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Summary 

A delay-integral equation, proposed by Cooke and Kaplan in [1] as a model of epidemics, is studied. 
The focus of this work is on the qualitative behavior of solutions as a certain parameter is allowed to 
vary. It is shown that ifa certain threshold is not exceeded then solutions tend to zero exponentially while 
if this threshold is exceeded, periodic solutions exist. Many features of the numerical studies in [1] are 
explained. 

1. Introduction 

In a recent paper  [1], K. L. Cooke  and J. L. Kaplan  formulate a model  to explain 
the observed periodic outbreaks of  certain infectious diseases. This was accompli-  
shed by allowing for a periodic contact  rate between infectious and susceptibles 
in the populat ion.  The equat ion obtained from their model  is 

x (t)= ~'t-~ f(s ,  x (s)) ds. (1.1) 

In (1.1), x represents the p ropor t ion  of infectious individuals in the populat ion,  
r represents the length of time an individual is infective, and f is a nonnegative 
function which is o -per iod ic  in s. 

Cooke  and Kaplan  obtained sufficient condit ions for (1.1) to have nonzero  
c~-periodic solutions and sufficient condit ions for all solutions to approach  zero 
as t ~ oo. If  f is fixed these condit ions involve the parameter  r. In the part icular  
case where 

f (t, x)=a (t) x (1 - x )  (1.2) 

with a ( t)= l + � 8 9  2re t, c o = l ,  their results indicate that  1-periodic solutions 
of (1.1) exist for ~ > 2  and that  solutions tend to zero as t - . o o  when r < ~ .  On  
the other  hand, numerical  experiments reported in [1] indicate that  for z_> 1 
solutions tend to zero for large t and for ~ > 1, 1-periodic solutions are approached  
as t becomes large. Fur thermore ,  for r > 1 the periodic solution increased with z, 
that  is, the solution corresponding to a smaller value of ~ was smaller than a 
solution for a larger value of r. 



70 H.L. Smith: 

Recent work of R. Nussbaum [10] has shown that nontrivial co-periodic so- 
lutions of (1.1) bifurcate from the trivial solution (f( t ,  0 ) -0 )  precisely when 'c 
exceeds a certain threshold value %. Regarding the right hand side of (1.1) as 
defining a mapping from the Banach space of co-periodic, continuous functions 
on R with the supremum norm into itself, % is obtained as the unique value of 'c 
for which the spectral radius of the linearization of this mapping is equal to 1. 
Estimates for 'co were obtained which give -Co= 1 for the special form of f 
mentioned above. Further, it was shown that co-periodic solutions exist for (1.1) 
whenever z >'co. The work of Nussbaum was carried out for a more general 
equation than (1.1) with the use of a global bifurcation theorem. 

Certain features of the numerical results in [1] remain without a mathematical 
explanation. It is the purpose of this note to provide such justification. In 
particular we show for a class of f ' s  which include (1.2), where a (t) need not be 
(1 +�89 sin 2 rct), that for each z s ('co, "co] where 'co > 'co depends on f and is comput- 
able, (1.1)~ has exactly one co-periodic solution, x~, which is positive on ~. 
Moreover, the map 'c ~ x~ for 'c e ['co, 'co] is continuous ('co }--' 0) and increasing, 
that is, if 'co<Zl<'c2<'c ~ then x~l (t)<x,~(t) for all t~ R. On the other hand, if 
z < Co we show that all solutions approach zero exponentially fast. For the sake 
of completeness we include proofs of the existence of a critical value Co of the 
parameter z from which nonzero co-periodic solutions bifurcate. Assuming 
slightly more about the function f than in [10] we are able to simplify the 
argument concerning bifurcation at 'co and show that the bifurcating branch is 
a simple curve "c ~ x, parametrized by ~ e ['Co, 'co]. 

Related models of infectious diseases may be found in [2, 4, 5, 6, 91. 

The organization of the paper is as follows: In section 2 we show how (1.1) is 
obtained from the model of Cooke and Kaplan and list our main assumptions 
concerning the function f .  In section 3 the results are stated and biological 
implications are discussed. The proofs of results stated in section 3 are given in 
section 4. 

