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Abstract. We study the properties of the potential field generated by an oblique 
dipole layer. This field arises, for instance, in describing the potential elicited by 
a depolarization wavefront spreading in the myocardium when a dependence of 
the potential on the cardiac fiber orientation is introduced. The representation 
of cardiac bioelectric sources by means of an oblique dipole layer leads to a 
mathematical structure which generalizes the classical solid angle theory used in 
electrocardiology, which has been challenged by recent experimental evidence, 
and links models previously proposed with a view to adequately reproduce the 
potential observed in experiments. We investigate also the relationship between 
our model and an intracellular current model and we derive potential jump 
formulae for some models which account for the anisotropic structure of the 
myocardium. The potential generated by an oblique dipole layer is considered 
both for unbounded and bounded domains. In the latter case an integral 
boundary equation is derived and we study its solvability. A numerical 
procedure for solving this integral equation by means of the finite element 
method with collocation is outlined. 
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I. Introduction 

Experimental findings by Corbin and Scher [9], Baruffi et al. [4], Spach et al. [27] 
have shown that the classical uniform double layer model of the bioelectric cardiac 
sources does not always predict correctly the potential field generated by an 
excitation wavefront spreading in the heart tissue. 

Corbin and Scher [9] first proposed an "axial" model in which the dipoles on 
the wavefront are locally parallel to the direction of the myocardium fibers. 

In our paper [7] a generalization of the "axial" model has been proposed which 
takes into account also a transverse dipole distribution on the wavefront i.e. with 
dipole axis perpendicular to the fiber direction. 

In [7] it was shown that this model, representing the depolarization wavefront 
as an oblique dipole layer, reproduced adequately the pattern of the potential field 
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elicited by paced dog hearts in a volume conductor;  we refer again to [7] for the 
comparison between experimental data and simulated results. 

In this paper we study the properties of the potential field generated by an 
oblique dipole layer in an unbounded isotropic medium; subsequently we 
investigate the potential problem in a bounded and insulated medium deriving an 
integral boundary equation, which is proved solvable, and we develop a numerical 
finite element procedure for its approximation. 

A feature of the potential distribution due to an oblique dipole layer, defined by 
a superposition of an axial and transverse dipole layer, is its equivalence to a field 
obtained by a linear combination of a normal and an axial dipole layer. Hence the 
model can be viewed as an extension of the classical uniform and normal dipole 
layer model obtained by adding to it an axial perturbation which makes the 
potential dependent on the shape of the front and on the orientation of the fibers. 

With the aim of interpreting the dipole moment of the oblique dipole layer in 
terms of electrophysiological quantities and to establish a more satisfactory 
foundation of the oblique dipole layer theory, we show that this mathematical 
structure can be obtained as a limit case of an intracellular current model, used for 
simulation purposes by Spach et al. [27J, when the intracellular action potential 
approaches a step function. 

Subsequently we introduce two different "local" oblique dipole layer models 
taking into account the anisotropic structure of the heart tissue. We study their 
relationship and we show that for one of.them the predicted potential jump across 
the wavefront coincides with the jump formula proposed by Roberts et al. [25]. 

The dependence of the potential field on the fiber orientation, introduced by the 
oblique dipole layer structure of the depolarization wavefront, raises the difficult 
problem of actually defining the geometry of the cardiac fibers. We show that it is 
possible to recover the geometry of the fiber orientation from the knowledge of the 
motion of the depolarization wavefront, when a suitable relationship between the 
conduction velocity and the anisotropic tissue conductivity is assumed. 

2. P r e l i m i n a r i e s  a n d  N o t a t i o n s  

We recall some matrix calculus notations. Let x, y . . . . .  denote points or vectors in 
the euclidean space ~3. 

The scalar product of x, y is denoted, as usual, by x - y. The gradient vector 
operator V has components g/~xl, ~/~x2, ~/~x3; furthermore x, y , . . .  and 
x T, y r , . . . ,  denote respectively column and row vectors; if A, B . . . .  , are matrices 
then, A T , BY, . . .  are the transposed matrices. Therefore: 

x �9 y = x r y ,  a �9 V = a ~ V ,  

a '  (Cb) = arCb,  a .  (CV) = a~CV. 

We shall use the dot - or the matrix notation according to convenience. We shall 
also use the following property (given in ~'). 

If A = (al, a2 , . . . ,  a,) and B = (bl, b2 . . . .  , b,) are square matrices, then 
n 

AB T= ~ aibT. 
i - 1  
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When using different systems of  orthogonal coordinates, we  shall distinguish 
between the global or standard system to be used everywhere and the local system to 
be used in the neighbourhood of  a point. The corresponding axes or equivalently 
the unit vectors parallel to them define respectively the standard and the local basis. 
These bases are assumed to be both left or right-handed so that they can be made to 
coincide by means of a rigid displacement and a rotation. The local bases will be 
used to describe anisotropic properties of  a medium and will be determined by the 
principal axes (p.a.). We recall briefly the definition of p.a. (e.g. [-17]). Let 7 > 0 be 
the coefficient related to a property of  the medium (e.g. the conductivity) which 
depends generally both on the point and on the direction. In the frame of 
mathematical physics it is shown that (e.g. [17]) at any point there are three 
mutually orthogonal planes of  symmetry for 7 and the intersections of  these p lanes  
are the principal axes. I f  al,  a2, a3 are the unit vectors parallel to these axes, let 71,72, 
73 be the corresponding non-negative values of  V. If  7 is the same for all directions 
perpendicular to a3, then 71 = 72 and al, a2 are defined up to a rotation around a3 ; 
in this case, we set 

71 = 72 = 7t, ~3 = 71, a 3  = al-  

If  7 is the same for all directions, then al,  a2, a3 (mutually orthogonal) can be chosen 
arbitrarily and 71 = 72 = 73; the medium is isotropic at that point. 

For any direction characterized by the unit vector e with component  e'l, e~, e' 3 in 
the local basis, the value of 7 is given by 

Since 

we have also 

with 

7 = ~ l g l (  -[- ~2g22 -[- 73g32, 

e r = . , 2  = eTa/aye, i e a i a n d  e i 

7 = er(71a1 aT + 7za2a~ + y3a3a~)e = erCe 

Setting 

A = (al, a2, a3) , 

we have also 

C =  ylala~ + 72aza~ + 73a3a~. 

C ' = d i a g ( 7 > y 2 , Y 3  ), 7i~>0, i =  1,2,3, 

C = A C ' A  r, (1) 

where C, C' are both symmetric and positive semidefinite (positive definite ifTi > 0, 
i = 1,2, 3) and they characterize the cartesian tensor of  the property measured by 7 
in the standard and in the local basis. A, A r with A r A  = A A  r = / ( / i d e n t i t y  matrix) 
are the rotation matrices from the local to the standard basis and vice versa. Of  
course, we could have started from the symmetric positive semidefinite matrix C 
defining 7 for a direction e as 

= erCe. 
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F r o m  well known propert ies  of  symmetr ic  matrices,  there exists an or thogona l  
matr ix  A o f  eigenvectors and a diagonal  matr ix  C '  o f  eigenvalues 

A = ( a l ,  a2 ,  a3 )  , C'  = diag(vl,  ~2, ~3), Vi >/0, i = 1,2, 3 

such tha t  

C A  = A C ' ,  i.e. C = A C ' A  T = ~ l a l a  ~ + ),2a2a2 r + ~3a3a~. 

We  remark  also that,  given the unit  vector  n, it is 

n = (n .  a l )a l  + (n .  a2)a2 + (n .  a3)a3. 

I f  we consider the vector  

a = ( n .  a l ) a l  + ( n .  a2)a2 = n - (n .  a3)a3 

it follows that  a is cop lanar  with al ,  a2 and with n, a3 ; moreove r  a is perpendicular  
to a3. Let v be the unit  vector  parallel to a;  then a 3 " v  = 0 and a ' v  = n . y .  
Therefore  a = (n �9 v)v and 

(n "v)v  = ( n .  a l ) a l  + ( n .  a2)a 2 = n - ( n .  a3)a 3. (2) 

I f  v' = - v, then (n �9 v)v = (n �9 v')v' ,  i.e. v can always be chosen so that  n �9 a3 and 
n �9 v have the same sign; moreove r  v is independent  o f  a ro ta t ion  of  a~, a2 a round  
a 3. In the case of  axial symmet ry  a round  a3, setting 

C '  = diag(~/t, )'t, )'t); at-= a3; at = v 

and using Eq. (2) we obta in  

Cn = 7,(ala1 r + a2a~)n + 7tataf'n 

= 7r[(n ' a l ) a l  + (n �9 a2)a2] + ~t(n" at)at 

= 7,(n" a,)at + 71(n' at)at. (3) 

Since the mathemat ica l  s tructure we are going to investigate will be used in 
model ing the heart  potent ial  field and the applicat ions which we shall describe are 
related to electrocardiology,  we shall recall briefly some notions abou t  the 
bioelectric propert ies  of  the heart.  

