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Summary. There are a few simulation studies for interference models in the
literature but the present paper discusses an analytical model for the competition
of two interfering virus populations in a community. The mathematical model
consist of eight coupled differential equations which have up to four equili-
brium points. Criteria for local stability are given.
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Introduction

The present paper was stimulated by the following articles: Elveback et al. (1964)
extended the classical Reed-Frost model in order to investigate the effects of virus
interference on the transmission and the size of epidemics. In the following this
extension will be called Model 11, as it is customary in the literature (see Bailey,
1975, page 346). A practical application of this interference phenomenon would
be, e.g., the prevention of a Coxsackie B virus epidemic (against which there is no
specific vaccine) by a vaccination campaign using polio life vaccine. The spreading
of this vaccine by vaccination or by contact with vaccinated individuals could
lower the susceptibility for the Coxsackie virus temporarily, and therefore slow
down or prevent its transmission (Elveback et al., 1968, 1971). In order to study
this question, numerous simulation studies have been performed. While Elveback
and her coauthors are interested in the application of the interference phenomenon
to the control of epidemics, Bang (1975) would like to interpret a series of epide-
miologic observations from South-East Asia as a consequence of virus interference:
1. Several adenoviruses show a heterogeneous spatial distribution. E.g. type 1
could be demonstrated for 15 months at one end of a village, whereas type 2
predominated at the other end. In the center of the village, both types coexisted.

*  This paper has been read at the workshop on Nonlinear Models in Biology and Medicine,
23rd Biometric Colloquium, German Region of the Biometric Society, Nuremberg, March
1977
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2. Within a population, the epidemic appearance of one virus may suppress tempo-
rarily other types. 3. With respect to an individual, the appearance of a given virus
infection and the resulting immunity may be delayed by interference with other
viruses. This delay may lead, however, to an increase in disease prevalence, since
the probability of developing the disease increases with age for many virus infec-
tions. Bang indicates that the minimum size of a population in which the virus
can maintain itself as an endemic is reduced by the interference phenomenon.

In the present paper we consider a model which allows to explore some of these
hypotheses. To this purpose we supply Model I of Elveback et al. (1964) with a
continuous time parameter in order to apply the qualitative methods of differential
equations.

Description of the Model

For simplicity we use in Table 1 the same notation of the states as Elveback et al.
(1964). The relations between the states is shown in Figure 1.

Table 1

No. of the state Description of the state

1 Susceptible to A and B

2 Susceptible to A, immune to B

3 Susceptible to B, immune to A

4 Immune to 4 and B

5 Infective to A, temporarily insusceptible to B

6 Infective to 4, immune to B

7 Infective to B, temporarily insusceptible to A4

8 Infective to B, immune to 4

The number of individuals in state i, i =1, ..., §, is denoted by #;. In contrast to

Model I1 we also take into account a birth-rate A and a death-rate p in addition to
the transition rates between the states. At birth all individuals are in state 1, i.e.
the model ignores maternal antibodies. The death-rate p is independent of the state

Fig. 1
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i.i=1,...,8,1e. werestrict ourselves to the consideration of virus infections with
negligible fatality rate. For simplicity the arrows for the transitions “birth™ and
“death”” are not shown in Figure 1.

Our model is described by the following system of differential equations:

d
—cliltl = A — [Bans + ng) + Bs(ng + ng) + plny,

d

T2 = yany — [Balns + o) + lna,
d

di;) = yahs — [Bs(ny + ng) + plng,
dn,

—7; = Yalle + Yplg — uhg,
a (M)

dn
Tts = BA(}’[5 + ”6)”1 e (yA + /"’)ns’

di
7‘},—1? = Buns + ne)ny — (ya + ping,

dn
T; = Bs(n; + ng)ny — (yp + png,

dr
71: = By(ng + nghng — (yg + wing.

Here B, and S5 are the infection rates of the two virus types 4 and B. The corre-
sponding immunization rates are denoted by y, and yp. Setting one of the infection
rates equal to zero, e.g. 85 = 0, the system (1) is reduced to the following system:

dn
7;‘ = A — [Bants + plny,

d
% = Bans — (ya + wns, (2)

dng
ar = Yalls — phg.

These equations describe the classical model of the ‘recurrent epidemic’ which has
been studied mainly by Bartlett (see Bailey, 1975, Chap. 7).

