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Abstract. Survival analyses, investigations of extinction and persistence, are 
executed for populations represented by a nonautonomous differential 
equation model. The population is assumed governed by density dependent 
and time varying density independent demographic parameters. While tradi- 
tional approaches to extinction postulate extinction on an infinite time horizon 
and at zero abundance level, survival analysis is developed not only for this 
traditional setting but also on a finite time horizon and at a nonzero threshold 
level. A main conclusion is that extinction of a temporally stressed population 
is determined by a totality of density independent and density dependent 
factors. 
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1. Introduction 

Since antiquity in theoretical population biology (Malthus (1798); Verhulst 
(1838), (1847)) density dependence, a euphorism for environmental limitations 
expressed through size differentiated levels of  mortality or natality, has been 
postulated as a regulator of  growth. While much effort has been directed toward 
assessment of density dependent relationships at saturation level, low density 
levels and their relationships to population dynamics have been virtually ignored. 
Problems of biotechnology and ecotoxicology such as the invasion capability of 
introduced species or the survival of  toxicant stressed populations have sparked 
renewed interest in relationships between extinction and population abundance. 
The purpose of this article is to demonstrate that relationships between density 
dependent and time-varying density independent population demographics are 
fundamental to population survival. This is a complement of the results of some 
recent analyses of classical population models which establish that density 
independent demographic parameters are solely responsible for extinction or 
persistence of a stressed population (Hallam et al. (1983); Hallam and de Luna 
(1984)). 

A primary reason for this anomaly lies in the traditional definition of extinction 
at zero population level where density dependent effects are often regarded as 
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negligible. Another perceived deficiency arises because standard model rep- 
resentations result in extinction only on an infinite time horizon. This article 
explains the role of density dependence in extinction, discusses finite-time extinc- 
tion as well as survival on an infinite time horizon, and views extinction at levels 
other than just zero-density populations. 

The model 

The generic differential equation 

dx/dt=g(x)[r( t)- f (x)x] ,  t e R+= [0, co), x~  N+, (1) 

is assumed to represent the model population at abundance measure x. The 
functions g and f represent density dependent formulations (units: size and 
(time)-l(size) -1 respectively) and are generally assumed to be in CI[R+, R+] with 
g(0) = 0, xg(x)> 0 for x > 0, and xf(x)> 0 for x > 0. The function r is the time 
dependent intrinsic growth rate (units: (time) -1) and is assumed to be in C[R+, I ]  
where I = [a, b] with b - a < co. Population stress, including that caused by density 
independent mortality, is effected through the growth rate r. 

When population size is small, the function g is important in governing 
population dynamics as it reflects attributes such as density dependent natality. 
It has been traditional to take g(x)= x so that the per capita growth rate is 
employed in the model formulation. A percursory review of the literature reveals 
that g should be a function of the specific population. Classical experiments by 
Gause (1934) on growth of Paramecium aurelia are quoted as an illustration of  
logistic growth (Roughgarden (1977), p. 307) but they reveal that at small 
densities, there are strong oscillations in the per capita growth rate when viewed 
as a function of density. Data of Smith (1963) for Daphnia magna in expanding 
culture experiments also indicate that g is nonlinear; in fact, he proposed and 
utilized g(x)= x/(kl+ k2x) in a model representation for growth of D. magna. 

The function f is involved in density dependent mortality representation and 
is more important at density levels other than small ones. There are many 
candidates for representations o f f  in the literature (e.g. Wiegert (1975); Clark 
(1976); May (1976); Hallam (1986)) some of  which appear sufficiently often to 
be put into classifications such as types I, II, and III, compensatory or 
depensatory. 

Extinction 

A realistic theory must be grounded in viable concepts, sound definitions, testable 
hypotheses and demonstrable conclusions. Traditional approaches to extinction 
have deficiencies in several of these areas. Investigation of population survival 
requires adequate representation of growth at low levels of population size. This 
representation, as well as the threshold level for survival, depends upon the 
particular abundance measure (numbers, biomass, density) of population 
employed. Extinction requires dynamic assessment of small population sizes and 
for this purpose, discrete models are probably more appropriate than continuous 
ones. However, the complexity of  discrete models, even rudimentary autonomous 
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difference equations are difficult to analyze due to a behavior spectrum ranging 
from simple extinction to persistence regimes that include chaos (May (1976)), 
makes a continuous model yielding appropriate phenomenological predictions 
a viable option. 

