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Abstract. A reaction-diffusion model is presented in which spatial structure is 
maintained by means of a diffusive mechanism more general than classical 
Fickian diffusion. This generalized diffusion takes into account the diffusive 
gradient (or gradient energy) necessary to maintain a pattern even in a single 
diffusing species. The approach is based on a Landau-Ginzburg free energy 
model. A problem involving simple logistic kinetics is fully analyzed, and a 
nonlinear stability analysis based on a multi-scale perturbation method shows 
bifurcation to non-uniform states. 

Key words: Diffusion m o d e l -  Popu la t ions -  Ginzburg-Landau model 

1. Introduction 

Dispersal effects in deterministic models for interacting populations are usually 
taken to be diffusive in a Fickian sense with the resulting equations of reaction 
diffusion type: See Okubo [1] for an up to date review. Steady state heterogeneous 
structures and wave phenomena are a consequence of the interplay between the 
nonlinear interaction and diffusion. Ifn(x, t) denotes the population density vector, 
the equations are typically of the form 

(~/'/ 
- -  = G(n)  + V" D Vn, (1.1) 
c~t 

where G is the nonlinear growth interaction (or in the chemical sense the kinetics), 
and D the diffusion matrix. If  n is a scalar then (1.1) cannot sustain steady state 
spatial structures in a finite domain with Neumann boundary conditions. 

With the complexity of ecological systems it seems restrictive to consider spatial 
effects (other than convection) to be simply Fickian diffusion. An approach based 
on a Landau-Ginzburg free energy model is more general and contains the Fickian 
model as a special case. We show in Section 2 below that in the scalar case 
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n(x, t), satisfies an equation of the form 

On 
- -  = G(n) + D A  FZn + D B  V2n 3 - D K  [74n, (1.2) 
Ot 

where D, B and k are positive constants and A may be a positive or negative 
constant. When A < 0 this is in essence equivalent to a negative diffusion coefficient 
in a Fickian sense. Taylor and Taylor [-2] from their field work on insect migration 
have proposed a mechanism in which the diffusion coefficient exhibits population 
pressure which effectively gives a negative diffusion for small enough population 
densities. In more primitive organisms it is like an alternative to chemotaxis. Okubo 
[1] in an attempt to model schooling offish and several other authors (see [1] for a 
discussion and references) in attempts to study aggregative behavior have proposed 
other generalizations of (1.1). These are all second order differential equations, 
however, and in the scalar case none of these models can exhibit bifurcation from a 
uniform state to a stable heterogeneous spatial structure. In (1.2) the last two terms 
have a spatially stabilizing effect while D A  172n with A < 0 is destabilizing. Such a 
model equation (1.2) can exhibit bifurcation to stable heterogeneous spatial 
structures, as we show below. 

In Section 2 we discuss diffusion in the general non-Fickian sense and derive the 
governing equation. In Section 3 we consider the single scalar equation for a simple 
logistic kinetics and give the linear stability results. In Section 4 we discuss the 
nonlinear stability and show the bifurcation to nonuniform states. The form for the 
energy density which results in the model equation (1.2) is described in the 
appendix. 