Adding all equations of system (1) and setting

8
n=>n, (3)
i=1
one obtains the linear equation
dn

*d—t‘:A—,LL}’I. (4)
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For t — o0, the size of the population tends to the limit
n* = Al (5)

Since we are interested, above all, in the relative size of the quantities n;, i = 1, .. .,
8, we introduce the normalized variables

u; = nfn* (6)

and assume that n(0) = n*. Since

EB: u; = 1, )
i=1

one of the equations of (1) is superfluous. We eliminate in the following the equa-
tion for u,. Hence (1) may be written:

B Ban*us + o) + Ban*r + o) + ek,

Ua iy — Bar*(us + ) + i,

Yoy ts — Bon*(un + ulelus,

% = Bn*(us + ughuy — (ya + wus, ®)
%—;9 = Ban*(us + ugluy — (ya -+ pug,

% = Ben™(u; + uglu; — (yp + wr,

% = Ben*(u; + ugluy — (yp + Wi, |

Equilibrium Points of the Model

The system (8) has four equilibrium points G,. j = I, ..., 4. The point G, corre-
sponds to the trivial solution
(u1....,u5) = (1,0,...,0) %)

i.e. the total population is susceptible to both 4 and B, and both virus types are
absent. The two following equilibrium points describe the cases where only one of
the two virus types is present. We introduce the following notation:

Ry = Ban*i(ya + p),

Ry = Bun*{(ys + 1), (10)
qa = pilya + 1)

qs = pl(ys + 1)
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The quantities R, and R, may be interpreted as the reproduction rates of the virus
types 4 and B, i.e. the number of the secondary cases which are produced by one
infective case during his infectious period in a completely susceptible population of
size n*. The quantities g, and g represent the fraction of the infectious period
(1/(ya + ), and 1/(yz + p) respectively) with respect to the life expectancy 1/u
of an individual. For R, > 1(Rgz > 1), Go(G3) is given by:

Gy (us, Uy, Ug, Us, Ug, Uz, Ug) =
(1/R4, 0, (1 — L/R)(I — g4), (1 — 1/R)q4,0,0.0), (1)

G3:(uy, Uy, Uy, Us, Ug, Ug, Ug) =

(1/Rg, (1 — 1/R(1 — g5),0,0,0,(1 — 1/Rz)q5z, 0).
For the determination of G, we introduce the auxiliary variables

Ay = Ban*(us + ug),

Ag = Ban™(ur + ug). (12)

The quantity A,(Ag) represents the incidence of the infection of type A(B). The
components of G, could be determined by successive elimination and substitution
in system (8). We shall, however, use another method where we express the com-
ponents of G, first as functions of the incidences by using the relation between the
u,i =1, ..., 8and the average sojourn times in the states {1, 2...., 8}. (We omit
a detailed definition of the corresponding Markov process.) The life expectancy of
an individual may be represented by the sojourn times 7, in the individual states as
follows:

Lip = Ty + pisiTs + psslTs + pae(Ts + pasTy)]}
+ p1o{Tr + prolTo + pos(Te + pesTo)l} (13)

Here p;, is the probability of a transition out of state / into the state /. The sojourn
times and the transition probabilities are given by:

T, = 1j(Ay + Ag + p), Ts = Wyqa + ),
Ty = Li(As + p), To = Lilya + p),
Ty = /(A + p), T7 = 1i(ys + ),
T, = lju, Ts = 1/(yg + . (14)

Pis = Ay + A + ), Pir = Ag/(Ay + Ag + p),
Psz = vailya + 1), Pr2 = vai(ys + p),
Pas = As/(As + ), Pos = A (AL + ),

Des = ¥eilys + ), Poe = Yailya + p).
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Hence we obtain the desired expressions for the quantities u;, i = I, ..., 8:

up = p/(Aq + A5 + p),

us = pAa/[(As + As + p)(va + B,

ug = phayall(Ag + Ap + wWva + p)ys + Wl

ug = pAayars/[(Aa + Ap + u)ya + w(As + w)(ys + ), (15)

uy = pdgll(As + A5 + w)ys + pl,

up = pAgyp/l(Aa + Ap + )y + wAs + )l

ug = pAgypAa/l(Aa + Ap + p)ys + WAy + w)(ya + W)l

"y = AXsyars ( Lo, )

QA+ 2+ wya+ Wy + W\ A+ A+ p

We get a system of equations for A, and Ag by substituting u;,, u,, 45 into the follow-
ing simple equations

Ry(uy + up) = 1,

RB(ul + ua) = 1.

p.[RB(I-pA)-‘l]

!
—__——__——_——_I__—
I

(16)

H

R,=5, p,=0,75
Rg=10, pg=0,80
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Hence

(Aa + 2 + WAy + ) = uRAy + Agpp + p),

(Aa + Ag + w)(Ag + 1) = pR(Aups + A + p), (17)
where
Pa=1—4q4 Ps=1—¢s (18)

The equations (17) define two hyperbolas whose position with respect to each
other may be seen in Figure 2.

