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1. Introduction

We start with a brief discussion of the physical motivation behind the
mathematical considerations to be presented in Part I of this paper.

Often in theoretical physics one is concerned with a functional relationship,

g =
s

I %92

(9(s)), (1-1)
[

which states that the present value ¢ of a physical quantity is determined by
the values g(s) of a second quantity at all times s in the past. In (1.1), g(s)
is the value of the second quantity s time-units ago. If the functional § is given,
the relation (1.1) may be used to predict the present value & of the first quantity
from a knowledge of the “history” g of the second quantity. The relation (1.1)
may be interpreted as expressing the causal natu.e of a class of physical processes.
For definiteness we a 'sume that the values of ¢ and g(s) lie in appropriate
normed vector spaces, not necessarily finite-dimensional.

In many physical situations, the value & in (1.1) will be, in some sense,
more sensitive to the values of g for small s than for large s. Intuitively speaking,
the “memory” of the system described by (1.1) will “fade away” in time. In
order to make this idea precise, we shall introduce a norm ||g|| in the function
space of the histo. ‘es g for which (1.1) is meaningful. We first choose a number ¢,
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1< p= o0, which will be kept fixed, and then define the norm of g to be

?
? H o
lgll= Vof-(|g(s)|h(s)) ds l.f 1§1’>< 12
S\;gly(s)lh(s) if p="o0,

where | g (s)| is the magnitude of g(s) and where %(s) is a real-valued function
which approaches zero rapidly as s—oo. Thus, in computing the norm ||g}|
we assign a greater influence to the values of g for small s (recent past) than
for very large s (distant past). We call the function %4 in (1.2) an influence
function. The physical idea that the memory of the system is fading corresponds
to the mathematical assumption that the functional § in (1.1) is continuous
with respect to convergence in the norm (1.2) of the function space of histories.
The influence function % characterizes the rapidity with which the memory is
fading.

It is always possible to reduce the relation (1.1) to one which is normalized
in the sense that the possible histories g have the value g(0)=0 at the present
instant and that the value of § for the zero history g(s)=0 is zero. Now,
physical experience indicates that phenomena which one would expect to be
described exactly by a normalized functional relation (1.1) often follow a simpler
relation of the form @ o d

o=1§), §=2g0)|_. (1:3)

s=0

where { is a linear transformation. In particular, it appears that (1.3) accounts
well for the observed phenomena in the case of slow processes. This observation
leads to the conjecture that, in some mathematically precise sense, the relation
(1.3) approximates the normalized relation (1.1) for slow processes. It is the
purpose of the present paper to prove an approximation theorem of this kind.
Theorem 2 of §5 asserts not only that (1.3) is the first-order approximation to
the normalized relation (1.1) for slow processes but shows also the form of the
approximations of higher order. The theorem is based on the assumption that
the functional § of (1.1) is not only continuous but also Fréchet differentiable
at the zero history g (0) = 0 in the function space with norm (1.2). A normalized
functional § satisfying this assumption will be called a memory functional. The
continuitv of § for histories g different from the zero history is not needed to
prove the approximation theorem.

In Part II of the paper we apply the approximation theorem to constitutive
equations of continuum mechanics. Our main interest there is in the logical
status of the theory of Newtonian fluids within the framework of a recently
proposed general theory of fluids with memory effects™*.

The theory of compressible Newtonian fluids is based on the following con-
stitutive equation for the stress tensor S:

S=—pI+2npD+ A(tr D) I; (1.4)

here the rate of deformation tensor P is the symmetric part of the velocity
gradient tensor; p=7(p) is the hydrostatic pressure the fluid would be supporting

* (f. 1, 2] and [3].
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if it were at rest at its present density g; # and A are functions of p alone and
are called coefficients of viscosity.

Experience shows that for some substances, such as water, the theory of
Newtonian fluids accounts remarkably well for experimental measurements over
a very wide range of conditions. Other substances, such as molten plastics,
definitely do not obey {1.4) exactly, but yet their behavior appears to approxi-
mate that of Newtonian fluids in the limit of slow motions.

