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Summary. Models of epidemics that lead to delay differential equations often 
have subsidiary integral conditions that are imposed by the interpretation of 
these models. The neglect of  these conditions may lead to solutions that behave 
in a radically different manner  f rom solutions restricted to obey them. Examples 
are given of such behavior, including cases where periodic solutions may occur 
off,the natural set defined by these conditions but not on it. A complete stability 
analysis is also given of a new model of  a disease propagated by a vector where 
these integral conditions play an important  role. 
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1. Introduction 

In a certain class of  models of  epidemics and population growth that lead to delay 
differential equations one encounters natural integral conditions that are dictated 
by the interpretation of the model. For  example, a population model studied by 
Cooke and Yorke [3] leads to the delay differential equation 

x ' ( t )  = g [ x ( t ) ]  - g [ x ( t  - L)]. 

Here, x( t )  is the population size at time t, g[x( t ) ]  is the rate of  addition to the 
population at time t, and since it is assumed that all individuals have a constant 
length of life L, g [ x ( t  - L)] is the rate of removal at time t. This equation has a first 
integral 

x(  t) = a + g[x(s )]  ds, 
t - L  

with a an arbitrary constant. However, for the correct interpretation of the model 
one must take a = 0, since the size of  the population is equal to the total number of  
those that were born before time t and have not passed away by time t. The choice 
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a = 0 gives the proper integral condition in this example. A major purpose of the 
present paper is to show some of the effects of such conditions and to provide a 
number of guiding examples that illustrate the main types of conditions that are 
mandated by models of epidemics. Most of the examples used here are taken from 
models that have previously been studied in the literature but often without special 
attention being given to the proper integral conditions. However, a new model of a 
disease propagated by a vector is also studied, and the role of the invariant integral 
conditions is brought out in detail in this case. 

The paper is separated into two parts. The first deals with a new model of a 
disease propagated by a vector in which there is a delay between the initial time of 
exposure to the disease and the onset of infectiousness. A stability analysis is given 
for this model and the effect of the integral conditions is discussed. In the second 
part of the paper, several examples dealing with models already studied in the 
literature are discussed. The emphasis here is on pointing out the proper integral 
conditions for these models and on studying the effects of the imposition of these 
conditions. Finally, the relation between the present approach and an alternate 
formulation described by Hoppensteadt [-11, pp. 47 -49]  is also discussed. The 
paper is written so as to allow the two parts to be read independently without loss of 
coherence. In particular, readers who are not interested in the details of the vector 
propagated disease model, after perusing section two up to the start of the proof of 
Theorem 1, may proceed to the third section without loss of continuity. 

The first use in the literature on epidemic models of the type ofinvariant integral 
condition that concerns us seems to be in the already quoted work of Cooke and 
Yorke [3]. A subsequent paper of Hale [8] dealt in detail with the behavior of 
solutions which satisfy such conditions, and in particular studied one of the 
equations in [3] as a special case. However, there does not seem to be a wide 
recognition of the basic nature of these conditions and a number of studies in the 
literature seem to totally neglect them. One of the objects of the present paper is to 
try to convince the reader that these conditions are often needed in the proper 
interpretation of mathematical results arising from some models. Most of these 
models can be formulated from basic principles as integral equations incorporating 
these side conditions. If these integral equations are studied directly, then the 
difficulties associated with invariant integral conditions in a delay differential 
equation model can be avoided. However, there are advantages to the delay 
differential equation model when one uses Lyapunov functional techniques 
because most of the literature on such techniques is devoted to the differential 
equation case. These techniques are often useful in establishing global stability 
results, and the availability of a well posed delay differential equation version of the 
model can be valuable. 

2. A Disease Propagated by a Vector 

Consider a disease propagated by a vector affecting a population of constant size N, 
and assume the following governing hypotheses. 

(a) The disease is not lethal and it imparts no immunity. 
(b) The vector population is large, and the number of exposed vectors is directly 

proportional to the number of infectious persons. This supposes homogeneous 
mixing of the vector and human populations. 
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(C) There is a delay T > 0 between the time that a person is exposed to the 
disease and the time that the person becomes infectious. 

(d) The infective individuals are cured and return to the susceptible pool at a 
rate proportional to their number. 

The population is partitioned into three classes: those who are susceptible, those 
who have been exposed, and finally, those who are infectious. Denote by y, z, and x, 
respectively, the number of individuals in these classes normalized by dividing by 
the constant total size of the population. Then, 

x + y + z =  1, 

and by hypothesis (b) the number of infected vectors is equal to b l x ( t ) ,  bl > O. If the 
variables x, y and z are treated as being continuously differentiable in the time 
variable t, the following equations describe the dynamics of the above model for 
t > O .  

dx (  t ) 
- b x ( t  - T ) y ( t  - T )  - ex( t ) ,  

d t  

dy( t )  
- cx ( t )  - bx ( t ) y ( t ) ,  

d t  

dz( t )  
- b [ x ( t ) y ( t )  - x ( t  - T ) y ( t  - r ) l ,  (1) 

dt  

where b = b ib2 ,  and b 2 > 0 is the contact proportionality constant between vectors 
and susceptibles. 

It appears from the form of equations (1) that the first two of these may be 
solved independently of the third, and then the fact that z = 1 - x - y can be used 
to find the proportion of the population in the exposed class. That  this is not the 
case becomes clear when we note that the solutions of (1) that are significant in the 
light of the model are those where 0~<x~<l ,  0~<y~<l ,  0<~z~<l  and 
x + y + z = 1. Moreover, all solutions initially obeying the above restrictions must 
do so for all subsequent time. However, we shall show in the sequel that, if 
b(1 + b T / 4 )  <<. c, the solution ( x ( t ) , y ( t ) ,  z ( t ) )  with initial data 1 @ 5 , 0 ) o n  t ~ [ -  T, 0] 
approaches, as t ~ o% the constant solution (0, 1 + b T / 4 ,  0), thus violating the 
above restrictions. In this sense, the problem consisting of (1) together with the 
initial condition that x, y and z lie between zero and one and that they add up to one 
initially, is not well posed. 

In order to remedy this situation we introduce the following restriction on the 
solutions of (1): 

x ( t )  + y ( t )  = 1 - b x ( s )y ( s )  ds. (2) 
t - T  

The epidemiological interpretation of this condition is that at any time t >~ 0, the 
proportion of individuals in the exposed class should equal those who entered this 
class in the past and have not yet left it, that is, z(t)= b ~ _ r x ( s ) y ( s ) d s .  This 
restriction plus the requirement that x + y + z = 1, yields the condition (2). From 
the mathematical viewpoint, (2) arises out of the observation that the variable 
co(t) = x ( t )  + y ( t )  obeys the differential equation dco(t)/dt  = b [ x ( t  - T ) y ( t  - T )  
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- x(t)y(t)] which has a first integral x(t)  + y(t)  = og(t) = a - b ~_ r x(s)y(s) ds, 
where a is an arbitrary constant. The choice of the constant a = 1 is again dictated 
by the model. In order to bring out more clearly the effect of the integral condition 
(2) on our model, we rewrite this equation in the more  general form ;t 

x(t)  + y(t)  = a - b x(s)y(s) ds. (2a) 
t - T  

We take a ~> 0, since in the contrary case x + y < 0, a situation that is ruled out by 
the interpretation of the variables x and y. 

An alternative formulation of the model which also avoids the above difficulty 
uses integral equations for t ~< Tand  the equations (1) for t ~> T. This approach is 
described by Hoppensteadt [11, pp. 47 - 49] and its relation to the present one will 
be discussed at the end of the next section. 

