the relations
o, NISMy, @)= (X3, PISMy X —x,1, 20)

lo(x, y)—@(x, y2)EM;31y1—y,l.

Indeed, we have, for 0Sx<7, 0<y<T,

lo(x1, )—0 (X3, ) —@(x4, 0+ 0(x,,0)|S6L[x;—x,] y,
where
[@(x1,0)—@(x2,0)[=]uo(x)~ue(x)| EN; | X — X, 1|,
and hence
o (X1, V)= @(x2, ) SN +6Ly) [ x;—X,|.

Analogously, we have
I(P(xnY)—¢(X2,Y)]§(N1+6L(T—Y))|x1—x2 .
Since either 0<y<T/2 or 02T—y<T/2, we have
@ (X1, Y)—@(x2, YISy +3LT) [x; =%, | EM, | X — X, .
Analogously, we prove that
lo(X, y1) =@ (X, y) |S(N2+3LT) | yy =y | SM3 | py —y. .
Finally, for 0<x, y<T/2,
lo(x, »)1=19(0,0)[+]90, ») — (0, 0)|+|p(x, ¥)— (0, )|
SN+N, y+(N; +6LY) xSN+ (N, +N,) T2+3LT*<M,.

Analogous reasoning holds for (x, y) in the remaining quadrants of 4. Thus
lo(x, YIS M,, (x,y)e A. We have proved that relations (19) imply (20). Also,
the vector functions ¢ (x, y) satisfying (20) are all Lipschitzian in 4, and hence
have partial derivatives ¢,, ¢, a.c. in 4 satisfying |¢,|S M,, |¢,|S M, a.e. in A4.
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The vector function f(x, y, z, p, q) is continuous in R. Hence, there are con-
tinuous monotone functions w, (), w,(B), w;(y) in [0, 4+ c0) such that w,(0)=
w,(0)=w;(0)=0, and

|f(x1,,V: Z,p, q)_f(XZ’y9 Z, P, Q)|§w1(|x1—xz|),

If(x’ V1545 D, q)_f(xa Y252, D, ¢1)|§w2(|,"1—)’2|), (21)

If(xa Y21, P q)—f(X, Y522, D5 q)léw:i(lzl_ le)a
for all

0§x5x19x25yay19y2§T, IzlalzlleZléMl, [pléMZa |qI§M3
The vector functions ug(x), vg(y) are continuous in [0, T]. Hence, there are

continuous monotone functions w,(x), ws(f), 0=5a, f< + 0, with w, (0)=w;(0)
=0, such that

lug(x)—up(x)|Lwa(|x—x21),  |vo(y)—vo(yDS@s(|y—y2l). (22)
Let

Mm(B)=(1-2Tb,) " [ws(B)+2Tw,(B)+2Tw;(M; B)+12LTb, f], (23)
N2(@)=(1=2Tbh,) [0, () +2Tw () +2Tw;(M, ) +12LTh, «]. (24)

Both #,(f) and n,(x), 0<e«, <+ 00, are continuous monotone functions with
n1(0)=1,(0)=0.

Let E be the linear space of all vector functions ¢(x, ), (x, y)€ 4, continuous
in A together with their partial derivatives ¢,, ¢, with norm |[¢||=max |@|+
max | ¢, |+max |¢@,|, where max is taken in 4.

Let K be the subset of E made up of all vector functions @ (x, y)eE satisfying
relations (19) and in addition

0:0, =0T, y), ¢,(x,00=0,(x,T),
I(px(xb y)—q)x(x29 Y)| §ﬂ2(|x1 — X3 |)s I(Px(x> yl)_q)x(xs yZ)I §6L|yl —J2 | s (25)
[ @y (x1, V)= @y(x2, MIS6Ly, —yal, [9,(x, 1) —0y(x, y2) S0 (¥ —y2).

Then the vector functions ¢ € K satisfy relations (20), and then [p | S M, | ¢, | S M,,
|@,| < M; everywhere in 4. As a consequence the vector function

F(x, 9)=1(x, y, 0(%, y), 9:(x, y), 9,(x, y)), (x, ) € 4, (26)
is defined everywhere in A and is continuous in A.

For @eK the vector functions m(y) and n(x) defined by (17) and (18) are
continuous in [0, 7]. With u defined by (16), the vector function

!ﬁ(x,y)=uo(x)+vo(y)+ﬁ[F(f,n)—rn(n)—n(é)—u]dédn @

is continuous in A together with its partial derivatives

e y)=ua(x>+j[F<x, n—m)—n()—ul dn., 28)

¥, (x, y)=06(y)+§[F(f, »-m@y)—n@)—p]di. (29)
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Thus, relations (16), (17), (18), (26), and (27) definea map 7 =5 ¢,or 7 : K—E.
Let us prove that actually 7 :K—K.

Since |f|ZL, by (16), (17), (18) we deduce
[uISL,  |m(y)|,|In(x)|<2L.

On the other hand, by (6), (8), (19), (25), (26), (27), (28), (29), we have with
the usual conventions

FO,n=F(T,y), F(x,00=F(T,0), m@)=m(T), n(0)=n(T),

T T (30)
gm(n)dn=0, gn(é)dé=0-
l//(x’ 0)=IP(X, T)=u0(x)’ lpy(x’ 0)=¢y(x’ T), (31)
YO, Y)=Y(T, y)=uo(0) +vo(y), V.0, »)=y(T, »),
[ (xi y) =¥ (x1, y2) =¥ (X2, 1)+ (X2, ¥2) |
x2y2 (32)

=| | J[FE&m—mmy—n®—u] dédnléﬂlxl—le |y1—y2l.

