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1. Introduction 

We s t a r t  wi th  a br ief  discussion of the  phys ica l  m o t i v a t i o n  beh ind  the  
m a t h e m a t i c a l  cons idera t ions  to  be p resen ted  in P a r t  I of th is  paper .  

Often in theore t i ca l  phys ics  one is concerned wi th  a func t iona l  re la t ionship ,  

co 

o =t~ (g(s)), (1.1) 
s = 0  

which s t a tes  t h a t  the  present  va lue  a of a phys i ca l  q u a n t i t y  is de t e rmined  b y  
the  va lues  g(s) of a second q u a n t i t y  a t  all  t imes  s in the  pas t .  In  (1.1), g(s) 
is the  value  of the  second q u a n t i t y  s t i m e ' u n i t s  ago. If  the  func t iona l  ~} is given,  
the  re la t ion (1.t) m a y  be used to pred ic t  the  present  value  a of the  first  q u a n t i t y  
from a knowledge of the  " h i s t o r y "  g of the  second quan t i t y .  The  re la t ion  (1.1) 
m a y  be in t e rp re t ed  as express ing the  causal  n a t u : e  of a class of phys ica l  processes.  
Fo r  def ini teness  we a : s u m e  t h a t  the  values  of o and  g (s) lie in app rop r i a t e  
no rmed  vec to r  spaces,  not  necessar i ly  f in i te-dimensional .  

In  m a n y  phys ica l  s i tua t ions ,  the  va lue  o in ( t . t )  will  be,  in some sense, 
more sensi t ive to  the  values  of 9' for smal l  s t han  for large s. I n t u i t i v e l y  speaking ,  
the  " m e m o r y "  of the  sys tem descr ibed b y  (1.1) will " fade  a w a y "  in t ime.  In  
o rder  to  make  th is  idea  precise, we shal l  in t roduce  a norm [[g][ in the  funct ion 
space of the  histo,  "es g for which (t .  1) is meaningful .  We first  choose a n u m b e r  p, 

Arch. Rational Mech. Anal., Vol. 6 2 5  



356 BERNARD D. COLEMAN ~r WALTER NOLL: 

t <= p ~ oo, which will be kept fixed, and then define the norm of g to be 

Ilgll= supig(s ) lh(s )  if p = o o ,  
(t.2) 

where [g (s)l is the magnitude of g (s) and where h (s) is a real-valued function 
which approaches zero rapidly as s-+oo. Thus, in computing the norm [[g[[ 
we assign a greater influence to the values of g for small s (recent past) than 
for very large s (distant past). We call the function h in (t.2) an influence 
/unction. The physical idea that  the memory  of the system is fading corresponds 
to the mathematical  assumption that  the functional ~ in (1.1) is continuous 
with respect to convergence in the norm (1.2) of the function space of histories. 
The influence function h characterizes the rapidity with which the memory is 
fading. 

I t  is always possible to reduce the relation (1.t) to one which is normalized 
in the sense that  the possible histories g have the value g (0)= 0 at  the present 
instant and that  the value of ~ for the zero history g ( s ) ~ 0  is zero. Now, 
physical experience indicates that  phenomena which one would expect to be 
described exactly by a normalized functional relation (1.t) often follow a simpler 
relation of the form 

d ,s) l I,=0' (t.31 
where | is a linear transformation. In particular, it appears that  (1.3) accounts 
well for the observed phenomena in the case of slow processes. This observation 
leads to the conjecture that ,  in some mathematical ly precise sense, the relation 
(1.3) approximates the normalized relation (1.t) for slow processes. I t  is the 
purpose of the present paper to prove an approximation theorem of this kind. 
Theorem 2 of w 5 asserts not only that  (t.3) is the first-order approximation to 
the normalized relation (1.t) for slow processes but  shows also the form of the 
approximations of higher order. The theorem is based on the assumption tha t  
the functional ~ of (t . t)  is not only continuous but also Fr6chet differentiable 
at the zero history g (0) ~ 0 in the function space with norm (1.2). A normalized 
functional ~ satisfying this assumption will be called a memory [unctional. The 
continuity of ~ for histories g different from the zero history is not needed to 
prove the approximation theorem. 

In Part  I I  of the paper we apply the approximation theorem to constitutive 
equations of continuum mechanics. Our main interest there is in the logical 
status of the theory of Ne~-tonian fluids within the framework of a recently 
proposed general theory of fluids with memory effects*. 

The theory of compressible Newtonian fluids is based on the following con- 
stitutivc equation for the stress tensor S:  

S = - -  p I + 2~ /D  -4- ;t (tr D) I;  (1.4) 

here the rate of deformation tensor D is the symmetric part  of the velocity 
gradient tensor; p = p (Q) is the hydrostatic pressure the fluid would be supporting 

* C / . . l ' ,  Le] and [3]. 
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if it were at  rest at its present d.ensity 9; ~ and 2 are functions of ~ alone and 
are called coefficients of viscosity. 

Experience shows tha t  for some substances, such as water,  the theory of 
Newtonian fu ids  accounts remarkably well for experimental  measurements over 
a very wid~ range  of conditions. OtHer substances, such as molten plastics, 
definitely do not obey (1.4) exactly, but  yet their behavior appears to approxi- 
mate  tha t  of Newtonian fluids in the limit of slow motions. 

