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Abstract. Given a general balance statement we derive an expression for the associated crack tip flux integral. The 
conditions under which the integral is physically meaningful and yields a non-trivial result are outlined. To illus- 
trate the approach a number of well known integrals in use in fracture mechanics are derived. It is demonstrated 
that complementary analogues to these integrals can be derived in a similar fashion and a result indicating the 
equality of dual integrals under quite general conditions is presented. We discuss the domain integral method as 
an alternative means of representing crack tip integrals and we show that the method may be interpreted as a par- 
ticular form of Signorini's theorem of stress means. A discussion of some associated integral identities is presented. 

1. Introduction 

In this paper we present a perspective on crack tip integrals from the point of view that these 
integrals can be simply derived from appropriate balance laws. The approach has its origin 
in a crack tip integral expression for the elastodynamic energy release rate proposed by 
Atkinson and Eshelby [1] and independently derived from the field equations by Kostrov and 
Nikitin [2] and Freund [3]. It has since been recognized that the result is also valid for general 
material response [4, 5]. We build upon the approach taken by Nakamura et al. [5] to obtain 
some general results. 

We begin with a general balance statement and derive an expression for the associated 
crack tip flux integral in Section 2. Then we examine the conditions under which this integral 
is physically significant (namely path-independent in the crack tip region) and yields a 
non-trivial result. In Section 3, the general result is specialized to particular balance laws and 
a number of crack tip integrals currently used in fracture analysis are derived. No a priori 
restrictions on material response and crack tip motion are required in the derivations. To 
illustrate the approach, the fundamental crack tip energy flux and energy release rate 
integrals are derived in this manner for both total and mechanical energy balance statements. 
We then derive a general dissipation integral from a variational form of momentum balance 
and show that it reduces to the C(t) integral (e.g., Bassani and McClintock [6]) for power 
law creeping solids. Also crack tip integrals for conduction/diffusion problems are discussed. 

In Section 4, we illustrate that the complementary counterparts of the above mentioned 
crack tip integrals can be derived using the same approach. For nonlinear elastic response, 
Bui [7] has shown that the energy and complementary energy release rates are equal. We 
establish in a direct manner that Bui's observation is valid for quite general material response 
and for all dual crack tip integrals under discussion. The implication is that no new 
information can be extracted from complementary integrals which is not already provided 
by their counterparts. However, in certain circumstances, the pair of  integrals, referred to as 
dual integrals, may be employed to obtain a bound for the crack tip parameter. 
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In Section 5, we show that Signorini's theorem of stress means may be used in conjunction 
with a general momentum/flux tensor to yield integral identities from which a number of 
useful results may be extracted. The numerical evaluation of  crack tip contour integrals 
poses a fundamental problem. The limiting contour (shrunk onto the crack tip) cannot be 
defined due to the finite spatial discretization. In addition it is precisely near the crack tip 
that the field quantities are least accurate. Domain integral methods have been introduced 
to circumvent this difficulty. We show that the domain integral representation of  crack tip 
integrals is a particular application of  the general result based on Signorini's theorem and 
some associated integral identities are discussed. 

2. Balance l a w - c r a c k  tip integral 

We consider a general balance statement and derive an expression for the associated crack 
tip flux integral. The development closely follows that of  Nakamura et al. [5] who derived 
an expression for the crack tip energy flux, valid for arbitrary material response and crack 
tip motion. In the following section we will extract a number of useful integrals from the 
general result. The general balance statement is written as 

+j,j = (2.1) 

A comma ( , )  denotes a partial derivative with respect to a spatial coordinate and a 
superposed dot (") denotes the material time derivative. We will see later that appropriate 
choice of the field quantities @ and ~ leads to some useful results in fracture mechanics. 
Integrating the expression (2.1) over an arbitrary volume V and applying the divergence and 
transport theorems yields* 

d 
fev @mj dS = ~ f v ~  dV - ;~v Ovjrn~ dS, (2.2) 

where rnj is the outward unit normal to the surface ~3 V and vi is the instantaneous velocity 
of ~3 V. We now specialize this result to the case of crack propagation and, for purposes of  
clarity, focus our attention on the planar crack problem. 

Consider a two-dimensional body with an extending crack oriented along the x 1 axis of 
a rectangular Cartesian coordinate system (see Fig. 1). The cracked body lies in the Xl-X 2 
plane with the crack plane given by x2 = 0. The crack extends in its own plane along the 
x~ axis with instantaneous speed v. We isolate the vanishing small crack tip region with a 
Small contour F which is fixed in size and orientation with respect to the crack tip and is 
translating with the crack tip at speed v. At a given instant, the area bounded by the fixed 
material curve Co and the translating curve F is denoted by A(t) and is free of singularities. 
If ~b2 does not vanish on the crack faces the contour Co is taken to include the crack faces. 