Dur ing  a hear t  beat  a layer of  cells, changing with time, undergoes  the so-called 
"depolar iza t ion  process"  i.e. a change of  potent ial  o f  biochemical  origin which 
gives rise to the potent ia l  field observed in electrocardiology.  The change o f  
potent ial  in a cell, consequent  to the depolar izat ion process, occurs in a short  t ime 
interval with an approx imate ly  m o n o t o n e  var ia t ion f rom a resting value to a 
pla teau value, and the function which describes the cell potential  during this t ime is 
called action potent ial  (see, e.g. [11 ]). The  set o f  cells undergoing the depolar izat ion 
process consti tutes an "ac t iva t ing"  region which moves  across the m y o c a r d i u m ;  it 
has a thickness of  abou t  1 - 2  m m  (see Weidmann  1-29]) so tha t  it can be 
approx imate ly  viewed as a moving  surface called the excitation wavefront .  This is 
equivalent  to assume that  the depolar iza t ion process is ins tantaneous  and that  
the act ion potent ial  can be represented by a step function. This idealization is 
adequate  to describe the potent ial  at  a distance of  at least few m m  f rom any current  
s o u r c e .  



Oblique Dipole Layer Potentials Applied to Electrocardiology 97 

We recall that the classical way of modeling the depolarization wavefront, 
conceived as the seat of the equivalent source generators of  the heart potential, is to 
represent the wavefront as a uniform and normal double layer. The elementary 
dipoles on the wavefront are directed toward the resting, i.e. not yet depolarized, 
heart tissue. Actually, another contribution to the heart potential field comes from 
the "repolarization process" which brings the cells back to the resting bioelectric 
state. To a good approximation,  the repolarization process can be neglected for 
most  of the QRS phase of the heart beat, with which we shall be mainly concerned; 
so, for our purposes, there will be resting and depolarized tissue, respectively ahead 
and behind the front. 

3. Oblique Dipole Layers in a Homogeneous Isotropic Medium 

We shall here present a mathematical  model of  a depolarization wavefront suitable 
for a quantitative description of the potential field generated at distance from the 
cardiac sources. 

We assume that the activating volume comprised between the resting and the 
depolarized tissue is thin enough so that the depolarization wavefront spreading in 
the myocardium at time t, may be idealized as a moving surface S = S(t). This 
assumption is best suited for describing the potential at some distance f rom the seat 
of  the cardiac sources. 

We shall assume S to be a regular and orientable (two faced) surface. 
Let n be the unit normal to S oriented in the direction of the advancing front, i.e. 

toward the resting tissue. Accordingly, the region ahead and behind the front 
corresponds respectively to the resting and to the depolarized heart tissue. We 
assume the front S imbedded into an infinite homogeneous isotropic conducting 
medium of conductivity ~0, occupying the whole space ~3 thus neglecting the 
influence of the intra and extra cardiac tissue boundaries as well as the effects of  
myocardial  tissue anisotropy. 

We recall now the axial model of  Corbin and Scher [9] which first motivated us 
to study oblique dipole layer models. The axial model assumes that the dipoles on 
the wavefront are locally oriented as the myocardium fibers. Let rn~, az denote 
respectively the moment  and the axis of  the dipole on the wavefront S where a~ is 
chosen parallel to the local fiber direction and oriented toward the resting tissue so 
that n �9 a~ >~0. Then, in the axial model, the potential generated in an infinite 
isotropic medium with constant conductivity ao is given by 

1 i 
U(x) = - -  rnl(n " al)at �9 IZr- 1 dS, (4) 

47CO'o s 

where r = x - y, r = (r - r) 1/z and y describes S. Hence the excited fiber behaves 
like a small dipole oriented along the fiber axis with dipole density given by 

rnl dS* = mt(n �9 at) dS, 

where dS* = (n - at) dS is the projection of the surface element dS of the wavefront 
on the plane perpendicular to the fiber. 

We remark that rn~ is a kind of "intrinsic" density while m~(n �9 az) is the usual 
density on S per unit area. Since the longitudinal axis of  the fibers characterizes the 
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direction of the dipole on S the model is called "axial";  this term may be applied 
also to the dipole layer m#t. 

We shall now investigate an oblique dipole layer model, first proposed in [7], 
which was shown to be adequate in simulating the potential field generated by a 
paced dog heart in a volume conductor. This model is here presented as a 
generalization of the axial model in that it takes into account a "transverse" dipole 
layer m,a, with the axis a, perpendicular to at. A different derivation of this oblique 
dipole layer will be obtained in a subsequent section starting from an intracellular 
current model. We assume axisymmetry of the bioelectric properties of  the fibers 
around the local longitudinal axis at. Because of this assumption the axis a, must be 
chosen coplanar with at, n. The axis a,, like at, points toward the resting tissue so 
that n �9 at i> 0, n �9 a, >t 0. The potential generated by the superposition of the axial 
and transverse dipole layers rata, m , a ,  in an infinite isotropic medium with 
conductivity ao is given by 

U(x) = ~-  [m,(n �9 a,)a, + rnt(n - at)at] �9 F r -  ' d S  

_ 1 f nr[-m,a,al r + mtatal r] V r -  1 d S .  (5) 
4~ao Js 

The moments mr, m, can, in general, be dependent on the point y which varies on S. 
We remark that U(x) does not depend on the orientation of a,, at. 

For rn, = 0 and rnt constant we recover Corbin and Scher's model. If at, a2, a3 
are mutually orthogonal and a3 = at then using Eq. (2) with v = a, we obtain 

(n" a l ) a l  + ( n .  a / )a2 = (n �9 a,)a, 

or equivalently 

(ala~ + a2a~)n = a~alrn. 

Setting 

m l  = m 2  = mr ,  m 3  = m l  

and using Eqs. (1) and (2) we have 

(rn,a,a~ r + mta,a/)n = mlaia n = Mn, 
\ i =  l / 

where 

M = A M ' A  r 

with 

M' = d i a g ( m t , m 2 , m 3 ) ,  A = (al,a2, a3). 

Since m;/> 0, i -- t, 2, 3 the tensor M is symmetric and positive semidefinite. Hence 
Eq. (5) can be written as follows: 

U(x) = n r M  Vr- 1 d S .  (6) 
S 
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Under the integral sign n, M depend on y whereas r -  1 depends both on x and y; 
since r -  1 is harmonic for r # 0 it follows that U(x) is harmonic at all points x not on 
S. In particular if m, = 0 we have M = m~a~a r. We remark also that for variable 
fiber direction (i.e. A variable) M is generally position dependent even if M '  is 
constant i.e. even if homogeneous bioelectric fiber properties (defined by ml, m2, 
m3) are assumed. 

In dealing with double layers on a surface S it is customary to consider the 
density of  the layer on the surface. In the case of Eq. (6), setting e = Mn, 
6 = (e .  e) 1/2 and a = c/6  we have 

U(x) = ~ 6a-  V r -  1 d S ,  

i.e. the density on S is 6. Since the dipole axis a is usually oblique to S we call 
3a = Mn an oblique dipole (or double) layer. 

It seems preferable to refer to a dipole layer by means of the dipole moment  
tensor M which is an intrinsic quantity, it being understood that, given M, the 
potential (in an unbounded isotropic homogeneous medium) is defined according 
to Eq. (6), so that we do not specify directly the density on the surface. Since 
M = ~ =  ~ miaia~ r then in relation to a principal axis a we may even further simplify 
the notation and speak of the dipole layer ma, with the understanding that 
Ma = maa r. Therefore we may speak of the sum of the potentials due to the layers 
miai, i = 1,2, 3 with M i = miai aT and M = ~ =  1 M i .  

With reference to Corbin and Scher's model and that defined by Eq. (5) we shall 
also speak of the axial layer mza~ and the transverse layer re,a,. If  M '  = m I  with 
m = mt  = mt  then Mn = m A A r n  = mn and Eq. (6) yields the potential due to the 
normal double layer mn. 

We now point out a useful splitting of the potential given by Eq. (5). 
Since at, at, n are coplanar and a~, a t are perpendicular we have 

and 

n = (n - at)a~ + (n �9 at)al 

mr(n" at)a~ + m l ( n "  al)al  = m~[-(n �9 at)at + ( n -  az)az] + (ml -- mt ) (n  �9 al)al  

= m t n  + ( m z  - mt)(n  " az)a~. 

Therefore the sum of the potentials due to the axial and transverse dipole layers 
m~az, mtat is equivalent to the sum of the potential due to the normal double layer 
mtn and the axial dipole layer (mz - m0az, i.e. 

U(x) = nr(mta~a r + mzala r) V r -  1 d S  
s 

_ 4re~ mt n . 17 r -  1 d S  + (mz - m0(n �9 al)a~ �9 Vr- 1 d S .  (7) 

In the same way it is possible to obtain the decomposition of the oblique dipole layer 
into the normal dipole layer m~n and the transverse dipole layer (rn~ - m~)at. 



100 P. Colli-Franzone et al. 

The first splitting seems preferable since the axial layer (mz - moat is more 
directly related to the fiber structure than the transverse layer (mr - mr)at. 