X1y

In other words y=7 ¢ for @eK satisfies relations (19) and, hence, relations
(20) as proved above. Also, we have

FLF G, iy —mn) = n()—4] dn’,

(X, y)—¥x(x, y2) | =

Wy (x15 Y) =¥y (%2, P)| = }Z[F(f, »)—m(y)—n(&)-p] dé' ,

and hence

hpx(x’ yl)_lpx(x’ y2)| §6L|y1—y2| ] |!I/y(xls .V)—‘//y(xz, y)l §6le1 —x2| . (33)
Further, from (17) we have
T
Im(yl)—m(yz)l=‘T"§[f(é, V1> 06 ¥1), 02, 1), 0,(E, ¥1))
_f(gs Yas ‘P(é, y2)s (px(é9 .Vz), q’y(é; Yz))] df
T
éT"‘g[wz(lyl—yzl)+w3(l(p(6,yl)—co(f, y)+

+b1|¢x(és yl)_(px(é’ y2)l+b2|(py(és y1)-(py(6’ yz)l] dé
So(lyr—y2Dtaos(Msly,—y2 1) +6Lby [y, —y |+

+bym(ly1—y20)»



Hyperbolic Partial Differential Equations 175

and analogously
In(x)—n(x)| Soy(lxs — %)+ @3 (M2 ]x; = X2) + by 72(Jxy —X2[)+6Lb, |x; —x,].
We have now from (29) and (23)
W, (x, y1) =¥, (x, y2)I=v5(y 1) —vo(y2) +
+ [T 7100620 0 7). 0,6 y) =m0 =
—f(& y2, 9, y2), x(&, 2)s 0,(&, y2))+m(y2)] d ¢

§w5(|)’1—}’2|)+(_![a’2(|)’1—,"2|)+ (34)

+CD3(| (p(f’ }’1)—(0(5, y2) |)+b1 I (px(f’ .Vl)"(Px(f, ,Vz) |+

+by19,(& y ) —0u(& y) + m(y)—m(yr)|]d
Sos(ly=r21)+2T w0,y (|y1 =2 1) +2T 03(M3 |y, — 2 1)+

+12LT by |y =y, |+2Tby my(ly1~y2 1)
=(1-2Tb))n(ly1—y20+2T by my(ly1—y, )

=1(1y1=¥20).
Analogously, we have

[Ve(x1, V)= (X2, W) S0 (Ix —x20). (35)

Relations (31), (32), (33), (34) show that Y =7 ¢ for peK satisfies all relations
(19) and (25). Thus ek, and 7 :K-K.

The transformation 9 :K—K, K< E, is continuous in K with respect to the
norm || || of E. Indeed, for two vector functions ¢;eK, j=1, 2, we have ;=7 ¢;,
Fi=F,, mj=m, (y), n;=n,(x), p;=H,,, j=1,2, and from (16)

L Ad

TT
I#l —H I = ( T_Z(.! (.)[[f(&y n, (pl(és '1)! (plx(é’ 1”), (Ply(é’ r'))_
—f(é’ 1, ¢2(¢a 11), (75} x(i’ r’)9 (5 y(és ’1))] dé d'l‘

Slos(ler—@ ) +by l@1—@2 1 +b; 01— 92 ]].
Then from (17) we have

T
Iml(y)—mz(y)l=’T"£[f(x, ¥ 01(%, ), @1 (%, ¥), @1,(x, y))—

—f(x’ s (Pz(x, ,V), (p2x(xa y), (PZy(x, }’))] dx—ﬂl +#ZI
22[os(l o1 —@2 1)+ byl @1 — @2l + b2 0 — 0211,

and analogously from (18)

|n1(x)—-n2(x)|§2[w3(ll(p1—-(p2 N+billei—@2ll+bs 0y —o,1].
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From (27) we deduce
[W1(x, Y) =¥, (x, »)|

= M[Fl(é, n)—my(m)~ny(8) —py — F, (&, m)+my(m)+n2(8) +p,]dEdn

<6T? [0)3(|l§01—(P2")+(b1+b2) o —o21].
Analogously, from (28) and (29),
[ 150x ) =20, MIS6T[w03(l 91— @2 1) +(by+b2) |9y — 9,11,
llllly(x’ Y)—‘/fzy(x, y)|§6T[a)3(||(p1—(p2 “)+(b1+b2) lo:i—o, “]

Thus ||, ~¥,[|=0 as ||¢, —¢,||—0 uniformly in K. Finally, the set K is ob-
viously convex, closed and compact with respect to the norm ||¢|| of E. By
ScHAUDER’s fixed point theorem we conclude that there is at least an element
@(x, y)eK such that =9 ¢, or

(%, Y)=uo(x)+vo(y)+

+ (.E 6" [f(f, n, (P(és 77)9 (Px(é’ ’1)’ (Py(é’ 7)))—111 (”)—n(é)—ﬂ] dc dﬂ ’
m(y)=T"" gf(é, ¥, 0 1), 0.&, »), 0,8, M)dE—p,
n(x)=T“§f(x,n, @ (x, 1), (%, 1), 0,(x, M) dn—pu,

TT
u=T'2Mf(é, 1, 9 1), 0: (&, m)s 0,(E, M) dédn,

for all 0=x, y<T. Obviously ¢, ¢,, ¢, exist everywhere in 4, are continuous
in A, and, everywhere in 4, we have

Puy=f (X, 5,0, 0:, @) ~m(y)—n(x)—p.
Theorem I is thereby proved.

4. Remark 1. If f is Lipschitzian with respect to all variables x, y, z, p, q in R,
and if ug(x), v (p) also are Lipschitzian, then m(y), n(x), as well as ¢, ¢, ¢,, ¢,,
are Lipschitzian. Indeed, if w(@)=k,a, w,(f)=k, B, w;3(y)=by7, ws()=k, «,
ws(B)=ks B, then

111([3)=(1—2Tb2)_1(k5+2Tk2+2Tb0‘M3+12LTb1),B=k6ﬁ,
N2(@)=(1=2Th,) "(ky+2Tk;+2TboM,+12LTh,) 0=k, a,
and then
Im(y))—m(y,)iS(ky+bo M3+6Lby+byke) | y1—y2l=ks|y1~y2l,
[n(x1)—n(x2)|S(ky+boMy+by ks +6Lby) | x1— x5 | =Ko | X1 X, ].