2. Generalized Diffusion 

In various fields of physics, chemistry, and engineering in the last one hundred years 
Fick's law of diffusion has been inadequate to describe diffusive processes. In many 
cases generalizations and alternatives, based on fundamental physical processes, 
have been proposed which successfully describe and predict the experimental 
observations. Three main periods and problems have provided the major impetus 
for this development. (i) The work of Gibbs and van der Waals around the turn of 
the century on coexistence near the critical point led to the concepts of nucleation, 
metastability, and spinodal decomposition in an attempt to understand the 
simultaneous existence of two spatially distributed states of matter (i.e., pattern 
formation). The fundamental role of diffusion and its physical nature was carefully 
studied. (ii) The work of Cahn and his co-workers in the period 1950 - 1970 on the 
structure of metal alloys (again, pattern formation) led to a successful analytical 
formulation incorporating the concepts of a negative diffusion gradient which had 
been experimentally observed by x-ray techniques and which is necessary in the 
theory of metal alloys to account for molecular clumping (or aggregation). (iii) The 
recent work (l 970- 1980) on striations or patterns (in the phonon or quasi-particle 
density) on super-conducting thin films led to a re-examination and further 
development of the Gibbs-van der Waals theories this time based on the pioneering 
work of Landau. At about the same time as the work on metal alloys was going on, 
the Landau-Ginzburg theory of non-equilibrium thermodynamics was proposed to 
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account for the phase co-existence patterns. Inherent in this theory is a non-Fickian 
mechanism of diffusion. The recent work in super-conductivity has led to a 
satisfying theory based on the Landau-Ginzburg description. Excellent papers 
describing the work on metal alloys and the earlier phase co-existence problems are 
the major survey paper of Cahn [-3] and his paper [-4 3. The more recent work in 
super-conductivity can be found in [5], [6]. 

In all theories the generalized diffusion reduces to simple Fickian diffusion 
when spatially homogeneous states are produced. The generalized diffusion takes 
into account the diffusive gradient (or gradient energy) necessary to maintain a 
pattern even in the experimentally observed situation of a single diffusing species. 

Perhaps the best way to present the derivation is first to discuss the classical 
Fick's law in the relevant notation. Thus, suppose n(x, t) represents the con- 
centration of some diffusing species. Let f (n)  represent the energy density (i.e., 
internal energy per unit volume) of some evolving pattern, so that the total energy 
FEn] in a volume V is 

Fin] = [ f(n)dx. (2.1) 
J V" 

The variational derivative 6F/6n (that is, the change in energy or work done in 
changing states by an amount 6n) defines a (chemical) potential #(n); that is, 

6F 
#(n) - - f ' ( n ) .  (2.2) 

6n 

Now, a gradient of the potential # will drive a current J, or equivalently, the flux 
,l is proportional to the gradient of ~t. This is Fick's law. Thus, 

J = - D grad #(n), (2.3) 

where D is a proportionality constant. The basic equation of continuity (i.e., 
conservation of mass) then becomes 

On 
- -  = - div J = div(D grad #(n)) = div(Df"(n) grad n). (2.4) 
0t 

Hence, 

where 

0?t 
- -  = div(/)(n) grad n), (2.5) 
0t 

D(n) = Df"(n). (2.6) 

In the case of the simple heat equation or a situation with constant diffusion, the 
internal energy density is the standard quadratic formf(n)  = �89 2. Then, #(n) = n, 
and (2.5) becomes 

0n 
- D V2n (2.7) 

0t 

with D(n) - D representing the constant diffusion coefficient. Classical Fickian 
nonlinear diffusion is represented by (2.5) with a nonlinear diffusivity/3(n). Clearly, 
the derivation remains the same if we allow D to have spatial and temporal 
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dependence, if we allow n to be a vector of concentrations, and if we add sources and 
sinks (i.e., dynamics or reaction terms) to the continuity equation to obtain the 
standard reaction-diffusion system 

O n  
- -  = div(/)(n, x, t) grad n) + G(n) (2.8) 
0t 

in place of (2.5). Here G(n) represents the dynamics (or reaction terms). This 
completes our derivation of Fickian diffusion. 

Most  derivations of (2.5) or (2.8) start at equation (2.3); that is, Fick's law as 
given in (2.3) is simply postulated. All we have done is to start with the internal 
energy (consistent with Fick's law) necessary to maintain states described by Fick's 
law. The pertinent feature of this energy functional (2.1) is that it depends only on 
the state n of the system through the densityf(n). However, stable inhomogeneous 
states (i.e., patterns) exist in many fields. These patterns often contain large changes 
in concentrations (i.e., concentration gradients), and thus, there must be a gradient 
energy necessary to maintain such a state. That is, phenomenologically instead of 
(2.1) a more realistic energy functional is 

F i n ]  = f If(n) + �89 2 + . . . ]  dx. (2.9) 

Here f ( n )  represents the energy density which this volume would have in a 
homogeneous composition, and the other terms represent the energy density (a 
"gradient" energy) which is a function of local composition and which clearly will 
be significant in non-homogeneous states. The proof that (2.9) is the precise form of 
the integrand necessary to preserve various physical and geometrical quantities is 
given in Appendix A. In one form or another this is the crucial step in all the fields 
mentioned above. Our derivation most closely follows the work of Cahn and 
Landau-Ginzburg. 