From Eq. (7) it follows that the classical uniform double layer model is 
recovered ifrnt = mt = const. In general the above splitting (with the normal double 
layer m,n or m~n) shows that an oblique dipole layer model is an extension of the 
normal double layer model obtained by adding the axial or respectively the 
transverse component  (ml - mt)al or (rnt - ms)at. The splitting also facilitates the 
analysis of the potential field predicted by the model; for its application we refer to 
[7]. 

4. Jump Relationships of the Potential Due to an Oblique Dipole Layer 

We now investigate the jump relationships of the potential given by Eq. (6) 
characterized by the symmetric positive semidefinite tensor M. The wavefront S, 
support of  the oblique dipole layer, is assumed bounded and regular with 
continuously varying tangent plane. S may be a closed or an open surface; in the 
latter case the boundary 0S is assumed to be a regular curve. A sufficient degree of 
regularity is also assumed for the tensor M characterizing the dipole layer (for 
instance we may assume for S, 0S, M a regularity C1). In the following, under the 
surface integrals, r is dependent on x and y; all other quantities n, M and later on 
~, [1, p . . . .  depend only on y varying on S; any exception will be explicitly stated. 

Setting c = Mn and ~ = c . n  = nTMn >/0, we define on the surface S the 
vectors ~ = an and [~ = c - ~. From the definition o f~  it follows that p �9 n = 0 i.e. p 
is the projection of c on the plane ~ tangent to S. The vectors ~, p have the same 
degree of regularity of  M, n and are respectively normal and tangent to S. Using this 
decomposition of C we obtain: 

4 n a ~  = ; s n T M V r - l  dS  = f:~(et + li) " V r - l  dS  

where 

and 

= 4~ro[U,(x ) + U~(x)], 

U,(x) = ~ �9 V r -  1 d S  

U~(x) = [J" Vr -  1 dS  
S 

on S we have also ~ �9 17 = ~ �9 Vs, where V s is the gradient operator on S and x a 
tangent vector to S. Therefore 

P " V r -1  = D " Vs r -a  + r - l l 7 s  " [~ - r - a V s  " [~ = Vs" ( r - i l l )  - r - l [ 7 s  " [J 

and applying Green's formula, we obtain 

47w~ = t~s r - l p ' n b d S - - f s  r - l V s ' [ J d S '  
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where nb is the unit vector tangent  to S and perpendicular to the boundary  8S of  S 
(when S is an open surface), directed outward  with respect to S; if S is a closed 
surface the line integral is zero. Setting 

we have then 

4rca~ U ' ( x ) =  f0s P r - l d S - f s l t r - a d S "  

This decomposi t ion shows that  U,(x) has a logarithmic singularity for x on aS. In 
order to have a bounded  potential,  the line integral must  be zero for any x, i.e. 

p = ~" nb = 0 o n  8S .  

Since the unit normal  n to Sis  perpendicular to nb (at x ~ 8S) we have n - n b =  0 and 
II " nb = 0. But e = Mn is coplanar  with n, ~ therefore p = 0 implies e �9 n b =  0, i.e. 
nrMnb = 0. Hence the regularity requirement for U~ is equivalent to the constraint  
nrMnb = 0 for M on 8S. 

We show that  in the case o f  axial symmetry  (ml = m2 = m ,  m3 = mr, a3 = at) 
the following relation holds:  e "nb = 0 on 8S if and only if either at �9 nb = 0 or at 
tangent  to S on 8S. 

in  order  to prove this statement we first remark that  the eigenvectors o f  M are 
the vectors parallel or perpendicular  to at, therefore e = M n  is parallel to n if and 
only i fn is parallel or perpendicular  to at; moreover  ife is not  parallel to n then n, at, 
e are distinct and coplanar.  Assume now e .  nb = 0 On 8S. We distinguish the 
following cases: 

i) e is parallel to n i.e., either n is parallel to at, hence a t ' n b  = 0 or n is 
perpendicular  to at and then at is tangent  to S. 

ii) e is not  parallel to n, then n, at, e are distinct and coplanar.  Since n, e are 
perpendicular to rib, SO it is also at i.e., at " n b =  0. 

Conversely 
j) if at is tangent  to S then n is perpendicular  to at, hence e is parallel to n and 

e ' n b = O .  
j j) if at �9 = 0 then this condi t ion together with n -nb = 0 and the coplar~arity 

o f  n, at, e ensures that  e �9 nb = 0. 
We shall show in the subsequent section 6, concerning the spreading of  the 

wavefront,  that  this condi t ion can also be motivated on physical grounds.  
Therefore in the following developments o f  this paper  we shall assume that  

M is symmetric  positive semidefinite and 

p = 0 on 8S, i.e. nTMnb = O on 8S. (8) 

To conclude we have then 

U(x) = U,(x) + U,(x) = ~ .  Vr-  1 dS  - t~r- 1 dS  , 

i.e. the potential  generated by the oblique dipole layer with momen t  tensor M is 
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equivalent to the difference between the potential due to the normal double layer an 
and the potential of the simple layer with density p = Vs " [J. 

It is now easy to establish the jump relations for the potential given by Eq. (6). 
Without loss of generality we may assume ao = 1, i.e. 

g(x) = ~ n r M  V r -  1 dS ,  (9) 

since for any other value of ao the corresponding potential differs from that of Eq. 
(9) by the multiplicative coefficient 1/O-o. 

We also recall the notion of the positive and the negative side of a surface. I fx  is 
a point of S then  the point x + 2n tends to x as 2 ~ 0. Given the orientation ofn  on 
S we say that x is approached from the positive or negative side of S according as 
2 - -+0+ or 2 ~ 0 - .  

From a closed surface S with outward normal n the approach from the positive 
or negative side is equivalent to the approach from outside or inside S. 

I fa  function w is defined on both sides of S and admits a finite limit on both sides 
of S, these limits (the traces of w on the sides of S) will be denoted with W[s+, Wls_. 

The jump of w across S is defined as [_W]s = W[s+ - wls_. When there is no 
misunderstanding we shall simply write [-w]. 

Since U, and U~ are respectively a double and a simple layer potential, using 
classical results of potential theory (see [1. 3, 15, 18]) from Eq. (9) and assumption 
(8) it follows: 

[,U]s -- ~, =/~, (10) 
s 

where 

= nrMn, # = Vs �9 [~. 

5. The Integral Boundary Equation for the Potential Field in a Bounded Conductor 

In this section we shall study the potential in a bounded medium applying the 
boundary integral method, see e.g. [,12] and for electrocardiology problems 
[,1,2,3,283. 

We consider now the wavefront S imbedded in a homogeneous isotropic 
medium with conductivity a0 = 1, which is bounded and surrounded by an 
insulating medium. The model has been used in 1-73 to simulate the potential field 
generated by paced dog hearts imbedded in a homogeneous conducting medium, 
neglecting the heart boundary surface. We denote with f2 this bounded open and 
simply connected domain and with F its boundary. The surface F is closed and it is 
assumed regular. The unit normal n to F is outward; the normal n to Sis outward if 
S is closed, otherwise one of  the two possible orientations is assigned. In the case of 
an excitation wavefront in the myocardium the normal n to S is oriented toward the 
resting tissue. 

Given on S the oblique dipole layer characterized by the tensor M and taking 
into account jump relationships (10), the potential U(x) generated in the bounded 
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medium ~ satisfies the following boundary value problem: 

A U = 0  i n O - S  with A =  V-V,  
(11) 

c?U = O, [U]s = ~, = ~, 
~n r_ s 

where ~, p are given by the following relationships: 

= nrMn, # = Vs �9 P. 

For ao # 1 the corresponding potential is obtained dividing by ao the solution of 
problem (11). 

A method for solving this problem consists in finding a solution by means of 
boundary integrals. More precisely we shall look for a solution of problem (11) in 
the class {~} of the functions defined by 

1 f r  1 f nrMVr- ldS ,  f o r a l l x i n ~ 3 - F - S ,  U(x) - 4~ vn r Vr- 1 dF + 4~ s 

(12) 

where v is a continuous function on F. It follows that a function U(x) in the class 
{~} is already a solution in ~3 _ F - S of  the equation A U = 0; moreover since the 
oblique dipole layer on S, using hypothesis (8), is equivalent to the difference 
between a double layer of  density c~ and a simple layer of density/~, as in the previous 
Section 4, we obtain that U(x) satisfies the jump relationships on S stated in 
problem (11). 

We shall show that a function U(x) of the class {~} satisfies the boundary 
condition OU/On[r = 0 if and only if the function v satisfies the following integral 
boundary equation of second kind on F: 

I + l  t vnTVr ~dF= l 4To gv(x) nTMVr-ldS,  for all x on F. (13) 
s 

We remark that, for the classical properties of  a uniform double layer potential on a 
closed surface (see, e.g. [10, 13, 15]), we have 

f 0 ,  a, in ~3 _ ~ ,  
1 f nTVr_ldF= - ~  o n F ,  

~-~ r l - 1 ,  inQ.  