Formulas (33), (34), (35) show that ¢,, ¢, are also uniformly Lipschitzian and
$0is @, =f—m—n—p.
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5. Remark 2. The conditions of Theorem I do not assure uniqueness, as the
following example shows. Take T=1, 1 (x)=0, vy (y)=0,f=|z|¥ sin 27 x sin 27 y,
for 0<x,y=<1, and all y, z, p, 9. Then the equation

u,,=lul¥sin2nxsin2ny, (36)

besides the trivial solution ¢,(x, y)=0, has also the solution ¢, (x, y)=(167%)"1 x
sin* 7 x sin* © y, 0<x, y<1, and both satisfy the boundary conditions. Here we
have m,(y)=m,(y)=0, n,(x)=n,(x)=0. Note that we may take N=N, =N, =0,
L=1,M,=1, M,=M;=2, b, =b,=0. All conditions of Theorem I are satisfied.
6. The Lipschitzian Case. We shall assume now that w;(y)=5,]7|, so that f is
now Lipschitzian in z, p, ¢ with constants by, b,, b,. In this situation, for given
boundary values u,(x), v5(x) and different functions ¢,, p,€K we have

[~ 2| S(bo+bi+b) @0, — 0, ],
[mi(»)—ma(W,  [n(X)=ny(x)|Z2(bo+ by +b,) 01— 02,
[Y1(x, y) =¥, (x, }’)|§6T2(b0+b1+b2) loi—o.l,

lllllx(x, y)—!//2x(x’ y)l, l‘ply(x’ y)—l//2y(x’ y)l§6T(b0+b1+b2) “‘Pl"(Pz ” .

Thus
W1—Y2 =T 0,—T @ IS6T(T+2)(bo+b;+b,) | @1~ @2 .

If we assume now that
6T(T+2)(bo+b, +b,)<1, (37

then J :K—K is a contraction into. This remark yields

7. Theorem II (uniqueness). Under the same hypotheses of Theorem I, if
w3(y)=byly|, and (37) holds, then I : K—K is a contraction, and problem (11) — (18)
has one and only one solution.

The boundary values are represented by the pair of functions w= (1, (x), vo(»))
of class C*' and satisfying (6) and (7). Therefore, they form a subset # of the linear
space of all w of class C* satisfying (6) only, and we take in this linear space the
norm

W]l =max [uo(x)| +max | ug(x)|+max | v (y)| + max | v5(y)| . (3%

The solution of the problem (11)—(18) is actually the system W=[op(x, y), m(y),
n(x), u]. These quadruples also can be thought of as imbedded in a linear space
on which we take the norm

| W|=max|@|+max|¢,|+max|@,|+max|m|+max|n|+[pu]. 39)

We shall prove that the solution, or system W, is a continuous function &% of
the boundary values, or system w, and we write

W=%w, we.
We shall need the numbers

A=(1—6Tb)(1—6Tby)~36T?by by, k=6T2bo+T2T34 'by(b,+b,). (40)
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8. Theorem III (continuous dependence upon the boundary values). Under the
conditions of Theorem I, if in addition 4>0, and 0<k <1, then the solution W=
(@, m, n, ) of problem (11)—(18) is a continuous function & of the boundary
values w=(ugy, vo)€R in the topologies determined by the norms (38) and (39).

9. Proof of Theorem III. Let w, =[ug,(xX), vo:(3)], wo=[ug,(x), v5,(¥)] be a
pair of boundary values as in Theorems I and II, and let W, =[p,, m,, n,, 4,1,
W,=[@,, m,;, n,, u,] be the corresponding solutions. Let

e=[wy—w, || =max|ug,(x)—ug,(x)| + max |ug,(x)—ug,(x)|+
+max | vg,(y) o2 (¥) | +max [v5,(y) — 62 (VI

a=max|@(x, ) -2 (x, y)|,  P=max|g.(x, y)~@1.(x, ),

y=max|Qy,(x, Y)—@2,(x, )|, Sd=max|m(y)-m,(y),

&’ =max | n,(x)—n,(x)], 0" =pu—p,l.

We shall denote by F, and F, the functions F relative to ¢, and ¢,. Then we have

TT
0" =y ~pal= T_Z(_!(_)[[Fl(x,y)—Fz(x, }’)]dXd}’léboa'l'bxﬁ*'bz')’,
T
[m(y)—m,(y)|= T_I(_!‘[Fl(x,y)—Fz(x,y)]dx—-p1+y2 Shoa+by f+byy+0",
T
[ny(x)—n,(x)|= T—l(j;[Fl(x,y)—Fz(x,y)]dy——u1+u2 Shoa+b, f+byy+d".
Hence
8" Zbya+by f+byy, 8,0’ <hoa+b,f+b,y+8". 41
Analogously,

[@1(x, )~ @2(x, Y)| = |1001(x) + 001 (y) ~ 115 2 (x) —vg 2 () +

+ ] TTFG D)= M) =m0 = b= Falt )+ ma Q)+ ma(e) + sl dxdy
Se+T*(bgo+b, f+by7+6+8 +6"),
[@1x(xs Y) = @22(x, )| Se+T(boa+by f+byy+6+5"+5"),
[@1,(%, ) —@2,(%, V)| Se+T(boa+by B+byy++06"+6"),

and hence
aZe+ T (bga+b, f+b,y+8 +6'+8"), @)
B.y<e+T(boa+byf+b,p+5+6 +5").
Relations (41), (42) yield
0"'Eboa+b f+b,y7y, 3,0’ £2(bpa+by B+b,7y), @3)

a<e+6T*(boa+b, B+byy), B.y<e+6T(boa+byB+b,7).
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The last relation can be written in the form
p=6Tby&,a+6Thb, ¢, B+6ThyE y+e¢,,
y=6Tbo&,a+6Tb &, B+6Thb,E,7+¢6¢,,

where 0<¢,, €, <1 are convenient numbers, and then

(1-6Tb;E)B—6Tb, & y=6Tbo&,a+el,,
—6Tb, &, B+(1—6Th,E)y=6Tbyé,a+eé,.
If A" is the determinant of this system, we have 4'24>0,0<6T b;<1, j=1, 2, and
B=4""'{(1—6Tb, &) (6Thg &y at+e&)+(6Tby &) (6Thy &, a+eé,)}
<247 Y(e+6Thya).