* We have assumed that the fields are sufficiently smooth so that the divergence and transport theorems may be 
applied. In particular the fields must be free of shock-like discontinuities which can develop in wave and dynamic 
crack propagation problems. 
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Fig. 1. Crack  tip convent ions .  D o m a i n  A is enclosed by F, C+, C , and  C 0. Uni t  no rma l  mj = nJ on c + ,  c 
and  C O , a n d m /  = - n / o n F .  

The expression (2.2) thus becomes 

d 
/c 4)jn/dC - dt fA 0 dA -- fr (4)/ + Ov6v)mj dr .  (2.3) 

It is noted that the only non-vanishing velocity on the boundary of A(t) of consequence in 
(2.3) is v~ = v on F. Often 0 will be a physically significant quantity such as energy. The term 
on the left-hand side of  (2.3) is then the rate at which energy is being input into the body; 
the first term on the right hand side is the rate of increase of  internal energy and consequently 
the last term is the instantaneous rate at which energy is being lost from the body due to flux 
through F. We denote this quantity as F and write, for nj = - r n / o n  F, 

F(F) = fr (4)J + OvSv)nJ dF. (2.4) 

There are two contributions to this flux integral. The first term represents the usual contribu- 
tion from the flux vector 4)j and if F were a material curve this would be the only contribu- 
tion. The second term represents the contribution due to the flux of the material across F. 
The limiting value of F(F)/v as the contour F is shrunk onto the crack tip, is defined by 
and will be loosely referred to as the crack extension force. The precise interpretation will 
be made in the context of  the actual application. (One subsequent identification of ~ will be 
the energy release rate.) For this concept to have physical significance, the limiting value, ~, 
must be independent of  the actual shape of F in the limit F ~ 0. In other words, the value 
of ~ must be path-independent in the limit F ---, 0 (i.e., in the crack tip region). We now 
consider conditions under which ~ is non-vanishing and path independent in the limiting 
sense described. 

2.1. Conditions for local path-independence 

Consider the closed path formed by two crack tip contours F 1 and F2 and the crack face 
segments which connect the ends of the two contours. We assume, for simplicity, that 4)2 = 0 
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on the crack faces. Application of the divergence theorem to the closed contour integral and 
using (2.1) yields 

F(F2) - f ( r , )  = f~,2 (q~J + vO61s),j dA = fA~2 ((/ + vtp,,) dA (2.5) 

where A12 is the area enclosed by the contour. If the integrand in (2.5) is o(1/r2) * then 
F(F2) - F(F1) = 0 as F~, F2 --+ 0 and the path-independence of F in the crack tip region 
(F -+ 0 +) is established. This condition is indeed satisfied if any field quan t i ty f  satisfies the 
following relation 

f +  v f l  = o ( f l )  a s r - - + 0  + (2.6) 

where r is the radial distance from the moving crack tip. Condition (2.6) can be interpreted 
as a condition for locally steady state behaviour. (Indeed many known solutions for growing 
cracks in elastic and inelastic solids confirm such steady conditions are approached asymp- 
totically at the crack tip.) In particular, if ~ satisfies (2.6) then for ~ of order 1/r we have 

+ v~, 1 = o(1/r 2) as r --+ 0 + (2.7) 

and path-independence in the crack tip region is assured. The condition (2.7) may also be 
viewed as an integrability condition. Given local path-independence, it follows on choosing 
F to be a circular contour, that (2.4) yields a finite value of F if the integrand of (2.4) is of 
order l/r, i.e., 

((o i + Ovglj) "~ Aj(O)/r + o(1/r), as r ~ 0 + (2.8) 

for some Aj (0). 
We reiterate that for field variables, ~0 and qS/, satisfying a balance law of the form (2.1) 

and for which the local conditions (2.6) and (2.8) hold, the integral given by (2.4) is 
path-independent within the local crack tip region. A special result which has important 
applications is easily extracted from the general derivation. We note that ( f  + vf~) is the 
time derivative o f f  with respect to a coordinate system which translates with the propagating 
crack and is zero for a steady state problem. Thus the right-hand side of (2.7) vanishes 
identically under steady state crack propagation conditions and (2.4) provides a globally 
path-independent integral for this class of problems for any material response. 