I f  U is given by Eq. (12) and satisfies c~U/?nlr_ = 0 then, since [OU/~n]r = 0, we 
have dU/~?n]r+ = 0 and AU = 0 in ~3 _ O, where O is the closure of  ~ ;  the 
uniqueness of  the classical exterior Neumann problem implies U - 0  in [R 3 - ~, 
hence UIr+ = 0 but [U]r = - v  and we obtain U[r_ = v. Using the classical 
formula for a double layer potential, the trace Ulr_ is given by 

f 1 f nTMVr 1 1 vnTVr_ ldF+4~ ~ V(x)lr_ = ~ ( x )  - U~ ,~ 

=v(x), for a l l x o n F  
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thus it follows that  v satisfies integral equat ion (13). On the other  hand if v is a 
cont inuous  solution of  Eq. (13), for the potential  defined by Eq. (12) we have 

1 l l; 
I vn r Vr- l d r  + n r M  Pr-  x dS  

U(x)lr+ = - ~v(x)  - 4n J r  ~ s 

= 0, for all x on r .  

Since A U = 0 in R 3 - 0 f rom the uniqueness of  the classical exterior Dirichlet 
p rob lem it follows that  U - 0 in I~ 3 - 0 hence OU/Onlr+ = 0; then, taking into 
account  that  [dU/On]r = 0, the potential  U satisfies the boundary  condit ion 
OU/Onlr_ = 0. Moreove r  we remark  that  [ U ] r  = - v and Ulr+ = 0 therefore we 
deduce Utr_ = v. Noting that  U is harmonic  in [2 - S and ~U/dnlr_ = 0, due to 
regulari ty results for potential  elliptic problems,  it results that  v = Ulr_ is actually a 
function with cont inuous  partial  derivatives of  any order. 

Remark  5.1. We develop an equivalent  way of  describing the potential  field in the 
bounded  and insulated conduc tor  [2. We consider the potential  

1 .f n r M V r - l d S '  for all x in ~3 _ S P(x)  = ~ -  _s  (14) 

due to the oblique dipole layer, in all the conduc tor  space R3 and we introduce a 
solution V(x) of  the following N e u m a n n  problem:  

#V 8,P 
A V = 0  in [2, - o n r .  (15) 

+?n 8:n 

We observe that  V is defined except for an additive constant  and its existence is 
assured if and only if the following compat ibi l i ty  condit ion is satisfied 

f ePdr = 0 .  (16) 
r On 

We now verify this condit ion.  Since P is a regular function outside S, changing the 
order  of  integration,  we obtain  

,+1+ ~ ..... dS  - pr -  

= a s  - - -  I . I  I -arias 
n ~-~s r ~ n r  d r )  4n Js  \d ,"  vnr / 

but ( 1 / 4 n ) S r ( & - 1 / S n r ) d r  = - 1 in [2, for  the classical propert ies  of  a uni form 
double  layer on a closed surface, and p = Vs �9 [1. Consequent ly  imposing the 
assumed condi t ion (8), i.e. [I �9 nb = 0 on 8S, described in the previous Section 4, we 
get 

r + .77. d r  = Vs " ~ dS  = [J "nb ds = O. 
J r  on os 

We now show that  for the potential  U in the insulated conduc tor  [2, solution of  
p rob lem (11) in the class {~} of  functions given by Eq. (12), we have apar t  f rom an 
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additive constant:  U(x) = - V(x) + P(x) for all x in E3 _ S - F, where V is a 
solution of  Eq. (15). 

To this end it is sufficient to show that the function V(x) can be represented by 
means of a double layer potential 

V(x) = ~ vn r Vr-  1 dF, for all x in R a - F, (17) 

where the density v is a solution of Eq. (13): 
In fact if v satisfies Eq. (13), this condition implies that the potential V defined 

by Eq. (17) satisfies 

AV---0 i n ~ 3 - ~ ,  V]r+ =Plr. 

Since A P  = 0 in ~3 _ ~, from the uniqueness of  the classical Dirichlet problem we 
derive V -- P in ~3 _ ~.  Hence OV/On[r+ = QP/Onlr, but p V / ~ n ] r  = 0, thus the 
potential Vsatisfies the boundary condition 0 V/On[r_ = OP/On[r. On the other hand 
if Wis a solution of the Neumann problem (15) we have W =  V + k, where k is a 
constant;  since 

1 f r n r V r - , d F = {  0 i n ~ 3 - ~ ,  
- 1 i n ~  

and ~ = v - k is also a solution of  Eq. (13) we obtain 

W(x) = On r Vr- 1 dF. 

The solvability of problem (11) for potentials U of the form given by Eq. (12) is 
reduced to the solvability of Eq. (13). We shall now show that the integral equation 
(13) admits a unique solution v determined except for an additive constant. The 
integral operator  on the left-hand side of  Eq. (13) 

1 I f  r 
= - -  vn V r - l d F ,  for a l l x o n F  Av(x) ~v(x) + 4n 

having a kernel with a weak singularity is a compact  operator  from C(F) (the space 
of  continuous function on F) into itself;, therefore we can apply the Fredholm 
theory (see [15]). 

Let us begin with the homogeneous equation associated to Eq. (13), i.e. Av = 0 
and we prove that  v is constant. Setting 

vn r Vr-  1 dF, for all x in N 3 - F W ( x )  = r 

using the properties of  a double layer potential we obtain 

A W = O  in R 3 -  F, [ W ] r  = v, = 0  
F 

but Av = Wlr.  = 0 hence W - 0 in N3 _ O~ and c~W/Onlr+ = 0. Combining these 
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results we have 

aW = 0 ,  Wlr_ = - v A W = O  in~2, ~ n  r_ 

then from the properties of the interior homogeneous Neumann problem it follows 
W = constant = IV]r_ = -  v. Now let us consider the homogeneous adjoint 
equation 

1 1 
f r v r - l d F  O, for all x on F, (18) n x ATZ(x)  Z(x) + r 

where n~ is the outward normal at point x. Since this integral equation is the 
classical equation used in potential theory for solving the (homogeneous) interior 
Neumann problem in (2, when the solution is represented by means of a simple layer 
potential, it is well known that there exists a unique non-trivial solution defined 
except for a multiplicative constant. Hence, using the Fredholm's alternative 
theorem, integral equation (13) admits a unique solution, defined except for an 
additive constant, if and only if the right-hand side of Eq. (13) is orthogonal to the 
solution of the homogeneous adjoint equation (18). In other words if v is a solution 
of Eq. (13) setting 

if = vn r Vr- 1 dF, for all x in R 3 - F V(x) 

we have 

A V = 0  i n g ~ 3 - F ,  VIr+ = Av = PIr, 

where P is defined by Eq. (14). Then integral equation (13) can be interpreted as the 
equation for solving the classical exterior Diriehlet problem when the potential Vis 
represented by means of a double layer potential. Hence the well known results of 
Fredholm's theory imply that the solvability of Eq. (13) is assured if and only if the 
Dirichlet datum Plr satisfies the following compatibility condition: 

f P~dF = 0, (19) 
F 

where Z is a non-trivial solution of Eq. (18). We now show that condition (19) 
actually holds. Setting 

Z ( x ) = l ; r Z r - l d F ,  for all x in ~3 - F 

from the properties of a simple layer potential and Eq. (18) we obtain 

OZ 
a z  =0 ,  7nn = - z ,  
~nn F_ F+ 

AZ = O i n ~ 3 - F ,  

hence Z is constant in f2. Then 

A Z = O  in ~ 3 _ O ,  
~Z 

Zlr = const., ~n  r+ = - Z. 
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Taking into account this result, the compatibility condition (19) may be expressed 
as 

fr POZ  lr+ d r  = O, 

where Z is the unique solution of the Dirichlet problem 

AZ = O i n ~ 3 - O ,  ZIr = l. 

The potential P(x) given by Eq. (14) is a regular function outside S and satisfies 
AP = 0 in ~3 _ •, hence by applying Green's formula in ~ 3  __ ~,~ it follows: 

R~ - ~ .Jr \On On r + J 

: fr ~ f e~ 
On ,Jr On It+ 

Finally collecting the results and taking into account Eq. (16) we deduce 

F F OH F+ 

hence the compatibility condition holds. 

Remark 5.2. In the case of an infinite homogeneous medium we derived in Section 3 
the decomposition of the potential given by Eq. (7). A similar decomposition can 
also be derived in the case of a bounded conductor. Under the assumption of axial 
symmetry we know that, setting at = a3, m~ = m3, m t =  ml = m2, the following 
identity holds: 

nrMV = mtn " V + (ml - m t ) ( n  �9 a , )a t  �9 V. 

In the following we shall restrict ourselves to the case of mr, mt constant, a choice 
which has been made in carrying out the numerical simulations reported in I-7]. Due 
to the linearity of Eqs. (12) and (13) it is easy to verify the following decomposition: 

U(x) = m,U.(x) + (mr - mt)Ua(x), 

where, for all x in f2 - S, U. is the potential field due to a normal double layer of 
unit density: 

1 l;s Un(x ) -- i unn" VF-1 d r  + n .  Vr-1 dS (20) 
4re dr 

and Ua is the potential field generated by an axial dipole layer with unit moment 

1 f r  ~ f s  U ~ ( x )  = - 4 ~  v . n "  P r -  1 d F  + (n  �9 a l )a t  �9 V r -  a d S .  ( 2 1 )  

In Eqs. (20) and (21) the functions v. and v., which are the traces on F the potentials 
U. and U. respectively, are the solutions-of the following integral equations on F: 
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if f - �9 - -  n .  V r - ~ d S ,  l v . ( x ) + ~ _ n  r 4n s 2 v.n IZr- ~ d r ' =  1 

1 I f r  l f s  Vo(X) + 4nn van" V r -  1 dV = --= (n.  a,)al " 17r- 1 dS. 
4re 

The description of the potential field, generated by an oblique dipole layer in an 
isotropic and homogeneous medium, can be extended to the case of an isotropic 
medium with piecewise constant conductivity. The integral equations characteriz- 
ing the potential field can be derived by applying the techniques used in Barnard et 
al. [1], [2] and Barr et al. [3]: This extension would be suitable in the simulation of 
the potential in a human torso model taking into account the different conductivity 
of lungs and blood masses. 