Analogously, we have
9247 (e+6Thyq).
Finally, by (43)

aZLe+T2T3 A7 bo(by+b,)a+6T?bya+12T247 (b, +b,)e.
Since the number k defined in (40) lies in the interval 0<k <1, we have
a<(1—k)"'[1+1247 T*(b, +b,)] e.

This proves that «, f, v, 8, 6, 6""—0 as ¢—0 uniformly in K. Theorem III is
thereby proved.

10. A Method of Successive Approximations. Under the hypotheses of Theo-
rem III, the usual method of successive approximations defined by ¢,, =7 ¢,
k=0,1..., converges toward the solution ¢ of problem (11)—(18), where ¢,
is an arbitrary element of K. It may be convenient to use as first approximation

Then @o(x y)=uo(x)+vo(y).
TT
Folx, »)=f(x, y, uog(x)+0o(»), uo(x),v5(»)), ﬂo=T_26[gFo(f,’1)dfd'1,
T T
mo(y)=T"gFo(€,y)d6, uo(x)=T“gFo(x,n)dn, 44

xy
¢1(x, J’)'—'”o(x)‘*'vo(}’)"‘gg[Fo(f, m—mo(n)—ne(&)—po] d& dn,
and successively,
Fk(xs y)=f(xa Y, (pk(x, Y), ¢kx(x, y)+(pky(x, y))’
TT T
#k=T_2(_!(_!Fk(€a ndédn, mk(,v)=T_1ng(C, y)dg,
1y (45)
m(x)=T ng(x,n)dr[, i+ 1 (X, Y)=uo(x)+vo(¥) +

+g6f[Fk(€, m=mm—m)—mldidn, k=1,2,...

Arch. Rational Mech. Anal., Vol. 20 13
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Then we have @,—@, @r =0y, Ory—0,, my—m, m—n, w—u uniformly for
0=x<T,0=<y=T, and consequently we have also ¢,,,—¢,, as k—co uniformly.

11. Smoothness of the Solution. Two theorems can now be stated concerning
the smoothness of the solution (¢, m, n, u) of the problem (11)—(18).

() Under the conditions of Theorems I, II, III, if f(x, y, z, p, q) is of class
C! in R and uy(x), v4(y) of class C?, then m(y), n(x) are of class C! and ¢(x, y)
of class C2.

This statement was essentially proved in Section 12 of [24]. A more precise
statement is as follows:

(B) Under the conditions of Theorems I, II, III, if f(x, y, z, p, q) is of class
C! with Lipschitzian first order partial derivatives, if uo(x), vo(y) are of class
C? with Lipschitzian second order derivatives, then m(y), n(x) are of class C!
with Lipschitzian first derivatives and ¢(x, y) of class C? also with Lipschitzian
second order partial derivatives.

The proof is the same as for (). An analogous statement holds:

(y) Under the conditions of Theorem I, II, III, if f(x, y, z, p, q) is of class
C'*" in R with Lipschitzian partial derivatives of the order 1+7, if u,(x), vo(¥)
are of class C>*" with Lipschitzian derivatives of the order 2+r, then m(y), n(x)
are of class C'*" with Lipschitzian derivatives of order 1+r, and @(x, y) is of
class C2*" with Lipschitzian partial derivatives of the order 2+r.

2. Criteria for the Existence of Periodic Solutions
in the Large of the Original Problem

12. A Differential Equation Containing a Small Parameter. Let us consider
the differential equation
uxy=f(x’ Y, u, Uy, uy)a

f=8['/’(x’ y)+C u+lp1(y) ux+lp2(x) uy]+£2 g(x, Vs Uy Uy, uy)a

where ¢ is a small parameter, and ¥, ¥4, ¥,, g are periodic functions of period
T=2n/w in x and y. The Fourier series of ¥, {,, ¥, will be denoted by

(46)

L2}
Y, )~ Y, (@mscosmoxcosnwy+b,,coomoxsinnoy+
m,n=0

+Cyasinmwxcosnwytd,,sinmoxsinnwy),

V1) ~ee+Y. (e,cosnwy+fsinnwy),
1

o0
Y (x)~go+Y.(gncOsnwx+h,sinnwx).
1

If uy(x), vo(¥) denote arbitrary boundary values with v,(0)=0, and u,, v, both
of class C! and uj, v, Lipschitzian with constants k,, k, respectively, then it is
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convenient for us to denote their Fourier series as follows:

[+
ug(x)~ag+ Y. (¢, cos nwx—a,+p,sinnwx),
o 47
vo(Y)~). (YacOsn@y—7,+d,sinnwy),
1

where both series ) a,,, Y7, are absolutely convergent. With this notation we
have

T [-¢]
ug(0)=09, v,(0)=0, T_l_[uo(x)dx=cx0—2<x,,,
0 1

T 0
T"gvo(y)dy=—21)v..-

If we apply formally the method of successive approximations of Section 10
to equation (46) with initial values u,(x), vo(y), we obtain at the first approxi-
mation and preserving only the terms in ¢, namely a quadruple [@,, & my, € 1y,
& tol, with g, mq, ng, yo given by

xy

Qo (x, Y)=”o(x)+vo(y)+5j J[Fo& m)—mo(&)—no(m)—po] dEdn,
20

T T (48)

mo(.V)=T_1£Fo(f,J’)d'f—l‘o, no(x)=T"£Fo(x,i1)dn—uo,

TT
ﬂo=T_2JgFo(§,n)d€d'1,

Fo(x, ))=¥(x, )+ Cuo(x)+ Cvo(y) +¥1(y) uo(x)+¥2(x) vo(¥) .