With the understanding that the limiting value of the flux F(F), denoted by Y,  is 
independent of the shape of the contour F as it is shrunk onto the crack tip, we write 

o~ = lim fr ((as + vO61s)ni dF.  (2.9) 
F ~ 0  

We will call ~- the general crack tip flux integral and we will show that the identification of 
qSj and 4' with relevant field quantities will lead directly to explicit representations for crack 

* We assume that  the crack tip fields can be writ ten in separable form i.e., f ~ B(O)r ~ + o(r ~) for some field 
quanti ty f and fur thermore  that  the derivative o f  f with respect to r is o f  order  r =-~. 
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tip integrals. For convenience we introduce a general tensor Hkj, with xl component Hlj. A 
general representation for the crack extension force, ~, is written as 

/ ,  

- - lim J | H1jn / dF (2.10) 
73 F~O F 

where it follows from (2.9) that H~j is defined by the asymptotic relation 

Hli "-. ((~j + vO6li)/v as r ~ 0 + . (2.11) 

The above relation is not written as an equality since the local steady state condition (2.6) 
will necessarily be invoked in defining H~j. Assuming that the field quantities defining Hlj are 
sufficiently smooth, and noting (2.1) and the asymptotic conditions (2.7) and (2.11), the 
conditions for N to be finite (but non-vanishing) and locally path-independent can be 
restated as 

Hlj ~ Aj(O)/r + o(1/r) and Hlj, j = o(1/r 2) as r ~ 0 +. (2.12) 

2.2. Extension to three-dimensional crack front 

Consider a crack front defined in rectangular coordinates by ~k(s, t), at any time t where 
s is the arclength measured from some arbitrary point. The crack velocity is denoted by 
~k(s, t) = v(s, t)Vk(S, t) where v(s, t) is the crack speed and vk(s, t) is the direction of crack 
propagation. Now consider the tubular surface S, enclosing the crack edge and moving with 
it. This surface may be defined as follows. In the plane, normal to the crack front at s 
define a small crack tip contour F, which begins on one side of the crack and ends on the 
other (Fig. 2(a)). The tubular surface S, is then specified by the condition that its intersection 
with the plane normal to the crack front is given by the same contour F(s) for all time, t (see 
also Fig. 2(c)). The flux through St is given by 

F = lim fs, (@ + O~J)nJ dS ( 2 . 1 3 )  

where the limiting process consists of shrinking the tube radius to zero. We note that the local 
steady state condition (2.6) is now given as 

f + f j ~ j  = o ( f j ~ j )  a s r  ~ 0 + (2.14) 

where r is the radial distance from the crack, in the plane normal to the crack front. Now 
in analogy to (2.11) define Hkj as 

Hkjv~ ~ ((bj + Ik~j)/v(s) as r ~ 0 +. (2.15) 

The conditions (2.12) for local path-independence now refer to the contour integral F(s) 
taken in the plane locally perpendicular to the crack front. For a length L of the crack front, 
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(a) (b) crack front 
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Fig. 2. (a) Conventions at curvi l inear crack front. (b) Vi r tual  crack advance between s,, and s h. (c) Inner tubu|ar 
surface S t and outer arbi t rary material surface S~. 

we wri te 

and the pointwise crack extension force ~(s) is given by ~(s) = vkGk [8] where 

= lim I~ H~jnj dF (2.17) Gx 
F ~ 0  j l  

is the vector form of the integral (2.10) (see [9, 10] for the case of energy release rates). If  the 
crack advance is written as lk = 2(s)vk(s) (Fig. 2(b)) then the crack extension force (defined 
above as the projection of Gk in the direction of crack advance) is given by 

~f(s) = lim fr v~(s)HkjnJ dF. (2.18) 
F ~ 0  

An approximate expression for N(s) may be obtained as follows [8, 11]. Introduce 

= fL ds 
(2.19) 

= o~,f° l eH~,nj dS. 
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Now assume that fg(s) is approximately constant over some region of the crack front 
sa < s < sb. Perturb the crack front an amount lk = 2(s)vk(s)  in this interval, where 2 = 0 
outside of the interval. Then, using (2.18) and (2.19), we obtain 

A more accurate procedure for evaluating the pointwise value fg(s) along a three-dimensional 
crack front is discussed by Li et al. [12] and Shih et al. [13] in the context of energy release 
rate calculations using finite elements. This approach is based on the domain integral 
representation of the contour or surface integral. We discuss the domain integral method in 
Section 5. In the following section we will present results for the planar case (2.10). 

3. Example integrals 

When q~j and q~ are appropriately identified a number of crack tip integrals, in current use 
in fracture analysis, can be extracted from the general approach of the previous section. To 
illustrate the general approach we derive the crack tip energy flux and associated energy 
release rate integrals and comment on some specializations of these results. Using a similar 
approach we derive an integral expression which reduces to the C( t )  integral for power law 
creeping solids. Crack tip integrals for conduction/diffusion problems may be derived using 
the general approach outlined above. We illustrate with an application to heat conduction 
in a cracked body. 