Traditionally in model analysis, extinction has been considered equivalent to 
model trajectories approaching zero (Freedman and Waltman (1977), (1984), 
(1985), Gard and Hallam (1979), Gard (1984)). In addition, for Kolmogorov 
models, where g(x )=x ,  extinction can only occur on an infinite time horizon. 
The conditions that allow finite time extinction at zero population level are now 
discussed. 

Although the past studies of zero level extinction (0-extinction) are reasonable 
compromises between mathematical techniques and biological realism, some 
difficulties arise. The fact that a population size cannot be infinitesimally small, 
makes it impossible to determine the low density dependent natality representa- 
tion, g, for x very small. For modelling purposes, one way of defining g is to use 
the extrapolation to zero from low density data. Information about the structure 
of  g is needed because, as seen below, the mathematical requirements for 
developments in 0-extinction are stringent. 

It is natural to impose the condition g(0) - -0  so that the function x(t)=-0 is 
a solution of  (1). It is also reasonable to expect that a low density population 
should go to extinction in a finite time if the population is under extreme stress. 
However, if solutions to zero initial value problems are unique, there is no 
possibility of  an extinction on a finite time horizon. One approach leading to 
finite-time extinction and, by necessity, violating the uniqueness of solutions to 
initial value problems, is to assume that the integral ~o dx/g(x)  converges. Indeed, 
if~o dx/g(x)  converges and r is not identically zero on R+, then there is a nontrivial 
solution of  equation (1) through each point (0, to), t0c•+. This may be 
demonstrated by first observing that the function u defined on [0, Xo] as 

o ds/g(s),  x # O: 

u ( x )  = 

O, x = O, 

is continuous on [O, xo]. Since du /dx=[g(x ) ]  -1 is positive on (O, xo), u is 
increasing on [0, x0]. Thus, the inverse of u(x), x = q~(u) is well defined, is 
differentiable on (0, u(xo)), and, from (1), satisfies 

du/dt  = r(t) - ~(u)f(g,(u)),  (lu) 

The initial value problem consisting of ( lu)  and the point (to, 0) has a nontrivial 
solution if and only if r is not identically zero. In particular, from (lu)  it follows 
that when r(to) is positive then u(t) is positive for t in an interval to the right 
of to. Analogously, if r(to) is negative, u(t) is positive for t in an interval to the 
left of to. 

Hence, with the hypothesis that the integral ~o dx/g(x)  converges, there exist 
nontrivial solutions to the problems, X(to)=0, and extinction in a finite time 
occurs on intervals where r(t) is negative. However, on intervals where r(t) is 
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positive, the nonuniqueness manifests itself in an undesirable manner--nontr iv ia l  
populations emerge from the initial population size X(to)= O. 

Coupled with the biological rationale, the mathematical complexities required 
for 0-extinction in finite t ime- -add i t iona l  hypotheses such as convergence of 
the integral 5o d x / g ( x ) ,  multiple solutions to initial value problems generating 
"creationist" trajectories provide motivation for development of a more reason- 
able concept, the concept of [3-extinction, that is, extinction at a nonzero threshold 
level [3. 

A population, x = x( t ) ,  of (1) is said to go to extinction at population level [3, 
0<~ [3, at time T, 0 <  T ~  < oo, provided x( t )  > [3 for t c [0, T) and lim,_~T- x ( t )  = [3; 
for brevity this phenomenon will be called [3-extinction. The classical definition 
of extinction is the case [3 = 0; in the current literature only T = oo has been 
considered. A population is fl-persistent on [0, T] if it does not go to [3-extinction 
for any time in [0, T]. 

Motivation to develop the concepts of/3-extinction and fl-persistence arises 
from biological, economical, as well as mathematical directions. If  the population 
variable is measured in biomass, then for the population to be viable, x must 
always exceed the neonatal biomass at which an individual has a positive probabil- 
ity of survival. This threshold level provides an example of a biologically motivated 
choice of [3. Another similar example when a sexually reproducing population 
is measured in density, might be with [3 chosen as the threshold density below 
which the number of reproductive encounters is too infrequent to maintain the 
population. There might be other reasons such as economic viability of a popula- 
tion where a [3-level of extinction is applicable. 

The concepts of/3-persistence and fl-extinction presented here are, as far as 
we know, new; however, the mathematical and ecological stability literature is 
replete with related formulations (Lakshmikantham and Leela (1969); Levin 
(1975)). For example, the work of Weiss and Infante (1965) introduces finite-time 
stability, a definition akin to our idea of [3-persistence. Some analogous control 
theoretic based stability notions that are set in ecological contexts include Goh's 
(1976) nonvulnerability and Wu's (1975) total stability. 