Now, we simply re-trace the steps in going from (2.1) to (2.8). The potential # 
induced by our energy functional (2.9) is given by 

3 F  
I~ = p(n,  Vn) - - k V2n + f ' ( n ) ,  (2.10) 

fin 

so that the flux J is given by 

d = - D grad/~(n, Vn). (2.11) 

Incorporating first order spatial effects the equation of continuity then becomes 

0n 

~t 
- d i v J = d i v ( D g r a d p )  

= D V2( - k V2n + f ' ( n ) )  

= - k D  V4n + d i v ( D f " ( n )  grad n). 

We show in Appendix A that the appropriate form for f ( n )  is 

f i n )  = �89 2 + �88 4. 

(2.12) 

(2.13) 



Diffusion Model for Growth and Dispersal 241 

Thus, (2.12) becomes 

0n 
- -  = - Dk V~n + DA V2gl -~- DB V2n 3. (2.14) 
~?t 

Finally, if we incorporate the dynamics (or reaction terms), we obtain 

On 
- Dk F4n + DA VZn + DB Fen 3 + G ( n ) .  (2.15) 

Ot 

The equations (2.14), (2.15) are the generalizations of equations (2.5), (2.8) 
respectively�9 In the one-dimensional case, which we study in detail in the next 
sections, equation (2.15) becomes 

c3n ~4rt 2 ~2gt ( On "] 2 
Ok~x4 + O(A + 3Bn )~xz + 6OBn\  ~x ] + G(n). (2.16) 

O t -  

3. Patterns for a Single Diffusion Species 

We shall consider the interaction of our generalized diffusion with kinetics of 
logistic type by way of example. Thus, we analyze 

~?t - Dk~x4 + D(A + 3Bn )~x2 + 6DBn + kin - k2 n2. (3.1) 

This model has been proposed by Huberman [5] to study strictions in chemical 
reactions. Huberman presented only a plausibility argument based on linear 
analysis. Coutsias [7], using more advanced perturbation methods, then derived 
the nonlinear exchange of stability mechanism. Our presentation follows the work 
of Coutsias who used the multi-scale methods suggested by Boa and Cohen [8]. 
Coutsias and Huberman [9] have examined the implications of this generalized 
diffusion in general Ginzburg-Landau systems. 

Our major results are that while much of the structure contained in the standard 
second order reaction-diffusion equation (with the same non-linearity) is totally 
preserved, significant qualitative changes are produced especially near bifurcation 
points. We are able to assess clearly the role of the Fickian part of the diffusion in its 
attempt to produce homogeneous equilibrium states and the non-Fickian part in 
maintaining species aggregation. 

Uniform (i.e., homogeneous) steady states are given by 

kl 
n -= 0 and n ~ k2 (3.2) 

With kl as parameter the bifurcation theory for the standard second order reaction- 
diffusion equation is illustrated in Figure 1. As kl varies from negative to positive 
(for fixed k 2 > 0) the steady state n -= 0 loses its stability at kl = 0 and the system 
changes to the stable steady state n =- k~/k2. Both states are uniform, with no 
pattern formed. 

We now present the linearized stability analysis of (3.1) for the basic steady 
states (3.2). Some of the algebraic manipulation, while straight-forward, is lengthy. 
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stable 

n 

unstable kl 

Fig. 1 

We shall exhibit only the major steps referring the reader to [7] where the detailed 
algebraic manipulation is carried out. 