In  w we review the mathemat ical  definition of a simple fluid. As we have 
frequently remarked in ~he past,  we believe this definition is capable of covering 
the behavior of nearly all real fluids including such substances as molten plastics 
which exhibit "heredi tary",  "non-Newton ian"  and "viscoelastic" effects. Here 
we add to the definition of a simple fluid a new requirement: we require that  
the functionals occurring in the definition be memory  functiomfls in the sense 
of the definition used in this paper. As we have indicated, this requirement 
is related to the physical assumption tha t  simple fluids have a fading memory.  If  
this assumption were not satisfied, the term "fluid" would hardly be appropriate.  

In w 7 we conclude that  the theory of Newtonian fluids is indeed the complete 
first-order approximation to the theory of simple fluids for slow flows. We also 
indicate what an experimenter should expect to find as second-order corrections 
to the constitutive equation of a Newtonian fluid. We point out tha t  several 
special flow problems for incompressible second-order fluids lead to third-order 
linear partial  differential equations. 

In w we apply our approximation theorem to the theory of the general 
simple materials defined in [1], Par t  I I I .  

I. The Approximation Theorem 
2. Influence Functions and Histories 

An influence ]unction h of order r > 0  is a real-valued function of a real 
variable with the following properties: 

(i) h (s) is defined and continuous for 0=< s <  oo. 

(ii) h (s) is positive, h (s) > 0. 

(iii) For each a > O ,  there is a constant  Mo, independent of ~, such that  

s" ~ h (s/~) ,~, . . . . .  < M  a for 0<x<- -_ t .  (2.t) 
,~o ~ ' h ( s ) =  

The last condition (iii~ means tha t  h(s) must  "decay to z e r o a t  a fast enough 
rate as s-->~.  In fact, we have 

sup s" h (s) ---- N < oo, (2.2) 
s > o  

which follows from (2.t) by  taking a---- ] and observing that  

s > l  

Let a real Banach space 3 r with norm I [ be given. We then define a history 
g to be a measurable ~unction defined for 0_<s<oo  with values g(s) in ~9'. Two 
such functions will be regarded as the same if they differ only on a set of 
measure zero. 

25* 
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For  a g iven  in f luence  func t i on  h a n d  a g iven  n u m b e r  p, 1 <--_ p-<- oo, we def ine  
the  ,.~#h,p-norm, [[g][h,~, or  s i m p l y  []g[], of a h i s t o ry  9' b y  

[191[~,,-- (Ig(s)lh(s)yds i f  t _ ~ p < o o ,  ( 2 . 3 )  

I lglkoo=supl.9(s)lh(s ) i f  p = o o .  (2.4) 
s_~O 

I n  (2.4) a n d  s u b s e q u e n t l y  s u p / ( s )  s t ands  for the  essel~tial s u p r e m u m  of /(s) ,  
i.e. for the  g rea tes t  lower b o u n d  of the  s u p r e m a  of all  func t ions  which  differ 
f rom /(s) o n l y  on  a set  of measu re  zero. 

The  set of al l  his tor ies  w i th  f in i te  ~ , p - n o r m  forms a ]3anach space,  which  
we deno te  b y  .Wh, p . 

We remark  tha t  (2.2) is a necessary b u t  no t  a ~ufficient condit ion for the decay 
relatioL (2.1). However,  if a funct ion h(s) satisfie~ (i), (ii), and the  l imit  relat ion 

lim s" h (s) = 0  monotonical ly  for large s, (2.5) 
$---~ oo 

then  it  also satisfies the decay relat ion (2.t) and  hence is an  influence function of 
order r. To prove this fact we consider the expression 

h ( s / ~ )  _ ( s / , , ) ' h ( s / ~ , )  o<~_<-I. (2.6) 
~" h (s) s" h (s) ' 

Since srh (s) is monotonical ly  decreasing for s larger than  some value s z, it  follows 
tha t  (2.6) is no t  greater t han  I for all s > s  x. For  0<a=<s=<s z the denomina tor  sVh(s) 
of (2.6) has a positive m i n i m u m  because h satisfies the condit ions (i) and (ii). The 
numera to r  of (2.6) is bounded  by  the m a x i m u m  of srh (s), which exists and is firrite 
because of (2.5). I t  follows tha t  (2.6) is bounded,  for a_<s<o~,  by  a cons tan t  3t', 
i ndependen t  of ~, which is the con ten t  of (2.1). 

The funct ion 
1 

h ( s )=  ( s+  t) '  

is an influence function of order r. An exponential ,  

h ( s ) = e - ~  s, f l>O, 

is an influence function of any  order. 