The domain which yields solutions with positive A, and A, is given by the inter-
section of the sets

B, = {Rg: Ry > RJ[I + (R, — Dp.l},

By = {Ry: Ry > Ry/[1 + (Rg — Dpsl} (19)
(See Fig. 3.)
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The system (17) could be reduced to a cubic equation. For the numerical evaluation
the following recursion formula is however more useful

AG+D Ry(AD + APps + 1) 1
¢ T

R (/\(t)p + /\(t) + #)
AGHD — [ B)\ﬂff—:)\g) _i ; - 11 (20)

Table 2 gives the equilibrium solutions for the points drawn in Figure 3.

Table 2. p = 0.02, p, = 0.75, ps = 0.80

Ry 5 25 25 1.30 1.3 25
Rs 5 5 1.30 1.30 25 25

A4 0.07141  0.46931 0.48000 0.00515 0.00102 0.43196
s 0.06886  0.05839 0 0.00489 0.47975 0.41793
u 0.12479  0.03650 0.04000 0.66580 0.03994 0.02299
us 0.11139  0.21414 0.24000 0.04289 0.00051 0.12414
i 0.07521  0.16350 0.72000 0.10341 0.00006 0.01701
i 0.05179  0.09579 0 0.00505 0.00029 0.07108
z 0.08593  0.02139 0 0.03253 0.19161 0.09609
us 0.07521  0.00350 0 0.10346 0.72929 0.01701
g 0.06713  0.02051 0 0.00666 6.00928 0.09184
us 0.40855  0.44468 0 0.04020 0.02902 0.55984
L, 20.141 3.518 2.083 200.125 994.544 8.462
Ls 23.007 31.885 @ 213.237 2.120 10.864
Ul(R: — 1D]  12.500 2.083 2.083 166.667 166.667 2.083
Ul(Rs — D] 12.500 12.500 166.667 166.667 2.083 2.083

Stability of Equilibrium Points

In order to study the local stability of the equilibrium points G,. k = 1, ..., 4,
we have to check whether the eigenvalues of the matrix with the elements
&f(Gy)
(e

have positive real parts. Here f; denotes the right-hand side of the equation for u;.
We consider, for example, the equilibrium point G,.

Table 3 gives the corresponding matrix whose characteristic polynomial is given
by:
(1 + )ya + p + R4+ 9s® + Rys + p(Ry — Dlya + p))
{s? — s[Bs(Raya + 1) — 2(yp + p)] (22)
+ (ve + Wlys + 1 + BevalBa — BsvaRaiBa — Ba(va + w)(Bal}-
From this we conclude that G, is locally stable if
Ry < R4/[1 + (R4 — D)p4] (23)
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(7 + 94 — YAy [T — 1 YA(TY 1 — 1)4u% 0 0 0 0 0 8
vgl( + vA)yag (7 + 74) — vg|(7 4 vA)Tg 0 0 0 0 0 L
0 0 (™ + VA — 0 0 (a - vy 0 9
0 0 (7 4 v4) 0 0 0 (1 — ry)y S
YAy 1 — 1)sl7¢ — YAVH T — 1)a47g — 0 YA LB 0 0 €
0 94 0 0 0 vy — 0 14
vg[(n + vA)Eg — vy 4+ vA)ag — o+ v4)— (1 4 vA)— \ 0 Yy — 1
8ng “ngp Mo Snp €np /5] Tnp
@0)Ye En)e E0)Ye Yo En)ye (CVES n)o !
€ dlqeL
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and
R,>1 (24)

The domains for local stability of the equilibrium points are shown in Figure 3.

Discussion

We return to Bang’s observations which were described in the Introduction and
discuss to what extent they may be explained by the present model. The hetero-
geneous spatial distribution may be handled in the present model by spatial
differences in the reproduction rates R, and Ry if one assumes that the spatially
distributed population is composed of mutually isolated subpopulations. A more
satisfactory explanation would require an extension of the model by a spatial
component. It is conceivable that this could result in spatially stable distribution
patterns.

The second of Bang’s remarks which is concerned with the temporal sequence of
the two virus types requires to study the dynamic behavior of the present model.
Already in the case of a single virus type marked oscillations of varying period and
phase can occur for relatively small oscillations of the contact rates (Dietz 1976).

Finally, Bang’s remark about the delay of the age at first infection in an individual
may be easily investigated within the framework of the present model. Let the mean
age at infection of type A(B) be denoted by L,(Lg). Then one can easily deduce

L, 1/"\,1 + [/\B/(/\A + ’\B)]/')’Bs
Lg = 1Ag + [A4/(As + Ap)]/va (25)

Table 2 gives a few numerical examples of the effect of interference on the age of
infection.

i

i

In concluding it may be mentioned that differential mortality may easily be incor-
porated into the present mode!l. This would result essentially in a reduction of the
domain of stable coexistence of the two virus types.
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