To facilitate interpretation of these integrals, it is useful to comment briefly on conser- 
vation integrals. For reversible processes, the thermomechanical response of a continuum is 
determined by the free energy. A prototype for this class of response is the elastic solid. 
Under isothermal or adiabatic conditions, a strain energy function, W, may be defined, and 
the stress is given by 

0 (3.1) 

and the Eshelby-Rice elastic energy-momentum tensor is written [14] 

Pkj = W6k; - aijui, k. (3.2) 

For inherently dissipative systems, the free energy alone is insufficient to describe the 
response of the continuum. In this case the dissipation function qb supplements the free 
energy. We refer to a process as purely dissipative if the thermomechanical response is 
determined solely by the dissipation function. A prototype for this class of response is the 
viscous fluid, where q~ depends only on the rate of deformation ~ij, i.e. qb(~t) = aijgij. Here, 
the thermodynamic force associated with the flux ~j is proportional to the stress tensor, e.g., 
for a power law viscous material 

aij = 2 c3~(~k') (3.3) 
O~ij 
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where 2 = n/(n + 1). In this case we can define a dissipation tensor analogous to the 
energy-momentum tensor (3.2) (see Kachanov [15] for example) 

Pk/ = 2 ~ 6 k / -  aqil:.k. (3.4) 

The conservation law associated with the above energy momentum and dissipation tensors 
follows from 

0 
Ox~ Pk/ = 0 

and is written as 

: s P k j n / d S  = 0 (3.5) 

where S is a closed surface, not enclosing any singularities or inhomogeneities. In crack 
problems the energy momentum tensor, (3.2), yields the energy release rate integral, while the 
dissipative counterpart, (3.4), yields the increase in dissipation per unit crack advance [15]. 

3.1. Crack tip energy f l ux  - J-integral 

We restrict our attention to small strains and the strain displacement relation takes the usual 
form ei j=  (u: / + u/i)/2- In the absence of  body forces the equation of motion (or balance 
of linear momentum) is written as 

a/:,: = Pfii (3.6) 

where ¢ is the mass density, aq = a:: is the Cauchy stress and a superposed dot denotes the 
(material) time derivative. We take the inner product of  (3.6) with the velocity field, hi, and 
rearrange the resulting expression to give 

(~/: u:) : = PUi hi + <~/:hi,: 

= (/2 + w )  
(3.7) 

where W = ~' aqdq dt is the stress work density and L = ~' p~iti: dt is the kinetic energy 
density. Equation (3.7) is a differential form of mechanical energy balance, valid for 
any material response. Referring to (2.1) we make the identifications q~/ = aqu: and 

= (W + L). The mechanical energy flux to the crack tip is given by (2.9) as 

= lim fv [(W + L)v61/ -I- ~Tiihi]fl/dF. (3.8) 
I ' ~ 0  " " 

Using (2.10), the energy release rate expression is obtained by invoking the steady state 
condition ui ~ - vui: ,  giving 

= lira fv [(W + L ) g ) l j  - -  aqui, a]n/dF. (3.9) 
F r O  
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The result in (3.9) was proposed by Atkinson and Eshelby [1] and subsequently derived by 
Kostrov and Nikitin [2] and Freund [3] for elastic solids. The generalization to arbitrary 
material response was discussed by Willis [4] and by Nakamura et al. [5]. Various special- 
izations of (3.9) are discussed in [5]. In particular it is shown that for a stationary crack in 
a homogeneous nonlinear elastic material (3.4) reduces to Rice's path-independent J-integral 
[16, 17] and Hi: can be interpreted as the x, component of Eshelby's energy-momentum 
tensor [14] (see also (3.2)). A J-based phenomenological approach to the initiation of crack 
growth and subsequent quasi-static crack growth in elastic-plastic solids has been reviewed 
by Hutchinson in [18]. 

The total energy flux/release rate integral is obtained on using total energy balance instead 
of mechanical balance in the derivation above, i.e., 

( a : : ~ -  h:)/ = 0 +  /~ (3.10) 

where hj is the heat flux vector and U is the internal energy per unit volume. We make the 
identifications q~j = ag: i 6 - h: and ~p = U + L and from (2.10) we obtain 

= lim fF [(U + L)fi,/ - (a:/ui,~ + h//v)]n: dF. (3.11) 
F ~ 0  . . . .  

The above expression for the energy release rate was given in [2] and was further discussed 
in the review articles [4, 19]. For a discussion of thermodynamics of crack growth and the 
role of the total energy flux to the crack tip see [4, 20, 21]. 

