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Abstract. For a modified Anderson and May model of  host parasite dynamics 
it is shown that infections of  different levels of  virulence die out asymptotically 
except those that optimize the basic reproductive rate of  the causative parasite. 
The result holds under the assumption that infection with one strain of  parasite 
precludes additional infections with other strains. Technically, the model 
includes an environmental carrying capacity for the host. A threshold condi- 
tion is derived which decides whether or not the parasites persist in the host 
population. 
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1. Introduction 

One of the important principles of  theoretical ecology is the competitive exclusion 
principle which states that no two species can indefinitely occupy the same ecological 
niche, assuming that it is understood what is meant by ecological niche. (Levin 
(1970), Maynard Smith (1974), (May 1975), Butler et al. (1983).) 

In this paper  we show that an analogous principle is valid for parasites that 
depend for their sustenance and propagation on a host and which perish when 
the host dies. Our analysis is applicable to viruses, bacteria, and helminths, but 
it does not apply to parasitoids nor to most ectoparasites such as fleas, lice, mites, 
and ticks. 

Many textbooks of  ecology assert that hosts and their parasitic pathogens 
co-evolve such that the pathogen does not kill the host too quickly since otherwise 
it cuts short its own propagat ion (Palmieri 1982). The co-evolution of rabbits 
and the myxomatosis virus in Australia is a well documented example of  host- 
pathogen co-evolution from initially high levels of virulence to a more moderate 
level (Fenner and Ratcliffe 1965; Fenner and Myers 1978). 

Recently the general validity of  this principle has been challenged by Levin 
and Pimentel (1981), Levin (1983a, b), and Bremermann and Pickering (1983) 
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(compare also May and Anderson (1983) and Levin et al. (1982)). Levin and 
PimenteI (1981) and Levin (1983a, b) show by means of a dynamic model that 
an excessively virulent strain can prevail if it can invade a host that harbors the 
less virulent strain, but not vice versa. Bremermann and Pickering (1983) showed 
by means of a game-theoretical model: When two strains (or species) of parasites 
inhabit the same host, then the strain (or species) that replicates most vigorously 
has a fitness advantage, even if the price of rapid replication is premature death 
of the host. 

When multiply infected hosts are absent, the game-theoretical model predicts 
no such escalation of virulence, but a moderate level of virulence, that optimizes 
the basic reproductive rate of the parasite. Some parasites induce an immune 
reaction that prevents superinfection by different strains. In myxomatosis, infec- 
tion by one parasite strain will confer immunity against all strains even after the 
host has recovered from the infection (Saunders (1981), and the literature cited 
there). A phenomenon not considered in this paper is epidemiological interference 
of different virus strains or species: infection by one species excludes infection 
by the others, but induces no or only partial cross-immunity after recovery (Dietz 
(1979), Castillo-Chavez et al. (1988a, b), and the literature cited there). 

In this paper we consider the case that infection by one parasite strain excludes 
superinfection by other strains and induces permanent immunity against all strains 
in case of recovery. Actually it would be sufficient to assume that the host is 
immune against all strains of the parasite as long as it is immune against the 
strain which caused the infection. The game-theoretical model predicts the 
optimum virulence level under this condition, but it does not describe the full 
dynamical behavior of the populations involved. In the following we analyse the 
dynamics of such interacting populations. Our epidemiological model describes 
the temporal development of susceptible hosts, of infective hosts that harbor 
different strains of the parasite, and of recovered hosts that are permanently 
immune to all parasite strains. The fate of different parasite strains is reflected 
by the prevalence "of the respective harboring hosts. In this way our model is 
open to invasion by mutant parasite strains which differ in their trade-off between 
speed of replication and damage to the host. We show: 

I f  initially several subpopulations of infected-individuals occur, whose infections 
differ in virulence, then (under very general conditions), no more than two strains 
will persist in the population. 

When new strains with different virulence levels arise (through mutations), then 
asymptotically a single strain will evolve, or the disease will die out. The virulence 
level of the surviving strain (i f  any) is the level predicted by the game-theoretical 
model of Bremermann and Pickering (1983). It maximizes the basic reproductive 
rate, as defined by Anderson and May (1982a). 