If we write

o0

mo(M)~Y. (Bycosnwy+C,sinnwy), ne(x)~) (D,cosnwx+E,sinnwx),
1 1

#0 = AO 3
we obtain

Ho=Ao=a90+C (‘10"2 as‘“zl:?s),
1

[+ ]

mo(y)=ago+x,(»)+C (%—Zl: “s>+c 0o (¥)+ 8o Vo (¥) = o » (49)
no(x)=ag o+x;(X)+Cup(x)+eg ug(x)+C (“ZJ)’;)‘#O,

T 0
’Cl(}’)=T—1£¢(f, ,V)dé"‘aoo~;(ao,.cosnw}’+b0n5in”w)’),
T © (50)
1 (X)=T ' [Y(x,m)dn—ago~Y (a,cosnwx+c, sinnwx).
/] 1

13+
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In terms of the Fourier constants relations (49) become

® o
A0=a00+c<d0—zas_z'))s>5 Bn=cyn+nwg05n+00n’
1 1

Cn=C5n_nwg0yn+b0n9 Dn=Can+nweOﬂn+an0’ (51)

E,=CB,—nweyo,+Cyo, n=1,2,....

We shall denote by u(x), v(y) the excesses of the functions u,(x), vo(y) over
their mean values:

o] [es]
u(x)=upo(x)— oo+ a,~Y (a,cosswx+fsinswx),
1 1

- " (52)
() =0o(P)+ Y 7.~ .(y;co8 5@y +dsinswy).
1 1
If we require py=0, ma(¥)=0, ny(x)=0, then relations (49) reduce to
Co()+gov' (M)=—Ky(y), Culx)+eu’'(x)=—r,(x).
For e, =0, we have
u(x)=—C " ky(x); (53)
for e40, we have
tl(x)='sxr>(—e’6‘Cx)[1<+ec71fexp(e(?1 Cé)fcz(é)dé],
0
T
K=—e;>C(1—exp(—e; 'CT)) " fexp(eg ' Cx)dxx (54)
0

x [ expleg ' CO K, (8)dS,
0
where the constant K is determined in such a way that
T
fu(x)dx=0.
0

Analogous relations hold for v(y). This determines all the coefficients a,, 8, V4> 64,
n=1,2,.... Actually, relations (53), (54) are equivalent to those we obtain
from (51) by taking B,=C,=D,=E,=0 and solving with respect to «,, 8,, Vs, 0s:

a,=(C*+n*w?ed) ' (—Ca,o+nweyc,,),
B.=(C*+n*w?e}) ' (—nweya,g—Ceyg),
72=(C*+n* 0’ g3) "' (-~ Cag,+nwgobo,),
6, =(C*+n’w’ g§) ! (—nwgoao,—Cbhyy),
n=1,2,....

The coefficients o, 8,, ¥a» 05, n=1,2, ..., being so determined, then equation

© o«
%o = —C_1a00+§as+zl'))ss
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provided the series Z a,, 3.9, converge. This will be the case under the hypotheses
of Criterion I below. We shall denote the corresponding functions u,(x), vo(y)
so determined by U(x), V(y), or

Ux)=u(x)+oag—y o~g+ Y (,c0s swx—ot,+ fsinsw x),
1 1
- - (55)
V(n)=0(») =Y 1.~ (3008 sw y =y, +3,sinsw y).
1 1

Under the conditions of Criterion] we shall require that these functions be
interior points of the set defined by relations (7) of Theorem I.

13. Criterion 1. If the function f given in (46) for all |¢| <g, satisfies all condi-
tions of Theorems I, 1I, III with given constants 7, N, Ny, N,, L, M,, M,,
M,, by, by, b,, and in addition if f is Lipschitzian with respect to x and y in R,
if C=+0, and the functions k,(x), x,(y), U(x), V(y) defined in (50) and (55)
are of class C' with Lipschitzian first derivatives, and

[UO)SNo<N, [UG)=U(x)|ENolxi—x31, Npo<Ny,
V() =V(y2)SEN2olyi—y2l,  Nyo<N,,

then there is some &,, 0<&,<¢,, such that equation (46) for all [¢[ <&, possesses
at least one periodic solution ¢(x, y) of period T in x and y, which is Lipschitzian
in E, together with ¢,, @, @.,:

Ouy=f(% 1, 0,0:,9,), ox+T,y)=0(x,p)=0x,y+T).

Moreover, the periodic functions uy (x) =@ (x, 0)=@(x, T), 0o () =¢(0,y)— (0, 0)
=@ (T, y)— (T, 0), satisfy relations (7) of Theorem I.

14. Proof of Criterion I. Let us denote by k, ¢, k5 the Lipschitzian constants
of U(x) and V(y) respectively, and let k,, ks be arbitrary numbers ks>k,,,
ks>kso. Let us denote as usual by k,, k, the Lipschitzian constants of f with
respect to x and y respectively in R.