2. Construction of the Model 

It is known that some infectious diseases have a periodically varying incidence in 
human populations (see [9, 11, 13]). Records kept during the years 1929--1970 
in New York City show that chickenpox and mumps have annual peaks in 
incidence while measles incidence peaks biennially. Periodic variation in in- 
cidence has also been observed for the common cold, influenza, pneumonia, 
streptococcal sore throat, and meningitis ([111). A reasonable explanation for 
the observed periodicity in incidence is periodicity in the contact rates for these 
diseases. Roughly speaking, the contact rate is a measure of the amount of 
effective interaction between infected individuals and susceptible persons per unit 
time. That the contact rate varies periodically is not surprising if one considers 
seasonal variations in the weather and the fact that children are in school. 
certain months of the year. 

We consider an isolated population satisfying the following assumptions: 
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(1) The population has constant size N. 

(2) The population consists of those currently infectious and those susceptible; 
there being no overlap in the two groups. 

(3) The disease is not lethal and, on recovery, the individual is again susceptible. 

(4) The disease is contracted upon exposure, i.e., there is no period of latency. 

(5) Once an individual becomes infective he remains infective for precisely z units 
of time. 

(6) The population is homogeneous and uniformly mixing. The contact rate, 
defined as the average number of effective contacts with other individuals per 
infective per unit time, is a given periodic function of time. By an effective contact, 
we mean an encounter which would result in the infection of the other individual, 
were that individual susceptible. 

In addition to the assumptions above, we must assume that the population size, 
N, is so large that both the proportion of individuals currently infected, I (t), and the 
proportion of individuals currently susceptible, S (t), behave like continuous 
variables. 

Let a (t) denote the contact rate. The product a (t)S (t) gives the number of 
contacts which result in infection of the other individual per infective per unit 
time. Multiplying this term by N I  (t) one obtains N a ( t ) I  (t)S (t), the number 
of contacts resulting in infection at time t per unit time. This is just the number of 
new infectives introduced into the population per unit time at time t. Recognizing 
that I (t) + S (t)-~ 1 by assumption (2), we may write 

N a (t) I (t) (1 - I (t)) 

for the number of new infectives introduced into the population per unit time at 
time t. Since the duration of infectiousness is precisely z, 

N a ( t - z )  I ( t - z )  (1 - I  ( t -  z)) 

is the number of individuals leaving the infected class per unit time at time t. 
Hence we obtain 

N I '  (t) = N a (t) I (t) (1 - I (t)) - N a (t - z) I (t - z) (1 - I ( t -  z)) 
or  

I' (t) -- a (t) I (t) (1 - I ( t))-  a ( t -  z) I ( t -  z) (1 - I ( t -  z)). 

This last equation can be integrated, yielding 

I (t) = I'~-~ a (s) I (s) (1 - I (s)) d s + c. (2.1) 

In (2.1), the constant c should be taken to be zero since if there were no infectives 
in the past then no new infectives should appear. 

The equation (1.1) is obtained by an obvious change in notation in (2.1) and by 
replacing a (s) x (s)(1 - x  (s)) by f (s, x (s)) for greater generality. 

At this point it is convenient to list the assumptions to be made concerning the 
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function f .  Let f :  R x R + ~  R + be a continuous function for which the following 
assumptions hold: 

(H 1) f (t, 0 ) -  0 for all t e R. 

(H2) There exists a least positive number co such that f ( t+o,x)=f( t ,x)  for 
all (t, x) e R x R +. 

(/4 3) fx (t, x), the partial derivative o f f  with respect to x, exists and is continuous 
for all t �9 R and 0 < x _< Xo where Xo is some positive number. 

(/4 4) The set {t �9 R :f~ (t, 0)=0} has Lebesgue measure zero. 

f(t,x) 
(H 5) lira sup = 0 uniformly in t �9 [0, co]. 

x-~oo X 

For obtaining our bifurcation result we will later employ the following two 
additional assumptions: 

(H 6) f (t, x) < fx (t, 0) x for all (t, x) �9 ~ x (0, oo) except where f~ (t, 0) = 0. 

(H 7) f (t, x)=a (t)g (x) where we assume the existence of a positive number 
such that g is nondecreasing on [0, y] and, if 0 < x_< y and 0 < 2 < 1, then 
g (2 x) > 2 g (x). 

