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Summary. There are a few simulation studies for interference models in the 
literature but the present paper discusses an analytical model for the competition 
of two interfering virus populations in a community. The mathematical model 
consist of eight coupled differential equations which have up to four equili- 
brium points. Criteria for local stability are given. 
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Introduction 

The present paper was stimulated by the following articles: Elveback et al. (1964) 
extended the classical Reed-Frost model in order to investigate the effects of virus 
interference on the transmission and the size of epidemics. In the following this 
extension will be called Model II, as it is customary in the literature (see Bailey, 
1975, page 346). A practical application of this interference phenomenon would 
be, e.g., the prevention of a Coxsackie B virus epidemic (against which there is no 
specific vaccine) by a vaccination campaign using polio life vaccine. The spreading 
of this vaccine by vaccination or by contact with vaccinated individuals could 
lower the susceptibility for the Coxsackie virus temporarily, and therefore slow 
down or prevent its transmission (Elveback et al., 1968, 1971). In order to study 
this question, numerous simulation studies have been performed. While Elveback 
and her coauthors are interested in the application of the interference phenomenon 
to the control of epidemics, Bang (1975) would like to interpret a series of epide- 
miologic observations from South-East Asia as a consequence of virus interference: 
1. Several adenoviruses show a heterogeneous spatial distribution. E.g. type 1 
could be demonstrated for 15 months at one end of a village, whereas type 2 
predominated at the other end. In the center of the village, both types coexisted. 

* This paper has been read at the workshop on Nonlinear Models in Biology and Medicine, 
23rd Biometric Colloquium, German Region of the Biometric Society, Nuremberg, March 
1977 
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2. With in  a popula t ion ,  the epidemic  appearance  o f  one virus may  suppress tempo-  
rar i ly  o ther  types. 3. Wi th  respect  to an individual ,  the appearance  o f  a given virus 
infection and the result ing immuni ty  may  be delayed by interference with other  
viruses. This delay may  lead, however,  to an increase in disease prevalence,  since 
the p robab i l i ty  of  developing the disease increases with age for  many  virus infec- 
tions. Bang indicates tha t  the min imum size of  a popu la t ion  in which the virus 
can main ta in  itself as an endemic is reduced by the interference phenomenon .  

In the present  paper  we consider  a model  which allows to explore  some o f  these 
hypotheses.  To this purpose  we supply Mode l  I I  o f  Elveback et al. (1964) with a 

cont inuous  t ime pa ramete r  in o rder  to app ly  the qual i ta t ive methods  o f  differential  
equat ions.  

Description of the Model 

F o r  simplici ty we use in Table  1 the same no ta t ion  of  the states as Elveback et al. 

(1964). The relat ions between the states is shown in Figure  1. 

Table 1 

No. of the state Description of the state 

1 Susceptible to A and B 
2 Susceptible to A, immune to B 
3 Susceptible to B, immune to A 
4 Immune to A and B 
5 Infective to A, temporarily insusceptible to B 
6 Infective to A, immune to B 
7 Infective to B, temporarily insusceptible to A 
8 Infective to B, immune to A 

The number  of  individuals  in state i, i =" 1, . . . ,  8, is deno ted  by n~. In cont ras t  to 
Mode l  II we also take into account  a b i r th- ra te  ~ and a dea th- ra te  tx in add i t ion  to 
the t ransi t ion rates between the states. At  b i r th  all individuals  are in state 1, i.e. 
the model  ignores materna l  ant ibodies .  The death-ra te /~  is independent  of  the state 

Fig. 1 



Epidemiologic Interference of Virus Populations 293 

i, i = 1 . . . . .  8, i.e. we restrict ourselves to the considerat ion of  virus infections with 
negligible fatality rate. For  simplicity the arrows for  the transit ions " b i r t h "  and 
" d e a t h "  are not shown in Figure 1. 