We are now prepared to give our main result on this model where the value of  
the constant a should be taken equal to one. 

Theorem 1. Let  Xo(t), yo(t) be continuous functions on [ - T ,  0], satisfyin9 
0 <~ Xo(t) <~ a, 0 <~ yo(t) <~ a f o r  t ~ [ -  T, 0], and 

f 
o 

Xo(0) + yo(0) = a - b Xo(s)yo(s) ds, 
- T  

i.e., equation (2a) at t = O. Then, i f  (x( t) ,y( t))  is the solution o f ( l )  with initial data 
(x( t) ,y( t))  = (Xo(t),yo(t)) f o r  t e  [ -  T, 0], the followin9 holds: 

(I) 0 ~< x(t)  <~ a, 0 <<. y(t) <~ a and (x(t) ,y( t))  exists f o r  all t >>. 0 and satisfies 
(2a) on t >>. O. 

(II) I f  O < ab <~ c, then all solutions o f ( l )  lyin9 on the positively invariant set 
Ga = {(x, y) : with x, y continuous on t >~ 0; x >1 O, y >~ 0 and (x, y) satisfyin9 (2a) on 
t ~> 0} approach (0, a) as t ~ ~ .  

(III) I f  0 < c < ab, then the solution (0, a) is unstable and all other solutions 
(x( t ) ,y(  t)) ~ (0, a) that lie on G, approach the solution (lab - c]/b(1 + c T), c/b) as 
t - -~  oO. 

Before embarking on the proof  of this theorem we shall point out its 
epidemiological implications, paying attention to the effects of the integral 
condition on the interpretation of the mathematical result. First, if we take a = 1, as 
required by the situation that we are modelling, the above results lead to the 
following conclusions. All initial conditions that obey the natural restrictions (2) 
and 

0~<x~<l ,  0~<y~<l ,  0~<z~<l ,  O < ~ x + y + z < ~ l ,  (3) 

lead to solutions that obey (3) for all t ~> 0. Moreover, if the cure rate c is large 
enough: c/> b > 0, all such solutions tend to the constant solution 
(x, y, z) = (0, 1,0), that is, to a state where the epidemic dies out completely. If, 
however, the cure rate is smaller than a fixed threshold: 0 < c < b, then for all 
solutions that obey (3) initially, with the exception of the solution 
(x, y, z) - (0, 1,0), the proportion of susceptibles tends to the constant level c/b < 1. 
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Thus, if c < b, there exists a nontrivial endemic level which is approached in all 
cases except when the population starts totally free of the infection. The endemic 
level is (1 - c/b)~/(r + T) where z = 1/c is the average length of infectiousness, and 
r/(r + T) is the ratio of infectious time to infectious plus incubation time. 

We now turn to the effects of the integral condition (2). If (3) is imposed as a 
condition on the initial data, but (2) is not; for example, if initially 
( x , y , z )  1 1 = (3, 3, 0), then (2a) is satisfied at t = 0 with a = 1 + bT/4 > 1. In this case, 
our result shows that if b ~< c < b(1 + bT/4) = ba, the proportion of susceptibles 
will tend to the constant endemic level c/b, rather than to one as in the case when 
c ~> b and the epidemiologically correct condition G1 defined by (2) is imposed. If, 
however, a < 1, as is the case if the initial data for (x, y, z) equals (�89 0, 2) (here a = �89 
from the relation (2a)), the relation between the solutions on G1 and the solution 
starting with this initial condition is reversed whenever ab = b/3 <~ c < b. Here, all 
solutions on G1 yield a proportion y of susceptibles that tends to c/b, while the 
above data yield a solution that has the susceptibles tending to one. Of course, if 
c = b/3, the correct limiting value of the proportion of susceptibles is equal to �89 
which is far from the limiting value one for the susceptibles in the solution starting 
at (�89 0, 2). 

It may be pertinent to point out the importance of the integral condition in 
numerical integrations of equations (1). Suppose that one wishes to study the 
biologically interesting case a = 1. However, one does not ordinarily know initial 
conditions Xo, Yo, Zo that would be biologically realistic. If Xo, Y0, Zo are chosen to lie 
between 0 and 1, but if(2) is not satisfied at t = 0 (i.e., (Xo, Yo) are not in G1) then it is 
automatically true that (2a) is satisfied at t = 0 for some value a ~ 1. By Theorem 1, 
the resulting solutions must satisfy (2a) for all t ~> 0 and the limiting behavior of  
such solutions, as indicated above, depends on a. Thus numerical integration of the 
delay differential equations without attention to the integral condition would lead 
to incorrect limiting values; or even to the erroneous conclusion that different 
initial conditions may result in different equilibrium values. In the case of more 
complicated models, for which rigorous analysis may be impossible, it will be 
particularly important to take account of the appropriate integral conditions before 
numerical integration is performed. 

At this point, those who are not interested in further details on this epidemic 
model may, without loss of  coherence, proceed to section three. We note however, 
that following the proof  of Theorem 1 we discuss a model that has the above model 
as well as that discussed in [-4] as special subcases. 

We next give the proof  of Theorem 1. The proof  breaks up into two parts. The 
first gives the invariance of the condition (2a), while the second part deals with the 
stability analysis of the constant solutions of the differential difference equations. 

Proo f  o f  Theorem 1. From (1) we see that for t > 0, 

d 
dt Ix(t) + y(t)] : b[.x(t - T)y( t  - T)  - x(t)y(t)],  

x(t)  + y(t)  = x(O) + y(O) + b f~o [x(s - T)y(s - T) - x(s)y(s)] ds 
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= x(O) + y(O) + b x (s )y (s )  ds + b x ( s )y ( s )  ds 
T 

- b f ~ o x ( s ) y ( s ) d s  

= a - b x (s )y (s )  ds, 
t - T  

since (2a) is assumed to hold at t = 0. So, any solutions which initially satisfy (2a) at  
t = 0 mus t  satisfy (2a) for  all t t> 0. 

Now,  f rom (1) we also have 

x( t )  = e - " x ( O )  + b eC(S-'x(s - T ) y ( s  - T ) d s ,  
0 

f o f y( t )  = y(O)e h(t) + c eh")-h(s)X(S) ds, h(t) = - b x (s )  ds. 
0 

Since 0 ~ x(s) ,  0 ~ y(s )  for  s �9 [ - 7", 0], these equat ions  imply tha t  x( t )  >~ 0 for  all t 
in [0, T ]  for  which it exists. Now,  the expression for  y(t) implies t h a t y ( 0  ~> 0 for  the 
same values o f  t �9 [0, T ] .  But, x( t ) ,  y ( t )  being non-negat ive  implies f rom (2a) tha t  
they are bounded  by a. So, they exist on all o f  [0, T ] ,  and f rom the above  argument ,  
are non-negat ive  on this interval.  Repeat ing this reasoning we see that  the same 
conclusion holds on [0, k T ]  provided x(O and y( t )  exist and  are non-negat ive  on 
[0, (k - 1)T].  By induction,  0 ~< x( t )  <~ a, 0 <~ y ( t )  <~ a for  all t ~> 0. This completes  
the p roo f  of  (I). 

We note, parenthetically,  tha t  if x( t* )  > O, y ( t*)  > 0 for  some t* >/0, then the 
above a rgument  can be adap ted  to show that  x( t )  > O, Y(O > 0 for  all t />  t*. 