6. Connection Between the Oblique Dipole Layer Model and an Intracellular Current 
Model 

The representation of the activation wavefront by means of electrical sources must 
be based on assumptions about the electrophysiological activity of the heart cells. 
For some models of cardiac sources see Plonsey [24] for a single active fiber, and 
Plonsey and Rudy 1-23] and Spach et al. [27] for a continuum of fibers. 

In this section we shall establish a connection between the oblique dipole layer 
model defined by Eq. (6) and a limit case of the intracellular current model 
investigated by Spach et al. [27] in the case of a thin layer of cardiac tissue. At the 
same time we succeed in relating the dipole moments mr, rn~ to more definite 
electrophysiological quantities such as the anisotropic intracellular conductivity 
and the intracellular action potential jump. 

We consider the heart tissue volume H as the superposition of two continuous 
anisotropic conducting media respectively the extracellular (e) and the intracellular 
(i) cardiac media; the anisotropy of these media is related to the heart fiber 
structure and the principal axes of the conductivity tensor are one parallel and the 
remaining two perpendicular to the local fiber direction. The extracardiac medium, 
i.e. the medium surrounding the heart H, and the extracellular cardiac medium are 
assumed homogeneous isotropic with the same constant conductivity, ao, thus 
neglecting the influence of the heart boundary as well as the effect of the 
extracellular cardiac anisotropy. 

These simplifying assumptions are suitable for a quantitative description of the 
potential field generated at distance from the cardiac sources; "local" models which 
describe the potential field near the sources, taking also into account the anisotropy 
of the (e) medium, are dealt with in Section 7. 

Similarly to what has been done for the model described by Eq. (6), we shall 
limit the following analysis to the case of the heart imbedded in an unbounded 
medium. 

The conductivity tensor of the anisotropic (i) medium is characterized in the 
i local basis by D I = diag(a~, t~, ~ )  with a k > 0, k = 1,2, 3; i f  {al, a2, a3} defines the 

local basis, then one of the unit vectors ai (e.g. a3) is parallel to the local fiber 
direction. 
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In the original model used by Spach et al. [27] it is also implicitly assumed that 
the principal axes have constant directions (parallel fibers) so that in a suitable 
standard basis also the conductivity tensor Di is diagonal. We shall drop this last 
assumption, i.e. we can have variable fiber direction, so that if A = (al, a2,a3) 
defines the local basis, the conductivity tensor Di of  the intracellular medium is 
given by 

i r i r (22) D i = A D I A  T = 0-11ala T + 0-2a2a2 + 0-3aza3 . 

We note that D~ is a symmetric positive definite matrix. For uniformity we shall 
introduce the conductivity tensor De = 0-01 for extracellular medium. We remark 
that for non-constant A (variable fiber direction) Di is variable even if D I is constant 
(i.e. anisotropic homogeneous medium). In the case of  axial symmetry around a 3 
parallel to the longitudinal axis of  the fiber it is 

�9 i i i i 
a3 ~ al~ ~ = 0"2 ~--" 0"0 0"3 ~ 0"1" 

Following Miller and Geselowitz [16], Spach et al. [27], we introduce the intra and 
extracellular potential distributions U~ and Ue and the related current densities 

I i =  - DIVUi  i n H ,  I e =  '- DeVUe  in ~3. 

Utilizing the current conservation property we have 

V ' ( I i + l e ) = 0  i n H ,  i.e. V ' ( D i l Z U ~ + D e V U e ) = O  i n H ,  

V �9 l e =  0 in {]~3 - -  H ,  i.e. V �9 De VUe = 0 in ~3 _ H. (23) 

Moreover at the boundary 0H the current vector I~ is tangent to dH so that 

li " an = 0, i.e. (Di IzUi) �9 nn = 0, (24) 

where nn is the unit normal to dH. The transmembrane current lm per unit volume, 
i.e. the current flowing into the extracellular medium is given by 

I,. = - V �9 I i : VT Di [TU i in H. 

Since the extracellular medium has been assumed homogeneous with conductivity 
0"0 we have 

O, inlt~ a - H ,  with A =  V.V,  
0"oAUe= - I , , ,  i n H .  

From this relationship it follows that 

Ue(X ) : l , , r -  x d V  = r'- 1 [7T DI [TUi d V .  (25) 
Va 47Z0"0 V,, 

Va ~ H is the "activating" region at time t, i.e. where the depolarization process is 
under way and I,, • 0. 

To generate the extracellular potential Ue by means of Eq. (25) the knowledge 
of  the intracellular potential U~ is required. We assume that the shape of the 
temporal intracellular action potential is the same for all cardiac cells. If for a 
cardiac cell the depolarization process starts at the time instant 2 = 0 and ends at 
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the time instant 2 = e, the intracellular action potential is represented by a regular 
monotone function q~i(2) with 4~i(2)= ur (resting value) for 2 < 0, ~b~(2)= ua 
(plateau value) for 2 > e and with a monotone variation between these two values 
for 0 < 2 < e .  

Then the intracellular potential distribution U~ may be derived from the 
knowledge of the time of activation at each point of the active tissue. Let St denote 
the surface of all points (cells) for which the depolarization process starts at time t; 
as t varies we obtain a family of  sfirfaces which are assumed regular and non- 
intersecting. This corresponds to the biological assumption that in the time interval 
considered for the spreading of the front a cell is depolarized only once. The 
activating region Va is the volume comprised between the surfaces St and St-~ which 
are respectively the leading and the trailing edge. S, and St-~ may be closed or open; 
in the latter case they intersect the endocardium or the epicardium (i.e. OH) and thus 
we must take into account also a "lateral" surface S, on 6H bounding V,. 

For  t - e < z < t the surface St represents the set of cells with activation time .c, 
which are consequently at the same phase of the depolarization process with action 
potential value q ~ ( t -  .c). Therefore St is an equipotential surface for Ui with 
U~(x, t) = q~(t - z). Outside V, the potential U~ is constant, i.e. U~ = ur ahead of St 
(leading edge) and U~ = Ua behind St-~ (trailing edge). 

We shall show that if the duration 8 of the depolarization process is small and 
the region V~ is thin, so that for points far enough V, may be idealized as a surface, 
the following approximation holds: 

if . . . .  f nr D~ vr_ l dSt + O(e). (26) Ue(X) = - -  r_llmd V ua - ur 
4nao Va 4nao s, 

To establish this result we proceed as follows. Because 

r-lira = r - i V  " (DiVUi) = 17 �9 (r-lDi VUI) - (DiVUi) �9 Vr -1 

applying Green's formula we obtain 

f r - l V . ( D i V U i ) d V = f f  (r-iD, VU3.ndS-f (DiVI i ) 'VF- 'dV .  
lZ a S t  + S t  - t: + Sa V a  

Since U~ is a regular function, constant outside V,, it follows that VU~ = 0 on St, 
St-~ and from Eq. (24) we have (D~ VUI) " n = 0 on Sa = OH, therefore 

f r - l l m d V = - ~  (DiVUI ) .Vr - ldV .  (27) 
V a  d V a  

It remains to prove that the volume integral on V, on the second member of Eq. (27) 
tends to the surface integral on St given by Eq. (26). Let {C} denote the family of 
curves orthogonal to the front surfaces St with positive orientation induced by the 
advancing front. On a curve Cthe velocity of the point x, intersection of the front St 
with C, is the so-called normal velocity of the front at x. 

By definition this velocity w is orthogonal to the front i.e. w = wn with n 
pointing in the advancing direction and, if dl is the arc of C comprised between the 
fronts S ,  St + ~, it results dl = w d'c. 
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For  a point y of  V~ let St, with t - e < r < t, be the surface passing through y 
and n the unit normal to St at y. Since St is an equipotential surface for U/then it 
results 

dUi dUi dUi 1 d~i(t  - r) 
VUi = cln n = dl n with dl w dr (28) 

where d/dl is the directional derivative along C which is orthogonal to S~. 
Taking into account Eq. (28) and that d V  = dS~dl = wdS ,  dz we obtain 

f f (f : -  ) (D, VU,) �9 Vr -1 d V  = 1 dc~i(t - r) 
vo t- ,  s~W aT n T D i V r - l w d S ~  dz 

f '  d 4 ) i ( t - z ) ( f  n r D i V r _ l d S ~ ) d r .  
t -- ~ 5 7 2  S t  

Assuming that we are far enough from V, and that V~ is thin we have 

f s nr Di Vr-  l dS~ = f nr Di Vr-  l dS, + O(~). (29) 
S t  

Therefore 

= nrDi Vr-  1 dSt dr dr + O(e) 
t t - ~  

= (u~ - u,) ~ nrDi Vr-  1 dSt + 0(e). (30) 
JSt 

Combining Eqs. (25), (27), (29) and (30) we obtain the approximate relation (26). 
We remark that the second member  of  Eq. (26) can be formally interpreted as the 
limit of  the first member  of  the same relation for e ~ 0, i.e. for an instantaneous 
depolarization process for which the action potential is represented by a step 
function with jump u~ - u~. 