Although (H 6) is not used in rio], it simplifies the proof and gives more 
qualitative information about the nature of the bifurcation. We use (H 7) to 
show that the branch of nontrivial o-periodic solutions bifurcating from the 
trivial solution at r O is a simple curve continuous in the parameter r. 

3. Statement of Results 

Theorem 3.1: (Nussbaum): If f satisfies (H 1)--(H 5) then there exists a uniquely 
determined value zo >0  of the parameter z such that for z > Zo, (1.1)~ has at least one 
positive, o-periodic solution. 

The statement of Theorem 3.1 requires some clarification. The number % is 
uniquely determined by the derivative fx (t, 0) as implied in the following paragraph. 
(This point is clarified in the proof of Theorem 3.1.) For a given f satisfying 
(H 1)--(H 5) it is possible that there is a number z 1 <To such that for all 
z > z  i, (1.1)~ has at least one positive, co-periodic solution. This cannot occur, 
however, if (H 6) holds as indicated in Theorem 3.2. 

If K is the cone of nonnegative functions in the Banach space, E, of m-periodic 
continuous functions on R where if x e E, l[ x [I = sup ] x (t) l, and if A s is the 

O_<t_<o~ 

mapping from K into K defined by the right hand side of (1.1),, then A t has a 
Frechet derivative T, at 0 in the direction of the cone K. The value zo of the 
parameter z will be shown to be the unique value z for which p (T J =  1, where 
p (TJ is the spectral radius of the linear operator T~. Simple estimates giving upper 
and lower bounds on the function p (Tj  will be obtained in the course of the 
proof of Theorem 3.1. In certain situations these estimates will allow a precise 
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determination of %. It will be seen that if for some positive integer n, 
Sg~~ (s, O) ds= 1, then % - - n  co. For  a detailed discussion of the smoothness 
properties and computability of the function p(T~) the interested reader is 
referred to [-10]. 

The biological implication of Theorem 3.1 is obvious: periodic incidence occurs 
if the duration of the disease exceeds a certain threshold value % which depends 
on the "birth" rate for infectives f .  

Theorem 3.1 is contained in Theorem 3 in [10] and the remarks following its 
proof. Included in [10], Theorem 3, is the fact that bifurcation from the trivial 
solution occurs at %. By assuming (H 6) we are able to show slightly more 
using relatively simple arguments. 

Theorem 3.2: Assume (H 1)--(H 6) are satisfied. Then for 'c < % there are no non- 
trivial, co-periodic solutions of (1.1). In fact, for 'c<% all bounded solutions of 
(1.1) on [0, oo) approach zero exponentially fast as t becomes large. If 'c > "co, then 
the following holds: for every 8>0, there exists 5 > 0  such that if 'c satisfies 
% <-c < % + 6 and if x is a nontrivial (nonnegative) co-periodic solution of (1.1)~, 
then sup x (t) < e. 

By Theorem 3.1, nontrivial co-periodic solutions of (1.1) exist for 'c>% but 
uniqueness of solutions has not yet been established. Theorem 3.2 implies that 
bifurcation does occur from the trivial solution at "co and that the bifurcation is 
in some sense continuous. Also a very sharp difference in the qualitative behavior 
of solutions of (1.1) occurs at 'co- For the case where f is bounded and thus 
solutions of (1.1) are bounded, Theorem 3.2 says that if x (t) satisfies (1.1) for 
t_> 0, when "c <'co, then there exist positive numbers M and t/such that x (t) < M e -"~ 
for t>0 .  

From the biological viewpoint, we may draw the following conclusions from 
Theorem 3.2: first, if the duration of the disease is less than the threshold value 
"co then incidence dies out exponentially and the disease becomes extinct. On the 
other hand, if the duration of the disease exceeds the threshold value then 
periodic incidence is possible and if -c exceeds 'co but is very close to 'co then 
the peak incidence will be small. 

Our next result requires the stronger assumption (H 7). 