To carry out the linearized stability analysis of the state n =-ka/k2, let 
n(x,  t)  = ( k t / k 2 )  + n l ( x ,  t),  substitute into (3.1), and retain only linear terms to 
obtain in the usual way 

~3n 1 

Ot 

Solutions are 

where 

kZ ~a2n l  Dka4n l  
k , n +  D A + 3 D B k 2  2 j ~ -  ax 4 .  (3.3) 

nl (x, t) = e~'e iqx, (3.4) 

/ k?\  
a : - k ,  - t D A  + 3 D B ~ I q  2 - Dkq  4. (3.5) 

Similarly, if we linearize about the state n = O, we find that the perturbation term 
nl(x ,  t) satisfies 

- �9 02na - D k  04nl (3.6) 
- k in  + D A y , x 2  ~X 4 , 

solutions of which are again of the form (3.4) where now 

a = kl  - D A q  2 - Dkq  4. (3.7) 

These dispersion relations (3.5) and (3.7) are illustrated in Fig. 2. 
The mechanism for pattern formation and the structure of the bifurcation 

diagram is now clearly revealed. Consider, for example, the stability of the state 
n - 0. From Fig. 3 we see that as we vary kl,  the state n - 0, which is stable for 
kl < k~- c, loses its stability at k~ -- kl- c. As we pass through this critical value we 
expect a new state to evolve with the spatial structure e -+~qcx. Here 

<0 

A>O 

Equation (3.7) for k I < 0 

~ A < O  
A>O 

Equation (3.5) for kl> 0 

mq 

Fig. 2 
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klr 

o" 

Equation (3.7) with k I<O and A<O 
2 -A - -DA qr : ~  ' k1r : - ~  

-q 

stable 
k~''' 

in ~ l e  

I 
kit 

Fig. 3 Fig. 4 

- A  - D A  2 
q2 _ klc - (3.8) 

4k ' 4k 

Similar considerations apply for the stability of the state n - kl /k2,  where k~c is the 
positive solution of 

3B (2kD)1/2 = ( k ~  c ~1/2 (3.9) 
k ~  k[c2 q- - -  (k+c)1/2 + A = O, qZ \ 2 ~ ]  " 

These results are best understood by a glance at the bifurcation diagram of Fig. 4. 
As k~ varies from negative to positive, we clearly see the loss of stability of the state 
n = 0 at kl = k(c and the onset of the stability of the state n - k l /k2 at kl = k~. 
Our linearized theory clearly indicates (and we shall confirm it with our nonlinear 

sin 
analysis of Section 4) that stable patterns (with spatial structure of the form q~x) 

cos 
can develop at the bifurcation points k = k~ ,  k~c. In fact, branches connecting the 
stable state at k~ < kt~ with that at ka > k~ may take several different shapes 
depending on various relationships among the parameters of the problem; we now 
present this in Section 4. 

4. Nonlinear Stability Analysis: Bifurcation of Nonuniform States 

When the uniform state is unstable, solutions starting with initial conditions near 
the solutions can be calculated asymptotically when k I is near k~c or kit. We shall 
carry out such an analysis using a multi-scale perturbation method. 

Let kl be close to the critical value kl, where kl represents either k~c or k~c; that 
is, we define a small parameter e (0 < e << 1) by 

kl = k l  q- ~2~ (2 << qc), (4.1) 

and assume a solution of (3.1) of the form 

n = no + enl(x, t, 4, ~) + e2nz(x, t, 4, z) + '- ", (4.2) 

where no represents either 0 or kl /k2,  and where 

= ~x, ~ = ~2t. (4.3) 
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The critical part of our analysis is clearly the assumed structure (4.1)- (4.3). The 
justification for this form and the scaling used in x is suggested by the geometry of 
the problem and in t from the structure of the equations. With wave numbers in a 
neighborhood of qc, say ql = qc - 5/2, qa = qr + 5/2, combining two cosines for 
example gives c o s q l x c o s q 2 x  = �89 + cosex): this suggests ex as the x- 
scaling. 