3.2. Dissipation integral for inelastic response 

The energy integrals (3.8) and (3.9) above and integral results derived from these by 
appropriate restriction on crack tip motion and material response, have led to many 
important and useful results in fracture mechanics. Among these are results on the form of 
crack tip singularities and the strength of singular fields in elastic, elastic-plastic and 
sufficiently rate sensitive inelastic solids. These successful applications have a common 
feature, namely the behaviour at the crack tip is dominated by the instantaneous response 
of the material. In problems where the form of the crack tip fields is influenced by the 
material rate sensitivity these integrals do not appear to be adequate. For inherently 
dissipative systems, where the near tip fields are influenced by the dissipative behaviour, we 
consider a dissipation integral in which the tensor Hkj involves an additional time derivative. 
The C(t) and C* integrals which have applications to viscoplastic solids including power law 
creeping solids, follow immediately from the general result which is derived below. 

For convenience we denote the velocity field as vi. Taking the inner product of the 
equation of motion with 75i and rearranging the resulting expression, a differential relation 
of the form (2.1) is again obtained, where now we identify 4~: = a~jT)~ and ~ = I~ + /2, with 

= ~k: a: /d~/and/~  = ~r p~¢~: dt. The expression (2.9) yields 

= lim fr [(ffz + L)v6,/ + aijiJi]n: dF. (3.12) 
F ~ 0  

where we have used the symbol ~ (instead of ~ )  to denote the crack tip flux. Employing the 
steady state condition (2.6) for the time derivative of the velocity field we write (2.10) as 



304 B. Moran and C.F. Shih 

(using the symbol cg instead of (~) 

= lim ;r [ ( ~  + L ) ~ I /  - -  ~ijvi, l)]nj dF. (3.13) 
F~0 

We now show that the C(t) integral for power law creep can be formally derived from the 
crack tip integral expression (3.13). The integral (3.13) may be appropriate for an elastic- 
viscoplastic material where the natural time of the material response has a role in determin- 
ing the nature of the crack tip fields. It is well known that for a material deforming according 
to an elastic-power law creep relation (e.g., Riedel and Rice, [22]), the creep strain rate 
necessarily dominates at the tip of a stationary crack when the power law exponent n is 
greater than unity. Under this condition 

"" and I ~  W* - n ., 0+ (3.14) ~: qi n + 1 °-i: el: as r 

where W* is the creep potential, and a superscript c denotes the creep part of a quantity. 
Note that W* is n/(n + 1) times the dissipation per unit volume. In this sense we refer to 
(3.12) and (3.13) as dissipation integrals. In the absence of inertial terms and noting the result 
(3.14), the integral in (3.13) reduces to the C(t) integral for power law creeping solids which, 
using (3.14), is written as 

V~O ~ (Tikg'ik(~l/ - -  (Ti/£1i 1 l~j d F .  (3.15) 

It may be noted that the first term in the above integral is the creep potential only when (3.14) 
holds. 

The above integral was employed by Bassani and McClintock [6] to investigate the creep 
relaxation of crack tip stresses in an elastic-nonlinear viscous solid subject to a (quasi-static) 
step loading at t = 0. Under steady state conditions, t ~ o% the creep potential W* is 
applicable everywhere and it follows that (3.15) is independent of the contour path (see also 
(3.4)). The steady-state or long-time value of  C(t) has been denoted as C* and is the creep 
analogue of the path-independent J-integral [22 24]. In the cited references, C and C* are 
interpreted as the amplitude of the HRR-type  singularity fields. In other words the role of 
C and C* in creep crack growth is analogous to the role of J as the characterizing parameter 
for crack initiation and limited amounts of growth in an elastic-plastic solid. Riedel [25] has 
reviewed the use of K and C* parameters for correlating creep crack growth rates under 
small scale and extensive creep. 

3.3. Conduction~diffusion problems 

Crack tip integrals for a class of conduction/diffusion problems can be readily derived using 
the general approach. To illustrate, consider the case of heat conduction in a body with an 
insulated crack or strip. The governing equation is 

-h/,: = c,~ (3.16) 
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where h: is the heat flux vector, 0 is the absolute temperature and c is the specific 
heat. Multiplying (3.16) by ,9 and following the usual steps, we make the identifications 
O~ = -h :O , :  and ~ = • + 5~, where W --- - ~  hjO: dt and ~ = ~' d),9 dt. It follows 
from (2.9) that the associated crack tip integral can be written 

= lim fr [(~ + 05¢)v6~/ - h:Oln: dF. (3.17) 
F ~ 0  

Using the steady state relation (2.6), write ~) = - v O z  and (2.10) yields 

W = lim fr [(tp + ~)~ l j  -~- hj~ l]n j  dF (3.18) 
F ~ 0  

where we have used E = ~ / v .  For steady heat conduction 5¢ = 0. Assume heat conduction 
is governed by Fourier 's  Law, i.e., hj = - ~c0,j where ~c is the conductivity. In this case tI' is 
a potential for the heat flux vector, i.e., h: = - 0 ~ / 0 ~ . : .  I f  in addition, the material is 
homogeneous in the x~ direction it follows that (3.18) is globally path-independent.  