In §6 we review the mathematical definition of a simple fluid. As we have
frequently remarked in the past, we believe this definition is capable of covering
the behavior of nearly all real fluids including such substances as molten plastics
which exhibit “‘hereditary”, ‘“non-Newtonian’’ and ‘‘viscoelastic” effects., Here
we add to the definition of a simple fluid a new requirement: we require that
the functionals occurring in the definition be memory functionals in the sense
of the definition used in this paper. As we have indicated, this requirement
is related to the physical assumption that simple fluids have a fading memory. If
this assumption were not satisfied, the term *“fluid”’ would hardly be appropriate.

In §7 we conclude that the theory of Newtonian fluids is indeed the complete
first-order approximation to the theory of simple fluids for slow flows. We also
indicate what an experimenter should expect to find as second-order corrections
to the constitutive equation of a Newtonian fluid. We point out that several
special flow problems for incompressible second-order fluids lead to third-order
linear partial differential equations.

In §8 we apply our approximation theorem to the theory of the general
simple materials defined in [1], Part ITI.

I. The Approximation Theorem
2. Influence Functions and Histories
An influence function h of order »>0 is a real-valued function of a real
variable with the following properties:
(i) %(s) is defined and continuous for 0= s << .
(i) A(s) is positive, k(s)>0.
(ili) For each ¢>0, there is a constant M, independent of «, such that

sup %‘%/z;)) <M, for 0<as1. (2.1)
The last condition (iii} means that %(s) must decay to zero at a fast enough
rate as s —>oco. In fact, we have
sup s’ k(s) =N < oo, (2.2)
s>0
which follows from (2.1) by taking ¢=1 and observing that
gy \ /
() 1o ) = 0 sup L < ity
Let a real Banach space & with norm | | be given. We then define a history
g to be a measurable function defined for 0< s< oo with values g(s) in &. Two
such functions will be regarded as the same if they differ only on a set of
measure Zzero.

25%
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For a given influence function 4 and a given number p, 1< < oo, we define
the %, ,-norm, ||g||, », or simply ||g||, of a history g by

LS
lolle=V Jllg@imo)es it 1sp<e, 23
Ilgllh,oozsslzlglg(S)'lh(s) if p=oco. (2.4)

In (2.4) and subsequently sup f(s) stands for the essential supremum of f(s),
i.e. for the greatest lower bound of the suprema of all functions which differ
from f(s) only on a set of measure zero.

The set of all histories with finite %, ,-norm forms a Banach space, which
we denote by &, ,.

We remark that (2.2) is a necessary but not a sufficient condition for the decay
relatio: (2.1). However, if a function k(s) satisfies (i), (ii), and the limit relation

lim s” #(s)=0 monotonically for large s, (2.5)
§—> 00
then it also satisfies the decay relation (2.1) and hence is an influence function of
order ». To prove this fact we consider the expression
h{sje) _ (s/x)" R (s/ax)

wh(s)  sTh(s) ' O<e=t. (2.6)

Since sk (s) is monotonically decreasing for s larger than some value s;, it follows
that (2.6) is not greater than 1 for all s>s,. For 0<o<s=<s, the denominator s"%(s)
of (2.6) has a positive minimum because k satisfies the conditions (i) and (ii). The
numerator of (2.6) is bounded by the maximum of s"4(s), which exists and is fimite
because of (2.5). It follows that (2.6) is bounded, for ¢ <s<oo, by a constant M,
independent of «, which is the content of (2.1).

The function
1
his)=  —-
&)= Ty
is an influence function of order ». An exponential,
h(s)=e—8s,  f>o0,

15 an influence function of any order.

3. Retardation

The retardation I, with retardation factor o, 0 << = 1,1is the linear transformation
g — ¢, defined, for all histories g, by

(I59) (s) = go(s) = g (xs). {3.1)

We show that [, maps the space %, , into itself. For p==o0, we have*

g1 [ (19 s)| h(s))Pds

~ (3-2)
1 h(sja)y P , 1 h(s/a)\P
T ox / (l{](S)[ lz(s))”( I (s) ) ds & “g!IP o (zlilg h(s) ) )
0

* Since no confusion can arise, we omit the indices %, p on the norm.
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Since 4 is continuous and positive,

h(s/x)
sSup — ;o << o
a;sgo k (S)

for any ¢>>0. The decay condition (2.1) implies that

h(s/o)

A < o
7 s) oM, < oo,

sup -
sZo
Hence,

sup =0 = K, < oo, (3.3)

Combining (3.2) and (3.3) gives

.__1 -
lg.ll=a ? K,

lgll- (3.4)

It is easily wverified that this inequality remains valid for p=oc when we put
S a=1. It follows from (3.4) that when g has a finite norm g, has a finite norm
and is, therefore, in %, ,. Intuitively, retardation replaces a given history by
one which is essentially the same, but slower.