We now carry out the perturbation procedure. Upon inserting (4.1) -(4.3) into 
(3.1) and equating coefficients of like powers of e, we obtain 

Lnl  = 0, (4.4) 

where the operator L is defined by 

Ln - Ot + Ikl[ -~3 . . . .  + 25-3xx + 1 n, (4.5) 
k qc q~ 

Ln2 - Cl 2 ~r  3x~ + 1 nl + 6no + (3noDB~x~ - kz)n~, (4.6) 
c \qc  

41k~l ~ 
Ln3 = - 3~nl + ~nl + - ~ - a ~ n ~  - 2(k2 - 3DBno)O~nxn2 + DB~?x~n~ 

+[6DBno~?xcn~ 41~k2~1 0~ ( ~  0~ + 1) n2 1 . (4.7) 
qc k q~ 

The general solution of (4.4) is 

nl = ~ (-~(r ~, q) cos qx + B(r ~, q) sin qx) exp[~r(q)t] dq, (4.8) 
,1- oO 

where the unknown functions J and ~ will be determined at a later stage of the 
perturbation procedure. Equation (4.8) represents the full solution n~, valid for all 
time, but it leads to expressions of unmanageable complexity in the further analysis. 
Things can be simplified considerably and the equations for A and B can be 
determined if we perform an asymptotic analysis for large time at every step. Hence, 
since ~(q) has a maximum at q = q~, we can use the standard method of Laplace to 
get the asymptotic form of the integral in (4.8). We obtain 

nl ~ A(~, z) cos qcX + B(~, z) sin q~x. (4.9) 

Assuming that such a calculation can be carried out at every step, we can in effect 
ignore t-dependence in our further analysis and carry out all calculations 
asymptotically for large time. Thus, we substitute (4.9) into the right-hand side of 
(4.6) to obtain 

1 ~2 _ ABsin2q~x], (4.10) - (12DBnoq~ + kz)[y(A ~2) cos 2qcX + 

the solution of which is 
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+ 

1 
+ 9lkT(12Dbnoq2 + k2)[-~(4 2 + B2)cos2q~x + 4Bs in2q~x]  

+ homogeneous  solution. (4.11) 

At  the next stage we have 

2 (19k2 + 3612DBn~ (42 +/~2)}  

x (k2 + 3BDnoq~)- ~DBq2(A 2 + B2)Jnl + higher harmonics.  (4.12) 

The solution n3 will become unbounded ,  due to the appearance o f  secular terms, 
unless we require the square bracket  on the right o f  (4.12) to vanish [with nl f rom 
(4.9)] which gives the equat ions for A and B at no = 0 and no = kl/k2. At no = 0 
(kl < 0, k~-~ = - DAZ/8k, q2 = [A[/4k), suppression of  secular terms gives 

~4 
- [6 - 2(4  2 + B2)]4  + 2D[A[4~r 

& 

a~ 
- [6 - 2(4  2 + B2)]B + 2D[AIB~r (4.13) 

& 

where 

3DB[AI 76kk~ 
2 -  16k 9DA 2 . (4.14) 

The behavior  of  nl in (4.9) with A, B f rom (4.13) is summarized in Table 1 : There 
is a threshold effect in the case 2 < 0, 6 < 0. 

At  no = kl/k2 suppression of  secular terms gives equations similar to (4.13) 
f rom which an equivalent table to Table 1 can be obtained:  the results are illustrated 
qualitatively in Figs. 5 - 7  with the parameter  ranges given in the legends. 