Let S be the set of all pairs w=[uy(x), ve(y)] of functions u,y(x), ve(y) periodic
of period T, of class C!, with derivatives ug(x), v5(y) Lipschitzian of constants
k4, ks, and satisfying relations (7) of Theorem I, that is

lug(O) SN, fup(xy)—uo(x2)| SNy x4 —x,|,
(=0, [uo(y)—vo(y)IEN; |y, —yal.
Then wo=[U, V]eS. We shall consider S imbedded in the Banach space of
all pairs of periodic fuctions of class C! with norm
| wll=max [u(x)|+max |u(x)| + max|v(y)| + max|v'(y)]. (56)

For every w=[uy(x), vo(»)]€ S we shall determine the solution W=[o, em, en, epu]
of the modified problem relative to (46). Since this solution can be determined
by the method of successive approximations of Section 10, we see that W can be
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written in the form
k(x, 7, )=0o(x, N+ d(x,,8), m(y,e)=me(y)+m(y,e),
n(x, e)=n0(x)+ﬁ(x, 8)9 #(8)=”0+ﬁ(8)3

where @, m, fi, i=0(1) uniformly as ¢—0 and @, m,, 1y, {4, are given by for-
mulas (48).

By use of the functions u(x), v(y) as in Section 8, equations =0, m(y)=0,
n(x)=0 reduce to

Cv(y)+ o0’ ()=~ () —m(y,8),
Cu(X)+eou' (x)=—xr,(x)—n(x,¢), (57)
ago+C (ao—;“s—;?s>—l~l(3)=0-

For ¢,=0 we have

u(x)=—C™ (k2 (x) +7(x, )3 (58)
for eq+0 we have

u(x)=exp(—e; ' Cx) [K+951§exp(651 CO (k2 (O +n(, 8))d£:|,

=—e52C(1—exp(—e;'CT))™* _[Texp(eg1 Cx)dxj‘exp(e(;1 CHx (59)
0 0
x (k&) + (&, ) dE,
and hence
u' (x)= — C~1(d}dx) (i, (x) + 7 (x, &) if e,=0, ©0)

w' (%)= —é" (Cux)+x,(x)+7(x,8)) if e+0.

Analogous formulas hold for v(y).

This determines u(x), v(») and hence all coefficients &,, B,, Yx> 0s, #=1,2,....
By Remark 1 we know that m, n are Lipschitzian functions, and so are m, #t
as well as k,, k,. Thus u(x), u(y) are periodic functions of mean value zero,
of class C!, with Lipschitzian first derivatives. Thus, the series ) a,, )7, are
absolutely convergent, and (47), (57) yield

dp=—C"} (aoo—ﬁ(a))+i::“s+i::7s,
= = C™ M ago=i(®) —u(0) ~(0)),

(61)

uo(x>=u(x>+ao—§as, vo(y)=v(y>—§ys. 62)

Note that these functions, when we take m=n=0, reduce to U(x) and V()
respectively, and thus the convergence of the series Y a,, Yy, of Section 12 is
proved above.

Actually, for every w=[u(x), v(»)]€S, we can first determine m, n, u as in
Theorems I, II, I, using the method of successive approximations of Section 10;
then we determine m, 7, and finally the second members of formulae (58), (59),
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(60), (62), and analogous ones determine new functions, say w=[u,(x), 74(»)].
Thus, we have a map £,
w=%w, weS,

whose fixed elements w=% w, if any, have the property that u=0, m(y)=0,
n(x)=0.

We have already chosen the uniform topology of class C! on w and w by
means of (56). Let us choose the uniform topology of class C° on m, n as in
Theorem III, as well as on m, #i. We know already from Theorem III that m, n
are continuous functions of w, and so are m, . The second members of (58),
(59), (60), (62) define continuous functions of m, n. Thus & is a continuous
function of w for we S in the topology defined by (56).

By Theorems I, II, III we know that m(y, ¢), n(x, &) are Lipschitzian functions.
The same property holds for m(y, g), n(x, ¢), but these functions — as well as
their Lipschitzian constants — have a uniform bound of the form M & for some
M=>0 and all |e[<g,. Then, by choosing convenient constants k, k,;, we have

Im(y,e)l,|n(x,e)|<ke, |nl<ke, |m(y;,e)—m(y2,e)|<kelyi—yal,

[7(xy,8)—n(x;, e)|Ske|x;—x,|, lup—Ul|Skie, |vo—V|=Sk, e,
lug—U'ISkse, log—V'|Skie, lug(x)—U(x)—uo(x)+U(x))| Sk, e,
[06(y)=V(y)—v(y)+V(y)ISkie, lug(x)—U'(x))—ug(x)+U'(x;)| <k, 8,
log(y1) =V (y) =0 '(y2)+ V' (y2) Sk, 6.
If k4, ks are the Lipschitzian constants of U’, V', and
g =min &, ki '(N—=Ny), kl_l(Nl —Nio), ki (N, —Ny0)],
then for |¢| <&, we have
[uo(0)[ZS]U©)|+k eSNo+k <N,
lug(x1) —uo(x2) [S(Nyo+ ki &) [ X1 —x2 | EN; [x1—X,],
lug(xy)—uo(x) S (ks +ky1 )| x; — x5 ],
[06(¥1) = VoY) S(N20+ k18| y1 = Y2l SN2 |y — Y21,
[06(y)—v5(¥2) | S (ks +ky &) |y —yal.

This shows that, for [¢|<&,, & maps S into itself, #:5-S, and S is a convex
closed compact subset of a Banach space. By SCHAUDER’S fixed point theorem &
possesses at least one fixed element w=% weS, w=[uy(x), v, ()], with ug(x),
vo(y) satisfying relations (7) of Theorem I. Criterion I is thereby proved.

15. Example. The equation
u, ,=¢(l —u)+e* g(x, y,u,u,, u,),

where g is periodic of period 2x in x and y, has a periodic solution ¢(x, y) of the
same period,

@(x,y)=1+0().
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The analogous equation
u,,y=a-:(sinx—cosx—siny+cosy+u+u,¢+u,)+:—;2 glx, y,u,u,, u,)
with g as above has a periodic solution
@p=cosx—cos y+0(e).