Our  model  is described by the following system of  differential equat ions:  

dn--A1 = A - [ f l A ( n 5  + /'/6) -1- /3B(n7 + n8) + ~]nl, 
dt 

d ~  2 
d--/- = ~,~n~ - [~A(n6 + n6) + ~]n~, 

dn___3= 
dt ~,zT~ - [/~(n~ + n~) + Mn~, 

m ~ m dt ~'An6 -]- ~'Bn6 I~n4' 

d ~  5 
dt  - /? ,~(n~ + n6)n~ - (~,~ + ~)n~, 

(1) 

dn___~6= 
dt  /~A(n5 + n6)n2 -- (YA + #)n6, 

dtl  7 

dt l  8 
dt - flB(nv + ns)n3 - (YB + tz)n8 �9 

Here flA and fib are the infection rates of  the two virus types ,4 and B. The corre- 
sponding immunizat ion rates are denoted by YA and 7B. Setting one of  the infection 
rates equal to zero, e.g./38 = 0, the system (1) is reduced to the following system: 

dn___~ = A - [PAn5 + tdn l ,  
dt  

dn~ _ ~ A n 5  - -  (~'~ + ~ ) n s ,  (2) 
dt  

dll  3 
dt  yah5 t~na. 

These equations describe the classical model o f  the ' recurrent ep idemic '  which has 
been studied mainly by Bartlett (see Bailey, 1975, Chap.  7). 

Adding all equations of  system (1) and setting 
8 

n = ~ n~, (31 
i = l  

one obtains the linear equat ion 

dn 
d-t = A - /zn. (4) 
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For  t ~ 00, the size o f  the populat ion tends to the limit 

n* = ~/~. (5) 

Since we are interested, above all, in the relative size of  the quantities n~, i = 1 . . . . .  
8, we introduce the normalized variables 

ui = n~/n* (6) 

and assume that n(0) = n*. Since 
8 

u~ = 1, (7) 

one o f  the equations o f  (1) is superfluous. We eliminate in the following the equa- 
tion for u4. Hence (1) may be written: 

dut  
a t  - ff - [fiAn*(u5 + U~) + flBn*(uv + u6) + f f]ul ,  

du 2 
dt  - }'su7 - [flAn*(u5 + US) + /Z]U2, 

du 3 
dt  - ~Au~ - [flBn*(u7 + us)if]u3, 

db/~5 = ]~AH*(H5 ~- /'/6)/'/1 - -  (~/A Jr- ~)/d5, (8)  
dt  

dll 6 
dt  - ~an*(u5 + u6)u2 - (7A + if)u6, 

_u__ = g~n*(u7 + u.)ul  - ( ~  + ~)uT, 
dt  

du, _ ~,n*(u~ + u,)u~ - (7~ + ~)u~. 
dt  

Equilibrium Points of  the Model 

The system (8) has four equilibrium points Gj,  j = 1 . . . . .  4. The point  G1 corre- 
sponds to the trivial solution 

(ul . . . . .  us) = (1, 0 . . . . .  0), (9) 

i.e. the total population is susceptible to both A and B, and both virus types are 
absent. The two following equilibrium points describe the cases where only one of  
the two virus types is present. We introduce the following notat ion:  

R ,  = /L,n*i (y, ,  + v) ,  

R~ = ~ , , . * i (7 .  + if), ( l o )  

q..~ = ~/(~,~ + if), 

q,, = ~ / ( 7 ~  + ~) .  
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The quantities Ra and RB may  be interpreted as the reproduct ion rates of  the virus 
types A and B, i.e. the number  of  the secondary cases which are produced by one 
infective case during his infectious period in a completely susceptible populat ion of  
size n*. The quantities qA and qs represent the fraction of  the infectious period 
(1/(yA + t`), and l/(7u + if) respectively) with respect to the life expectancy l/t` 
of  an individual. For  RA > I(RB > 1), G2(Ga) is given by: 

G 2 : ( u l ,  u2, u3, Us, ~.'6, u7, us)  = 

(1/R.4, 0, (1 - [/R,0(1 - qA), (1 - 1/RA)qA, O, O, 0), 

G3:(u~, u2, us, us, us, uT, us) = 

(1/RB, (1 -- 1/RB)(1 -- qs), O, O, O, (1 -- 1/RB)qs, 0). 

For  the determinat ion of G4 we introduce the auxiliary variables 

'\B = gAn*(u~ + us). 