3. Retardation 

The  retardation ~ with  retardation/actor o~, 0-< o~ <= t ,  is the  l inear  t r a n s f o r m a t i o n  
~/~-r/~ def ined,  for all  h is tor ies  g ,  b y  

( ~ e )  (s) = e~(s )  = e ( ~ s ) .  (3.1) 

\Ve show t h a t  F~ m a p s  the  space .L#h.p in to  itself. For  p---~:oo, we h a v e *  

rx~ 

II.q~ll p = f ( I , l (~s ) l  h(s))t'ds 
o ,-~ ( ~ . 2 )  

I / - ~ . . ' (1~(~)1 h(s~)P~ h/s/ ~ ,,>0 ~ J  " 
0 

* ~mcc. no con fus ion  can ar ise, ~c, o m i t  the  radices h, p on the  no rm .  
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Since h is continuous and positive, 
h (s,"~) _ 

s u p  - - - - -  < .  oo 
o~_~o h (s) 

for any a >  0. The decay condition (2.1) implies that  

sup h(s /~)  < ~'M~ < ~ .  
s>o h(s)  = 

Hence, 

h(s,,~) _ K ~  < o~. (L3)  sup h (s) 
s > 0  

Combining (3.2) and (3-3) gives 
1 

I Ig ,  II < * l lgl l .  (3 .4)  

It  is easily verified that this inequality remains valid for p =  oo when we put  
~ = t. I t  follows from (3.4) that  when 9 has a finite norm g~ has a finite norm 

and is, therefore, in .W~,p. Intuitively, retardation replaces a given history by  
one which is essentially the same, but  slower. 

If, possibly after a suitable alteration of g(s) on a set of measure zero, the 
limits 

,o~ ,h, k ! y (s) ~-t si ~,~ 
g ----,~olimg(s)' g ----,~olim s~ ( -- ~ )! g~ (3.5) 

J = 0  

exist for k = 0 ,  1, . . . ,  n, then we shall say that the history rj has n generalized 
derivatives at s~-O. Of course, the existence of ordinary derivatives implies the 
existence of the corresponding generalized derivatives. Here we shall use the 
term "derivative" always in the generalized sense of (3.5). Generalized derivatives 
at s - - 0  of any order may exist even though g(s) is not continuous near s = 0 .  

The Taylor transformation II,, is the linear transformation r./---~FI,, !! defined, 
for all histories g which are n times differentiable at s = 0, by 

(H,,g) ( s )=  ~ )s[ ~,  (3.6) 
/=O 

where the ~ are the derivatives (LS). 

This Taylor transformation replaces g by its n th "Taylor  approximation" 
H,, g. The history H,, r a polynomial of degree <= n. 

We note that  retardation ~ preserves the differentiability of a history and 
that H,, and F= commute; i.e., for all hi.~tories .q having n derivatives at s=O, 
we have 

H,,F~,B--I '~H, ,g .  (3.7) 

The set of all histories which have n derivatives at s = 0  and which also 
belong to the Banach space .L~,.p will be denoted by  ~,,. This set ~,  is a linear 
subspace of s but it is not closed in .s and hence not a Banach space. 

The following theorem is an analogue of the classical Taylor approximation 
theorem. 

Theorem 1. Assume that n, p, and the order r o[ the influence/unction h satisly 
the inequality 1 

( I = 0  il p - - o  o) ( L 8 )  
P -P 
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Then the Taylor trans/ormation II,, maps the subspace ~,, o~ -~h,p into itsel/, and, 
/or all g in ~,,, 

lim 1 . - , .o II (g - n" .  g)ll , , ,p = o. (3.9) 

We can also write 0.9), using (3.7), in the form 

I'~y -- II,,I'~g = y=-- l l ,  9== o(="), (3.10) 

where the order symbol o must be understood in terms of the norm of the 
function space ~ , p .  Roughly speaking, the theorem states that  in the space 
~,C.~ah, p a slow history is close to its Taylor approximation and that  the 
distance between them is o (:r 

Proof of Theo rem  1. We consider only the case when 15 is finite. The case 
when p-----oo can be treated analogously. 

First, we show that  every polynomial of degree ~ n has a tinite norm. For 
this purpose it is sufficient to prove that  

oo 

f ( s kh ( s ) )Pds -~Lk<oo  for k<=n. (3.11) 
0 

I t  follows from (2.2) that  
oo oo (30 

f (skh(s))Pds = f (s'h(s))Ps~(k-')ds g NPfs-P( ' -k 'ds .  (3.12) 
1 1 1 

0.8) and k ~ n  imply that  i b ( r - - k ) > t  and hence that  the The inequalities 
integral 

oo 

f s. .p{,_k)ds: 1 �9 p(r--k)--I 
1 

is finite. Since s k h(s) is continuous, it then follows from (3.12) that  the integral 
(3.tl) is finite. 

We have shown that  any polynomial of degree =<n belongs to .Lab, p and 
hence to ~ , ,  because it has n derivatives at s = O. Since a Taylor approximation 
17,, y is a polynomial of degree --< n, it follows that  17,, maps ~,, into itself. 

t 
The definitions (3.5) and (3.6) imply that  the history 

[ = Y  -- rI,,~C ~,, (3.t3) 
satisfies the limit relation 

1/_!, s)l : O. (3.14) lim 
S--~O 

1"he definitions (2.3), (Lt) ,  and (3.t~) show that  the assertion (3.9) of the theorem 
is equivalent to 

o.a 

lira' f(I , - o  h(s)) as = o .  0 . I s )  
0 

We ol-serve that  
oo oo 

l 

~ n p  �9 

0 0 
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and invest igate the la t ter  expression. Let  e > 0  be given. I t  follows from (3.t4) 
tha t  we can find a a (e) > 0 such tha t  

II(s)l < e" for 0 < s ~ a ( , ) .  
S n  = 

Hence o(,) o(,) 