If, possibly after a suitable alteration of g(s) on a set of measure zero, the
limits

§=limg(s), §=1m " (g0 _5 e ) (3.5)
g=m9% =10« ‘g :;,_]!J, '
exist for £=0, 1, ..., #, then we shall say that the history g has # generalized

derivatives at s=0. Of course, the existence of ordinary derivatives implies the
existence of the corresponding generalized derivatives. Here we shall use the
term ‘‘derivative’ always in the generalized sense of (3.5). Generalized derivatives
at s=0 of any order may exist even though ¢(s) is not continuous near s=0.

The Taylor transformation II, is the linear transformation g —I7, ¢ defined,
for all histories g which are # times differentiable at s=0, by
1d ] (.
=

where the 8 are the derivatives (3.5).

This Taylor transformation replaces g by its #'® “Taylor approximation”
IT,g. The history I, g is a polynomial of degree <.

We note that retardation I, preserves the differentiability of a history and
that I, and I, commute; i.c., for all histories ¢ having » derivatives at s=0,

we have nr.g=rll,g. (3-7)

The set of all histories which have 7 derivatives at s=0 and which also
belong to the Banach space % , will be denoted by &,. This set &, is a linear
subspace of % ,, but it is not closed in %, , and hence not a Banach space.

The following theorem is an analogue of the classical Taylor approximation
theorem.

Theorem 1. _issume that n, p, and the order v of the influence function h satisfy
the inequality

n<7—;) (/l):() if p:w). (3.8)
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Then the Taylor transformation II, maps the subspace 2, of %, , into itself, and,
for all g in 2,,

]im£n7‘|n(g_nng)|lh,p:0' (39)

a—0

We can also write (3.9), using (3.7), in the form

I—;y—HnI;gzya_HngaLZO(a"): (310)

where the order symbol o must be understood in terms of the norm of the
function space %, ,. Roughly speaking, the theorem states that in the space
9,c%, , a slow history is close to its Taylor approximation and that the
distance between them is o(«").

Proof of Theorem 1. We consider only the case when p is finite. The case
when $ = oo can be treated analogously.

First, we show that every polynomial of degree =# has a tinite norm. For
this puipese it is sufficient to prove that

0j'o(s"h(s))”ds:1:,;<oo for k< u. (3.11)

It follows from (2.2) that

o0 oo

S (s¥h(s))?ds = [ (s h(s))? s"("_’)dsgNPfoos—“"’” ds. (3.12)
1 1 1

The inequalities (3.8) and A=# imply that p(r —k%)>1 and hence that the

integral
o0

cplr—k . 1
1
is finite. Since s* &(s) is continuous, it then follows from (3.12) that the integral
(3.11) 1s finite.
We have shown that any polynomial of degree =<# belongs to %, , and
hence to 9,, because it has » derivatives at s=0. Since a Taylor approximation
I1, g is a polynomial of degree <, it follows that I7, maps &, into itself.

The definitions (3.5) and (3.6) irlnply that the history

satisfies the limit relation
lim 16 0. (3.14)

“The definitions (2.3), (3.1), and (3.13) show that the assertion (3.9) of the theorem

is equivalent to
. 1 . y
tim U [ () b)) ds =o. 3.15)
0
We observe that

oo oo

o f (o)) i(s) ds = ,nip-ﬂ-f(lf(s)lh(;))"ds (3.16)

0 [}
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and investigate the latter expression. Let £>0 be given. It follows from (3.14)
that we can find a o(¢) >0 such that

'Jjg(?lgg‘ for 0<s=<ale).