Theorem 3.3: Assume (H 1)--(H 7) hold. Then there exists z o > %  such that for 
each "c~(%,'c~ (1.1)~ has exactly one nontrivial co-periodic solution (this so- 
lution is positive). If x~ denotes the unique solution, then the map ~ ~, x~ is 
continuous for "c e ['co, "co]. Moreover, if "co < rl < z2 ~ TO then x~l (t) < x~2 (t) for 
all t ~ ~. 

In the course of the proof it will be shown that 'co is chosen so that if ~ e ('co, 'co] 
and x is an co-periodic solution of (1.1)~, then sup x (0<7,  7 as in (H 7). Theorem 
3.3 shows that the bifurcating branch of co-periodic solutions is a simple curve 
parameterized by r. 

Rather than comment on the biological implications of Theorem 3.3 at this 
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point, we prefer to summarize what has been learned about equation (1.1) by 
applying the results obtained so far to the particular case used in the numerical 
results of Cooke and Kaplan. In particular, assume e )= l ,  f(t,x)=a(t)g(x) 
where 

g(x)={ x(1-x)O x>10---x-<l 

and ~o 1 a(t)dt= 1. In order that (H4) is satisfied we need to assume that a(t) 
does not vanish on any set of positive measure. Notice that (H 1)--(H 7) hold 
for this choice of f .  

Theorem 3.4: Assume the particular form of f described above. Then % =  1, 
"co= 2 and if z < 1 and x (t) is a solution of (1.1) on t >_ 0, then x (t)~0 exponentially 
as t~oo.  For ,c>1 there exists at least one positive 1-periodic solution of (1.1) 
and any such solution satisfies sup x (t)___ 1. If -c ~ (1, 2] then there exists a unique 
nontrivial 1-periodic solution x~ of (1.1)~ and O<x~(t)<_�89 The map 
,c ~x~  on [1, 2] is continuous and increasing, that is, l___zl <%_<2 implies 
x~l (t) < x~2 (t) for all t ~ R. 

Although plausible, we have been unable to extend the domain of uniqueness 
(and thus continuity) beyond 'co= 2. The special form o f f  assumed in Theorem 3.4 
is precisely the one derived in section 2 from the model of Cooke and Kaplan. 
Notice that e)= 1 corresponds to seasonal variation in the contact rate. Theorem 
3.4 implies that no periodic incidence will be observed unless the duration of 
the disease exceeds 1 year. This rather implausible result occurs only because 

�9 It  we assume ~1 a (t) d t = 1. A smaller value of % would result if ~t-e a (s) ds>_ 1 for 
all t where 7<1 (see the estimates for p (Tr) in the proof of Theorem 3.1). The 
assumption ~o 1 a (t) d t = 1 is made only to simplify computation of % and 'co and 
to compare with the numerical results in [1]. Theorem 3.4 does allow the 
interesting interpretation that if the duration of the disease is decreased by some 
means while f remains unchanged, then the periodic outbreaks are less severe. 
In fact, if the duration 'c could be decreased so as not to exceed "c o, then the 
disease could be eradicated entirely. 

Theorem 3.4 serves to explain many of the features of the numerical results of 
Kaplan and Cooke in [1]. It is not difficult to show using the special form of 
f in Theorem 3.4 that if 'c ='co then all solutions approach zero. The stability 
properties of the o-periodic solutions when 'c>'co remains an open problem 
although the numerical results indicate that these solutions possess some 
stability. 

4. Proofs of  the Theorems 

Our proof of Theorem 3.1 is based on the following fixed point theorem of 
J. A. Gatica and the author [3]: 

Fixed Point Theorem: Let A : K --* K be a completely continuous operator on 
the cone K. Suppose A 0 =0, A is Frechet differentiable in the direction of the 
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cone at x--0,  and 

(a) A' (0) has an eigenvector k e K corresponding to an eigenvalue 2 > 1, and 1 
is not an eigenvalue corresponding to an eigenvector in K; 

(b) There exists a positive number R such that if x ~ K ,  Pl x ][ =R,  and A x = # x  
then # < 1. 

Then A has a nonzero fixed point x ~ K with rJ x [f _<R. 

This theorem may also be found in [10]. We will use extensively the following 
theorem of M. G. Krein and M. A. Rutman [8, Theorem 6.2]. 