Table 1. Behavior near the bifurcation when no = 0; 2 as in (4.14) 

2 < 0  2 > 0  

6 < 0 nl blows up unless it is small enough initially nl ~ 0 
(j2(~_, 0) + B(~, 0) < 6/2) in which case it decays 
to zero 

> 0 nl blows up nl envolves to some bounded steady 
state with j2 +/~2 ... 3/2 > 0 
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stable 
- - - - - -  conjectured 

J / 

/ 
kL 

,11 n l l l  

kl 

"--" B>O 

. / !  
+ klc kl 

Fig. 5. Bifurcation diagram for 

2 k + ~ /  k+ ~ - 3 8  k 2 
DBqZ+ > 3827 k2 \ + 3BDq+~)~I  + 12BDq2+I-~'~ ) ' DBq2- > - - - - ' 2 7  k_ 

Here q+, k+ and q_, k_ correspond to q~ and k~ in (3.9) and (3.8) respectively 

stable 
unstable 

-----  conjectured 
/ / '  

8<0 / 
/ 

/ 

I l n l l l  

V 8 > 0  

. --" i  
k~" c k I 

Fig. 6, Bifurcation diagram for 

27 L-+ + 3BDq2+ 1 + 12BDq 2 k2 

J stable 

a ~  unstable 

---- conjectured _ 

f 
/ 

/ 
f 

8<0 x x 
% 

k~- c 

LII n I II 

k;0 

~ > 0  

DBq~ > - -  
-38  k~ 

27 k_ 

Fig. 7. Bifurcation diagram for 

38 (l %(1  2 k+ 
DBq2+ <----\27k+ + 3BDq2+ k~f2/\ + 1 2 B D q + - - } ,  19k22 / 

DBq 2_ < - _  
--38 k~ 

27 k_ 

Therefore, to leading order in e the solutions of (3.1) near the bifurcation points 
are given by (4.9), where the evolution equations for ~(~, z) and B(~, -c) are given by 
(4.13), near no = 0 with similar equations near no = kl/k2. These equations 
determine both the stability and the bifurcation structure both of  which are 
illustrated in Figs. 5 -  7. The dashed continuation lines are conjectures. 



Diffusion Model for Growth and Dispersal 247 

5. Analysis of the Smooth Transition Case 

Consider Fig. 5 near kl = k~- c which we shall analyze by way of illustration. The 
evolution equations for 4 and B in the solution (4.9) for nl are given by (4.13). 
Evolution to a stable state requires 2 > 0 and 6 > 0, where 2 is given by (4.14). By 
appropriate scaling we need only consider 

4~ = 411 - (42 + ~ ) ]  + 4~,  ~ = ~ [ I  - (42 + ~ ) ]  + ~ .  (5.1) 

The form of (5.1) suggests transforming the system according to 

4 = R cos r B = R sin r 

where R, r satisfy 

l 
R, = R(1 - R 2) + Rr162 - RqS#, q~ = R~(R2~br (5.2) 

A one-parameter family of solutions is 

r = c~ + (arbitrary constant), 

R = R ( z ; c )  where R~ = R(1 - R z) - R c  z, (5.3) 

which, as z ~ o% evolve to 

= c~, R = (1 - c2)  ~/2 - Ro, Icl < 1. (5.4) 

Such solutions are linearly stable if Icl < 1 / , ,~ .  This gives 

n l ( x ,  t ~ oe) = (1 - ca) lie Re[exp ( i x (qc  + ec))], 

to within some scaling constants. A similar solution for nx obtains near n = no r 0. 
The R - q~ equations (5.2) have another family of solutions given by 

r = c, R = R(~); Rer + R(1 - R 2) = 0, 

and so R(~) is a Jacobian elliptic function. If R is linearized about a periodic 
function a partial differential equation is obtained the spatial part of which is a Hill 
operator. This means that positive eigenvalues always exist [10] which lead to 
growing exponentials: this means that such periodic solutions for R are unstable. 