Hence ols) o(e)

o;.rp’ﬂf(lf S)lh( )) as S_ﬁﬁ gff(s”h(_j‘-))Pds
. (3.17)
sefiEafetz)=en

where L, is given by (3.11). On the other hand, we have

m,,,,ﬂf(lf |B(2)fds =ar f(|f )| B(s))? (7_2/("")_) ds,  (3.18)

a(e} ofe)

where w=p (r — n) — 1. Applying the decay condition (2.1) to (3.18), we find that

wirT f(” ‘h(%))ﬁds§°‘wM:?e> 171 (3.19)

ofe)

On combining (3.17) and (3.19), we see that

mnx>+1 f(lf )l h({;—))i’ds = e L, + o Mi, | FIF (3.20)
(1]
holds for all £>0 and all 0<<a=<1. The assumed inequality (3.8)-insures that
w=p(r —n) —1 is positive. Therefore, by choosing first £ and then « sufficiently
small, we see that the right side of (3.20) can be made as small as desired. It
then follows from (3.16) that the limit relation (3.15) holds, which completes
the proof of the theorem.

In the special case #=0, r> ;, 8’20 Theorem 1 states the following. If

g< %, ,is continuous at s=0 with value 0, then
lim| I gl =o0. (3-21)

If l§n<r—;)- and ?}’:0, instead of (3.21), we have the stronger result

9.=1.9=0(x). (3-22)

4. Memory Functionals

We first recall some definitions* from the theory of functions defined on
a real vector space # with norm || || and having values in another real vector
space 7~ with norm | |.

(1) Suppose @, ..., g, are variables in #. Then a function $(g, ..., gs)
defined for all values of the variables ¢, in 3 and having values in 7, is called

* These definitions are analogous to those given in Chap. XXVI of [4].
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a bounded k-linear form if it is linear in each variable g, separately and if there
is a constant M. independent of g,, such that

B g = Mgl gl (41)

The form (g, ..., g,) is said to be symmetric if any permutation of the variables
leaves the value unchanged.

(2) A function B(g), defined for all g £5# and having values in J, is called
a bounded homogencous polynomial of degree k if there is a bounded symmetric
k-linear form R(g,, ..., ;) such that

Blg) =¥g.....9. (4-2)
The symmetric n-linear form ¥(g,, ..., g;) is uniquely determined by the homo-
geneous polynomial B(g) and is called the polar form of the polynomial.
(3) A function §, defined on a neighborhood of 0C5# and having values in
7 is said to be n times Fréchet-differentiable at 0C # if there are bounded homo-
geneous polynomials 6*§(g) of degree £=0,1, ..., n such that

F@)=> ) 3@ +lgl N, (4.3)
k=0
where . “ o
oo [R(g)] = 0. 4

The polynomial & (g) or its polar form &*§(g,, ..., ;) is called the &'® Fréchet-
differential or the k" variation of § at 0€#°. The differentialsimay be obtained
recursively by

k-1,
PF) =F0), FBlg)=klim L |Fhg) — X LoFe)|. @)
=0
We here consider the case in which J is the function space of all histories
g with the following properties:
(x) g has a finite &, ,-norm,
(8) g has n generalized derivatives at s=-0,
(v) g has a zero limit at s=0:
limg(s) =g =0, (4.6)

s—>0
(0) n, p, and the order 7 of the influence function /i obey the inequality (3.8).
The conditions (&) and (f) state that J# 7 &,. Condition (4) insures that the
conclusion (3.9) of Theorem 1 ix valid for all g €.#°.
A function § defined on a ncighborhood in.#’ of the zero function 0c#" ~ %, ,
and having values in a real Banach space .7~ will be called a memory functional
of type (h.n) if it is # times Fréchet-differentiable at 0 €.# and if it is normalized by

wmmzawro. (4.7)

In some applications it may be more natural to assume that § is defined and
Fréchet-differentiable on a neighborhood of zero in the entirc space %, »- How-
ever, the approximation theorem of the following section applies only to histories
which belong to the subspace #” of &, ,.
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5. The Approximation Theorem

Theorem 2. Let §-be a memory functional of type {(h, n); the histories g in
the domain space ¥ of § have values in the space &, and § itself has values in T .
Then, for each k-tuple of indices (J,, 75, .- ., Jx) such that

1ISHSHRESERsEn, hth++LSn, (5-1)

there exists a bounded k-linear form
such that, for all g cH,

ivongi With variables in & and values in T

- g, ) ” .
Blg)= X 6. N SERICOY (5.2)
T - 1)
where
g=1,9, ie, g,(s)=g(xs). (5.3)
and where
G.=24g (5.4)

is the generalized | derivative at s=0 of ¢, defined according fo (3.5). The sumn
in (5.2) 4s fo be extended over all sets (j;....,J,) of indices satisfying (5.1), and
the order symbol o (") has the usual sense. The multilinear forms (,,  , are uniquely
determined by §.