( l O  

The quanti ty AriAs ) represents the incidence of  the infection of  type A(B) .  The 
components  of  G4 could be determined by successive elimination and substitution 
in system (8). We shall, however,  use another  method where we express the com- 
ponents  of  G4 first as functions of  the incidences by using the relation between the 
u,, i = 1, . . . ,  8 and the average sojourn times in the states {I, 2 . . . . .  8}. (We omit  
a detailed definition of  the corresponding Markov  process.) The life expectancy of 
an individual may be represented by the sojourn times T, in the individual states as 
follows : 

|/t` = T~ + pMT~ + pa~[T~ + p M r s  + pMq)]}  

Here pij is 
times and 

T, = 1/(A A + ,~.B + t`) ,  

T2 = I/(AA + t`), 

T3 = l,,'(,',s + t`), 

& = l/t,, 

Pz5 = ')tA/(AA 4- A s Jr- t`) ,  

Ps3 = Y.a,"(YA + t`), 

P38 = A~/'(AB + t`), 

+ p,7{Y~ + p~2[Z2 + pMT6 + p6J ' J ]} .  ( I s )  

the probabil i ty of  a transition out of  state i into the state ]. The sojourn 
the transition probabilit ies are given by: 

it'5 = I(7A § if) ,  

T~ = 1..'(r.~ + t`), 

T7 = l / (y ,  + t`), 

T~ = 1/(Ts + M- 

P t 7  = )tB,'('~A 4- 

Pv2 = YB."(TB + 

P2G = A.a:'(Aa + 

P6't = YA/(YA 4:- 

AB + if), 

t`), 

if), 

t`). 

(14) 

(12) 
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Hence we obtain the desired expressions for the quantities ui, i = I, . . . ,  8: 

ul = H(aA + ,~B + t*), 

us = ~*aA/[(aA + a.  + F*)(ra + ~*)], 

u3 = ~:~ArA/[(AA + a.  + e')(VA + ~*)(r. + ~)], 

U. = t, aayaa, / [ (aA + a ,  + t*)(7,. + ~,)(a,  + t*)(r~ + t*)]. (15) 

uv = ~ a , / [ ( a a  + a~, + t*)(r~ + if)I. 

u2 = ~ a . r . t [ ( a ~  + a .  + ~.)(r.  + ~.)(a~ + ~)1, 

Aaa,yay~ ( 1 ~ )  

u~ = (a~ + ~ .  + ~)(rA + , . ) ( r .  + ~) a-7---;+ + 

We get a system of equations for aa and a B by substituting ul, u2, ua into the follow- 
ing simple equations 

Ra(ul + u=) = 1, 

R,(u~ + ua) = 1. (16) 

I 
I 
I _ . . . . . .  

~t(RB Pa-1) I 
I 
I 

\ I 
\ I 

\ \  I 
\ [ 

\ \  \ I 
\ \  \ I 

\ ~ ~ ll[ RB(1-PA)-I ] I 

~ -  I P'[RA(1-PB)-I] P'(RAPB-1 ~ ~A 
RA:5, PA-0,T5 " ~  X x XN \ 
%=m, p~:0,u0 ' I , ~  \ \ ,  \ 

\ I \  

\I  " 
Fig. 2 
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Hence 

(ha + hB + ~)(hA + ~) = ~RA(ha + hBpB + ~), 

(hA q- hB 21- Y)(hB q- ['s = FRB(/~APA + '~B + tZ), (1 7) 

where 

PA = 1 - qA, PB = 1 - qB. (18) 

The equations (17) define two hyperbolas whose position with respect to each 
other may be seen in Figure 2. 

The domain which yields solutions with positive AA and ,\B is given by the inter- 
section of  the sets 

B1 = {RB: R8 > RAI[1 + (RA - 1)Pal}, 

B2 = {RA: RA > RB/[I  + (RB -- 1)pB]} (19) 

(See Fig. 3.) 

Fig. 3 
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T h e  sys tem (17) cou ld  be r educed  to a cubic  e q u a t i o n .  F o r  the  numer i ca l  e v a l u a t i o n  

the  fo l l owing  r ecu r s ion  f o r m u l a  is h o w e v e r  m o r e  useful  

: ~ [  ~ + a ~ , + ~  - ' 

A~+~ , [RB(A~'pa + A~' + t~) ] 
= / x /  ~ - r~ST~)  - 1 �9 

L "a T '~B + t1" 

Tab le  2 gives the  e q u i l i b r i u m  so lu t ions  for  the po in t s  d r a w n  in F i g u r e  3. 