Next ,  we consider the stabili ty o f  the cons tan t  solution (0, a). Let t ing u = x, 
v + a = y in (1), we get the following equat ions for  u and v. 

au( t ) 
- abu(t  - T)  - cu(t) + bu(t  - T )v ( t  - T) ,  

dt 

dr(t) 
- (c - ab)u(t)  - bu(t)v(t) .  (4) 

dt 

The  characteristic quas ipolynomial  (see [1], pp. 9 9 -  102) of  the linear par t  o f  the 
equat ions  is p(2) = 2(2 - abe - z T  + c). I f  ab :~ c, 2 = 0 is a simple roo t  o f  p, and 
letting 2 = ~ + i/~ we see that  the other roots  must  satisfy 

+ c -  a b e - ~ T c o s f l T =  0, ~ + a b e - ~ T s i n f i T =  O. 

I f  ab < c the first o f  these implies that  cr < 0. Now,  if ~ = 0 and ab = c we get 
cos/3T = 1, hence sin/3T = 0, and the second of  the above  relat ions gives/~ = 0. So, 
when ab = c, 2 = 0 is a roo t  and is the only roo t  on the imaginary  axis. Moreover ,  a t  
2 = O, (d/d,~)[2 - abe -~T + c] = 1 + a b T  > 0, so 2 = 0 is a simple roo t  o f  this 
factor.  So, if ab = c there is a double  roo t  o f p  at 2 = 0, and all o ther  roots  have 
negative real parts.  We note  tha t  the same result can be obta ined  by using Hayes '  
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theorem (see [11, p. 444). Now, i f a b  = c, the linearized equations for u and v admit 
only the arbitrary constant solutions ( x ~  ~ and, hence, the eigenspace cor- 
responding to 2 = 0 is two-dimensional. From all this we can conclude that the zero 
solution of the linearization of (1) about (0, a) is stable if ab  <. c. Of course, since 
2 = 0 is an eigenvalue, this does not imply that the solution (0, a) of the nonlinear 
equations is stable, and the stability analysis will be pursued via Lyapunov 
methods. 

Next, if ab  > c, and if we seek a solution 2 = e + i0 of p(2) = 0, we get 
= a b e  - ' T  - c, which always has a solution ~ > 0. So, in this case the constant 

solution (0, a) of (1) is unstable. 
In order to study the local stability of the solution ( [ a b  - c] /b (1  + c T ) ,  c /b )  set 

u + x ~ = x ,  v + c / b  = y ,  x ~ = [ a b  - c ] /b (1  + c T ) ,  to get the following equations 
for u and v: 

du( O 
d t  

- c [ u ( t  - T )  - u(t)l + b x ~  - T )  + b u ( t  - T ) v ( t  - T ) ,  

dr(t) 
clt 

- -  - b x ~  - bu ( t ) v ( t ) .  (5) 

The characteristic quasipolynomial for the linear part of this system is p(2) = 
(2 + bx~ - c e -  ZT + C). Clearly, 2 = 0 is a root  of the second factor, and setting 
2 = a + i t  in this factor, we get the following two equations: 

+ c[1 - e - ' r c o s f l T ]  = 0 and fl + c e - ' T s i n f i T =  O. 

The first of these implies that ~ ~< 0. Just as before, 2 = 0 is seen to be a simple root 
of  this factor. So, the roots of p(2) satisfy the following: 3~ = 0 is a simple root, 
2 = - b x  ~ = [c - a b ] / ( 1  + c T ) ,  and Re 2 < 0 for all the other roots. Hence, if 
c < a b  the zero solution of  the linearization o f ( l )  about ( [ a b  - c] /b (1  + c T ) ,  c /b )  is 
stable. If c > ab ,  p(2) has a positive real root and the constant solution 
( [ a b  - c ] /b (1  + c T ) ,  c /b )  o f ( l )  is unstable. When c < ab ,  the presence of 2 = 0 as a 
root of the characteristic equation precludes the conclusion that (x ~ c /b )  is a locally 
stable solution of  the nonlinear equation. The stability of this solution will be 
analyzed via Lyapunov methods. 

We next consider the global behavior of solutions on the set G,. In order to do 
this, we employ the invariance principle of LaSalle as formulated in Theorem 3.1, 
page 119 in Hale [91. First, assume that 0 < ab  <. c. Let C be the space of 
continuous functions on [ - T ,  01 with uniform norm, and use the notation 
x t ( s )  = x ( t  + s) for s ~ [ -  T, 01. L e t f  = (f~, f2) e C x C and define the functional V 
by: 

1 i f  ~ f ~ ( s ) d s .  V ( f )  = f 2 ( O )  + 2 - r 

The derivative # of V along solutions of (1) is: 

V ( f )  = - ~ f z ( o )  - - - f a ( O ) f a ( -  T ) f 2 ( -  r )  + f 2 ( _  7") . 
r 
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I f  this expression is considered as a quadrat ic  in f l  (0) and f l ( -  T), it is seen that  it is 
negative definite if I f 2 ( -  T)[ < c/b. Now,  if 0 ~<J~ ~ a, i = 1,2, this inequality is 
satisfied whenever ab < c. 

Let G* = { f =  ( f l , f 2 ) ~ C  x C: 0 ~<f~ ~< a, andfsa t i s f i e s  (2a) at t = 0} -- {ft: 
f e  Ga}. F r o m  the p roo f  o f  part  (I) o f  the theorem G~* is seen to be positively invariant  
under  the flow induced by (1). Moreover ,  i f a b  ~ c, ( / ( f )  is negative definite for all 
f ~  G* = G*, the closure o f  G*. Let S = {f~  G*: 12(f) = 0}. F r o m  what  was shown 
in the previous paragraph,  if ab <. c, S = { l e G * :  f l ( O ) = f l ( -  T) = 0). By the 
invariance principle, if l E G * ,  the solution (x ( t ) ,y ( t ) )  of  (1) with ( x o , Y o ) = f  
approaches S as t -~ ~ ,  in the topo logy  of  C. That  is, xt ~ f l  with f1(0) = f l ( -  T) 
= 0. But, xt(O) = x(t), so x(t) -~ 0 as t ~ ~ .  F r o m  (2a) it then follows that, since 
0 <~ y( t )  ~ a, y( t )  ~ a as t ~ oo. So, all solutions that  start on  G* tend to the 
solution (0,a) as t ~ ~ .  I f  ab -- c, then the set S a l s o  includes { f e G * :  f l (O)  = 
_ + f l ( -  T), and f 2 ( -  T) = a}. By the above arguments,  either x( t )  ~ 0 or y(t)  ~ a 
as t ~ oo. In this latter case, using (2a) as above, we again get x( t )  ~ 0 as t ~ c~. 

We next assume that  0 < c < ab. Let G~* be as before, and f o r f ~  G~* define Vby :  
g(f) ~__1 ~[f2(0) - c/b] 2. Then, along solutions o f  (1) we have 

V(f)  = [-fz(0) - c/b]f2(o)  = - b[-f2(0) - c/b]2fl(O), 

and 12(f) ~< 0 f o r f e  G~*. By the invariance principle, i f f e  G*, then the solution (x, y) 
with (x(t) ,  y( t))  = ( f l ( t ) ,  f2(t)), t~ [ - T, 0], obeys (xt, Yt) ~ S = {f~  G*: V(f)  = 0} 
as t ~ oo. But, 12(f) = 0 implies that  either f1(0) = 0 or  f2(0) = c/b, that  is, x(t)  ~ 0 
or y(t)  ~ c/b. We need to consider more  closely the first o f  these two cases. 