16. Another Equation Containing a Small Parameter. Let us consider the

differential equation
Upy=f (%, ¥, th, Uy, 1),
F=y(x, )+ Cuti () ug+i,(x)u,+eg(x, y, u, u,, u,y),

where ¢ is a small parameter, and ¥, ¥, , {/,, g are as in Section 12. We assume here
that, for ¢=0, equation (63) possesses a known periodic solution of period T
in x and y, of the form

(63)

Po(x, y)=uo(x)+0o(y),
where u,(x), v,(y) have Fourier series (47), and hence

Y (x, y)=—Cuo(x)— Cvo(y) 1 (y) uo(x)—¥2(x) o ().

Under the hypotheses below, we shall prove that for |g|40 sufficiently small,
(63) possesses a solution @(x, y)=¢q(x, y)+ O0(¢) which is periodic of period T
in x and y.

17. Criterion II. If the functionf defined in (63) for all |¢|<e, satisfies all
conditions of Theorems I, II, III with given constants 7, N, N,, N,, L, M|,
M,, My, by, by, b, and in addition f is Lipschitzian with respect to x and y in R,
if C+0, if (63) possesses for e=0 a solution ¢y(x, »)=UX)+ V(y) with U, V
periodic of period T, if the functions U(x), V (), x,(x), x,(y) are of class C!
with Lipschitzian first derivative, and

[U@Q)[ENo<N, |U(x))~U(x2)|ENyplx;—x,|, Nyo<Ny,
V() =V(y)IEN01y1—2l,  Nyo<N,,

then there is some gy, 0 <&y <¢,, such that equation (63) for all |&| £&,, possesses
at least one periodic solution ¢(x, y) of period T in x and y, which is Lipschitzian
in E, together with ¢, @,, ¢,,:

(ny=f(x’ V. 0, ¢, (py)a (p(x+T9 y)=(o(x, y)=<p(x, y+T)

Moreover, the periodic functions uy(x)=¢@ (x, 0)=0@(x, T), v, (») =@ (0, ¥) — ¢(0,0)
=@ (T, y)— (T, 0) satisfy relations (7) of Theorem I.

18. Proof of Criterion II. As in Section 12 let us apply formally the method
of successive approximations of Section 10 to equation (63) with arbitrary initial
values u,(x), vo(¥). Then the quadruple [@, m, n, p], the solution of the modified
problem for equation (63), is given by

o(x, ¥,8)=0o(x, )+ o(x,y,8), m(y,e)=mp(y)+m(y,e),
n(x, e)=ny(x)+n(x, e, p(e)=po +u(e),
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where @, m, n, f=0(1) uniformly as -0, and ¢, m,, 15, {1 are given by for-
mulas (48). In addition, we know that for uy(x)=U(x), vo(y)=V(y) we have
Uo=0, my(») =0, ny(x) =0. We can now repeat with obvious variants the argument
of the proof of Criterion I.

19. Examples. The equation
uxy= _1+u+¢’1(y)ux+lp2(x) lly+8g(x, YU, Uy, uy)

for £=0 has the obvious solution u=1. Since C=+0, the same equation has a
periodic solution ¢ of period T in x and y for all |¢] sufficiently small.

Analogously, the equation
Uy,=—Cosx+sinx+cosy—siny4+utu.+u,+eglx, y, u,u,,u,)

has, for =0, the obvious solution u=cos x —cos y. Since C+0, the same equation
has a periodic solution of period 27 in x and y for every |¢| #0 sufficiently small.

20. Application to the Wave Equation. Let us consider the differential equation

Up—Uee=f(t, &, u,u,, ug), (64)
where f is periodic in # and £ of period 7. Then the transformation
t=x+y, §=x—y, x=2—1(t+é)a y=2_1(t_€)a (65)

changes (64) into
ug,=F(x,y,u,u,,u),
where
F=f(x+y,x—yp,u,27 ue+27 0y, 27, =27 ), (66)

and Fis periodic of period T in x and y. Theorems I, I, III and the criteria should
now be applied to (66). Other transformations beside (65) can be used.

As an example, let us consider the equation
Uy —uge=e[A(, )+ Cou+A,(1, &) u,+ 4, (2, &) u;:|+s2 g(t, & uup,uy), (67)
A(t,E)=Ap+Bycos2t+C sin2t+B,cos2E+C,sin2¢+
+ D cos(t+ &)+ E sin(t+&)+ D, cos(t—E)+ E, sin(t—¢&),
A(t,E)=A+Bcos(t+ &)+ Csin(t+ &)+ D cos(t— &)+ Esin(t— &),
A:(t,8)=A"—Bcos(t+&)—Csin(t+ &)+ D cos(t— &)+ Esin(t— &),

(68)

where Ay, B, ..., E are constants, Cy+0, and g is of period = in ¢ and &. By the
transformation

t=2"Yx+y), ¢E=2"'(x—y), x=t+¢&, y=t—¢, (69)
equation (67) is changed into

uxy=s[l/’(x’ y)+4_1 CO u+|l/1(y) ux+|//2(x) uy]+

_ _ _ - (70
+e2g(2 ' x+271y, 27 x=2 Yysu ugtuy,ug—uy),
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where the second member has period 2z in x and y, and

V(x, y)=ago+a0C08 X+ Cqq siN X +ag, cos y+byy sin y+a,, cos xcos y+

+by cosxsiny+cy sinxcosy+d; sinxsiny,

Yi(y)=eo+e cosy+fisiny, Y (x)=go+g cosx+hysiny,

dago=Ay, 4ay =D, 4co1=E,;, 4ag,=D,, 4by =E,, (71)
4a,,=B;+B,, 4b;;=C,—C,;, 4c¢;;=C+C;, 4d,;=-B,+B,,
4eo=A+AI,

281=D, 2f1=E, 4g0=A'_A,, 2g1=B, 2h1=c.