2. The model  

We describe host parasite dynamics by a modified Anderson and May model. 
The original Anderson and May (1979) model permits exponential growth of the 
host population in the absence of the disease. Though exponential population 
growth can occur for a certain period of time, it is unrealistic in the long run. It 
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is also inconvenient for deriving our results. We guarantee limited population 
growth by making the per capita reproduction rate depend on the density (or 
size) of the population in a strictly monotone decreasing way. This is more 
realistic than introducing logistic mortality if the per capita reproductivity reacts 
more sensitively to crowding effects than the per capita motality. 

We assume that, without the disease, the host population size N ( t )  develops 
according to the equation 

1Q = N ( f ( N )  - b). (1) 

Here b is the per capita mortality rate and f ( N )  is the per capita reproduction 
rate (at population density N). The function f from [0, oc) to [0, o0) is assumed 
to have the following properties (P). 

(P1) f is continuously differentiable. 
(P2) f is strictly decreasing. 
(P3) f ( O ) > b , f ( N ) < b  for large N > 0 .  
Examples are given by the per capita reproduction rates f ( N )  = a exp( -kN)  

(Ricker 1954) and f ( N ) =  a/ (1  + k N )  (Beverton and Holt 1957). (P3) holds if 
a > b .  

It follows from the properties (P) that all solutions N of (1) with N ( 0 ) >  0 
converge towards the unique positive root K of 

f ( K )  = b. (2) 

K is called the environmental carrying, capacity for the host population. 
We model the host parasite interaction by assuming that the population is 

divided into susceptibles S( t ) ,  recovered (immune) individuals R ( t )  and n classes 
of infective individuals 11,. �9  I,, with each class being associated with a specific 
strain of the infective agent. Thus we have 

N = S + R +  ~ Ij. (3) 
j = l  

With this notation the model reads as 

= N ( f ( N )  - b) - i ajIj 
j = l  

i ,  = I , (Sf l l  - (b + Vl + al )) 

(4) 

i~ = I ~ ( S ~ - ( b +  v~ + o ~ ) )  

j ~ l  

As before, f and b are the per capita birth and mortality rates, aj is the excess 
per capita death rate for individuals/j  infected by strain j, vj is the rate at which 
these individuals acquire immunity, and flj the rate at which they transmit the 
disease. 

Equations (3) and (4) have to be supplemented by initial conditions for 
N, S,/~, R. Only nonnegative initial conditions which satisfy (3) make biological 
sense. 
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3. Positivity and boundedness of solutions 

The standard theory of ordinary differential equations (see, e.g. Hartman 1973) 
implies the unique existence of solutions to (3) and (4), for given initial data. 
The solutions exist for all times unless they blow up in finite time. If  the initial 
data are nonnegative, so are /j and R. For // this follows from integrating 
~/ I j  = d / d t  in / j  in t h e / j  equation in (4). Nonnegativity of R then follows from 
using the variation of constants (or parameters) formula for the R equation in 
(4). Hence, from (3) and (4), we obtain the differential inequality 

~f(N)-b- ~ ~Ij. 
j = l  

Integrating this inequality we see that S(to) >i 0 implies S(t)  >10 for all t > to. By 
the same argument positivity is preserved. 

After having shown nonnegativity the boundedness of N will imply the 
boundedness of S,/~, R via (3). But 

1V <~ N ( f ( N ) - b ) .  (5) 

Hence N(t)~<max(N(to) ,  K)  for t/> to. See (2) and the properties (P). 
In summary we have shown: 
Equations (3) and (4) have unique globally defined solutions for given nonnega- 

tire initial data which satisfy (3). The solutions are bounded and nonnegative. I f  Ij 
is positive initially, it is positive for all times. 

4. Extinction of strains with suboptimal basic reproductive rate 

In the following we assume positive initial data for all //. Set 

b+ vj+aj 
~ = r 

and 

Note that Rod 

(6) 

1 ij 
uj = - -  In - -  + crj t (7) 

~j  ~ ( 0 )  " 

= K/o-j is the basic reproductive rate of strain j because the 
disease-free host population settles to the carrying capacity K (see Anderson 
1982; Anderson and May 1982a; Dietz 1975, 1982). Then 

u j=S,  uj(0) =0.  

In particular, uj = Ul. Using the definition of uj we obtain 

~ '  = e % ' .  (8)  \ / j  (0)1 e J \ I ,  (0)1 

Without restricting generality we assume that crl = min (c r l , . . . ,  ~, ). Equation (8) 
gives precise information on how the numbers of infectives affected by different 
strains develop relatively to each other. In particular, as 11 is bounded, /j goes 
extinct exponentially if % > o-1. 