6. Conclusions 

By considering a more general non-Fickian approach we have obtained a model 
equation, namely (2.14), which we propose as a mechanism governing population 
growth and dispersal of a single species. It takes into account, in a fuller way, effects 
of population pressure which is now fairly widely accepted as an ecological factor. 
Population aggregation against a concentration gradient, as is observed in many 
insect populations, is possible with such a model. We have investigated the 
consequences of this by considering the solution behaviour near bifurcation points. 
In the case of a specific growth, namely logistic, we have found spatial structures 
which result from a nonlinear stability analysis near bifurcation. From Figs. 5 - 7 
the solution behaviour near the bifurcation points is non-standard and exhibits a 
variety of possible behavior. 
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Appendix A. The Energy Density 

The energy density must be invariant under reflections (x~ --) - x~) and rotations (x~ ~ x j). Thus 

Fin]  = f N [ f ( n  ) + k l  V2n + ku(Vn) 2 + '" "] dx. (A.1) 

Consider the term involving kt V2n. Green's Theorem implies that we can write this term as 

f v k ~  V2ndx  + f v V k ~  " V n d x  = f k~ ~3n da, (A.2) 
.) s (3N 

where N represents the outward pointing normal to the surface S bounding the volume V. We are 
allowing kl to depend on n so that Vkl  = k'l(n) Vn. Thus 

f f kz V2n dx = - k'l(n)(Vn) 2 dx  + k l  - -  da. (A.3) 
v v s ~N 

Since we are not concerned with the effects at the cxternal surface, we can choose thc boundary S such 
that ~n/~N = 0 on S. Therefore, (A.I) becomes 

Fin]  = f [f(n) + �89 2 + ' . . ] d x  (A.4) 
d V 

where 

�89 = - k'l(n ) + k2. (A.5) 

The basic Landau-Ginzburg assumption for f (n )  is that 

f (n )  = �89 2 + �88 4. (A.6) 

Only even powers of n appear because the energy density cannot depend on the sign of  n. For example in 
the context of  the thermodynamics of phase transition given by 

A = A o ( T  - To), (A.7) 

where A0 is some constant, T is the temperature, and Tc is the critical temperature. In our usage in this 
paper the parameter T (with a critical value T = To) is a parameter associated with the species' 
environment or the population's behavior when near an aggregative state. Just as in all previous physical 
contexts, the parameter A can assume positive or negative values. Note that if we designate the 
coefficient D A  of the second derivative in (2.14) as the "diffusion coefficient," then negative diffusion is 
possible. However, the stabilizing mechanism then becomes the fourth order term in the production of a 
pattern. In the previous applications to metal alloys and super-conducting thin films, this theory has 
been successful both qualitatively and quantitatively. 

References 

1. Okubo, A. : Diffusion and ecological problems. Mathematical models. Berlin-Heidelberg-New 
York: Springer 1980 

2. Taylor, L. R., Taylor, R. A. J. : The dynamics of spatial behaviour. In: Population control by social 
behaviour, Symposium, pp. 181 - 212, 1978 

3. Cahn, J. W.: Spinodal decomposition. The 1967 Institute of  Metals Lecture. Trans. Metallurgical 
Soc. of AIME 242, 167-180 (1968) 

4. Cahn, J. W. : The later stages of  spinodal decomposition and the beginnings of particle coarsening. 
Acta Metallurgica 14, 1685-1692 (1966) 

5. Huberman, B. A. : Strictions in chemical reactions. J, Chem. Phys. 65, 2013-  2019 (1976) 
6. Berggren, K. F., Huberman, B. A. : Peierls state far from equilibrium. Physical Review B 18, 

3369-3375 (1978) 



Diffusion Model for Growth and Dispersal 249 

7. Coutsias, E. A. : Some effects of spatial nonuniformities in chemically reacting mixtures. Ph.D. 
Thesis, California Institute of Technology, 1980 

8. Boa, J. A., Cohen, D. S. : Bifurcation of localized disturbances in a model biochemical reaction. 
SIAM J. Appl. Math. 30, 123-  135 (1976) 

9. Coutsias, E. A., Huberman, B. A.: Long time behaviour of Ginzburg-Landau systems far from 
equilibrium. Physical Review B (1981) 

10. Magnus, W., Winkler, S. : Hill's equation. Interscience. John Wiley 1966 

Received September 17, 1980/Revised January 20, 1981 