Now,  suppose that  x( t )  ~ 0 as t ~ ~ .  Since 0 ~< y ~< a, f rom (2a) we see that  
y(t)  ~ a as t ~ oo. F r o m  (1) we get y'( t)  = x( t ) [c  - by(t)], and given e > 0 there 
exists t* ~> 0 such that  y(t)  >~ a - e/b, and hence, y'(t) <. x( t ) [c  - ab + e] f o r t  ~> t*. 
Since c - ab < 0, if we let e = (ab - c)/2 we get y'( t)  <. 0 for all t /> t*. So, y(t)  is 
m o n o t o n e  non-increasing for t >~ t*, 0 <~ y( t )  <~ a, and y(t) ~ a as t ~ oo. Thus  
y(t)  =- a for t ~> t*. So, for t /> t* we have y'( t)  = 0 = (c - ab)x( t ) ;  hence since 
c - ab # O, x( t )  = 0 for t ~> t*. F r o m  (1) we have 0 = x'( t)  = bx( t  - T )y ( t  - T )  for  
t ~> t*, and hence, x ( t  - T )y ( t  - T) = 0 for t ~> t*. F r o m  this and the continui ty o f  
y there exists t / >  0 such that  y(t)  > 0 and x(t)  = 0 for t ~ It* - t/, ~ ) .  Since 
y'( t)  = (c - by(t))x( t) ,  we get y'( t)  = 0, hence, y(t)  = a on t ~ [t* -* t/, ~ ) .  F r o m  the 
above argument  we see that  the supremum of  all such t / >  0 is t/* = min[t*,  T] .  I f  
t/* = t* we have (x ( t ) , y ( t ) )  = (0,a) on [0, ~ ) ,  and if t/* = T, on [t* - T, ~ ) .  
Repeating the above argument  starting with all t /> t* - T, then t >~.t* - 2T, and 
so on, we get (x(t) ,  y( t ) )  = (0, a), on [0, ~ ) .  So, the only solution that  tends to (0, a) 
starting f rom G* is the one that  is identically equal to (0, a) on  [0, oo). 

So, if (x(t), y(t))  ~ (0, a), we have y(t)  ~ c/b as t ~ ~ .  We need to show that  
x(t) -~ x ~ in this case. Integrat ing the second equat ion in (1) f rom t - T to t and 
rearranging, we get 

f t C f t  
y(t)  + b x(s)y(s)  ds = y ( t  - T)  + x(s) ds. 

t-T t--T 

F r o m  this and (2a), we get 
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c f '  
D x ,  = x ( t )  + x (s )  ds = a - y ( t  - T), 

t T 

where D : C [ -  T, 0] + R is the linear difference opera to r  defined by D f  = f ( O )  + 

c ~o r f ( O )  dO. 
Let t* be a fixed real number  and let u*(t)  = x ( t  + t*) - x ~ h*( t )  = c/b - 

y ( t  + t* - T) ,  and note  that  since x ~ = (ab - c)/b(1 + c T ) ,  

Du? = h*(t). 

The characterist ic equat ion of  D (see [9], Section 12.3) is 1 +  c ( 1 - e x p ( - 2 T ) ) / 2  
= 0. Since c T  r - 1, 2 = 0 is not  a root ,  and it is readily seen that  all roots  o f  this 
equat ion obey Re 2 < 0. Now,  in any vertical strip a < Re 2 < fi, this equat ion has 
only a finite number  of  zeros, so there exists 6 > 0 with Re 2 ~< - 6 < 0 for  all zeros 
2 of  this characterist ic equation.  F r o m  Theo rem 4.1, page 287 in Hale [-9], we can 
conclude that  there exist constants  a and b, independent  o f  h*, such tha t  

lu*l <~ be-~lUoI + b sup Ih*(s)l. 
O < ~ s ~ t  

So, as t ~ oo 

limlx(t ) - x~ = lim{x(t + t*) - x~ = limlu*(t)l 

~ < b s u p l h * ( t ) l = b s u p l y ( t - T ) - c / b l ~ 0  as t * ~ o o .  
O<~t t * ~ t  

Hence,  x ( t )  ~ x ~ as t ~ oo. This  completes  the p r o o f  o f  ( I I I )  and of  the theorem. 

We note that  the above p r o o f  can be easily adapted  to yield the global  behavior  
of  the solutions of  a somewhat  more  general model  where the t ime spent in the 
exposed class is not  a fixed value T, but  is given by a probabi l i ty  distribution. The  
results in this latter case are ana logous  to those given above.  

The model  tha t  we have analyzed above  is a special case of  a slightly more  
general one where it is assumed tha t  there is a delay Z 1 > 0 between the t ime of  
exposure of  the vector  carr ier  to the disease and the t ime when it becomes infective. 
This is indeed the case with malar ia .  This m o r e  general model  leads to the fol lowing 
system of  governing equat ions  for  the same variables (x, y, z) as before. 

&(t)  

clt 

dy( t )  

dt  

& ( t )  

dt  

- b x ( t  - T -  T1 )y ( t  - T )  - cx( t ) ,  

- cx ( t )  - b x ( t  - T O y ( t ) ,  

- b [ x ( t  - r , ) y ( t )  - x ( t  - r -  T ~ ) y ( t  - r)]. (6) 

The correct  integral condi t ion now becomes (with a = 1): 

b f~ x ( t )  + y ( t )  = a - x ( s  T1)y(s )  ds, 
t T 

t~>O. (7a) 
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When T~ = 0 this reduces to the model we have been discussing. When T = 0, (6) 
reduces to the single delay differential equation dx(t)/dt = bx(t  - T1)y(t) - cx(t), 
and the algebraic condition x(t) + y(t) = a which is the reduced form of  (7a). The 
integral condition is, hence, not present in this case and we effectively have a single 
equation dx(t)/dt = bx(t  - T1)[a - x(t)] - cx(t) describing the situation with the 
subsidiary restriction 0 ~< x ~< a. So, it is seen that the condition (7a) is a 
consequence of the presence of a group of individuals, those who are exposed, 
which essentially acts as a holding tank for the population for a fixed time T. The 
equation for T = 0 has been analyzed by Cooke [4], while a generalization of  the 
same model allowing for seasonal variations in the vector population, by letting b 
be a non-constant periodic function of t, was studied by Busenberg and Cooke [2]. 

For  the full model with two delays T > 0, T1 > 0 we have the following results. 

Theorem 2. I f  c = O, a >>. O, then all solutions o f  ( 6 ) -  (7a) with initial data obeyin9 
0 <~ x(s), 0 <~ y(s), for  s E [ -  T 1  - T, 0] and with (7a) holdin9 at t = 0 behave as 

Either x(t) = 0, y(t) = a for  t >1 0, 
or, x( t) approaches a monotonically while y( t) approaches 0 monotonically as 

follows: 
(I) 

(II) 
t - +  oO. 

/ fa  = 0, only alternative (I) can hold. 

The proof  of this result is elementary and is omitted. 
The epidemiological implications of this result are very simple. It says that, if 

there is no recovery from the disease, then either the whole population is healthy for 
all time or else the whole population approaches the infective condition as time goes 
on. The next result is more interesting. 