Finally we discuss some relevant consequence of Eq. (24) When St is an open 
surface intersecting the heart surface OH. Equation (24) can be written as 

nH " (Di VUi) = nr~Di VUi = 0, 

beside Eq. (28) implies that VU~ is parallel to n, unit normal to St and taking also 
into account the symmetry of D~ we obtain 

n~Din = nr  DinH = 0. (31) 

This result holds for t - e < r < t and, since U~ is regular, also for r = t - e and 
z = t, i.e. on the surfaces S,_~, St. When e ~ 0, i.e. the depolarization process 
becomes instantaneous, Eq. (31) must hold on the points of  the intersection of  St, 
representing in the limit the activating region, with 0H. 

We assume, on physiological grounds, that on OH the fibers are tangent to ~H, 
i.e. al �9 = 0. Since 
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D#H = a~ [(nil" al)ax + (nn �9 a2)a2] + o'i(nn ' a3)a3 

with a3 = at, it follows that nn �9 a3 = 0 and nH is coplanar with the two orthogonal 

unit vectors al, a2 so that 

D~nn = a~nn. 
Substituting into Eq. (31) we get 

n �9 n H  = O, 

i.e. the two surfaces St and  OH intersect perpendicularly.  From this last relation it 
follows also that nn =nb  where nb is the unit vector tangent to St and perpendicular 
to OSt c OH. 

To conclude, in the approximation represented by Eq. (26), the extracellular 
potential may be viewed as originated by an oblique dipole layer on S,. In fact, 
approximation (26) coincides with the potential due to an oblique dipole layer given 
by Eq. (6) if the dipole moments m,, mt are chosen as follows 

mt = (Ua - u,.)tr I, mt = (u,, - u,.)tr I. 

Hence a representation of  the depolarization wavefront as the superposition of an 
axial and a transverse dipole layer can be derived under the assumption of an 
instantaneous depolarization process with a constant jump of the intracellular 
action potential; the anisotropy of the dipole distribution on the wavefront defined 
by an oblique dipole layer model can be viewed as the effect of the anisotropic 
structure of the intracellular medium. 

Finally the oblique dipole layer model defined by M = (u,, - u,.)D~ must satisfy a 
constraint on the boundary St of the wavefront since, from Eq. (31), it follows that 

nrMnn = nT Mnb = 0 

because nu =nb. 
We remark that this relation on 0St, introduced previously on purely 

mathematical grounds in Section 4 as Eq. (8), is a consequence of the current 
intracellular conservation (Eq. (24)) and of  the tangency of the fibers to the heart 
surface OH. 

However if, in addition to the tangency of at to OH, we impose the condition 
nTMnb = 0 on OS instead of the intracellular current conservation (Eq. (31)) other 
cases, besides the orthogonality o f  St and OH, may occur. More precisely St and OH 
can be tangent or, if a~ is tangent to 0St, the surfaces St and OH intersect at an 
arbitrary angle. 

To prove the occurrence of these other cases we first recall, from Section 4, that 
nTMnb = 0 on OSt is equivalent to either a~ tangent to St or at �9 = 0 on OSt. 

We also introduce the unit vector Xb tangent to 0S,; this vector is tangent to both 
St and OH since 0St c OH and the vectors n, nb, xb are mutually orthogonal. We now 
distinguish the following cases: 

i) a~ is parallel to Xb iff n is oblique to 0H (i.e. not tangent or perpendicular 
to (~H). 

In fact if at is parallel to xb then it is tangent to S, and it is also at �9 nb = 0. In this 
case S, and OH intersect at an arbitrary angle. Conversely ifn is oblique to ?H then, 
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among the vectors tangent to t3H, only % is tangent to S, and perpendicular to rib. 
Since at is tangent to ~3H, either condition at tangent to S, or at �9 Ub = 0 implies at 
parallel to %. 

ii) at tangent to S, but not parallel to % iff n = nn, i.e. St, c~H are tangent. 
In fact since at and % are distinct and both tangent to St and OH it follows that 

these surfaces are tangent. Conversely if S,, OH are tangent then at, tangent to OH, is 
also tangent to St. 

iii) at �9 nb=  0 and at not parallel to rb iff n - nn = 0, i.e. St, c~H are orthogonal. 
In fact from n �9 nb = 0 it follows that at, n, xh are coplanar, hence n is tangent to OH. 
Conversely n and ~b tangent to ~3H implies nb perpendicular to t3H and consequently 
at �9 = 0 since at is tangent to ~'~H. 

7. Oblique Dipole Layers in a Parallel Uniform Anisotropic Medium and Related 
Jump Relations 

For an adequate description of the potential field in the heart muscle the anisotropy 
of the extracellular medium must be taken into account. 

To simplify the mathematical developments, we shall describe two local models 
in which the influence of the heart boundary is neglected or equivalently the heart 
region H is infinite. 

The activating region is still represented by a wavefront surface, i.e. these local 
models are suitable for predicting potentials in proximity of  the sources but at 
distance greater than the thickness of the activating region. 

To develop formulae similar to Eq. (26) for the extracellular potential when the 
anisotropy of the extracellular medium is also taken into account, we need the 
fundamental solution of the differential operator VTDe V. Since this solution can be 
written explicitly when D~ is constant we shall consider the case in which the intra 
and extracellular media are anisotropic, parallel and uniform. Then the direction of 
the principal axes is everywhere the same so that there is a common local basis and 
in this basis DI, D'~ are constant. Without loss of  generality we may take the 
standard basis coincident with the local basis, so that 

Di = D',, De = D'~. 

Setting 

= dlag(0-20-3, 0"30"1,0"102) 

it can be verified that (rTD*r) - 1/2 is the fundamental solution of the operator 
VrD~ V. In order to formulate a model for the extracellular potential, in terms of the 
intracellular potential distribution, starting from the relation -VTD~ VU~ = 
VrDi VUi, it is sufficient to substitute (0-0r)- x with ( r rD*r) -  1/2 in the formulae used 
in the preceding section for the case of  the homogeneous isotropic extracellular 
medium. In the limit case we obtain for Ue the expression 

_ Ua -- Ur f nTDi V(rrD.r ) -  1/2 dS. U~(x) (32) 
4~ Js 

Actually, to establish this formula at the mathematical  level, we do not need the 
assumption of  uniform anisotropy for the medium (i). 
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With a different set of assumptions we can build a model for which the jump of 
the potential across S coincides with that given by Roberts et al. [25]. 

We first remark that from 

grDe V U  e ~ -  - -  VTDi VUi 

adding VrDi VUe to both sides we obtain 

[7r(Di + De) VUe = - Vr Di V~, 

where ~ -- Ui - Ue is the transmembrane potential distribution and Di + D e  c a n  

be interpreted as the conductivity tensor of the myocardial tissue. 
We make now the following assumptions: 

- Di, De constant, i.e. anisotropic and uniform media. 
- The current I,, per unit volume is given by I m = - -  VrDi~, i.e. I m is generated by 

the transmembrane instead of the intracellular potential distribution. 
- The temporal shape of the transmembrane action potential is the same for all 

fibers with a monotone change from kur to k~ where q'r, 7~ are the 
transmembrane potential values of the resting and depolarized tissue. 

Setting 

D =  Di + De = diag(~rl, a2, a3) with ak = a~ + cry,, k = 1,2, 3 

since (rrD*r) - 1/2 with D* = diag(a2a3, 0361, alaZ) is the fundamental solution of 
the differential operator VrDV, the potential Ue in the unbounded extracellular 
medium is given in the limit case, when the transmembrane action potential 
approaches a step function, by 

_ % -  ~ 
Ue(X) 4n .] nr Dg V(rr O,r)- 1/2 dS. (33) 

s 

The three limit equations (26), (32) and (33) can be represented by the same 
formula setting 

~ aol, f u~-  u. 
D = De, ~ = ~Ua -- ttr, 

I fD = diag(dl, d2, d3) and we set D* = diag(d2d3, d3dl, did2) and introduce the 
function ~b = (rrD*r) 1/2, then ~b- 1 is the fundamental solution of the differential 
operator VrDV. In the three cases, the potential Ue is then given by 

Ue(x) = nrDi Vc k- 1 dS. 
S 

Applying formula (15.3) of Theorem 15, III, w Ch. II of Miranda [18] we get for 
Ue a jump across S expressed by 

nrDin (34) 
[ U e ]  S = o~ nrDn . 