Many stability results exist for autonomous models and are often grounded 
in Liapunov theory. Our developments are primarily founded upon intrinsic time 
variation in models. 

2. Finite-time survival analysis at leve l /~ , /~  > 0 

The determination of survival or extinction of a population at level [3, /3 > 0, 
depends upon characteristics of the growth rate expression, G(t, x) -~ r(t)  - x f ( x ) ,  
in Eq. (1). The function G reflects the interaction between the density independent 
demographic parameters and density dependent mortality. Conditions for finite 
time survival and finite time extinction are presented in the next result. 

Theorem 1. (i) I f  for given [3 > 0 and for all t in [0, T], T < ~ ,  the function 
G( t, [3 ) = r( t) - [3f([3 ) is positive then any population with x(O) > [3 is [3-persistent 
on [0, T]. 

(ii) I f  there exists a to in (0, T] where G(to, fl) is negative then there is a 
threshold function, ~-= J-( t ), related to certain trajectories associated with (1) which 
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separates those populations that go to fl-extinction at some time in the interval [0, T] 
from those that do not. 

Indica t ions  of  the p r o o f  of  this and subsequent  results are in the final section 
of  this article. There  are several  types of  threshold  funct ions as descr ibed in (ii) 
that  can occur.  In  each si tuat ion the threshold  depends  u p o n  g, f, and  r as well 
as /3;  that  is, both  densi ty dependen t  and densi ty  independen t  factors p lay  a role 
in /3-ext inct ion.  The cons t ruc t ion  of  the threshold  involves knowledge  of  special  
t rajectories of  (1). Of  interest  is the vector  field a long x =/3. To determine this 
vector  field, it is convenient  to locate the zeros of  G(t, fl) = r(t) -/3f(/3 ) as follows. 
Let the interval  [0, T] = S w [% T] where  S = (__J~l (Ii w 1~) with/~ = [ri, o'i] con- 
secutive intervals with G(~-i,/3) = G(o-i,/3) = 0 and G(t,/3) < 0 for  t c [~i, o-i], 
except  for  isolated points  where  G(t,/3) = 0; I~ = (o'i_1, Ti) are the complemen ta ry  
adjacent  intervals with Cro = 0 and  where  G(t,/3) > 0 for  t c I7  except  for  isolated 
t-values where  G(t ,  f i ) = 0 ,  i - 1 , 2 , . . . ,  N, N < o o ,  and [% T] is the remainder  
of  the interval  ([0, T ] -  S). 

F rom the sign of  G(t,/3), the vector  field is de te rmined  only on the line x =/3 
(Fig. 1). To construct  the threshold,  the intersect ion of  certain trajectories,  x = 
x(t),  with the curve x = G(t,/3) is important .  Unfor tunate ly ,  as the threshold  is 
c o m p o s e d  of  por t ions  o f  trajectories,  a threshold  for  a par t icular  Eq. (1) will, in 
general ,  have  to be c o m p u t e d  numerical ly.  It  is, however ,  possible  to describe 
the p rocedure  employed  to construct  the threshold.  Suppose  that  O'N <~ T; consider  
the solution,  x = x ( t ;  oN, /3) ,  to the terminal  value problem:  (1) and  (O'N, /3). We 
have a s sumed  that  this p r o b l e m  has a unique solution. I f  x(t; crN, /3) > /3  for  all 
t c (0, crN), then  x(t; T,/3) is the threshold funct ion which separates  solutions 
that  go to /3-extinction on [0, T] f rom those that  are /3-persistent in [0, T]. I f  
X(to, O'N, /3) =/3 for  some to in (0, O-N) then the threshold  might  be  composed  of  
several segments.  When  dx(to; ~rN,/3)/dt = 0 so that  to= o-i for  some i then the 
threshold  will still consist  o f  x(t; T,/3) to the left o f  to. I f  dx(to; O-N,/3)/dt>O 
then define the threshold,  i f ( t ) ,  on [o'i, to], where  o-i ~< to is the zero of  G(t,/3) 
to the immedia te  left o f  to, by i f ( t )  =/3. The process  is now repea ted  by considering 
the solution,  x(t; cri,/3), of  (1) through (o-i, fl). If  x(t; O'i, /3) > /3 for  all t ~ (0, cri) 
then i f ( t )  -- x(t; o-i, fl) on [0, o'i]; if  X(tl ,  o'i,/3) = fl for  some tl ~< tri then i f ( t )  = fl 
on [ok, tl], where  o-k~ < t~ is the root  o f  G(t,/3) = 0  to the immedia te  left o f  tl. I f  
o-k > 0, the process  cont inues.  I f  ~'N is the last zero of  G(t, fl) before  T then 
dG(~'N, f i ) /dt  < 0. In this si tuation,  the solut ion x(t; T, fl) is the final por t ion  of  
i f ( t ) .  The rest o f  the threshold  is const ructed as indicated above.  