Theorem A: Let A be a completely continuous linear operator satisfying the 
following two conditions: 

(~) A (K) ~ K (K is a cone), 

(fl) there exists an element u e K, I[ u ]r = 1, a scalar c>0 ,  and a natural number p 
such that A p u > c u. 

Then A has nonzero eigenvalues; among those of maximal modulus there is a 
positive one not less than c l/p, to which corresponds a characteristic vector v ~ K 
of the operator A: 

A v = p v  (p>_cl/v,v~K, v:~O). 

This theorem may also be found in Krasnoselskii's book [7, p. 67]. It should be 
noted that the requirement F] u 11 = 1 in the above theorem is not essential. 

Let E be the Banach space of co-periodic continuous functions on N with 
supremum norm and let K be the cone in E of nonnegative functions. Define the 
map A t on K as follows: 

s (s))ds, te[R, x e K .  (A~ x)(t)= S,-~ f (  ,x  

It is not hard to show that At maps K into itself, A~ 0=0 ,  and At is completely 
continuous for each z>0 .  Moreover, A t is Frechet differentiable at 0 in the 
direction of the cone K (see [7]) with Frechet derivative T~ defined by 

(T~h)(t)=S~_,fx(s,O)h(s)ds, t ~ ,  h~E.  

Clearly, finding nontrivial co-periodic solutions of (1.1) is equivalent to finding 
nonzero fixed points of At. 

The fixed point theorem will be applied to the operator At after we have obtained 
the necessary information concerning the derivative T~ contained in the next 
several lemmas. 

Lemma 1 : If (H 1)--(H 4) are satisfied then T~ has an eigenvector x~ ~ K cor- 
responding to a positive eigenvalue )o,. 

Proof: It is well-known [7, p. 1023 that the linear operator T, is compact. Letting 
u ( t ) = l  and a =  inf ~tt_~fx(s,O)ds (c~>0 by ( H 2 ) - ( H 4 ) )  we obtain: T~u>>_eu, 

O_~t_<to 

where the partial ordering is that induced by the cone K (x, y ~ E then x _  y if 
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y -  x ~ K). The lemma now follows from Theorem A. This theorem also gives the 
estimate 2, > ~. 

Lemma 1 will be strengthened below (see Lemma 3). It will be shown that there 
is precisely one eigenvalue (20 of T~ having an associated eigenvector in K and 
this eigenvalue equals the spectral radius of T~. Moreover, though not needed for 
our analysis, x, spans the generalized eigenspace, {x~E:  (2, I - T ~ ) " x = 0  for 
some positive integer n}. These assertions follow from the fact that T, is strongly 
positive. 

Definition ([7], p. 60): Let the linear operator B map a cone, K, with nonempty 
interior into itself. Then B is called strongly positive if for all nonzero x 6 K, 
there exists n = n (x), a positive integer, such that B" x ~ int K. 

Notice that for our choice of K, int K = {x ~ K '  x ( t )>0 for all t ~ R} #0.  

Lemma 2: Let z > 0 and (H 1)--(H 4) hold. Then T, is strongly positive. 

Proof: It is trivial to verify that if n satisfies n "c > e) then T~" (K - {0}) ~ int K. 

Lemma 3: Let 'c>0 and (H 1)-- (H4)  hold. Then T~ has exactly one positive 
eigenvalue corresponding to an eigenvector in K. Moreover, if 2~ is this unique 
positive eigenvalue then ,~ = p (T~) = r ('c), where p (T~) is the spectral radius of T,. 

Proof: The lemma is a direct consequence of Theorem 6.3 of Krein and Rutman 
[8]. It is here that we use the strong positiveness of T~. 

Lemma 4: If (H 1)--(H 4) are satisfied then r ('c) is a strictly increasing, continuous 
function on (0, oc) satisfying the estimate: 

rain ~t t_~ f~ (x, O) d s <_ r (z) <_ max ~t t_* f~ (s, O) d s. 
t~ [0, a~] t~[0 ,  co] 

In particular, there exists a unique value z o of the parameter z such that r (%) = 1 
and if z >'Co, then r (z) > 1 and for z < %, r (z) < 1. 