We remark that, in order to derive this relation, only the assumption o l D  constant, 
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and consequently of ~b explicitly defined, is used. Applying jump relation (34), the 
models defined by Eqs. (32) and (33) will give the same jump if 

nT Di n nT Di n 

(u, - ur)nrDe n - (~b~ - ~r)nr(D i + De)n' 

This equality implies D~ proportional to De, i.e. D~ = c D e  with the constant c 
satisfying the relation 

0 o - ~ r  
b/a - -  U r 

l + c  

From D~ cDe, it follows i e -- (Tk/~k = C, k = 1,2, 3 and in the case of axial symmetry 

</~; = < / o ;  = c. 

This last relation, stating the same anisotropy ratio in the intra and in the 
extracellular media, was a hypothesis used by Plonsey and Rudy [23]. I f  this 
hypothesis holds, then the two models predict a constant potential jump through S 
which may be expressed by 

1 1 
[ g e ] s  = (~'~ - O r )  = ( u s  - u r ) - .  

c + l  c 

Even if the two models yield the same [U,]s, they do not coincide since they have 
different jumps of the potential normal derivative across S and predict different 
extracellular potential fields. 

In the case of  axial symmetry we denote as usual with a~ the local symmetry axis 
and at the transverse unit vector perpendicular to a~ and coplanar with a~, n. The 
vectors a~, a, are oriented so that n - a~ ~> 0, n - a, ~> 0. In the case of  parallel fibers a~ 
is taken parallel to the third axis. Then with reference to the model defined by Eq. 
(33), the jump Ue across S, given Eq. (34), may be written in the following form 

nr Din 
[ U e ] s  = (# /a - -  @r) nT(D i + De)n 

(71 COS 2 ~ + O" I sin 2 ), 

= (Oo - 0r)(crl + ~i)c~ + ( ~  + ire)sin27 ' (35)  

where cos ~ = n - a~, sin 7 = n �9 at, i.e. 7 is the angle between the fiber direction and 
the normal n to the front S. An important feature of  this last jump relation (35) is 
that it coincides with formula (10) of  Appendix C of Roberts et al. [25]. 

The two models, we have thus derived, should provide a more adequate 
description of the local potential field near the excitation wavefront, but not too 
close to it since the region which is the seat of  the depolarization process is idealized 
as a surface. 

The choice between these models depends on which of the two hypotheses, 
intracellular or t ransmembrane action potential, is more adequate to represent the 
equivalent source generators. 

Remark 7.1. The potential defined by Eqs. (32) and (33) can also be viewed as the 
superposition of an axial and a transverse dipole layer of  density ctcri(n �9 az) and 
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~a~(n �9 a,) in the anisotropic extracellular medium. In fact, using Eq. (3) with C = Di 
we obtain 

Ue(X ) = nr Di VC~- 1 dS  
s 

Moreover the splitting into a normal and an axial dipole layer potential given by 
Eq. (7) for the case of a uniform isotropic extracellular medium can be extended to 
the case of a uniform anisotropic extracellular medium (parallel fibers) assuming 
axial symmetry around the common fiber direction. In this case we have 

Di = diag(a~, a I, al) and D = diag(dt, dr, dz) 

with a~ = a~ = a[, a t = a I and dl = d2 = dr, d3 = dr. Setting 2 = al/dt we obtain 

Di - 2D = diag(0, 0, 6), 

where ~ = a I - aldffd,. Hence 

nT Di F r  1 = 2nT D V r  x + di(n �9 al)at �9 Vr 1. 

Setting v = D n  = dr(n" at)at + all(n" at)at w e  have 

= = v" Vc~- 1 d S  + ~ (n" a,)a, �9 V(o-  1 dS. o~ nrDi Vc~- 1 dS  ~ s s re(x)  s 

We note that v is a vector parallel to the conormal associated to the elliptic operator 
VrD V; hence when S is a closed regular surface boundary of a domain A, applying 
the Green's formula we have 

V" V ~ p - l  d S  = 
s -- 1, x e A .  

Therefore for a closed wavefront the potential depends only on the axial 
component both in an isotropic and in an anisotropic medium. 

The development of the model for parallel fibers was considered with the aim of 
deriving a manageable model to be used in applications. 

From the theoretical point of view, all the arguments discussed above may be 
extended to the case of non-parallel fibers. 

Similarly, the fundamental solution for an elliptic operator with variable 
coefficients will again be used, although it will not in general have a closed 
analytical form. 

The "local" model described by Eq. (33) which we set forth in Colli-Franzone et 
al. [7] has been also independently investigated by Roberts et al. [26] for 
simulating the potential in proximity of the wavefront. 

8. The  I sochrone  Surfaces  and the Fiber G e o m e t r y  

The oblique dipole model, described in the previous sections, requires the 
knowledge of the fiber geometry in order to define the dipole direction on the 
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wavefront. On the other hand, the wavefront is related to the fiber geometry; the 
question then arises to find if it is possible to determine the fiber geometry given the 
wavefront motion during the depolarization phase of the heart beat. We shall show 
that the question has a positive answer if we apply some results from the cable 
theory (see e.g. [11], [22]) to the spreading of the excitation in an anisotropic 
medium. The wavefront surface St is also called an isochrone surface since it is the 
set of points at which the depolarization process starts at the same time instant t. 
Hence if the function z(x) associates to the point x the time instant at which the cell 
in x becomes depolarized, then the wavefront St is given by the surface z(x) = t. 

To establish the connection between the isochrones and the fiber geometry we 
proceed as follows. 

Given a generic point x, let ai(a) and ae(a) be the conductivities of the media (i) 
and (e) along the direction defined by the unit vector a in x; we have then 

ai(a) = arDia ,  ae(a) = arDe  a. (36) 

The resistivities pi(a) and pe(a) are defined by the relations 

pi(a) = 1/ai(a), pe(a) = 1/ae(a). (37) 

The resistivity p(a) of the composite medium (heart tissue) is then given by 

1/p(a) = I/pi(a) + 1/pe(a). (38) 

We now assume that the conduction velocity in the heart tissue along the direction a 
is given by 

v(a) = K/[p(a)] 1/2 (39) 

with K constant independent of a and x. Equation (39) was obtained by Clerc [5] 
for the longitudinal and transverse conduction velocity in a fiber by using the cable 
theory and he showed that it was applicable to the heart muscle. In the form given 
above it was used by Roberts et al. [25] and by Muler and Markin [19, 20] for 
parallel axisymmetric fibers. 

Substituting Eqs. (36), (37) and (38) into Eq. (39) we obtain 

K[ (a  rD,a)(a rDea)-]l/2 
v(a) = L (40) 

We shall now make the further assumption 

It follows then that 

and 

De = aoL D i / f f  0 ~ O. (41) 

aYDe a = fro ara  = ao 

ar(Di + Dr)a = aoar(Di/ao + I)a ~ ao 

hence, dropping Di/ao, we obtain 

v(a) = K[ar Di a] 1/2. (42) 
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Assumption (41) has been used in numerical simulations by Spach et al. [27]. Since 

i T i T 
D i = A D ' i A  T a~alax r + 0-2a2a2 + 0-3a3a3, 

p ' i i i where A = (al, a2, a3) defines the local basis and D i = dlag(0-x, 0-2, 0"3), Eq. (42) 
becomes 

v(a) = K[0-il(a �9 al) 2 + 0-~(a. a2) 2 + o-~(a, a3)2] 1/2. (43) 

In particular, for a = ak, we obtain 

Vk = v(ak) = K(0-~) 1/2. 

In the general case (40) we obtain 

[- ,..ri rre ~ 1 / 2  

K /  vkvk / vk=v(ak)= i ~  �9 
L0-~ + 0-kJ 

Since the choice of an orthogonal set of vectors in ~ 3  depends on three degrees of 
freedom, then Eq. (43) determines the local basis A if v(a) is given for three 
directions. 

In the case of axial symmetry with 

�9 i i i i 
0-tl = 0"2 : O' t '  0"3 : 0-1' a 3  = a t  

the unit vectors al, a2 are defined apart from a rotation around at. We can choose al 
coplanar with at and n (the unit normal to the isochrone passing through x), i.e. 
al = at; we have then only two degrees of freedom (for choosing a~) and 
consequently two values of v(a) are sufficient to determine A. 

I fx  and x + ads are respectively on the wavefronts St and St + a~ then v(a) is given 
by d s / d t .  An obvious choice for one of the directions a is a = n, i.e. v(n) is the usual 
normal conduction velocity of the front. Moreover n is needed in the axisymmetric 
case in order to reduce the degrees of freedom from three to two. 

In summary, the oblique dipole layer model defined by Eq. (26) requires the 
geometry of  the front, the fiber direction, the conductivity tensor and the 
intracellular action potential jump. We have shown that the fiber geometry can be 
recovered from the knowledge of the isochrones surfaces on the basis of Eq. (43) 
connecting the conduction velocity and the intracellular resistivity along a generic 
direction. 

In this sense the forward problem of electrocardiology, i.e. the prediction of the 
body surface potential, using a representation of the depolarization wavefront in 
the myocardium by means of an oblique dipole layer, could be solved on the basis of 
the measured activation sequence if the intracellular action potential jump and, for 
axisymmetric fibers,, the longitudinal and transverse conductivities 0-i i e, 0-~ are 
known. 