This theorem permits the asymptotic approximation of a memory functional,
for “slow” histories, by a polynomial function of the derivatives at s=0 of the
argument function of the functional. It is worth noting that the approximating
expression

. uyp )
Fu@)= X (9. 9), (5.0)
(1= s 7)
regarded as a functional of ¢, is not a memory functional in the sense of the
previous section because it is not even continuous at the zero function g =02 #".

For n=1 and #n=2, (5.6) reduces to

(1) (33}

Bi(9) =6), F9) =L@+, 9 + LG (5.7)
respectively, where I; and [, are linear and (;, is bilinear.

Proof of Theorem 2. For #=0, the theorem is a trivial consequence of
(3.21). For nz=1, the proof is based on a combination of the Fréchet-differen-
tiability assumption (4.3) and equation (3.10) of Theorem 1 which, in the notation
of (5.3), may be written as

.= ru.‘lfx +~O(a")' (58)

Since § =0 by (4.6), the definition (3.6) gives

(rlu .qx) (Q) = ifl’ S’ i(][) . (5())

1=1

The result (3.22) applies to both g =# and IT, g¢.# :
,g.,=0(x), {(5.10)
g,=0(x). (5.11)
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Combining (5.11) with (4.3), (4.4), and (4.7), we obtain
n 1 k
Z 7 0§ + o). (5.12)

Consider now a bounded homogeneous polynomial $(g) of degree k£, 1= k<n,
in the sense of (2) of §4. The differentials 6*§, 2>1 are such polynomials.
The polar form of P will also be denoted by . Using the multilinearity of this
polar form %, we obtain by (4.2), (5.8), and (5.10)

B(g.) =B, g, +0(",.... 11,9, +o(«"))
=%9(l,9, ....11,9,) —{—Z’-‘S(O(a),...,o(a"}, .., 0(@),

where each term of the sum contains at least one variable o(a"). It follows
from the boundedness (4.1) of $ that the terms in the sum are all o(a"**~%).
Since k=1, we have

B(9.) =B, 9,) +o(«"). (5-13)

We now investigate $(II, g,). Using (5.9) and the multilinearity of the polar
form B, we obtain

2 B gttt . A
%(Hnga) :Z"'Z—%—~—’i$(s“% S’ 79)) (514)
fi=1 =1

Due to the symmetry of $, all terms of (5.14) which differ only in the order of
the indices ji, ..., 7, are the same. Collecting these terms and separating all
terms of order higher than = in «, we get

B(I1,9.) - 3wt e, RGP G) + 0@ Y (5.15)
T15 ey TR}
k fixed

where the sum is to be extended over all k-tuples (j, ..., 7;) satisfving (5.1) and
where the m;, _, are positive rational numbers.

Now, the function
bh...n(al’ )= (s"a,,... "a,), (5.16)

with variables @, € & and values in 7 is clearly multilinear, because § is. Also,
Pi s bounded Indeed, application of (4.1) to (5.16) yields

b, ey, ... a)| < M|sha,]|... |||,
and (3.11) shows

l|s" ||, = |a] f’fzu
hence

v, a4y, a)| <M|a)|.. |a]. (5.17)

Substituting (5.16) into (5.15) and using (5.4) yields

¥Lg) = 2 b (G, o +0 (@Y (5.18)
T1y ooy IF
kflxed

where the I; are bounded £-linear forms.

(O
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. 1 . .
Applying the results (5.13) and (5.18) to $=-1 *& in (5.12), we obtain
formula (5.2).
The uniqueness of the I ., follows easily from the observation that they
are linearly independent and of order O («") or lower.

We remark that the multilinear forms I;, ,, of (5.2) are not necessarily sym-
metric. :

I1. Applications
6. The Concept of a Simple Fluid
The notion of a simple fluid has been given a definition within the frame-
work of a general theory of the mechanical behavior of materials*. This defini-
tion'is based on the following two physical assumptions **:
(a) The present stress depends on the past history of the first spatial gradient
of the displacement function.