Fig. 1. The vector  field a long  x = fi as deter-  
mined  by  the func t ion  x = G(t, fl) 

- x=G(t,,8) 
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0 0 

Fig. 2. a The curve x = G(t, x) (solid) and 
the threshold, ~- = J-(t), (dotted) that sep- 
arates solutions which go to/3-extinction 
on [0, T] from those that do not. 3- is 
defined as x(t; ~2,/3) on [to, T], fl on 
[~1, to], and x(t; (rl,/3) on [0, ~rl] (see 
text). Here N = 2 and g2 < T. b The sol- 
ution x = x(t; T, fl) is the threshold, J-= 
3-(t) (dotted). The curve x = G( t,/3) is the 
solid curve. Here, N = 2 and o- 2 = T. c The 
curve x = G(t, fi) (solid) and the thresh- 
old, J-= J(t), (dotted) in the situation 
where N=3,  ~'3 < T < o "  3 

I l lustrat ions of thresholds are given in Fig. 2. Figure 2a sketches 3~(t) when 
O-N ~< T and  dG(o-N, B ) /d t  = dr(o-N)/dt > 0; here, there is a single interval  where 
3-( t )=B.  Figure 2b has O'N = T and  3- ( t )=x ( t ;  T,B)  for tE [0 ,  T]. Figure 2c 

assumes that  the largest zero of G(t ,B)  in  [0, T] is rN; hence,  rN<~T and  

dG(rN, B) < O. 

3. Survival analysis on ~+ 

The behavior  of  (1) on  the infinite interval R+ has similar characteristics to that 
del ineated in Theorem I for the finite t ime horizon.  Again,  the behavior  is governed 
by G(t, f i ) = r ( t ) - f l f ( f l )  however,  as the behavior  is asymptotic,  it will be 
described in more refined detail than  that used for finite t ime horizons.  

The case where G(t, B) is of  constant  sign provides a basis for the analysis. 
If  G(t, B) > 0 on R+ then  Theorem 1 implies that  all popula t ions  with x ( 0 ) >  B 

are B-persistent  on finite intervals;  hence,  B-ext inct ion is only possible asymptoti-  
cally; hence,  this hypothesis,  G(t, B ) >  0 for t E R+, guarantees that all popula-  
tions, x, with x ( 0 ) >  B are defined for all large t. When  G(to, B) is negative for 
some to then  Theorem 1 indicates there are always solut ions that go to B-ext inct ion 
in finite time. The analysis of the asymptotic  behavior  of  (1) is summar ized  below. 
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The notation (p)(t)  designates the mean of 

P: t p(s)  ds. 

Theorem 2. Each population, x = x(t) ,  of  (1) with x(0)>/3 has the asymptotic 
behavior indicated below. 

(i) I f  lim supt->~ G( t, /3 ) < 0 and f ( x ) >~ f ( /3 ) for x >~ /3, then all solutions go 
to ~3-extinction at a finite time. 

(ii) I f  lim i n f t ~  G(t,/3 ) > 0 and G( t,/3) > Of  or all t ~ ~+ , then any population, 
x, satisfies x( t ) >/3 for t c ~+ and lim inft_~oo x( t ) >/3. 

(iii) I f  lim inft_~ G(t,/3) > 0 and there exists a to where G( to, /3 ) < 0 then there 
is a threshold which separates populations that are ~3-persistent on R+ from those 
that go to extinction at a finite time. 

(iv) I f  liminf~_,oo G(t, /3)=O, f(x)>~f(/3) for x>~/3, and G(t , /3)>O for all 
t ~ +  then any population x( t )  with x(0 )> f l  satisfies x ( t ) >  /3 for tcR+, and 
lim i n f ~  x( t) =/3. 