' f Ot(s,i h(-~))'as~ ' > . ,  _ ~ ; ,  e f (,-h (-~))'at 
0 o ( 3 . 1 7 )  

oo 

= J k  ~" 
0 

where L ,  is given by  (3.tt) .  On the o ther  hand,  we have 

oo <20 

' f(It(s)lh(~))'~s=~f (It(s)lh(s))'(2,~)%, (3.,8) ~ n p + l  , 

a(e) a(e) 

where w = p ( r -  n) - - t .  Applying the decay condition (2.t) to (3.18), we find that 

o o  

j,+~ f (It(s)lh(-~))'a,~-='~.,lltll'. (3.19) 
oie) 

On combining (3.t 7) and (3A9), we see tha t  

oo 

1 (s >~+,f(Ir )l "(:))*ds-~*'L. + ~ 'm,  1Ira (3.20) 
0 

holds for all e > 0  and a l l  O<a=< 1. The assumed inequal i ty  (3.8).'insures t ha t  
w = p (r --  n) - -  l is positive. Therefore, b y  choosing first e and then a sufficiently 
small, we see tha t  the r ight  side of (3.20) can be made  as small as desired. I t  
then follows from (~.t6) t ha t  the limit relation (3A5) holds, which completes 
the proof of the theorem. 

t ~ =  0 Theorem t states the following. If  In  the special case n----O, r > p ,  

y ~ .~f<p is continuous at s----0 with value 0, then 

lim H ~ g I[ = 0. (3.21) 
C t ~ 0  

. ( 0 )  t ~  If  l<=n<r-- ! and g = u ,  instead of  (3.2t), we have the s tronger result 
P 

Y~, ---- ~ g = O (0~). (3-22) 

4. Memory Functionals 
We first recall some definit ions* from the theory  of functions defined on 

a real vector  space ~ with norm H [i and having values in another  real vector  
space J with norm l I" 

(1) Suppose gz . . . . .  Yk are variable~ in ~f .  Then a funct ion ~(gz  . . . . .  gk), 
defined for all values of the variables !L in ~fa and having  values in ~-,  is called 

* These definitions are analogous to those given in Chap. XXVI  of ~4]. 



362 BERNARD D.  COLEMAN & WALTER NOLL: 

a bounded k-h'near/orm if it is linear in each variable g, separately and if there 
is a constant  M, independent of g , ,  such tha t  

I (g, ".., g,)l < MIIg,  ll..-IIg ll. (4.t) 
The form ~ (gl . . . . .  ~k) is said to be symmetric if any  permutat ion of the variables 
leaves the value unchanged.  

(2) A function ~ (g ) ,  .defined for all g C ~  and having values in 3-, is called 
a bounded homogeneous polynomial o/degree k if there is a bounded symmetr ic  
k-linear form ~(91 . . . . .  g~) such tha t  

~ (g )  = ~(9 '  . . . . .  y ) .  (4.2) 

Ttle symmetr ic  n-linear form ~ ( g l  . . . . .  Yk) is uniquely determined by the homo- 
geneous polynomial  ~ (9') and is called the polar ]orm of the polynomial.  

(3) A function ~}, defined on a neighborhood of 0CJ~r ~ and having values in 
f is said to be n times Ftdchet-di][erentiable at 0C.Yd if there are bounded homo- 
geneous polynomials 6k~(9") of degree k = 0, 1 . . . . .  n such that  

(4.{t (g) --- h ~ 6k ~ (9') ~- 
k ~ 0  

where 
lira I~,R(9')[ ~ 0. (4.4) 

I I .q l l - -O 

] 'he polynomial  6k~(ff) or its polar form 6k~(9'1 . . . . .  9'~) is called the k th Frdchet- 
di][erential or the k th variation of ~ at 0 C~t ";. The differentialstmay be obtained 
recursively b y  

' l ~ !  0'~(9") l (4.5) 
I=0 

We here consider the case in which dr ~ is the flmction space of all histories 
9" with the following properties" 

(a) 9" has a finite .~h,fnorm,  

(fl) 9' has n generalized derivatives at s :--O, 

(y) 9' has a zero limit at s =  0: 
{0) 

lim 9' (s) = 9' ----- 0, (4.6) 

R (6) n, p, and the order r of the influence function h obey the inequali ty (~.,). 

The conditions (00 and (fl) state tha t  ~ ,~.~, , .  Condition (8) insures tha t  the 
conclusion (}.9) of Theorem 4 is valid for all 9' G,~V. 

A function ~ defined on a neighborhood in . ~  of the zero function 0~29C " c~, - l : , p  

and having values in a real Banach space . 7  will be called a memory/unctional 
o/type (h. n) if it is n t imes Fr6chet-differentiable at 0 E3r ~ and if it is normalized by  

60~(9') == ~(0) ]= 0. (4.7) 

In  some applications it m a y  be more natural  to assume that  ~ is defined and 
Fr6chet-differentiable on a neighborhood of zero in the 'ent ire  space .LPh, p. How- 
ever, the approximat ion theorem of the foil.owing section applies only to histories 
which belong to the subspace .ZC of -CPh, p. 