Table 2. ~ = 0.02, Pa = 0.75, pB = 0.80 

(20) 

Ra 5 25 25 1.30 1.3 25 
RB 5 5 1.30 1.30 25 25 

ha 0.07141 0.46931 0.48000 0.00515 0.00102 0.43196 
AB 0.06886 0.05859 0 0.00489 0.47975 0.41793 

u~ 0.12479 0.03650 0.04000 0.66580 0.03994 0.02299 
us 0.11139 0.21414 0.24000 0.04289 0.00051 0.12414 
u3 0.07521 0.16350 0.72000 0.10341 0.00006 0.01701 
u8 0.05179 0.09579 0 0.00505 0.00029 0.07108 
uv 0.08593 0.02139 0 0.03253 0.19161 0.09609 
u2 0.07521 0.00350 0 0.10346 0.72929 0.01701 
uo 0.06713 0.02051 0 0.00666 6.00928 0.09184 
u~ 0.40855 0.44468 0 0.04020 0.02902 0.55984 

LA 20.141 3.518 2.083 200.125 994.544 8.462 
LB 23.007 31.885 m 213.237 2.120 10.864 
I/[~(R~ - 1)] 12.500 2.083 2.083 166.667 166.667 2.083 
I/[#(RB -- 1)] 12.500 12.500 166.667 166.667 2.083 2.083 

Stability of  Equilibrium Points 

In o r d e r  to s tudy  the local  s tabi l i ty  o f  the e q u i l i b r i u m  po in t s  Gk, k = 1 . . . .  , 4, 

we have  to check  whe the r  the e igenva lues  o f  the ma t r ix  wi th  the  e l emen t s  

6 Uj ) 

have  posi t ive  real  parts .  Here  f deno tes  the r i gh t -hand  side o f  the  e q u a t i o n  for  u~. 

We  cons ider ,  for  example ,  the e q u i l i b r i u m  po in t  G2. 

T a b l e  3 gives the c o r r e s p o n d i n g  ma t r ix  whose  charac te r i s t i c  p o l y n o m i a l  is g iven  

by :  

(~ + sl(~,A + t, + s)(RA + S)[S 2 + RAS + t 4 R 4  - l)(~'A + t~)] 

{s 2 -- S[/3B(R~VA + t~) -- 2(~',  + t0]  (22)  

+ (~'B + . ) [ 7 ,  + v +/3B~'AI~A -- /3ByaR.~i/3.~ --  /~B(~'A + t')//3A]}. 

F r o m  this we conc lude  that  G2 is local ly  s table  if  

RR < R41[I + (R~ - l)p.d (23) 
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and 

RA > 1 (24) 

The domains  for local stabil i ty o f  the equi l ibr ium points  are shown in Figure 3. 

Discussion 

We return to Bang's  observat ions  which were descr ibed in the In t roduc t ion  and 
discuss to what  extent  they may  be explained by the present  model.  The hetero-  
geneous spatial  d is t r ibut ion  may  be handled  in the present  model  by spat ial  
differences in the reproduct ion  rates R~ and RB if one assumes that  the spat ial ly 
d is t r ibuted  popu la t ion  is composed  of  mutual ly  isolated subpopula t ions .  A more 
sat isfactory explanat ion  would require an extension o f  the model  by a spat ial  
component .  It is conceivable that  this could  result in spat ia l ly  stable d is t r ibut ion  
patterns.  

The second of  Bang's  remarks  which is concerned with the t empora l  sequence of  
the two virus types requires to s tudy the dynamic  behavior  of  the present  model.  
Al ready  in the case of  a single virus type marked  osci l lat ions of  varying per iod and 
phase can occur for relatively small  oscil lat ions of  the contac t  rates (Dietz  1976). 

Finally,  Bang's  r emark  about  the delay o f  the age at  first infection in an individual  
may be easily investigated within the f ramework  of  the present  model.  Let the mean 

age at infection of  type A(B) be deno ted  by LA(LB). Then one can easily deduce 

L.~ = l l,~A + [;W(AA + A~)]ITB, 

L8 = I IAB + [AA/(A.4 + AB)]/)'A. (25) 

Table  2 gives a few numerical  examples  of  the effect of  interference on the age of  

infection. 

In concluding it may be ment ioned that  differential  mor ta l i ty  may easily be incor- 
pora ted  into the present model.  This would result essentially in a reduct ion of  the 
domain  of  stable coexistence of  the two virus types. 
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