Theorem 3. Let Xo(t), yo(t) be continuous functions on [ -  T1 - T, 03 satisfyin9 
0 <<. Xo(t) <<. a, 0 <~ yo(t) <<. a, for  t ~ [ -  T1 - T, 0], and 

x o ( O ) + y o ( O ) = a - - b f ~ r  x ( s - -T1)yo(s )ds ,  

i.e., (7a) at t = O. Then, i f  (x(t) ,y(t))  is the solution o f  (6) with initial data 
(x(t), y(t)) = (Xo(t), yo(t)), for  t ~ [ -  T - TI, 0], the followin9 hold: 

(I) 0 ~< x(t) ~ a, 0 <<. y(t) ~ a, and (x(t) ,y(t))  exists for  all t >~ 0 and satisfies 
(7a) on t >~ O. 

(II) I f  0 < ab <. c, l im,_~(x( t ) ,y( t ) )  = (0,a) for  all solutions lyin9 on the 
invariant set Ga = {(x,y): with x , y  continuous on t >>. 0, x >~ 0, y >~ 0 and (x,y) 
satisfyin9 (7a) on t >~ 0}. 

(III) I f  0 < c < ab and c <~ min{1/T ,2 / (T~ + T)}, then the constant solution 
(0,a) is unstable and the trivial solution o f  the linearization o f  (6) about 
(x~ ~ = ((ab - c)/b(1 + cT), c/b) is stable. 

Remarks.  The behavior of the equation when 0 < c < ab and c > min{1/T, 
2/(T1 + T)} appears to be rather complex. A number of numerical experiments that 
we have undertaken suggest that periodic solutions may exist in this parameter 
range. However, our analysis of  this model is as yet not complete. 

Proof. The proof  of (I) proceeds in a manner identical to the proof  of (I) in Theorem 
1, and so, we omit the details. The proof  of (II) is again based on LaSalle's 
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invariance principle. We let C = C [ -  T 1 - T ,  0 ]  be the cont inuous  funct ions on 
[ - T1 - T, 0] endowed with the un i fo rm norm.  L e t f  = ( f l ,  f2) E C x C and define 
the funct ional  V by 

1 xfo 
V ( f )  = f~(O) + ~ _ r_  T1 

The derivative V of  V along solutions of  (1) is given by 

= - - fl(0 fl(- r l  - r ) f 2 ( -  r )  r l  - r )  . 

Viewing this expression as a quadra t ic  in f1(0) and f l ( -  T~ - T), we see tha t  it is 
negat ive definite if t f 2 ( -  T)I ~< c/b. Now,  if 0 ~<f~ ~ a, i = 1, 2, this is satisfied 
whenever  ab <~ c. 

F r o m  this point  on, the p r o o f  proceeds in exactly the same manne r  as the p r o o f  
of  (II) o f  Theo rem 1, and so, the details are omitted.  

The  p r o o f  of  ( III)  involves the analysis o f  the characterist ic equat ion of  the 
l inearization of  (6) abou t  the cons tant  solutions ( x , y ) =  (0, a) and ( x , y ) =  
(x ~ c/b) = ((ab - c)/b(1 + cT) ,  c/b). In the first case, the characterist ic quasi- 
po lynomia l  is p(2) = 2[2 + c - abe-~(r+r~)],  and setting 2 = u + 0i, we get the 
following equat ion  for  the real roots  o f  p :  u[u + c - abe -"(r+rl)] = 0. I f  ab > c, 
this always has a positive solution, hence, the cons tant  solution (0, a) is unstable.  

The  characterist ic quas ipolynomia l  for  the l inearization abou t  the roo t  (x ~ c/b) 
is: 

p(2)  = 22 - -  . ~ , [ c ( e  - ; q T  + T D  - -  1) - bx  ~ - c b x ~  - ' ~ T  - 13. 

Since ab > c, x ~ > 0 and i f2  = u + iv the imaginary  par t  o f  the equat ionp(2)  = 0 is 

2uv - v[c(e -"(T+ r l )cos  v ( T  + 7"1) - 1) - bx  ~ + uce -"(T + rl) sin v ( T  + T1) 

+ cbx~ -"T sin v T  = O. 

This can be rewrit ten as 

u = {vc (e -u (T+T~)cosv (T+ T1)  - 1) - bx~ + c e - " r s i n v T ) }  

x {2v + c e - " ( ~ + r ~ ) s i n v ( T +  T1)} -1 

Not ing  that  the r ight -hand side of  this expression does not  change when v is 
replaced by - v, we consider the case where v > 0. Since c ~< ra in( l /T,  2 / ( T  + T1)), 
if we assume tha t  u /> 0, we have e - " ( r + r ~ ) c o s v ( T +  T 1 ) -  1 <~ O, 
- bx~  + c e - " r s i n v T )  < 0, and 2v + ce-U(r+7"~)sinv(T+ T1) > 0. So, the right- 
hand  side of  the equat ion is negative, implying that  u ~< 0. This is a contradict ion,  
and hence, all solutions of  the quas ipolynomia l  mus t  obey Re 2 ~< 0. 

We next note tha t  2 = 0 is a roo t  o f p  and that  p ' (0)  = bx~ + cT~] > 0 if 
x ~ # 0, which is the case when ab > c. So, 2 = 0 is a simple root  ofp .  This completes  
the p r o o f  of  (III)  and the theorem.  

We note  tha t  the neglect o f  the integral condi t ion (7a) leads to the same type o f  
difficulties in this more  general model  as it did in the case where T~ = 0. 
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For example, one may have 0 < b ~< c, hence, all solutions on G1 approach (0, 1) as 
t ~ oe. While, if ab > c (a > 1) the solution (0,a) is unstable. 

3. Invariant Integral Conditions 

In the first part  of  the preceding section we saw the form and the effects of  an 
invariant integral condition in an epidemiological model. The type of condition that 
was encountered there always appears whenever a model contains a compar tment  
(the exposed class in the model of  section 2) which holds individuals for a fixed time 
T. If  y ( t )  denotes the number of  individuals in this compartment,  then one must 
have d y ( t ) / d t  = h( t )  - h ( t  - T ) ,  as the governing differential difference equation. 
This equation has a first integral y ( t ) =  a + S~t_rh(s)ds ,  which is the correct 
invariant restriction. Note that a restriction of this sort is needed for each 
compartment  of the above type. The importance of these restrictions was illustrated 
in the previous section and will not be discussed further at this point. 

The next point that we take up is the question of what is the appropriate integral 
condition in models that allow for removal, say due to death, f rom a holding 
compar tment  such as the one discussed above. We proceed by first looking at a 
particular model that has been studied by Z. Grossman [7] who recognized the 
importance of restricting the initial data in his model. In this model, we consider a 
population having a birth rate #, a death rate #, and broken up into three 
components:  those susceptible (S), those who are infective (I), and finally the 
immune (M). It is assumed that there is a fixed delay Tbetween the time of entrance 
in the infective class and the time of departure from it into the immune class. Since 
the birth and death rates are equal, the population remains constant and the 
variables S, I, and M are normalized by division by this constant total population to 
get the relation 

I ( t )  + M ( t )  + S ( t )  = 1. (8) 

The equations describing the dynamics of  this model are [-7] : 

S ' ( t )  = # - # S ( t )  - f l I ( t )S ( t ) ,  

I ' ( t )  = f l I ( t ) S ( t )  - e - U r f l I ( t  - T ) S ( t  - T )  - # I ( t ) ,  

M ' ( O  = e - u r f l I ( t  - T ) S ( t  - T )  - # M ( t ) .  (9) 

It would appear from this formulation of  the model that the first two equations 
of  (9) can be solved independently of  the third, and then (8) used to get M as a 
function of t. Of  course the solutions that one seeks must obey (9) as well as 

0 ~< S(t), 0 <~ I ( 0 ,  0 <~ M ( t ) .  (10) 

The difficulty with the above approach is that (8), (9) and (10) do not form a well 
posed problem. In order to see this, note that, if initially one has S ( t ) -  1, 
I ( t )  = - t/(2T), M ( t )  = (1 + t / T ) / 2 ,  t e  [ - -  T,  0], then (8) and (10) are satisfied on 
this initial interval, but from (9) we get I ' ( 0 ) = -  e - " r f l S (  - T ) I ( - T ) =  
- e - " r f l / 4  < O, so there exists e > 0 with I ( t )  < 0 on (0,e), violating (10). 