Functionals and Continuum Mechanics 363 

6. The Approximation Theorem 

T h e o r e m  2. Let ~-be a memory Junctional o/ type (h, n); the histories g i~ 
the domain space ~ o /~  have values in the space 6e, and ~ itsel/ has values in .~-. 
Then, Jo~ each k-tuple o/indices (]1, ]~ . . . . .  ]k) such that 

l<=fi<=i~<.. .<=ik-%n,  f i + / . , + . . . + / , < n ,  (SA) 

there exists a bounded k-linear [orm "i,...]~ wigh variables in 5 ~ and values in .if- 
such that,/or all fl C ~ ,  

(It) (lk) 
~(9~)  = ~ 1.. ;,(t.q . . . . . .  9~) + o ( ~ " ) ,  (5.2) 

(I t  . . . . .  l&) 
where 

and where 
O:P~t . l ,  i.e., ff~(s)=.q(c~s), (5.~) 

(I) (D 
9~ = ? ] 9 ( t .4) 

is the generalized ]th derivative at s = 0  o/tj~, defined according to (L5). The sum 
in (5.2) is to be extended over all sets (1"1 . . . . .  ]k) o/ indices satis/ying (5.1), and 
the order symbol o (~") has the usual sense. The multilinear ]orms ll,..i~ are uniquely 
determined by ~. 

This theorem permits the asymptot ic  approximat ion  of a memory  Junctional, 
for "slow" histories, by  a pol)~lqmial/uvcfion of the derivatives at  s =  0 of the 
a rgument  function of the functio'nal. I t  is wor th  not ing tha t  the approximat ing  
expression 

~Jt) 
~,,(o) = S. (~,...,,(~)> . . . . .  ~ ) ,  (5.6) 

( ,h , - . ,1~)  

regarded as a functional of 9,  is not  a memory  functional i~1 the sen,e of the 
previous section because it is not  even continuous at the zero function ff = 0 ~ >f. 

For  n = t and n = 2, (5.6) reduces to 

~, (o) = (1 (~>I, ,~., (o) = t, (~') ~ (~ i~ >, 2 >).~ + L(:t)'"' 15.;) 

respectively, where 11 and 12 are linear and [11 is bilinear. 

P roof  of T h e o r e m  2. For  n = 0 ,  the theorem is a trivial consequence of 
(~.21). For  n ~  I, the  proof is based on a combinat ion of the Fr~chet-differen- 
t iabil i ty assumption (4.3) and equation (3.10) of Theorem I which, in the nota t ion  
of (5.}), m a y  be wri t ten as 

t.I , = II,,.q~, ~ o(~"). (5.8) 

(01 
Since r  0 by  (4.6), the definition (L6) gives 

n sJ (I)  
(H,, o~) (s) = _ ~ ,  =' j !  ~ .  (5.9) 

I = 1  

The result (~.22) applies to both ff ~.~'( and 11,, f l  C.Y(': 

I1. ff~ = O(0 0 , (5.10) 

g ~ = O ( ~ ) .  (5.11) 
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Combining (5.1 t) with (4.3), (4.4), and (4.7), we obtain 

n 
ll(g<,) = Y]. -~,- o~l~(g<,) + o 0<"). (5.~2) k. 

Consider now a bounded homogeneous polynomial ~ (9) of degree k, t --< k --< n, 
in the sense of (2) of w The differentials 8k[~, k > t  are such polynomials. 
The polar form of ~ will also be denoted by  ~. Using the multilinearity of this 
polar form ~, we obtain by (4.2), (5.8), and (5.10) 

~,t(90,) = t t (H , , g< ,  + o(~") . . . . .  H ,  g~, + o (e") )  

= ~It(H,, g . . . . . .  H,,go,) + Z ~ (O(~) . . . . .  o(od) . . . . .  0(~)), 

where each term of the sum contains at least one variable o (e"). I t  follows 
from the boundedness (4.1) of ~ that the terms in the sum are all o(~"+k-1). 
Since k >~ 1, we have 

lt(g~,) = It(1-I, g~,) + o(= " ) .  (5 . t3)  

We now investigate ~ (/7, g=). Using (5.9) and the multilinearity of the polar 
form ~, we obtain 

t~(//,, g=) ;~1 ,,,:,..J .. ~ i - - . . j k !  @tsS' g . . . . .  s~kg)"  (5.14) 

Due to the symmetry of !It, all terms of (5.14) which differ only in the order of 
the indices ]'1 . . . . .  ik are the same. Collecting these terms and separating all 
terms of order higher than n in a, we get 

(Ix) (]k) ' 1) 
t t ( / 7 ,  f#:) = Y, ~ "+ ' "+s~%, . . . s ,~ ( . s "  9 . . . . .  si, g )  + 0(o<" (5. t5) 

(/l, .-., #kJ 
k fixed 

where the sum is to be extended over all k-tuples (7"1 . . . .  ,7"~.) satisfying (5.1) and 
where the mh...i~ are positive rational numbers. 

Now, the function 

~ i l  ... ik (~il  . . . . .  Ok) = !~ (SS' a I . . . . .  S ~ Ok) ,  ( 5 . 1 6 )  

with variables a, E Dr' and values in ~ is clearly multilinear, because !t! is. Also, 
llh...ia is bounded. Indeed, application of (4.1) to (5.16) yields 

ll,,, . . ; , ( - 1  . . . . .  -k> l  -<- J S l l , " . , l l  . . .  II -<'' .~.11, 
and (3.1"1) shows 

hence 
I I s " - , l l h  = I",J ~'C,, 

I l,,,. .,,. ( ,1 . . . . .  ,D I -< -  ~7 I,,, I  . . .  t . ~ 1 .  