Hence strains which have lower basic reproductive rates than other strains die out. 
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5. Threshold phenomena 

Up to now we have only shown that strains with suboptimal reproductive rates 
die out, but we do not know whether the disease persists as a whole. This will 
depend on the basic reproductive rates of the infective strains. By (2) and the 
first equation in (4) we have 

lim sup N ( t ) <~ K. 
t - - > ~  

We choose ti--> ~ for i-->~ such that [ j ( t i ) ->l imsupt_~I j ( t )  and ~(ti)~>0. 
From the /j equation in (4) and from (3), (6) we now find that 

0<~ lira sup/ j  (t) ( ( K - l i m  sup/ j  ( t ) ) -  %), 

hence parasite strain j dies out if 

K 

% 

i.e. if its basic reproductive rate does not exceed 1. In particular: 
I f  K / ~ <~ 1 for all j =  1 , . . . ,  n, then the disease dies out. 
Conversely, if  K /  o) > 1 for at least one j c { 1 , . . . ,  n}, then the disease persists 

in the population, and the numbers of  infectives Ij carrying agents with optimal basic 
reproductive rate K / %  remain bounded away from zero uniformly for all times t. 

The second statement can be seen by combining the results of the previous 
section with some lengthy, but standard estimates (see the appendix). The authors 
wonder whether one can find a more elegant proof  by modifying arguments from 
dynamical systems theory (Butler and Waltman 1976). From (7) and fij = S, one 
obtains as a corollary that 

J S(r) dr ~ - - ,  
0 0"1 

where we have again assumed that the first strain has optimal reproductive rate. 

6. Competitive exclusion 

As in Bremermann and Pickering (1983) we argue that the excess death rate a 
caused by the infectious disease is coupled to the agressiveness of  transmission, 
i.e. to fl, and that a rises disproportionally as fl increases. This is mathematically 
reflected by assuming that a = a ( f l )  is a strictly convex, monotone increasing 
function of/3, a (0)= 0, a ' (0)  = 0, a'(fl)--> o0 for fl--> co. An example is provided 
by 

O~ : C~  p 

with a positive constant c and p > 1. 
We further assume that the different strains (preventing multiple infection 

and causing cross-immunity) produce the same immune response (identical v), 
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but have different transmission rates/3j and excess death rates aj = a (/3j). As we 
have assumed that a is a strictly convex function of/3, 

b+ v+a( /3 )  
0 - ( / 3 )  - 

/3 

can take the same value only twice. 
Thus no more than two strains (which have optimal basic reproductive rates) 

persist in the population. 

7. Evolution of virulence 

Virulence is influenced by genetic factors and these can be changed by mutation 
and recombination (Bremermann and Pickering 1983). I f  strains with different 
transmission rates/3 are introduced in this way, then strains with a higher basic 
reproductive rate K/0-(/3) will replace strains with lower reproductive rates. This 
replacement does not stop until a maximum (i.e. a minimum of 0-) is reached. 
I f  ~ satisfies the assumptions made in Sect. 6, 0-(/3) approaches infinity as /3 
tends to zero or infinity. Thus a global minimum of 0- exists and is located at/3 
satisfying the equation 

o r  

/3a ' ( /3)=b+ v+a( /3) ,  

a ' ( /3 )  = 0-(/3) = min 0-. 
[0,~) 

As a is strictly convex (i.e. a '  strictly increases), there is only one/3 at which 
the minimum can be attained. Note that the first condition is the same as derived 
in the game-theoretical optimization approach in Bremermann and Pickering 
(1983). 

I f  the excess mortality has the form ~ ( / 3 ) =  c/3 p, we obtain 

b+v ( b+_v__~ 1/p 
p - 1  \ c ( p - 1 ) /  " 

Hence, if  transmission and excess death rate are coupled as described above, 
the evolution of virulence leads to strains with a uniquely determined transmission 
rate, namely that which maximizes the basic reproductive rate. 

8. Endemic equilibria and their stability 

At present we are unable to answer the question of whether the system settles 
always down to an endemic equilibrium once the strain with the maximum 
reproductive rate has been established (provided that its basic reproductive rate 
exceeds 1, see Sect. 5). We can show the following local statement, however: 

In the above situation an endemic equilibrium exists with only the optimally 
reproducing strain being present. This equilibrium is uniquely determined and locally 
asymptotically stable: If, by mutation e.g., strains with suboptimal reproductive rate 
are introduced in small numbers, they do not only die out (this already follows from 
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Sect. 4), but the system returns to the equilibrium state with only the strain with 
optimal reproductive rate being present. 