Proof of Lemma 4." We first remark that if x e K -  {0} were an eigenvector of T~ 
corresponding to the eigenvalue r (z), then x e int K. This follows since there 
exists a positive integer n such that (r ('c))" x = T~" x ~ int K and that 

r (z)_> rain ~'t-~ f~ (s, 0) d s > 0. 
0_<t___e~ 

If 0 < z 1 < z 2 and x~ s int K is an eigenvector of T~ corresponding to r ('c 0 then 

T~ x, (t)= ~tt_~ f~ (s, O) x~ (s) ds > ~t_,~ f~ (s, O) x~ (s) ds 

=r (~)  x~ (t). 

Hence, there exists t />0  such that T~x~>( l+ t / ) r ( ' ca )x~  where the partial 
ordering is that induced by the cone. Appealing again to theorem A, this last 
inequality implies that r (%)>_ (1 + t/) r (z ~)> r (z0. 

The estimate r ( z )>  rain ~*~_~ f~(s,O)ds has already been verified. It is well 
O_<t_~ 

known that the spectral radius is smaller than the norm of the operator. Hence 

r(z)<ll  T~ II = max ~ t  f~(s,O)ds. 
O<_t~r 
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Since r is strictly increasing, cont inui ty will follow if r ( ' c - 0 ) = r  ( z )= r  ( z+0)  
where r ( ' c -  0) and r (z + 0) are, respectively, the left and right hand limits of r at 
z which are known to exist. Let % 7'c and let x s K - { 0 }  be an eigenvector for 
T~ corresponding to the eigenvalue r ('c) : T~ x = r (,c) x. Then  

L~ x (t)= S~_~~ fx  (x, o) x (s) ds = S't-~ L (s, o) x (~) d s -  ~'~:? ix  (s, o) x (~) as 

= r  (~) x ( t ) -  ~tt-;~ f~ (s, O) x (s) ds>__r ('c) x ( O - M  II x II ( 'c-z .)  

where M = sup fx  (s, 0). Given e > 0, we have 

T,, x (t) > (r ('c)- e) x (t) + [~ x ( t ) -  M II x H ('c-,c,)]. 

The quant i ty  in brackets is positive for large enough n since x (t) is bounded  
below. Thus  for large enough n, T~. x > (r ( z ) - e ) x .  Appealing to Theorem A we 
have r (z,)_>r ( ,c)-e for large enough n. This, together  with r (~ , )<r  (,c) shows 
r ( ' c - 0 ) = r  ('c). Now it is well known that if the spectral radius of the linear 
opera tor  B is less than some positive number  m, then the spectral radius of 
all linear operators  sufficiently close to B in no rm will also be less than m 
[12, p. 239]. If %-~z then r('c,)'.~r where r>_r(z) (since r(,c)<<_r('c,)). If r ( z ) < r  
then since ,c ~ T~ is easily shown to be continuous,  it must  be true that r (z') < r 
for all z' sufficiently near ,c. In particular,  r (z , )< r for large enough n. Clearly 
this is impossible hence r = r (~) and r (,c + 0) = r (z). 

The  last s tatement of the lemma is now obvious provided it is seen that r (0 + ) = 0 
and r (oe)= + oe. 

Not ice  that  if ~co f~(s,  0 ) d s = l  for some positive integer n then zo=n co. This 
follows immediately from the estimate in Lemma  4. 

Proof of Theorem 3.1." F r o m  the previous lemmas it is clear that  (a) of the 
Fixed Point  Theorem is satisfied precisely when z > % .  We show that  (H 5) 

implies that (b) also holds. Choose  L > 0  so that  f ( t ,  x) <1_~ x 2 'c for x > L and let 
X 

M =  sup f ( t , x ) .  T h e n f ( t , x ) < ~ - ~ + M .  Let R = 2 M r .  If x s K  and ]l x BJ=R 
ONt-<co 
O<_x<_L 

then 

(A,x)( t ) - -  ~_ ,  f ( s , x ( s ) ) d s <  It x HI "c + M ,c 
- 2 z  
= 2 M , C = R .  

Hence ][ x l] = R  implies Jl At x ]l-< I[ x lB. If in addi t ion A~ x = #  x then # II x II-< x If 
s o # _ l .  