Substituting (5.t6) into (5.t 5) and using (5.4) yields 

{]1 ) (]'~) 
l # ( / / , g = )  = F. lsi...s,,(g= . . . . .  w )  + o (  o<" ~:') 

(si, ..., ik) 
k fixed 

where the |)l...ik are bounded k-linear forms. 

(5.17) 

(5A8) 
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1 k Applying the results (5.t3) and (5.t8) to ~ = ~ f 6  g in (5A2), we obtain 
formula (5.2). 

The uniqueness of the li,...i ~ follows easily from the observation that  they 
are linearly independent and of order O (0c") or lower. 

We remark that  the multilinear forms lil...i , of (5.2) are not necessarily sym- 
metric. 

II. A p p l i c a t i o n s  

6. The Concept o~ a Simple Fluid 

The notion of a simple fluid has been given a definition within the frame- 
work of a general theory of the mechanical behavior of materials*. This defini- 
tion'is based on the following two physical assumptions**: 

(a) The present stress depends on the past history of the first spatial gradient 
of the displacement function. 

(b) A fluid has no preferred configurations. 

Using the principle of material objectivity ([1], w it was shown in re- 
ference [1] that  the constitutive equation of a simple fluid can be written in 
the form (22.t 2) of [1]. This functional relation, in a slightly different notation, 
reads 

S (t) = ~ (C,(t --  s); e (t)). (6.1) 
s=0 

Here S(t)  is the stress and 0(t) the density at time t. Ct(3) i~ called the right 
Cauchy-Green tensor at time ~ relative to the configuration at time t. This 
tensor is defined bv 

C,(r) = ~r(3) ~ ( r )  (6.2) 
where 

F,(3) = V~X~(ae, 3) (6.3) 

is the gradient the displacement function ~=X~(x, 3) which gives the position 
at time z of the material point having the position ae at time t. The stress tensor 
S(t)  is symmetric. The Cauchy-Green tensor Ct(~) is positive definite and 
symmetric; for z = t  it reduces to the unit tensor I:  

C, (t) = I .  (6.4) 

The functional ~ in (6.t) is isotropic; i.e., ~ obeys 

- (Q C(s) Qr; 0) (6.5) 
s=O s=O 

identically in the history C (s) = Ce (t -- s) and the orthogonal tensor Q; here 
QT is the transpose of Q. It  follows from (6.5) that the value of ~ for the "rest  

* ~1], w 2 t .  
** In  [3~ we give a su rvey  of the  t heo ry  of s imple fluids wi th  emphas i s  on physical  

appl icat ions .  In  t h a t  pape r  we an t i c ipa te  some of t he  resul ts  r igorously  der ived  here.  
Although the language and the definitions of the present paper are slightly different 
from those use~ in w167 6 and 7 of [3], the arguments presented here prove also the 
theorems stated there. 
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his to ry"  C(s )=I  is a scalar multiple - -p (9 )  of the unit  tensor J. Defining 
oo oo 

(G (s), q) = P (e) I + f0 (I + a (s), 9),  (6.6) 
S = 0  s = O  

we m a y  rewrite (6.1) in the form 
oo 

S (t) = - -  p (9 (t)) I + ~ (Ct (t - -  s) - -  I, 9 ( t)) .  (6.7) 
S = 0  

The functional ~ (G(s).; 9) is defined for functions G(s) x~fith the property 
S = 0  

a ( 0 )  = 0, (6.s) 

and it has the value 0 for the zero function G(s) ~ 0 ;  i.e., 
oo 

(0, 9) = 0. (6.9) 

I t  is also isotropic in the sense of (6.5). 

We now assume tha t  for each simple fluid defined by  a consti tut ive equation 
(6.7) there exists an influence function h of an order r such tha t  the functional 

of (6.7) is a memory  functional of type  (h, n) in the sense of w The domain 
of ~ is a class ~ of histories G whose values G(s) are in the space .~ of all 
symmetr ic  tensors. For the norm [ [ in 5P we u~e 

[ _ t ] - - l t r A  2 for . l ( . ~ .  (6.10) 

The range space 3 -  of ~ is the same as the lange space of the historieb G, 
i.e. the space - Y = - ~  of all symmetr ic  tensors with norm (6.t0). Equat ion (6.9) 
insures t h a t  {} has the normalizat ion (4.7) required for a memory  functional. 
The densi ty  9 enters into (6.7) only as a real parameter .  The assumption that  

is a memory  functional implies tha t  its domain of definition contains a neighbor- 
hood of zero in a function space J f  which is defined by the conditions (:~)--(~) 
of w The condition (~,) expresses the assumption tha t  all histories G,cJ(" 
correspond to motions which are continuous at the present instant  s =  0 (c/. (6.8)). 

If the simple fluid nnder  consideration is incornpreskible, we must make some 
alterations in our ~tarting assumptions. For  every possible motion in such a 
fluid the den.~itv 9 is constant  and the tensor Ct(r) i~ unimodular.  In addition, 
the stress is detexmined by  the history of the motion only up to a hvdro~,tatic 
pressure p. Consoquentl.v, the equation (6.7) must  be leplaced by  

e~3 

in which the indeterminate  pressure/5 and the functional ~ may  be normalized by 
oo 

o t r S ( t ) ~ - l p = t r ~ ( C , ( t - - s ) - - l ) .  (6.12) 
0 

If  we were to limit the domain of the functional ~ in (6.11) to kinematically 
possible histories, this domain would not contain a neighborhood of the zero 
function in an appropriate  function bpace, . ~ ;  therefore, ~ could not then be 
a memory  funct l ,nal  We assume, however, tha t  ~ becomes a memory  functional 
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when its domain is extended by  putt ing 

(C(s) --  I )  : ~  ((det C(s)) -~ C(s) - 1) (6.43) 
s = 0  s = 0  

when C (s) is not unimodular. 