The case of  electric current conduction in a cracked body can be treated in an analogous 
fashion. In this case we replace h~ by the electric current vector and 0 by the electrostatic 
potential. For  ~ = 0 (steady current flow) and with tp as defined above, (3.18) corresponds 
to the j~*-integral derived by Saka and Ab6 [26]. 

4. Complementary  integrals 

Complementary integrals for arbitrary constitutive response have been discussed by Carlsson 
[27] who restricted attention to steady state formulations. Under the assumption of  nonlinear 
elastic material response, Bui [7] has shown that the energy release rate and complementary 
energy release rate are equal. In this section we illustrate how the complementary counter- 
parts of  the integrals in the previous section can be derived from the general balance 
approach. In the following subsection we demonstrate that Bui's observation holds under 
quite general conditions. 

We take the inner product  of  the rate form of momentum balance with the displace- 
ment field ui and write the resulting expression in the form (2.1) with ~b/ -- 6-ijui and 

= (W c + L c) where W C = a~/e~/ - W a n d  L c = Oi;~ui -- L are the complementary stress 
work and kinetic energy densities respectively. The associated crack tip integrals are derived 
following the procedure in Section 2. In particular (2.10) yields the complementary energy 
release rate integral 

N~' - lim fv [(We q- LC)c~lJ - aiJ, lui]n/dF (4.1) 
V~0 

where we have used the local steady state condition (2.6) for the material time derivative of  
the stress field, i.e. ~:: ~ -va~:, l  as r ~ 0 + . A minus sign has been introduced into the 
definition of  Nc for convenience. We refer to the energy release rate integral (3.9) and its 
complementary counterpart  (4.1) as dual  integrals. 

Similarly we introduce the enthalpy per unit volume, H = U - a~/ei:, into the total 
energy balance relation (3.10) and rearrange the resulting expression to obtain the form (2.1) 
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with qS/ = 6-i:u~ + h: and ~, = (L ~ - H) .  Following the usual procedure,  the associated 
crack tip integrals are given by (2.9) and (2.10). The latter is written 

~' - lim;v[(U-H)~l/-a~/,'u:+~ln/dFv~o (4.2) 

where U = O0:u, - L is a complementary kinetic energy distribution. A minus sign has 
again been introduced into the definition. The integral (4.2) is the complementary total 
energy release rate. 

To derive the complementary counterpart  of  (3.13) we take the inner product  of  the rate 
form of momentum balance with the velocity field v~. The appropriate  identifications are 
~b: = 6-!/v:and ~ = (ff/~ + /~0 where IY ~'= r;~:~j - W'andF,  ~ = OOivi- L. The resulting 
integrals are obtained from (2.9) and (2.10) in the usual manner  and we write 

~" = - lim fr [ ( l ~  + / ~ ) 6 1 :  - ai/,~v~]n/dF. ( 4 . 3 )  
V ~ 0  

Again, a minus sign has been introduced. We note that an identical argument to the one 
made in Section 3 leads to the complementary  form of  the creep integral. Here, for creep 
dominated response, ~ "  '" %sv/(n + 1) and in the absence of  inertia terms we obtain 

L' 1 C"(t) = - limv~0 ;r ~ a'~S~kfiV -- O'i:lZ):, n /dF .  (4.4) 

Taking the rate form of  (3.16) and multiplying by 0 we obtain the following expression 
for the complementary integral E t 

4*' - lim fr [(~" + ~ c ) f i l /  + h/lO]n: dF. (4.5) 

where ~ = - ~'/z:O: dt and L~ ~ = ~' c'O0 dt. The above integral can be specialized to 
steady state heat conduct ion governed by Fourier 's  Law in an analogous fashion to the 
treatment of  the expression (3.18). Similarly h / can  be identified with the electric current 
vector and 0 with the electrostatic potential as outlined in the previous section, and (4.5) 
represents the je integral for electric current conduct ion [28]. 

4.1. Equality of dual integrals" 

We now demonstrate  the equality of  the dual integrals considered above. First consider the 
energy release rate integral (3.9) and its complementary counterpart  (4.1). We write the 
difference between these dual integrals as 

I = N - N~ = l ira ~r [(ai/sJJ + oii~u:)nl - ( ( y i i U i ) l H j ]  d F .  ( 4 . 6 )  
F ~ 0  . . . .  

Using the equation of  mot ion as well as symmetry of  a~/we rearrange (4.6) as 

I = lim iv [(G/ui)/nl - (~i/u:)ln)] dF. 
F ~ 0  . . . .  