The fixed point  theorem may now be applied to obtain a nontrivial  solution 
x~ ~ K of (1.1)~ when ,c >-c 0. To  see that  x~ ( t )> 0 for all t, is suffices to recognize that  

x'  ( t ) = f  (t, x ( t ) ) - f  ( t - ' c ,  x ( t - z ) ) _ < f  (t, x (t)). 

Thus, if x~ were ever to vanish on ~, s tandard differential inequali ty arguments 
would imply that x ( t )=0  on ~, in contradict ion to x~ being a nontrivial  
solution of (1.1)~. 
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Proof of Theorem 3.2: If z = z o and x e K -  {0} such that A~o x = x then by (H 6) 
and the fact that  x (t) > 0 we have 

T~o x (t) > A~o x (t) = x (t) for t ~ N. 

Hence, there must  exist a t />0  such that T~ox>_( l+q)x .  But this implies 
(Theorem A) that r (%)> 1 + 7 >  1 which is impossible since r (%)=  1. Thus no 
nontrivial, co-periodic solution of (1.1) exists for �9 = %. 

Now suppose ~ < %  and for simplicity in nota t ion let a ( t )= fx  (t, 0). Since Z<Zo, 
p (T~)< 1 so there exists N, a positive integer, such that  11 T~ [I < 1, where the 
norm is the opera tor  norm. It is easy to show that  

I[ T~ II = sup ~',_r a(st) ~,_~ a(s2) . . .  ~:- '~_, a(s,)ds, ds,_~ ... ds~. 
0Nt_<r 

If x(t) is a solution of (1.1)~ for t > 0  satisfying x(t)=q~(t), t ~ [ - z ,  0] and if 
x (t) _< M for t > - z then (H 6) implies 

x (t) _< M ~'t-, a (s) d s 

for t _  0. If t _  z, then 

x(t)<<_~_r a(s)x(s)ds<_M ~*~_~ a(sl) ~1_~ a(s2)ds2dsl. 

It is clear how to show that  if t>_(N- 1) z, then 

x(t)<_M ~tt_ ~ a(st) ~ss11_r a(s2) . . .  ~-11-r  a(sN)dsN.'.ds~ <-Me-~ 

for some 7>0 .  An induction argument  shows that  if t>(kN-1)~ ,  t h e n  
M 

x (t)<_M e -k~ (k=0 ,  1, 2, ...). It is now trivial to see that x (t)<_ �9 e - ~ t / N r  

e - ;  ~ 
for t > 0 .  

Now let b > z o  and define F b = { X s K - { O } : x  satisfies (1.1)~ for %<z<_b}. A 
straightforward argument  shows that  (H 5) implies the existence of an L (b) > 0 
such that F b ~ { x s K :  I[ x II_<L(b)}. A simple argument  involving the Ascoli- 
Arzela Theorem shows that  F b is precompact .  If the last s tatement of Theorem 3.2 
were false then for some % > 0  we can find sequences {z,} and {x,} _c K -  {0} 
with %'-~% and x,  satisfying (1.1)~. and I1 x,  t1 >%-  Since {x,} is precompact  
we may as well assume x,--*x where x e K - { 0 }  with I] x 1[ >%.  We show that x 
must satisfy (1.1)~ o which contradicts  our  earlier argument  that  (1.1)~ o has no non- 
trivial, co-periodic solutions. N o w  

I[ x-A~o x I1_<1[ x - x ,  [I+11 A~.xn-A,oXn I1+ [I A~oX,,-A~oX]l. 

The first and last terms on the right hand  side of the above inequality go 
to zero as n ~ o e  and it is easily seen that I1 A,. x , -A ,o  x, [[ _<L [ % - %  ] where 
L = sup f (t, z), M = sup [[ x.  I[. Thus  A~o x = x, a contradict ion.  This completes 

O_<t_<co n 
O<<_z<_M 

the p roof  of Theorem 3.2. 