In order to remove this difficulty, we note that the second equation in (9) has the 
first integral, with an arbitrary constant a, 
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I 
t 

I(t) = e-U~a + fl em-Ol ( s )S ( s )  ds, (1 la) 
t - T  

We now note that in this equation a = 0 is the correct value of the constant. The 
heuristic way of viewing this condition is the following: The total number of 
infectives should be exactly equal to the number who have entered the class in the 
past and have not left either via natural death or because of the fixed residence time 
Tin this class. The correct interpretation of the mathematical results obtained from 
this model must incorporate this integral condition. We have the following result 
that shows that the condition (1 la) makes the problem well posed. 

Theorem 4. I f  fi, # and  T are posit ive and  i f  a >~ O, then all solutions of(9) with initial 
data satisfyin9 (8) at t = 0 mus t  satisfy (8) f o r  all t >~ 0 f o r  which they exist.  If, 
moreover,  the initial data satisfy (10)for t ~ [ -  T, 0], and (11 a) at t = O, then the 
solution through that initial data exis ts  and  satisfies (8), (10) and (1 l a ) f o r  all t >~ O. 

We postpone the proof  of this theorem until the end of this section, and proceed 
to another model found in the recent literature where integral conditions play an 
important role. In this situation, the integral condition determines whether or not 
certain periodic solutions have biological significance. This model, which is studied 
by D. Green [6], is concerned with an epidemic where the population can be 
separated into three classes: Those susceptible (S), those who are infective (I), and 
those who are recovered (R) but have, for limited time, developed immunity to the 
disease. The model assumes a fixed time a during which infectiousness lasts and a 
fixed time co during which immunity lasts. It is a special case of a model proposed by 
Cooke [5] and studied in detail by Hoppensteadt and Waltman [ 10]. The dynamics 
of the model are described by the following equations which are used in [6], 

S'(t)  = - rI( t )S( t)  + rI(t - T ) S ( t  - T) ,  T = a + co, 

I ' ( t )  = rI( t )S( t )  - rI(t  - a )S ( t  - a). (12) 

However, the form that the Hoppensteadt-Waltman equations take in this special 
case is 

I(t) = b + I(s)S(s)  ds, (13a) 
t - - a  

i 
t - - G  

S(t)  + I(t) = a - r I (s )S(s)ds ,  (13b) 
t - T  

with a ~> 0 and b = 0 being the appropriate values for the constants in the biological 
interpretation of  these relations. 

Even though any pair of  constants (~, fi) solves (12), this is not the case with 
(13a, b). In fact setting b = 0, and assuming (S, I) - (e, fi), we conclude that 

(a, fi) = (a, 0) or (e, fl) = (rla r a a - 1 _ )  , ; y  - 

In [6] the case where r = 0.2 and a = 1 is studied with co used as a parameter. 
Values of co, and (~, fl) are sought for Hopf  bifurcation to occur and periodic 
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solutions to exist. With the correct integral condition the constant solutions have 
fl = 0 or ~ = 1/(ra) = 5. However, in all of  the cases considered in [-6] fi # 0, cr ~ 5, 
so the periodic solutions found in that work have no direct relation to the biological 
situation that is being modelled. However, there do exist periodic solutions that 
obey the correct conditions. In fact, setting co = a = 1 and using ra as a parameter 
one can show, using the methods of Green [6], that at ra = 1.4, approximately, 
Hopf  bifurcation occurs at the constant solution (I/r,  0.2/r) which satisfies the 
correct integral condition. Since the method of establishing this fact is the same as in 
[6] we shall omit the details. 

There is another difficulty involved in writing the equations of the model in the 
differential form (12). For, the biological interpretation of variables I and S implies 
that I(t) >>. 0 and S(t)  >>. 0 for all t/> 0. If, however, one chooses the initial data 
I(t)  = - N t / ( 2 T ) ,  S( t )  = N I T +  t]/2T,  t e l -  T, 0], then I(t) >~ O, S( t )  >~ O, 
I(t) + S( t )  <% N on t e 1-- T, 0], where N is taken as the total population. However, 
since I ( 0 ) =  0 and I ( - a ) S ( - a ) =  N 2 a o J / ( 2 T ) 2 >  O, we see from (12) that 
I'(0) < 0, and I(t) is, hence, negative for small values of t > 0. Again, one can show 
that the integral conditions remove such difficulties. In fact, we have the following 
result. 

Theorem 5. I f  r, a, o) and  a are posi t ive and  i f  b >1 0, then all solutions o f (12)  with non- 
negative initial data satisfying (13a, b) at t = 0 exis t  f o r  all t >1 O, satisfy (13a, b) on 
t >1 O, and  are non-negative and  satisfy S( t )  + 1(0 <.% a f o r  all t >~ O. 

The proof  of this result is very similar to that of Theorem 4, and so will be 
omitted. 

We next consider the model of Cooke and Yorke [3] that was mentioned in the 
introduction. Our treatment relies on the methods and the discussion of the same 
model that was given by Hale [8]. The equation that we treat is 

f 
t - L 1  

x(t)  = a + g(x(s))  ds = a + L(g(x) )  (14a) 
d t - L 1  - L 2  

where a >i 0 is a constant. In the population model considered in [3], the correct 
value for a is zero. The function g is assumed to be three times continuously 
differentiable and to satisfy g(x)  = 0 for x ~< 0, and for x >~ 1, while g(x)  > 0 on 
0 < x < 1. If  x = c is a constant solution of (14a) it must satisfy c = a + L(g(c)) ,  
and we denote by c, any solution of this equation. Linearizing (14a) about such a 
constant solution ca, we have the following equation for u = x - Ca : 

~ t - L t  

u(t) = g'(co) ~ - , ~ , - L 2  u(s) ds. 

The characteristic equation of  this equation is 

2 = b[e  - L ~  - e -(L' +L2)Z], (15) 

where b = g'(ea). The roots of this quasipolynomial have been studied by Cooke 
and Yorke [3]. One of their results yields the following: If0 < b < L~- 1, there is one 
simple negative root, the root at 2 = 0, and no other real roots. Moreover, all 
complex roots have negative real parts. 
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In the discussion that follows we shall need the following lemma. 

Lemma 1. There is an interval o f  values o f b  o f  the f o r m  bo < b < 0 with the following 
property : I f  b ~ ( bo, 0), equation (15) has a simple root 2 = 0 and all other roots of(15) 
satisfy Re 2 < 0. At  b = bo, (15) has a single pair o f  simple pure imaginary roots, the 
root 2 = O, and all other roots satisfy Re/t < b* < 0 for  some b* < O. 

The proof  of  this lemma requires a lengthy but elementary consideration of  
equation (15) and is not given here. Finally, we need the following result from Hale 
[-8]. 