(v) I f  l imsup~_,~(G(. , f l ) ) ( t )>O and G(t , /3)>O for all t~R+ then any 
population x( t) with x(O) >/3 satisfies x( t) > ~3for t e ~+ and is weakly ~3-persistent 
in that lim supt_,oox(t)>/3. I f  in addition, there is a function H c C[R+, R+] with 
H(/3) =/3f(/3) and (xf(x))<~ H((x))  for all functions x ~ C[~+, I] ,  I = (/3, y], 
/3 < y < + o c ,  then l i m i n f ~ ( x ) ( t ) > / 3 .  

(vi) I f  lim inft_,oo(G( ",/3))(t) = O, G(t, /3) > O for t ~ R+ and f ( x )  >f( /3)  when 
x > fl then any population x = x( t ) satisfies x( t ) > /3 for t eE+ and x( t ) goes to 
~3-extinction in the mean, that is, limt_~oo(x)(t)=/3. 

Results that are somewhat similar to these on E+ for zero-survival analyses 
may be found in Hallam and Ma (1986). 

4. Discussion 

The survival analysis presented here is novel from several perspectives. First, the 
approach requires that extinction in continuous models be formulated by employ- 
ing nonzero thresholds. While threshold concepts are replete in the literature 
(e.g. Wiegert (1975); Woodwell (1975); Steele (1976)), the concept of fl-extinction 
and its connection with population density dependent and density independent 
parameters are explored here from a new perspective. 

Developments of finite-time extinction are presented to placate an antipodal 
attribute of smooth Kolmogorov models where extinction can result only on an 
infinite time horizon. Mathematical hypotheses necessary to obtain finite-time 
0-extinction lead to ill-posed problems; this, coupled with cumbersome methods 
needed for finite-time 0-extinction provide additional motivation to develop 
/3-extinction concepts where no grandiloquent hypotheses or methods are needed. 
Previous studies of 0-extinction in traditional population models have shown 
that 0-extinction is solely governed by demographic parameters and is density 
independent. According to the developments here, both density dependent and 
density independent mortality can influence survival in certain situations. In these 
instances, there is a survival threshold that separates /3-extinction trajectories 
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from those that are fl-persistent. The concept of fl-extinction can lead to a 
st~ectrum of behavior, comparable to the behavioral spectrum for stochastically 
perturbed population models (Roughgarden (1979)), including finite and infinite- 
time horizons for/3-extinction as well as/3-persistence in the same model. 

The initial theoretical developments presented here indicate that the survival 
of a population is governed by a totality of density independent and density 
dependent factors. An implementible scheme to assess risk of extinction to stressed 
populations appears feasible in view of these developments. 

5. Indications of the proofs 

Proof of Theorem 1. (i) the hypotheses guarantee that the vector field determined 
by (1) at x =/3 is positive; hence, any population with x(0)>/3  cannot go to 
extinction. 

(ii) The construction of the threshold is indicated in the discussion following 
Theorem 1. In order to have trajectories with x( t )>/3  that go to /3-extinction, 
at t = T, there must exist a time when x decreases. This is assured by the hypothesis 
G(to,/3) < 0. The definition of the threshold necessitates separation of extinction 
and persistence trajectories. Uniqueness of  solutions to initial value problems 
guarantees that the threshold construction is unique (we note that if initial value 
problems do not have unique solutions, it is possible to construct a threshold by 
utilizing the maximal solution to the terminal value problem). 

Proof of Theorem 2. (i) From the hypothesis, there exists a 6 > 0 and a time T >  0 
such that r(t) -/3f(/3) < - 8  < 0 for t ~> T. The solution, x = x(t) ,  with x(0) >/3, 
must intersect the line t = T if it is/3-persistent on [0, T]. Since g(x)/> ~7 > 0 for 
X ~ / 3 ,  

dx/d t  = g(x)[r(t)  - x f ( x ) ]  <~ g(x) G(t, 13) < -Sg (x )  < - S t / =  -81.  

Hence, x( t )  <~ x (T )  - 81( t -  T), and it follows there is a tl where x(q)  =/3. 
(ii) The assumptions imply that for any solution x = x( t )  with initial value 

X(0)  : /31 > /3 there exists a/32,/3 </32 </31, such that r(t) >/32f(/32) for all t c R+ 
and lim inf,~o~ G( t, /32) > 0. From the remarks preceding Theorem 2 it follows 
that x( t )  >/32 for t ~ R+. Thus, lim inf,_~o~ x( t )  >1/32>/3. 

�9 (iii) The method of construction of an extinction threshold has been indicated 
in the text. 