(b) A fluid has no preferred configurations.

Using the principle of material objectivity ([Z], §11), it was shown in re-
ference [1] that the constitutive equation of a simple fluid can be written in
the form (22.12) of [1]. This functional relation, in a slightly different notation,

reads
]

Sit) =S930(C:(t —s);e()). (6.1)
Here S{(#) is the stress and g(¢) the density at time #. C,(7) i> called the right
Cauchy-Green tensor at time 7 relative to the configuration at time {. This
tensor is defined bv
C,(v) = F'(v) F(v) (6.2)
where

F (1) = Vexe(a, ) (6.3)

is the gradient the displacement function §=y,(®, ) which gives the position
at time 7 of the material point having the position & at time . The stress tensor
8(¢) is symmetric. The Cauchy-Green tensor C,{(t) is positive definite and
symmetric; for T=¢ it reduces to the unit tensor I:

C =1 (6.4)

The functional § in (6.1) is isotropic; 7.e., § obeys

Qs§0(C (S); 9) QT =g§0(Q C (S) QT; Q) (65)

identically in the history C(s)=C,(t—s) and the orthogonal tensor Q; here
Q7 is the transpose of Q. It follows from (6.5) that the value of § for the “‘rest

* 1], §21.

** In [3] we give a survey of the theory of simple fluids with emphasis on physical
applications. In that paper we anticipate some of the results rigorously derived here.
Although the language and the definitions of the present paper are slightly different
from those used in §§ 6 and 7 of [3], the arguments presented here prove also the
theorems stated there.
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history” C(s)=1I is a scalar multiple —p(p) of the umit tensor #. Defining

F(60).0) =0T +8 (I +G).0). (6.6
we may rewrite (6.1} in the form
S(it)y=—p (o) I+§0(C,(l —s)—1ILo(t). (6.7)
The functional g (G (s); o) is defined for functions G(s) with the property
- G(0)=0, (6.8)
and it has the value 0 for the zero function G (s)=0; i.e.,
30,0 =0, (69

It is also isotropic in the sense of (6.5).

e now assume that for each simple fluid defined by a constitutive equation
(6.7) there exists an influence function /% of an order » such that the functional
& of (6.7) is a memory functional of type (&, #) in the sense of §4. The domain
of § is a class # of histories G whose values G(s) are in the space .% of all
symmetric tensors. For the norm | | in & we use

|A]=|tr A2 for ACY (6.10)

The range space 7 of § is the same as the 1ange space of the histories &,
I.c. the space 7 =% of all symmetric tensors with norm (6.10). Equation (6.9)
insures that § has the normalization (4.7) required for a memory functional.
The density g enters into (6.7) only as a real parameter. The assumption that
& 1s a memory functional implies that its domain of definition contains a neighbor-
hood of zero in a function space J# which is defined by the conditions (x)—(9)
of §4. The condition (y) expresses the assumption that all histories G<#°
correspond to motions which are continuous at the present instant s=0 (cf. (6.8)).

If the simple fluid under consideration is incompressible, we must make some
alterations in our starting assumptions. For every possible motion in such a
fluid the density o is constant and the tensor C,(7) i> unimodular. In addition,
the stress is deteimined by the history of the motion only up to a hydrostatic
pressure p. Consequently, the equation (6.7) must be 1eplaced by

S@y= ~ pl+ F(C(t—s)—1) (6.11)
y U
in which the indeterminate pressure p and the functional § may be normalized by
O=tr S +3p=trF (Coit —s) — 1. (6.12)
v-0

If we were to limit the domain of the functional § in (6.11) to kinematically
possible histories, this domain would not contain a neighborhood of the zero
function in an appropriate function space, # ; therefore, § could net then be
a memory functional We assume, however, that § becomes a memory functional
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when its domain is extended by putting

oo

§(C(s) —I) =§ ((det €)1 C(s) - 1) (6.13)

5=0 s=0
when C(s) is not unimodular.
Aside from the added properties (6.12) and (6.13), the functional § occurring

in (6.11) is assumed to be of the same type as that in (6.7) with respect to both
isotropy and memory.