Lemma 2 (Hale). Suppose that the roots o f (15)  satisfy the following condition. For 
some f i x e d  value o f  b, say b = bo, there are two complex conjugate pure imaginary 
roots and all other roots 2 of(15)  satisfy Re 2 < b* < O for  some b* < O. Then, there 
are funct ions g* close to g f o r  which the equation x ' ( t ) =  g * ( x ( t -  L I ) ) -  
g*(x(t  - LI - L2)) has a noneonstant periodie solution. Here the funct ions g, g* are 
o f  class C 3 on [ -  L1 - L2, 0], and Ilgl[ = sup{y~=  0 I[g(3)(f)[I : f ~  C [ -  L1 - L2, 0], 
IIgC~ denotes the supremum norm o f  g( f ( s ) )  on s6  [ - L1 - L2, OJ, and the other 
norms II II denote norms o f  linear and multilinear operators on C [ -  LI - L2, 0]}. 

After all this, we can return to our example. Here, i fb = bo, then the conditions 
of  Hale's result hold. So, there are functions close to g for which non-trivial periodic 
solutions of  the delay differential equation exist. Recalling that b = g'(c,) depends 
on the value of  a entering in the integral condition (14a), we note that this condition 
plays a role in deciding whether or not periodic solutions exist. 

We now conclude by giving the proof  of  Theorem 4. 

Proo f  o f  Theorem 4. From (9) we get 

S'(t) + I'(t) + M' ( t )  = #[1 - S(t) - M( t )  - I(t)], 

and letting x = S + I + M, we have x(0) = 1, x'(t) = #(1 - x(t)). So, x(t)  = 1 for 
t >~ 0, and (8) holds for all t >~ 0. We note also that the solution x = 1 is 
asymptotically stable. 

Now, if the initial data satisfy (1 la) at t = 0, then for all t > 0 where/ ,  S and M 
exist we have from the second equation in (9) 

I(t) = e-U'l(O) + fi f 'o e"'~-~ - e-UVI(s - T)S(s  - T)] ds 

;o - e u(s- ~ ds = e -  utI(O) + fi e "(s- ~ ds fl - T 

= e -  u'I(O) + e u(s-')I(s)S(s) ds - fi e u(s- ~ ds. 
t - T  T 

Since ( l l a )  is satisfied at t = 0, we have 
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and using this in the above equation, we get 

I(t) = e-  "ta + e u(s- ~ ds. 
t - T  

So, (1 la) is satisfied for all such t > 0. From this, we see that  I(t) >~ 0 whenever 
I(s)S(s) exists and is non-negative for s e I t  - T, t]. 

From the first equation in (9), we have 

S(t)=exp[- f'o(U + fll(s))dsl [S(o) + f'oUeXp{fi (u + fll(u))du}ds ]. 
So, S(t) >~ 0 for all t > 0 such that I(s) exists for s E [0, t]. 

F rom the third equation in (9) we get 

ftoeU(S-t-T)I(s M(t) = e-UtM(O) + fl - T)S(s - T)ds. 

for all t > 0 such that I(s)S(s) exists and is non-negative for So, M(t) ~> 0 
s 6 [ t -  T,t]. 

We now consider two separate cases: a > 0 and a = 0. First, let a > 0, and 
suppose that I ( t ) - 0  for some t~>0. Then from ( l l a )  we see that 
~_rI (s )S(s )ds  < 0, so I(s)S(s) < 0 for some s ~ [ t  - T, t]. But, S(s) >~ 0 from what 
was said before, so I(s) < 0 for some s < t. It  is clear from the above arguments that  
the infimum s* of all such s must be nonpositive. Now, since a > 0, and I(s)S(s) >~ 0 
on [ -  T, 0], I(0) > 0 from (1 la). So, s* < 0, and I(s*) < 0 contradicting the non- 
negativity of  the initial data. So, I(t) > 0 for all t > 0 where it exists. 

Next, consider the case a = 0. Suppose that I(t) < 0 for some t >/0. F rom (1 la) 
we have I(s)S(s) < 0 for some s ~ I t  - T, t], hence, as before I(s) < 0 for some s < t. 
Again, the infimum of all such s is nonpositive. Now, if I(0) = 0 we have from (1 la) 
I(s)S(s) = 0 for s ~ [ -  T, 0]. So, we must  have f rom (9) F(t) = flI(t)S(t) - ttI(t) for 
all t ~ [0, T] ,  implying that, I(t) = 0 for t ~ [0, T].  Repeating this argument we see 
that I(t) -= 0 on [0, oo). Here, we note that S(t) exists and is nonnegative for all t 
where I(t) exists. 

So, I(t) >~ 0 on its whole interval of  existence t ~ [0, ~). Hence, S(t) and M(t)  both 
exist and are nonnegative on this same interval. But, I(t) + S(t) + M(t)  = 1, so they 
are all bounded by one on this interval. F rom standard continuation results we see 
that a = 0% and the theorem is proved. 

The proof  of  Theorem 4, and other similar results, would be greatly simplified if 
one could conclude that nonnegative initial data lead to nonnegative solutions if 
(1 la) is satisfied. Of course, if (1 la) does not hold, we have shown already that 
nonnegative data need not have this property. It  would be useful to have available 
general results, along the lines of  those of  Seifert [ 12], that yield the nonnegativity 
of  solutions when invariant integral conditions like (11 a) are imposed. The nature 
of  ( l l a )  seems to rule out the application of the results in [12], while those 
extensions of  such results that we have been able to establish do not reduce the labor 
needed in proving propositions similar to Theorem 4. 

We next consider the relation between the present invariant integral approach 
to this type of model and the approach described by Hoppensteadt  [11, pp. 
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47-49] .  For the model which is described by equations (1)-(2),  this alternate 
formulation leads to the following equations: 

z ( t ) = z ~  

x ( t ) = x ( O ) e - " -  fodZ~ 
y ( t )  = 1 - x ( t )  - z ( t ) ,  (16) 

when t ~ [0, T], and z~ is non-increasing on [0, T] and zero on IT, oo). Here z~ 
is viewed as the proportion of those who are initially exposed and are still exposed at 
time t. For t > T the following equations are used 

x ' ( t )  = b x ( t  - T ) y ( t  - T )  - c x ( t ) ,  

z ' ( t )  = b [ x ( t ) y ( t )  - x ( t  - T ) y ( t  - T ) ] ,  

y( t )  = 1 - x( t )  - z(t). (17) 

This formulation of the model does not seem to imply the integral condition (2). 
However, (17) implies that (1) holds for t > T while if we define initial data 
(xT(s), yr(s), zr(s))  = (x(s  + T), y(s  + T), z(s + T)), s E [ -  T, 0], where (x, y, z) 
satisfy (16), we see that (since z~ = 0) 

x ( T ) + y ( T ) = l - b f ~ x ( s ) y ( s ) d s ,  

and condition (2) is satisfied at t = T, hence, for all t/> T. So, solutions of the 
formulation via (16)-(17) must also satisfy the invariant integral condition on 
t i> T. Hence, the study of the asymptotic behavior of such solutions involves the 
same considerations as those we have been discussing. Incidentally, the observation 
that (2) is satisfied at t = Tprovides, through Theorem 1, a proof that this alternate 
formulation of the model is well-posed in the sense that solutions remain non- 
negative and satisfy x(t)  + y( t )  + z(t)  = 1 for all t ~> 0. 