(iv) The proof  is by contradiction; suppose x = x( t )  is a solution of (1) that 
satisfies lira i n f t ~  x( t )  >/3. From Eq. (1) it follows that 

fo  {~(') 
f( /3)(x)(t)  = (r)(t) - t -1 z(x('r)) d r -  t -1 du/g(u)  (2) 

,Ix(O) 

where z ( x )=  x [ f ( x ) - f ( / 3 ) ] .  From this it follows that 

/3 < lira inf x( t )  <~ lim inf(x)(t) 
t --> o o  t --> o o  

I0 <~ f(/3)l l iminf((r)( t))  - lim inf t , ~ o  ~ z[x (~') ] d~" 
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[x(O } 
+ t-' [g(u)] - '  du 

X o 

1 t 

< ~ f ~ [ / 3 f ( / 3 ) - l i m i n f l f o z [ X ( 7 " ) ] d ' r  

ix(t) ] 
- lira inf 1 1 

t-~ t J x(o) g(u) du <~/3. 

This contradiction shows that lira inf,_,ox(t)=/3. 
(v) First, we observe that if a function q satisfies q(t)~> 7 for t i> to> 0 and 

lim inf,_~(q)(t) =3'  then l i m , ~ ( q ) ( t ) =  3'. It is an immediate consequence of 
L'HSpital 's rule that lim inf,_,ooq(t) = 31. Since lim inft~oo(q)(t) = lim inft_~oq(t) = 
3/, Lemma 2 of Hallam and Ma (1986) establishes that lim sup~_,oo(q)(t)= 3'; 
hence, lim,_,oo(q)(t) = 3', 

Turning now to the first proposition in (v), we employ the above observation 
to determine that lim inf,_,oo(G(t,/3)) > 0. This follows because if 
lira inf,_~oo(G(.,/3))(t) = 0, it also follows that lira supt-,~o(G(',/3))(t) =0.  From 
(2) and lim inf,_,~(G(t,/3)} > 0 the inequality 

t i f  x du +lfot  og(-~+f(/3)(x)(t)  z(x(z))  d~'>/3f(/3) + ~, t~> to, (3) 

may be obtained for some to > 0 and some ~ > 0. 
Assume, for purpose of contradiction, that l imsup~_~x( t )= /3  and, con- 

sequently, lim,_~ x(t)  - /3 .  Choose tl, tl > to, such that for t/> tl, 

i f  ix(t) t -1 z (x (r ) )d~ '<6/3  and t -1 du /g (u )<8 /3 .  
�9 J X o 

From (3) it follows that 

/3 f ( f l )+6<~+f( /3)(x}( t )+~,  t ~ t l  

or, (x)(t) >/3 + 6/(3f(/3)). This is a contradiction, since lim~_.o~(x)(t) =/3, which 
establishes lira sup,_,~x(t) >/3. 

To show that lim inf,.oo(x)(t)>/3, we utilize (2) to obtain the equality 

I 
x(t) 

(xf(x))(t)  = (r)(t) - t -1 [g(U)]  -1 du. 
x o 

The assumption lira sup, .oo(G( . , /3) ) (0  > 0 implies that lim inf,_,~(G(., /3))(t)  > 
0; that is, lim inft_,~(r)(t)>/3f(/3) (Hallam and Ma (1986)). Because (xf(x))(t)<<- 
H((x)(t)), 

I 
x(t) 

l iminfH((x)( t ) )>~l iminf[(r) ( t )_t  1 [g(u)]  -1 du 

I 
x(t) 

~> lira inf(r)(t) - lim sup [g(u)]-I du 
t - ~ o o  t --~ o o  ~ x 0  

>/3f(/3). 
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T h i s  i m p l i e s  t h a t  l i m  supt_,o~(x)(t)>fl. T h e  o b s e r v a t i o n  in  t h e  p r o o f  o f  (v) ,  

p a r a g r a p h  o n e ,  a b o v e  s h o w s  t h a t  l i m  inft_,o~(x)(t)> ft. 
(v i )  I t  h a s  b e e n  r e m a r k e d  t h a t  x(t) > / 3  f o r  a l l  t i> 0 p r o v i d e d  x ( 0 )  > / 3 ;  h e n c e  

( x ) ( t ) > / 3 .  F r o m  (2) i t  f o l l o w s  t h a t  

l i m  i n f ( x ) ( t )  ~</3 
t - > c o  

w h i c h  i m p l i e s  t h a t  l i m  inft~oo(X)(t)=ft. U s i n g  t h e  o b s e r v a t i o n  in  (v)  s h o w s  t h a t  

lim,_~oo(x)(t) = ft. 
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