7. Approximations of Order n for Simple Fluids
We now apply Theorem 2, §5, to the memory functional occurring in the
constitutive equations for simple fluids (6.7) or (6.11).
Suppose a motion with Cauchy-Green tensor C,(7) is given. The correspond-
ing history & is defined by

G(s)=C,(t—s)— 1. (7.1)
If C,(7) is # times differentiable with respect to t at T=¢, the &'® Rivlin-Ericksen
tensor 4,, k=1, 2, ..., n is defined as follows:
Ak k {2}
Ak—_-d—,ckct(f) s (—1)°G, (7.2)

[}

where G is the k' derivative of G'(s) at s=0, asin §2.

We now consider histories G, obtained from G €3# by retardation as in (5.3).
The corresponding Rivlin-Ericksen tensors are

[¢J)
f=a Ay = (—1)"G,. (7.3)
[63]

They differ only by the inessential factor (— 1)* from the tensors G, to be sub-
stituted for (6)“ in the approximation formula (5.2). This formula, applied to
the constitutive equations (6.7) or (6.11), yields the following expression for the
stress tensor S, corresponding to the retarded history G, :

S,=—p I—}(—. ng)nh_'_jk([l;"l, v, ALY 4o ("), (7.4

P ORI )
where the summation is to be extended over all sets of indices (jy, ..., j,) obey-
ing (5.1). The terms wm,, ,; (4%,..., A%) are linear in each of the variables.

For compressible fluids, it is understood that p and m;, ;. depend on the density .
The equation (7.4) remains valid even when the derivatives shown in (7.2)
exist only in the generalized sense of (3.5).
The multilinear forms m;, _, in (7.4) are isotropic functions, which means

that they obey the identities
Owm;, .(U,....U) o= m;, QU Q%,...,00, 07 (7.5)

for all orthogonal @ and all symmetric tensors Uy, ..., U,. This proposition
follows easily from the fact that the memory functional § occurring in (6.7)
or (6.11) is isotropic in the sense of (6.5), from the observation that the conjugation
G (s) > QG (s) Q7 leaves the norm |G| unchanged, anG from the uniqueness
of the multilinear forms m;, _;, asserted in Theorem 2, §5.
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It follows from known theorems on isotropic functions that each form
m, (4, ..., A;), because it is isotropic and multilinear, may be expressed
as a sum

mil...ik (A]'u AR Ajk) = Z ;l (76)

of products of the form
C=t o @p.. om(A, 4, ... A’%‘ -+ ‘4’% A, 4 (7.7}

where the ¢,’s are traces of products of some of the tensors A, and are such
that each A;, =1, ..., &, occurs precisely once in each term €,. In the case
of an incompressible simple fluid the coefficients y, are constants, whereas for
simple fluids in general the u; are functions of the density. Thus, for simple
fluids, a finite number of scalar material functions p(g), u, (o) suffices to deter-
mine the stress S, to within terms of order # in «.

The case n=1 of (7.4) is of particular interest. With use of (7.6), (7.7), we
obtain

Sp=—pl+nAi+ " (tr a1+ o(). (7.8)

Now, the first Rivlin-Ericksen tensor A,=2D differs from the rate of defor-
mation tensor D only by the factor 2*. It follows that (7.8) is, to within terms
of order o(«), simply the constitutive equation (1.4) of a Newtonian fluid.
When the fluid is incompressible, the case n=2 of (7.4) takes a remarkably
simple form. The observation that tr 4,=0 for isochoric motions and use of
(7.6), (7.7) vield
Sa=—pl+nAf+B(41)* +y Af 4 o(a?), (7:9)

where 7, f, and y are material constants and where $ is an indeterminate
pressure. This pressure 4 differs, in general, from the mean pressure p defined
by the normalization (6.12), because it is obtained from p by absorbing all scalar
multiples of I arising from m,;, and m, through use of (7.6) and (7.7).