We next show that solutions of (1)-(2)  are also solutions of (16)-(17) for 
appropriately chosen z ~ In fact, let (x,y, z) satisfy (1)-(2)  and define 

cO if t > T  

z ~  ~ - 
; t  (18) 

t z ( 0 ) -  b joX(S - r ) y ( s -  r ) d s ,  t~[0,  T]. 

That is, view z~ as the proportion that is exposed at t = 0 minus those leaving the 
exposed class before t ~< T. Clearly, z~ is non-increasing on [0, T], and 
z~  = z(O) - b ~ x(s  - r)y(s - T ) d s  = 1 - x(O) - y ( O )  - b S~ Tx(s )y ( s )ds  = O, 
by condition (2). So, z~ >~ 0 in [0, T] and satisfies the hypothesis imposed on 
(16) - (I 7). Since we have already shown that (1) - (2) implies that (17) will hold for 
all t > 0, we only need to show that (16) holds for t~[0,  T]. Now, from (18) 
dz~ = - bx(t  - T )y ( t  - T)  when t e [0, T], and hence from the equation in 
(1) we get 
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fro - c~t - S)X( S x(t)  = x(O)e -c* + b e - T )y ( s  - T ) d s  

= x ( O ) e - " - f f o e - C ( t - s ) d z ~  

Thus, the second equation in (16) holds for t~ [0, T].  Next, from (2) we have 

= b f f  z(t) 1 - x( t )  - y( t )  = x(s)y(s)ds 
t - T  

= b x(s)y(s)  ds + b x(s  - T )y (s  - T ) d s  - b x(s  - T )y ( s  - T ) d s ,  
0 0 

so, using the fact that b~rox(s - T )y ( s  - T ) d s  = z(O) - z ~  = z(0), 

f o f  z(t) = b x(s)y(s)  ds + z(O) - b x(s  - T )y ( s  - T ) d s  
0 

= b f f o X ( S ) y ( s ) d s + z ~  

for t ~ [0, T] .  That  is, the first equation in (16) is satisfied. The last equation in (16) 
follows from (2) and the fact that z(t)  = b ~_  W X(s)y(s) ds. It should be noted that the 
model formulated via equations (16) - (17) satisfies (1) - (2) on t >~ T but need not 
satisfy condition (1) - (2) on t ~ [0, T] .  This is due to the fact that the choice of the 
initial function z ~ is fairly arbitrary and may not reflect any of the specific dynamics 
of the situation being modelled. It is hence interesting to note that the additional 
conditions needed to have (1) - (2) satisfied on t/> 0 are rather simple. In fact, if we 
assume that, in addition to (16) - (17), x'( t )  and y'( t)  are continuous at t --- T, z ~ is 
continuous at t = 0 and dz~ is integrable on [0, T]  (it, of  course, exists almost 
everywhere and is measurable since z ~ is monotone), then it follows that (1) - (2) are 
satisfied on [0, ~ ) .  To see this, note that in this case, (16)- (17)  imply that 

dz~ T)  
x ' ( T )  = - c x ( T )  - bx(O)y(O) - cx (T ) ,  

dt 

that is, 

dz~ 
- bx(O)y(O). (19) 

dt 

Now define (Xo(t), yo(t),  Zo(t)) for t~ [ -  T, 0] by 

dz ~ 
Xo(t) >1 O, yo(t)  >1 O, - bxo(t)yo(t)  = ~ s  ( T  + t), 

Xo(0) + y(0) = 1 - z~ (20) 

The conditions that (20) imposes on Xo and Yo at zero are satisfiable since (19) is 
assumed to hold. Now the second equation in (16) yields for t �9 (0, T), 
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f ~o e S)xo(s - x ( t )  = x (O)e  - a  + b - c~t- T ) y o ( s  - T ) d s ,  

hence, x ' ( t )  = b x o ( t  - T ) y o ( t  - T )  - c x ( t ) ,  since - b x o ( t  - T ) y o ( t  - T )  = 

d z ~  + T )  was assumed to be integrable. The first equation in (16) yields 

d z ~  
z ' ( t )  = - -  + b x ( t ) y ( t )  = - b x o ( t  - T ) y o ( t  - T )  + b x ( t ) y ( t ) ,  

d t  

and using the third equation in (16) we now get 

y ' ( t )  = c x ( t )  - b x ( t ) y ( t ) ,  t E (0, T ] .  

This shows that (1) holds on (0, T] with initial data given by (20). 
We next verify that (2) holds at t = 0. From what was just shown, on t ~ (0, T], 

d 
d t  [ x ( t )  + y ( t ) ]  = b E x o ( t  - T ) y o ( t  - T )  - x ( t ) y ( t ) ] ,  

hence, using the continuity of x and y at t = 0, 

x(O) + y(0)  = x ( T )  + y ( r )  - b Xo(S - r ) y o ( s  - T) ds + b x(s)y(s)  ds 
o fo 

= x ( T )  + y ( T )  - b Xo( s )yo ( s )  d s  + z ( T )  - z ~  
- T  

- - 1 - b f ~  T Xo(S)yo(S) ,  

since z ~  = 0 and x ( T )  + y ( T )  + z ( T )  = 1. So, from Theorem 1, (2) must hold 
for all t >~ 0, hence (1)- (2)  hold on (0, ~) .  

The above arguments can be adapted to show that these two approaches to all 
the models we have been considering are essentially equivalent. When the approach 
in [11] is taken, the transient behavior on [0, T) may differ from that obtained via 
the invariant integral formulation. However, the behavior on I-T, o~) is the same. In 
particular, in studying stability questions, periodic solutions, or other behavior for 
t >~ T, the analysis must be restricted to solutions obeying the proper invariant 
integral conditions. 

Acknowledgement .  We wish to thank Jack Carr, Jack Hale and Herbert Hethcote for a number of  useful 
comments on this work. 

References 

1. Bellman, R., Cooke, K. : Differential-difference equations. New York: Academic Press 1963 
2. Busenberg, S., Cooke, K. : Periodic solutions of  a periodic non-linear delay differential equation. 

SIAM J. Applied Math. 35, 704-721 (1978) 
3. Cooke, K., Yorke, J. : Some equations modelling growth processes and gonorrhea epidemics. Math. 

Biosciences 16, 75-101  (1973) 
4. Cooke, K. : Stability analysis for a vector disease model. Rocky Mountain Math. J., 9, 31 - 42 (1979) 



32 S. Busenberg and K. L. Cooke 

5. Cooke, K.: Functional-differential equations: Some models and perturbation problems. 
Differential equations and dynamical systems, pp. 1 6 7 -  183. New York:  Academic Press 1967 

6. Green, D. : Self-oscillations for epidemic models. Math. Biosciences 38, 9 1 - 1 1 1  (1978) 
7. Grossman, Z. : Oscillatory phenomena in a model of infectious diseases, preprint 
8. Hale, J. : Behavior near constant  solutions of functional differential equations. J. Diff. Eq. 15, 

278 - 294 (1974) 
9. Hale, J. : Theory of functional differential equations. New York:  Springer 1977 

10. Hoppensteadt,  F., Waltman, P. : A problem in the theory of epidemics. Math.  Biosciences 9, 71 - 91 
(1970) 

11. Hoppensteadt,  F. : Mathematical  theories of populations: Demographics, genetics and epidemics, 
Philadelphia: SIAM 1975 

12. Seifert, G. : Positively invariant closed sets for systems of delay differential equations. J. Diff. Eq. 22, 
2 9 2 -  304 (1976) 

Received May 16, 1979/Revised February 28, 1980 