Aside from the added properties (6A2) and (6.13), the functional ~ occurring 
in (6.1~) is assumed to be of the same type as tha t  in (6.7) with respect to both 
isotropy and memory.  

7. Approximations o] Order n /or  Simple Fluids 

We now apply Theorem 2, w 5, to the memory  functional occurring in the 
constitutive equations for simple fluids (6.7) or (6.tt).  

Suppose a motion with Cauchy-Gree.u tensor Ct (z) is given. The correspond- 
ing history G is defined by  

G ( s )  = C , ( t  '--  s)  - -  z .  ( 7 . t )  

If  Ct (3) is n times differentiable with respect to z at z - - t ,  the k th Rivlin-Ericksen 
tensor Ak, k = t, 2 . . . . .  n is defined as follows : 

dk r =t r A k = ~ -  C,(z) = (--  t) h G ,  (7.2) 

(k) 
where G is the k th derivative of G (s) at s = 0, as in w 2. 

We now consider histories Gz obtained from G C ~  by retardation as in (5.3). 
The corresponding Rivlin-Ericksen tensors are 

A~ = ~kA k = (--  t) ~ G~. (7.3) 

They differ only by  the inessential factor (--  1) k from the tensors G= to be sub- 

sti tuted for g~ in the approximation formula (5.2). This formula, applied to 
the constitutive equations (6.7) or (6.t 1), yields the following expression for the 
stress tensor S~ corresponding to the retarded history G~: 

S~ = -- p I +  Z nti~...i~(Aj~ . . . . .  A~) -r o(~n), (7.4) 
(ix, ... ik) 

where the summation is to be extended over all sets of indices (]'1 . . . . .  Jk) obey- 
ing '(5.t). The terms mn...ik(A~ . . . . .  A~) are lihear in each of the variables. 
For compressible fluids, it is understood that  p and m~., ik depend on the density 0- 

The equation (7.4) remains valid even when the 'derivatives shown in (7.2) 
exist only in the generalized sense of (3-5)- 

The multilinear forms mj,...i k in (7.4) are isotropic functions, which means 
that  they obey the identities 

O m~-~...i~(U~ . . . . .  U~) O r = nti,...~.~ ( Q u~ Qr  . . . . .  O U~ QT) (7.5) 

for all orthogonal Q and all symmetric tensors U~ . . . . .  Uk. This proposition 
follows easily from the fact tha t  the memory functional ~ occurring in (6.7) 
or (6.t 1) is isotropic in the sense of (6.5), from the observation tha t  the conjugation 
G ( s ) ~ Q G ( s ) 9  r leaves the norm IIGII unchanged, and from the uniqueness 
of the multilinear forms nti,...yk asserted in Theorem 2, w 5. 
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I t  follows from known theorems on isotropic functions that  each form 
m:, . . . i k (Ai , ,  . . . .  A/k) ,  because it is isotropic and multilinear, mak" be expressed 
as a sum 

m h . . . i k ( A  h ,  . . . .  A/k) = ~ ~, (7.6) 

of products of the form 

~ = / q  ~ol q)= . . .  rP,nt (,tl~ Al~ . . .  Alr + A t e . . .  AI~ A t  1) (7.7t 

where the ~0j's are traces of products of some of the tensors A j ,  and are such 
that  each Air ,  r =  1 . . . . .  k,  occurs precisely once in each term ~,. In the case 
of an incompressible simple fluid the coefficients/~, are constants, whereas for 
simple fluids in general the ,u i are functions of the density. Thus, for simple 
fluids, a finite number  of scalar material  functions p (r162 suffices to deter- 
mine the stress S= to within terms of order n in ~. 

The case n----1 of (7.4) is of particular interest. With use of (7.6), (7.7), we 
obtain 

(tr A~) I + o (,r (7.8) S ~ , =  - -  p l +  ~]A~ + 2 

Now, the first Rivlin-Ericksen tensor A ~ = 2 D  differs from the rate of defor- 
mation tensor D only by  the factor 2". I t  follows that  (7.8) is, to within terms 
of order o(a), simply the constitutive equation (1.4) of a Ne~"mnian fluid. 

When the fluid is incompressible, the case n = 2  of (7.4) takes a remarkably 
simple form. The observation tha t  t r  A ~ = 0  for isochoric motions and use of 
(7.6), (7.7) yield 

S~ ---- -- } I + ,1 A~ + ~ (A~)* + y .4~ + o (0r (7.9) 

where ,~/, /5, and y are material constants and where } is an indeterminate 
pressure. This pressure ~ differs, in general, from the mean pressure p defined 
by the normalization (6.12), because it is obtained from p by absorbing all scalar 
multiples of 1 arising from m ~  and m 2 through use of (7.6) and (7.7). 

Motivated by (7.9), we can define an i ncompress ib le  second-order f l u i d  by the 
constitutive equation 

S = -- ~ I  + ~ &  +/5 A,* + ~ A.,. (7.10) 

Incompressible Newtonian fluids correspond to the special case fl =)z = 0 of (7. t 0). 