(4.7) 



Let t ing~  = ¢Tijui, (4.7) can be written as 
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I = l i m f  [ ( V ' f ) n  1 - n ' f , 1 ] d F .  (4.8) 
F ~ O  F 

The above result (4.8) is also obtained on subtracting the complementary total energy 
integral (4.2) from the total energy integral (3.11). The difference between the rate integrals 
(4.3) and (3.13) has exactly the same form upon setting fj = aij ~i while for the conduction/  
diffusion integrals, (4.5) and (3.18), we t ake~  = - h i 0. A finite value of  the crack tip integral 
is obtained if the integrand is order 1/r. We note that the integrand of  (4.8) is divergence free 
and therefore I is globally path-independent.  However  we will illustrate that I is identically 
zero under quite general conditions thus demonstrating the equality of  the dual integrals. 

We write f in the form 

f = fret + foeo (4.9) 

where r is the radial distance from the crack tip and 0 is the angular coordinate measured 
from the x~-axis, and take F to be a circular contour  of  radius r with outward unit normal 
n = er. Not ing that 

~3 0 sin 0 ~? 
- cos 0 

~?x~ 0r r •0 

we can write (4.8) as 

I : f~_~ [(fr sin 0)' + (fo cos 0)' l dO 

= f sin Ol~ - fo cos Ol~ 

(4.10) 

where a prime denotes differentiation with respect to 0. F rom (4.10) we have the result I = 0 
iffr(+_ ~Z) is bounded andf0(rc) = f o ( -  tO. Indeed the result I = 0 can be expected for most 
crack problems. For  example, if the crack faces are traction free, or if the crack face loading 
is bounded we have f0(_+ re) = 0. Thus we have established, in a direct manner, the equality 
of  the dual integrals considered, under quite general conditions. The implication of  the result 
is that no new information can be extracted from the complementary integrals that is not  
already given by the more standard integrals. Nevertheless for certain problems and 
formulations, it may be more convenient to use the complementary integral. As noted in [7], 
when a variational principle exists dual integrals may be employed in conjunction with 
approximate and numerical field solutions to provide approximate bounds for the crack tip 
parameter. 

5. Domain integral representation 

The path integral (2.10) may be equivalently expressed in terms of  an integral over a finite 
area of  the solid. Similarly the surface integral in (2.20) can be expressed in terms of  an 
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equivalent volume integral. We refer to these alternative representations as domain integrals. 
We will show that the domain integral representation is a particular application of Signorini's 
theorem of stress means (see Truesdell [29], for example). The integral identities generated 
by this approach may be useful from both an analytical and a computational point of view. 
We will return to these aspects after the derivation, below. 

Consider the identity 

(Hk/qi),j = H k i q i ,  i --l-- Hkj, jq, (5.1) 

where q~ is an arbitrary, sufficiently smooth function defined over some portion V of the 
volume. Contracting on the indices i and k we obtain 

(Hkjqk),j = Hkjqk,.j + Hk/dqk. (5.2) 

Integrating (5.2) over the volume V and using the Divergence Theorem we obtain 

is Hk./qknj dS = fv (HkJ qk,.j + bkqk) dV  (5.3) 

where we have written, Hkj, j = bk.* Various identities can be derived from (5.3) by appro- 
priate choice of the function qk. This approach has been utilized in computational fracture 
mechanics where (5.3) forms the basis for an efficient and accurate means of calculating 
energy release rates [12, 13]. We discuss this aspect below. 

The evaluation of crack tip contour integrals in numerical studies is a potential source of 
inaccuracy. The limiting contour integral (F ~ 0) can only be approximately defined due to 
the finite nature of the spatial discretization. In addition it is precisely in the crack tip region 
that the field quantities are least accurate. The result (5.3) may be used to represent path or 
surface integrals in domain form which is ideally suited for efficient and accurate evaluation 
of the crack tip quantity. To illustrate we consider the form (2.20), in which any of the 
integrals above may be expressed. We take S to consist of the tubular surface S, surrounding 
the crack and a remote fixed material surface So as depicted in Fig. 2(c). For simplicity we 
ignore crack face contributions. Now choose qk = lk on S,, q~ ---- 0 on So and varying 
arbitrarily but smoothly in the enclosed volume V. Referring to (2.19) and (2.20), and using 
(5.3), it follows that 

- fv (HkJqkO + bkqk) d V  (5.4) 

with 

N(s) = cS/f 2(s) ds. (5.5) 

This approach was first adopted by Li et al. [12] and in the work of Shih et al. [13] some 
further developments were presented. As indicated in the above mentioned works the 
domain integral method is a suitable means of extending the virtual crack extension method 

t If we regard this last expression as a partial differential equation then (5.3) is its weak or variational form, and 
the steps above can be regarded as a virtual work type argument. 
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(VCE) (for example, see Parks [11]) to arbitrary crack tip motion and material response. 
Previous treatments were in connection with the calculation of energy release rates. The 
treatment here outlines the approach for arbitrary integrals stemming from quite general 
balance laws. 