Motivated by (7.9), we can define an incompressible second-order fluid by the
constitutive equation

S=—pI+nA +p4i+y 4, (7.10)

Incompressible Newtonian fluids correspond to the special case f=y=0 of (7.10).
In some dynamical situations equation (7.10) leads to a linear partial differ-
ential equation for the velocity, just as in the Newtonian case. For example,

consider a rectilinear shearing flow which, in Cartesian coordinates x, y, 2, has
a velocity field with components

{v'} ={0,v(x,1),0}. (7.11)

If the body forces are conservative, substitution of (7.10) and (7.11) into
CaucHY’s dynamical equations leads to the following third-order partial differ-
ential equation for v(x, f):

év __ ¢%v Bv 4 7

Et'—a +b0_ 2", a , b o (7.12)

Fra ox? ot [/}

* Cf. (1], (9.7)-
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A non-steady flow of the Couette type, in cylindri(fal coordinates 7, &, z,
has a velocity field with contravariant components

{v'} = {0, (7, ), 0}. (7.13)
For such a flow, instead of (7.12), we get
ow g [
'SFt’:W[ s( B T 0% at)] (7.14)

In the Newtonian case, since b=0, equations (7.12) and (7.14) reduce to
diffusion equations. As for the diffusion equations, many physically interesting
solutions of (7.12) and (7.14) may be obtained by separation of variables*. It
would be desirable to develop a mathematical theory of third-order partial
differential equations of the type (7.12), (7.14).

8. Simple Materials in General

The considerations of the previous two sections may easily be extended to
the general simple materials defined in Reference [I], Part III.

The form of the constitutive equation of an isotropic simple material may
be obtained from (6.1) by replacing the scalar density g (¢} by the left Cauchy-
Green tensor B (t), taken relative to an undistorted reference state (cf. [1] (22.10)).
A consideration analogous to the one which led to (6.7) shows that the consti-
tutive equation of an isotropic simple material may be written in the form

= 5(B(0) +3 (C(t—5) ~ L B(). (8.1)

Here, the functional § depends on a tensor parameter B, instead of on a scalar
parameter g as in (6.7). We assume again that there is an influence function
h of order # such that the functional & in (8.1) is a memory functional of type
{(h, n). In place of (7.4), we then obtain the following approximation formula
for the stress S, produced by a slow motion of an isotropic simple material:

S,=4(B)+ 2 Myl 4h"' w B) + o(a"}, (8.2)

{13, 00es Ji)
where m; . is linear in each of its first & tensor variables but not necessarily
in the last tensor variable B.

The formulae corresponding to (8.1) and (8.2) in the case of amisotropic
simple materials are obtained from (8.1) and (8.2) simply by replacing all tensors
T occurring in these formulae by their conjugates RTTR with the rotation
tensor R=R(t) of the displacement from the reference state (cf.[1], (22.8)).

In the case of isotropic materials, the function % and the functional § in
(8.1) are isotropic in the sense that they obey the identities

Q4 (B) Q" =4(QBQ), (8.3)
(Q G(s)Q", QB Q") =QF(G(s), B) QT (8.4)
s=0

1|G98

* In particular, the sinusoidal vibration problems discussed for Newtonian fluids
in §§ 345— 346 .of LaMB’s treatise [5] are easily solved for second-order fluids. Also,
special solutions of (7.14) corresponding to sinusoidal vibrations of a fluid between
coaxial cylinders can readily be found.
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tor all orthogonal tensors Q. As in §7, it follows that the m, , in (8.2) are
isotropic functions of all their variables; i.e., they obey the identities

Om,  (U,....0;B)Q"T=m, _ (Q U, 0%...00,0%;,0BQY) (85

for all orthogonal @ and all symmetric tensors U, ..., U, B for which m,
is defined. The methods developed by SPENCER & Rrviin ([6], [7] and [8])
may be used to derive explicit representations for the m, , of a type analogous

-

to but more complicated than (7.6), (7.7). Using such a representation, one
can show that, in the case n=1, the approximation formula (8.2) reduces to

S, =§(B) + ATt (B) + t,(B) Af + tr (AL ,(B)) 4,(B), +-o(a),  (8.6)

where 9, §,, t, and £, are isotropic functions of the one variable B and hence
have representations of the form

b(B):ﬂoI"‘ﬁlB‘f‘ﬂsz: (8-7)

in which f,, f, and g, are scalar functions of the three principal invariants of B.

The first term §(B) in the expression (8.2) for the stress S, corresponds to
purely elastic response. The sum in (8.2) may be interpreted as representing
the internal friction for slow motions.
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