By Criterion I we conclude that if Cy30 and |¢] sufficiently small, then equation
(70) has at least a periodic solution ¢(x, y, €) of period 27 in x and y, and then
equation (67) has at least a solution

u(t: 5, 8)=(P(t+{, t_é, 8)’
also of period 27 in ¢ and &.
21. Another Example. Let us consider the differential equation

utt_u§§=j'(t’ €)+C0 u+j'1(ts é) ut+'12(t5 é) u§+8 g(ts és u,u,, u;)a (72)
where 4, 4,, A, are given by (68) and again C,#0. By the same transformation (69)
equation (72) is changed into

uxy=lp(x’y)+4_1C0u+l/’1(y)ux+ll/2(x)uy+ (73)

+eg(2 ' x+27 y, 27 x—2" yu, U +u,, u—uy),

where ¥, ,, ¥, are given by formulas (71). It is immediately seen that (73) for
£=0 has a solution of the form

ulx, )=Ux)+V(y), Ux)=ay+oa cosx+pf;sinx,

V(y)=y,cos y+6,siny
if and only if

B,=4,Cy(ED{+DE)+A4,(A+AY(DD;—EE )+
+A4,Co(CD,+BE,)+4,(A—A")(BD,—CE,),

By=4,Co(-ED +DE,)+4,(A+A)Y(DD—EE\)+
+4,Co(—CDy+BE,))+4,(A—-AY(BD,+CE,),

C,=4,Co(-DD,+EE)+4,(A+A)(ED;+DE})+ (74)
+A4,Co(—BD,+CE,)+4,(A—-AY(CD,+BE,),

C,=4,Co(—-DD,—EE\)+4,(A+AY(—ED,+DE )+
+A4, Co(BD,+CEy)+4,(A—AY(CD,—BE,),

A, =(C3+(A+A)V)"Y,  A,=(C3+(A—-A4A))""
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In this situation then
a0y =4,(—Co Dy +(A+A)E,), Py=4,(—CoE;—(A+A4")D,),
?1=A2(—C0 D2+(A—A') Ez)a 51=Az(—co Ez—(A—A') Dz), Ao = —C(;l Ao.

By Criterion II we conclude that if C, +0, |¢| sufficiently small, and relations (74)
hold, then equation (73) has a periodic solution ¢ (x, y) of period 27 in x and y,
and (72) has a solution
u(t’ ¢ 8)=(p(t+€, t-¢, 5)
also of period 2z in ¢ and £.
For instance, for the equation

Up,—Uge=Dy cos(t+&)+E; sin(t+&)+ D, cos(t—&)+
+E;sin(t—&)+utu+eg(t, & u,u,,uy),

where D,, E,, D,, E, are arbitrary constants and g periodic of period = in ¢
and &, we see that relations (74) are all satisfied with

B,=C,=B,=C,=0, B=C=D=E=0, A,=0, Co=1, A=1,
A'=0, A,=4,=2"1

The corresponding equation (73) is

(75)

4u,,=D,;cosx+E sinx+D,cos y+E,siny+u+tu,+u,+eg.
For £=0 this equation has the periodic solution ¢@q(x, y) of period 2n in
X, y given by
~2¢o(x, y)=(Dy—E{)cos x+(Dy+E,)sinx+(D,—E,)cos y+(D,+E,)sin y,
and hence (75) for ¢=0 has the periodic solution

u(t,&)=—2"1(D;—E))cos (t+&)—2" (D, +E,)sin (t + &) —
—271(D,~E;)cos (t—&)—2" (D, +E,) sin (t—¢&).

Thus, for all || sufficiently small equation (75) has a periodic solution of period
27 in ¢ and € of the form u(z, &)=u,(t, &)+ O (e).

22. Remark. In the autonomous case, that is, when f does not depend on xand y,
then Yy =ago, ¥1=6y, ¥2=80, g=8u, u,, u,). It is easy to verify that the periodic
solution ¢ of equation (46), whose existence is proved by Criterion I, is a constant.

Concerning Criterion II, let us note first that equation (63) in the autonomous
case reduces to

uxy=a00+cu+eoux+g0uy+8g(u,ux,uy)' (76)
Under the hypothesis of Criterion IT we have C+0 and
[C(z1—25)+¢eg(z1, P, ) —€8(z2, P, S holzy — 25| 7

for all zy, z,, p, g, e with |z [, |z,|S M, |p|EM,, |q| £ M3, le|<e;. We may
well assume b,>0. From (77) we deduce first, taking =0, |C|<b,, and then,
takinge=eo, |g(z,, P, 9)—&(22, P, 9) | Z(bo+|C)) “’o—1 [21—2,|=2b, 80_1 lzy—z,],
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and hence g is uniformly Lipschitzian with constant 25, &5 '. Then, for || Se, =
min ey, & | C|/4by], we see that eg(z, p, g) is uniformly Lipschitzian in z with
constant | C|/2. Then for [¢|Se, and C0, the expression a,¢+ Cz+2g(z, 0, 0)
is monotone, namely strictly increasing or strictly decreasing as Cz. Note that,
for yo=C"" |ago| <M, there is a unique y,=7(0)=C"! gy, such that y=y,,
£¢=0 satisfy the equation

ago+Cy+eg(y,0,0)=0, (78)

and thus there is some g&,, 0<¢,<¢,, and a constant y=y(g) such that (78) is
satisfied for |¢| <&,. Then equation (76) is satisfied for ¢=0 by the constant func-
tion @(x, Y)=U(x)+ V(y)=1v,, with U=y,, V=0 and equation (76) is satisfied
for |&| <&, by the constant function ¢ (x, y)=17(¢e).

The research reported here was supported in part by U. S. National Science Foundation
grant G-57 at the University of Michigan,
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