Integral identities, derivable from (5.1) and (5.2), have recently been discussed by Hill [30] 
in the context of finite elastostatics where Hkj is the energy momentum tensor. Here we are 
interested in a general momentum or flux tensor Hkj. For example if we choose qi = xi 
in (5.1), where xi is the position vector of a material particle, and integrate over the volume 
V, we readily obtain the following expression for the mean value of Hki throughout the 
domain, i.e., 

IYIki - V fs xiHkjnJ dS - fv xib, k d . (5.6) 

It is noted in [30] that for the case of energy release rates, the term 

fv bkqk dV  = fs Hkjqkn/dS - fv (Hkjqk,j) dV (5.7) 

may be interpreted as the energy released due to the arbitrary variation of the distributed 
heterogeneities in the volume V. For the general case being considered here, this term may 
be regarded as the energy released due to arbitrary variation of the non-conserved contri- 
bution bk, or alternatively the energy dissipated in the volume. 

6. Conclusions 

The fundamental crack tip energy flux integral was derived by Kostrov and Nikitin [2] and 
Freund [3]. Nakamura et al. [5] extended the derivation to arbitrary material response. An 
extension of  these earlier works has been presented in this paper. Given a fundamental 
balance law, an expression for the associated crack tip flux integral is derived. The conditions 
for which a physically meaningful result is obtained are examined. A number of crack tip 
integrals in current use in fracture mechanics are derived to illustrate our point of view that 
crack tip integrals follow directly from the fundamental balance laws. Complementary 
integrals can be derived in an analogous fashion. Bui [7], showed that for elastic solids the 
complementary energy release rate and energy release rate integrals are equal. We have 
shown that complementary integrals are equal to their counterparts under quite general 
conditions and thus provide no new information in themselves. 

The crack tip integrals presented here form the basis for the derivation of appropriate 
crack tip integrals for various material response and crack tip motion. These aspects have 
been dealt with more thoroughly elsewhere (see Nakamura et al. [5] and Shih et al. [13] for 
example). In the general case only local path independence holds (i.e., in the crack tip region 
r ~ 0+). The evaluation of the contour integrals (3.9) and (3.15) for example presents a 
fundamental problem in numerical application since it is precisely in the crack tip region that 
the field solutions are less accurate. Finite domain integral representations have been 
introduced to circumvent this problem. This approach has been presented in detail by Li 
et al. [12] and Shih et al. [13]. We discuss the domain integral representation of arbitrary 
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c r a c k  t ip i n t e g r a l s  in  the  c o n t e x t  o f  S i g n o r i n i ' s  t h e o r e m  o f  s t ress  m e a n s  a n d  we s h o w  h o w  

s o m e  a s s o c i a t e d  i n t e g r a l  i den t i t i e s  m a y  be  de r ived .  T h e  a p p l i c a t i o n  o f  c r a c k  t ip  i n t e g r a l s  to 

f r a c t u r e  m e c h a n i c s  p r o b l e m s  a n d  f u r t h e r  de ta i l s  o f  the  d o m a i n  i n t e g r a l  r e p r e s e n t a t i o n  h a v e  

b e e n  g i v e n  b y  M o r a n  a n d  Sh ih  [31]. 
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R6sum~. Une expression pour l'int6grale de flux 5, l'extr6mit6 d'une fissure est obtenue sur base d'un 6tat g~n6ral 
d'6quilibre. On souligne les conditions pour lesquelles l'int6grale a un sens physique et ne m6ne pas fi des r6sultats 
triviaux. L'approche adopt6e est illustr6e par l'6tablissement d'une s6rie d'int6grales bien connues, utilis6es en 
m6canique de rupture. On d6montre que l'on peut tirer d'une mani6re similaire des contreparties compl6mentaires 

ces int6grales et on pr6sente un r6sultat indiquant que les int6grales doubles ainsi 6tablies sont 6gales dans des 
conditions tr6s g6n~rales. On discute de la m6thode d'int6gration sur un domaine comme variante de repr6sentation 
des int6grales fi l'extr~mit6 d'une fissure et on montre que cette m~thode peut ~tre interpr~t~e comme une forme 
particuli6re du th6or6me de Signorini des contraintes m6dianes. On pr6sente enfin une discussion sur diverses 
formes d'int6grales associ6es. 