9. Numerical Computation of the Potential Field 

We introduce in this section a numerical procedure for computing the potential 
field, generated by an oblique dipole layer on a wavefront S in a bounded and 
insulated region t2, by solving the integral equation (13) described in Section 5. 



Oblique Dipole Layer.Potentials Applied to Electrocardiology 1 I9 

We consider two polyhedral surfaces S"  and F h with triangular elements which 
approximate S and F. Let ns, nr  and N s ,  N r  denote respectively the number of 
vertices and elements on S h, F h. The vertices are usually called also nodes and will 
be denoted with x~; the elements of  F h, S h will be denoted respectively with E~ and 
Fj. Using the finite element technique the potential v on F, solution of Eq. (13), is 
approximated by a piecewise linear continuous function vh(x) on F h, i.e. 

vh(x) = 2 v j p j ( x ) ,  

j = l  

where vj are the nodal values of vh(• and pj(x) are piecewise linear continuous 
functions on y h  defined by the property that pj(Xk)  = 6jk and big iS the Kronecker 
symbol. It follows that vh(• Vk. For theoretical aspects of the numerical 
approximation of boundary integral methods by means of finite element techniques 
see Jaswon and Symm [12], Colli-Franzone and Magenes [8], Ciarlet [-6], Nedelec 
[21]; see also Swihart [28] for other numerical methods. 

We shall denote with n h the outward unit normal to the triangular element o r s  h 

and F h. However, to simplify the notation, we shall write (3/On instead of c3/#n h and 
n - V instead ofn  h - 17. Applying the collocation method, which consists in satisfying 
the integral equation at the nodes of Y h, integral equation (13) is approximated by 
the following linear system 

+ - -  vhn �9 V r -  1 d F  h = n r M  V r -  1 d S  ~ 
~(xk )v~  4re F,, h 

for k = 1 ,2 , . . . ,  nr  and r = xk - y, the factor ~O(• is given by 

~(Xk) ~x(x)= - j "  n- V r - l d r ,  co(xk)- 4re and rh 

i.e. ~(x) represents the solid angle under which the surface F h is seen from the point 
x. Now it is 

vhn �9 V r -  ~ d F  h = vj Pin  �9 V r -  x d[-h. 
F h j = F h 

Setting 

and 

akj = ~O(Xg) bgj + p j n  " V r -  1 dFh,  
rc J r .  

l ~  s ~ d S  h bk = n rM V r -  for j ,  k = 1 ,2  . . . .  , nr  
h 

A = (ak~), b = ( b l , . . . , b , r )  r,  v = ( v l , . . . ,  V,r) r 

the determination of the approximate solution vh(x) is equivalent to the solution of 
the linear system 

Av = b. (43) 
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With co(x) defined as above, matrix A admits the right eigenvector 
e = (1, 1 . . . .  ,1) T associated to the zero eigenvalue, i.e. Ae = 0. For the continuous 
operator, of which A is a discrete approximation, zero is a simple eigenvalue and we 
assume that this property still holds for A. We denote with I the corresponding left 
eigenvector, i.e. IrA = O. 

It follows that the solution of  the linear system (43) is defined up to an additive 
constant vector and the system has a solution if and only if it is 

l rb = 0, (44) 

i.e. if and only if b is orthogonal to the left eigenvector/.  This constitutes the 
compatibility condition for the solution of system (43). 

In the continuous case the corresponding compatibility condition given by Eq. 
(19) is exactly satisfied; however in the discrete case, because of the approximation 
errors, the compatibility condition (44) is satisfied with a small error but not 
exactly. The vector v which defines the approximation Vh(X) is determined in the 
following way. Let us consider the system 

A v *  = c ,  

where 

c = b + ~ and ITe = 0 ,  

i.e. c satisfies the compatibility condition. It can be proved that if p is such the 
pTe =/= 0 (e.g. pre = 1) then, since ITe # 0, the matrix 

B = ,4 + ep T 

is non-singular and the solution of the linear system 

By* = c 

is also solution of the linear system 

A v *  = c .  

Moreover this solution is orthogonal to p that is 

prv* = O. 

This method for solving a singular system, given the right eigenvectors associated to 
the zero eigenvalue, is an application of the "deflation method" (see, e.g., Lynn and 
Timlake [141). If, for instance, p is the vector whose components are all zero, except 
the kth component which is equal to 1, then the kth component of v* is equal to 
zero. 

Since we do not know e, we solve instead the linear system 

Bv = b. 

Thus, v defines an approximation Vh(X) corresponding to that solution v(x) of the 
continuous integral equation (13), subject to the constraint V(Xk) = 0. 

With reference to the computation of akj, bk we first remark that 

and fs = 
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Actually in the case of  the first integral, for fixed j, the sum is restricted to those 
elements which have in common the node x; since on all the other elements it is 
pj---0.  

The most efficient way to calculate the coefficients akj for k fixed is to scan 
sequentially the elements of  F h and, for the current element E, to compute the 
integrals of  the form 

P(Y) ~n~n~ IXk -- Y1-1 d E ,  

where p is the linear function defined on E and taking the value 1 on a vertex and 
zero on the remaining vertices. These integrals constitute partial contributions to 
those coefficients akj where j is associated to the vertices of  the element E. The 
coefficients are built by adding these contributions. 

For  Xk belonging to E the  integral is singular; in this case and also when Xk is very 
near to E the integral is computed analytically; otherwise the integral is computed 
by means of Gaussian quadrature formulae. Similar considerations apply to the 
computat ion of bk. We remark now that for Xk belonging to F h the matrix A and 
consequently the matrix B depends upon the geometry of F h and that b depends on 
the geometry of F n, S h and also on M. 

When investigating the dependence of v upon rnt, rnt it is better, in order to 
reduce the amount  of  computation,  to calculate the inverse B-1 and to split b as 
indicated below. It is 

M n  = mtn  + (mr - mt ) (n  " a,)at, 

where at is the unit vector parallel to the local direction of the fiber. Hence 

fsnrMVr-ldSh=fsmtnTVr-ldSh+fsh ,~ h ( m t - - m t ) ( n T a t ) a f r - l d S h "  

Under the supplementary assumption that rnt, m, are constant we set 

b. = n r Vr 1 d S  h, 
h 

1 f (nrat)aT Vr-1  
ba = ~ __S h 

d S  h , 

where the two integrals do not depend on the parameters mr, mt and kth 
components of b. and b. are related to Xk, then we have 

b = [ m z b .  + (rot --  m z ) b . ] / a o .  

Setting 

we have 

v . = B  l b . ,  v a = B - l b a ,  

v --  [ m , v ,  + (mr - m 3 v , ] / ~ o .  

In this way it is possible to evaluate the influence of v. and vo on v. Given B 1 and 
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the integrals associated with b, and ba, we can easily calculate the corresponding 
approximate solutions v h, vha and v h on F h for different choices of rn~, m,  The 
potential U h for any point x inside F h but not on F h or S h is given by 

Uh(x) = [mtU.h(x) + (m, - mt)Uha(X)]/tYo, 
where 

Uh.(x) l r ~ f  h r 1 1 i n T V r - l d S h  -- v~n V r -  dF h + ~ d s  
y h h 

and 

Uah(X) l zfF fi T 1 1 f = v~n Vr -  dF h 47r s~ + - -  (nTal)a[ V r -  1 d S  h. 
h 

The integrals on F h, S h are the sums of the corresponding integrals on the elements 
E of F h and F of  S h. The integration is carried out analytically when x is very near ~o 
an element of F h or S h and numerically otherwise. Given F h and S h, Uh. and Uha are 
numerically Computed separately by means of the methods illustrated above. 

10. Conclusions 

In electrocardiology there occur events which are at variance with the predictions of 
the classical solid angle theory, i.e. the model of the uniform and normal double 
layer. In fact, experiments reported in [7] have shown that a closed excitation 
wavefront can generate a non-uniform potential field and that, ahead of an open 
excitation wavefront propagating in a direction transverse to the fibers, a re-entrant 
current flow, i.e. directed from the resting tissue to the front, may be observed. 
According to the solid angle theory, one would expect zero potential in the first case 
and outflowing current in the second. 

These facts have motivated the introduction of the oblique dipole layer concept. 
The models we have developed and which are generalizations of the axial model of 
Corbin and Scher, make the equivalent source generators on the wavefront 
dependent on the fiber orientation and can adequately reproduce the potential 
pattern for closed and open wavefronts as reported in [7]. Moreover one of our 
local models agrees with another experimental finding related to a variable 
potential jump across the wavefront, since it predicts a potential jump similar to the 
one studied by Roberts et al. [25]. We have also established a connection between 
the oblique dipole layer structure and an intracellular current model, thus providing 
a more adequate electrophysiological foundation for the oblique dipole concept. 

In general, an oblique dipole layer model requires the knowledge of the 
properties of the anisotropic heart tissue, the wavefront position and the fiber 
geometry. We have investigated under which assumptions a knowledge of the 
activation sequence, i.e. of  the isochrone surfaces, may yield information about the 
fiber geometry. 
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