Proof of Theorem 3.3: Choose z ~ > %  such that  if -c o <-c_< t ~ and x E K - { 0 }  
satisfies (1.1)~ then II x [[ <7. Suppose for some -c ~ (z o, t ~ there exists x, y e K -  {0} 
with x:~y such that  both  x and y satisfy (1.1)~. We may assume y - x  ~ K. ,Since 
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K is closed, there exists 2 >0  such that 0 < 2 < 1 and y- ;~  x r K. Since y e int K 
there exists v>0  such that y - v x e K .  It is easy to see that v<2. We may 
choose # > 0  such that # x<_y and such that i f / > 0  and I x<_y then l_<# (see [7], 
lemma 1.2). Clearly 0 < v _ < # < 2 < l .  By the monotonicity of 9 we have 
A~ (# x)<_A~ y=y.  Applying the concavity assumption on 9 and the fact that 
x e int K we obtain 

A~ O~ x) (t) > # A~ x (t). 

Hence there must exist q > 0 such that 

A,(# x )>( l  +tl) # A~x=( l  +rl) # x. 

Putting the inequalities together we have ( l+ t / )#x__y.  The maximality of # 
then implies that (1 + t/)#_<#. This contradiction proves the uniqueness assertion 
of Theorem 4. 

Define the map from [Zo, z~ - {0} by "c o ~ 0 ,  z J-+x~ where x, is the unique 
solution in K - { 0 }  of (1.1)~. That this map is continuous at -co has already been 
shown. Suppose %--+z where {-c,} __c (%, z~ ze(%,-c~ Let x , = x  w If x,r/+x, 
then, since cluster points of {x,} are solutions of (1.1L and {x,} is compact, we 
may as well assume that x,-~0 since some subsequence does. We write 

x,=A,.x.= Lx,+(T~,-- TO 
o r  

x .=  T~x.+(T~ - T~) 

Dividing both sides of this last equality by 

x.+(A~, x . -  T~~ xO, 

x,,+R~. (x~). 

II x~ II and letting 3~- 
X n 

- - -  we get II x. II 
c~ n = T, 3 n + ( T , . -  T 0 c5,-+ R~ (x,). It is not hard to see that R~ (x) = A~ x -  T, x 

II x. II 
satisfies Re (x)=0 (II x II) uniformly in z on compact -c-sets. As a consequence of 

R~(x,)  ~0 as n-+oo. Also, [ I ( T ~ - T 0 6  ~ I[<1[ T~ -T~  [1-00 as n--,oo. Since this, j] x~ II 

T~ is compact, we may as well assume that T~ @-,w e K. It follows that 6,--,w 
and w e K - { 0 }  since l[ 6, li--1. Thus T~w=w. But this implies that 1 is an 
eigenvalue corresponding to an eigenvector in K of the operator T~. This 
contradicts Lemma 4 and the fact that -c>Zo so r (z)>l .  The contradiction 
establishes the continuity assertion of Theorem 3.3. 

Now let % <% < %  <-co and x~, x2 e K - { 0 }  be the unique solutions of (1.1L~ 
and (1.1)~ respectively. We first show that x~<x2. If not, then x 2 - x ~  C K. 
Arguing exactly as before, we obtain #, 0 < # < 1 ,  such that #x~<x2  and # is 
maximal with this property. Now A~ (# x,) < A~ x2 < A,~ x2 = x2 and there 
exists t/>0, exactly as before, such that A~ (# x0>(1  +r/)# A~ xz =(1 +t /)# x~. 
Again we obtain (1 +r/)# xl < x2, a contradiction to the maximality of #. Hence 
x ~  < x2. But 

x 1 (t)=A~ x 1 ( t)NA~ x 2 (t)<Ar2 x 2 ( t )=x 2 (t). 

Proof of Theorem 3.4." That Zo = 1 is an immediate consequence of the remark 
following Lemma 4. Using the fact that any solution satisfies a particular 
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differential equation, it is easily seen that [] x ql < 1 for all solutions x of (1.1)~, 
> i. Also, if ~ < 2 and x satisfies (1.1)~ then 

x(t)=~'t_~a(slx(s)(1-x(s))ds<_ �88 ~_~ a(slds<_�88 ~2 a(s)ds 
so x(t)<_�89 Clearly (H7)  is satisfied for y= �89  and z ~ can be taken to be 2. 
Notice that x~= 2 = �89 The theorem now follows from the four previous theorems. 

Note added in proof: Uniqueness of solutions of (1.1), where f is given by (1.2), for all z > r0 has 
recently been established by R. Nussbaum. 
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