In some dynamical situations equation (7.10) leads to a linear partial  differ- 
ential equation fol the velocity, just as in the Newtonian case. For example, 
consider a rectilinear shearing flow which, in Cartesian coordinates x, y, z, has 
a velocity field with components 

{r = {0, ~(,-, t), o}. (7A!) 

If the body forces are conservative, substitution of (7.10) and (7.1t) into 
CAUCHY'S dynamical  equations leads to the following third-order partial  differ- 
ential equation for v (x, t) : 

~ v  __ a ~2v 03v  ~] 
et  - -  ~ + b - -- a = b = y (7.t2) g~ x ~ ot ' Q ' ~ " 

* C[.  [ l ] ,  ( 9 .7 ) .  
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A non-steady flow of the Couette type, in cylindrical coordinates r, ~9, z, 
has a velocity field with contravafiant components 

{v'} = {0, co (r, t), 0}. (7.t3) 

For such a flow, instead of (7.t2), we get 

In the Newtonian case, since b=O, equations (7A2) and (7.14) reduce to 
diffusion equations. As for the diffusion equations, many physically interesting 
solutions of (7A2) and (7.t4) may  be obtained by  separation of variables*. I t  
would be desirable to develop a mathematical theory of third-order partial 
differential equations of the type (7A2), (7.t4). 

8. Simple Materials in General 
The considerations of the previous two sections may easily be extended to 

the general simple materials defined in Reference [1~, Part  III.  
The form of the constitutive equation of an isotropie simple material may 

be obtained from (6.t) by  replacing the scalar density O(t) by  the left Cauchy- 
Green tensor B (t), taken relative to an undistorted reference state (c[. [1] (22.10)). 
A consideration analogous to the one which led to (6.7) shows that  the consti- 
tutive equation of an isotropic simple material may be written in the form 

o o  

S(t) = ~ (B(t)) + ~ (C t ( t -  s) -- I; B(t)). (8.t) 
s ~ O  

Here, the functional ~ depends on a tensor parameter B, instead of on a scalar 
parameter ~ as in (6.7). We assume again that  there is an influence function 
h of order n such that  the functional ~ in (8.1) is a memory functional of type 
(h, n). In place of (7.4), we then obtain the following approximation formula 
for the stress S= produced by  a slow motion of an isotropic simple material: 

S~ = I~(B) + ~, lttjx ..jk(A," . . . . .  A~; B) + o(0r (8.2) 
Ot,...,ik) 

where mi,..j~ is linear in each of its first k tensor variables but  not necessarily 
in the last tensor variable B. 

The formulae corresponding to (8.1) and (8.2) in the case of anisotropic 
simple materials are obtained from (8.t) and (8.2) simply by  replacing all tensors 
T occurring in these formulae by their conjugates R r T R  with the rotation 
tensor R=R(t )  of the displacement from the reference state (c/.'[1~, (22.8)). 

In the case of isotropic materials, the function 10 and the functional ~ in 
(8.1) are isotropic in the sense tha t  they obey the identities 

0 ~ ( B )  0 r = t~(0B 9 r ) ,  (8.3) 

(O G(s) O r, Q B O r) = O~ (G (s), B) O r (8.4) 
s = 0  s=O 

* In particular, the sinusoidal vibration problems discussed for Newtonian fluids 
in w167 345--346 .of LAMB'S treatise [6] are easily solved for second-order fluids. Also, 
special solution~ of (7.t4) corresponding to sinusoidal vibrations of a fluid between 
coaxial cylinders can readily be found. 
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tot  a l l  o r thogona l  tensors  Q. As in w it follows t ha t  the  ra~, ..~k in (8.2) are 
i~-otropic funct ions  of all  the i r  var iab les ;  i.e., t hey  obey  the ident i t ies  

Qm,  ,,(t~ .. . . .  t~:B) Q ~ = m , , . ~ , ( O t ~ O t , . . . , o t ~ Q T ; Q n O  r) (8.~ 

for all  o r thogonal  Q and all  ~ymmetr ic  tensors  [q . . . . .  b~, B for which mi, ' i, 
is defined.  The m t t h o d s  deve loped  b y  SPENCVR & RIVLIN (~6!, [Tj and  [8!) 
m a v  be used to der ive  expl ic i t  r epresen ta t ions  for the  m~...~ of a type  analogous 
to bu t  more compl i ca t ed  than  (7.6), (7.7). Using such a representa t ion ,  one 
can show tha t ,  in the  case n : 1, the  app rox ima t ion  formula  (8.2) reduces to 

S~:~(B)  + A~t,(B) +Ix(B)A~ +tr(A~tz(B))t3(B),+o(~), (8.6) 

where l}, t l ,  to- and  t3 are isotropic funct ions of the one var iable  B and  hence 
b a r e  represen ta t ions  of the  form 

~(n) --~0 x + &  n + ~  B~, (8.7) 

in which rio, fit and  rio are scalar  funct ions of the  three  pr inc ipa l  inva r i an t s  of B.  

The first  t e rm I~(B) in the  expression (8.2) for the  stress S~ corresponds  to 
pu re ly  e las t ic  response. The sum in (8.2) m a y  be in t e rp re t ed  as ropresent ing 
the  in te rna l  fr ict ion for slow motions.  
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