In order to make this more precise we consider the situation that 

b + v j + %  
~ < ~J = 13j ' j = 2  . . . .  ,n, 

and 

K 
m > l .  
or 1 

In order to find an equilibrium of (3), (4) in which only the first strain is present 
we set 

/ j = 0 ,  j = Z , . . . , n ;  ~ / =  I1=/~ =0.  

If  11 # 0, we obtain the equilibrium equations 

S *  = O" 1 

R* = vl 11" 
b (9) 

a111" 
- - f ( t r  I + (1 + vl / b)I1* ) - b. 

o'1+(1+ vl/b)I1* 

Note that the left-hand side of the last equation strictly increases in I* ,  whereas 
the right-hand side strictly decreases. This implies uniqueness of the equilibrium. 
The left-hand side is larger than the right-hand side if I1" is large. The left hand 
side is smaller than the right-hand side if 11" is small. These are consequences of 
the threshold condition K / t r  I > 1 and the properties (P). In par t icular f ( t r  I ) - b > 
0. Existence of the equilibrium now follows from the intermediate value theorem. 

Local stability analysis is carried out in the standard way by linearizing the 
system at the equilibrium and by checking whether the eigenvalues of the linear- 
ized system have strictly negative real parts. As tr I < trj,j/> 2, one easily realizes 
that the whole system is locally stable whenever this is the case for the reduced 
system with/ j  = 0 , j  = 2 , . . . ,  n. Local stability of the reduced system follows from 
the Routh-Hurwitz criterion (see, e.g. Boyce and DiPrima (1977), Sect. 5.3, 
problem *20). Consult the appendix for more details. 

9. Discussion 

Parasites have a powerful effect on host population levels. Anderson and May 
(1981, 1982a) have shown that parasites can stably depress host populations to 
levels well below the carrying capacity of the environment. Hosts and parasites 
evolve: Hosts towards resistance, parasites towards overcoming resistance. Hosts 
and parasites thus co-evolve: molecules against molecules, proteases against 
inhibitors, binding sites against receptors, etc. (Bremermann 1987). It is a game 
of molecular pursuit and evasion. 

Host-parasite interactions, rapid genetic changes in parasites, especially 
microparasites, and host polymorphism are the basis of some current theories 
about the evolutionary role of sex (Stearns 1987). Inherent adaptive advantages 
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of parasites are counterbalanced by host polymorphism of molecules that are 
involved in resistance and in parasite recognition (Bremermann 1987). Recently, 
Lively (1987) has collected data of sexually and asexually reproducing snail 
species and their parasites which tend to confirm that sexual reproduction is 
rather maintained by host-parasite interaction (Red Queen hypothesis) than by 
environmental heterogeneity (Tangled Bank hypothesis). 

The molecular mechanisms of resistance/susceptibility are beginning to be 
explored with recombinant D N A  techniques, especially in plants (Burdon 1987). 
Pathogenic bacteria are found to adapt,  to acquire genes on plasmids, etc. in a 
very short time. Another example of the rapid evolution is the change of the 
AIDS virus (HIV), with genomic base substitutions at 10 million times the average 
rate of  basepair  substitutions in mammals  (Bremermann 1987). Hill and Hastie 
(1987) have documented the effect of  host-parasite interactions producing non- 
uniform evolution in the active cores of  protease inhibitors relative to flanking 
sequences. 

In order to model the differential survival of  different host and parasite mutants 
one would ideally like a dynamic model that would include the full range of 
phenotypes (transmission, excess death and recovery rates), and that would 
distinguish all the different host strain - -  parasite strain combinations. The present 
paper  discusses one special case, namely a single strain of hosts interacting with 
an arbitrary number  of  parasite strains under the condition that superinfections 
by different parasite strains do not occur. Under  these conditions parasites evolve 
towards commensalism (not in the sense that the parasite does not harm the host 
at all, but that it moderates its exploitation of the host). 

In a different model Bremermann and Fiedler (1985) have investigated another 
special case, where an arbitrary number of  different asexually reproducing host 
strains are infected each by a corresponding parasite strain. Host strains interact 
by competing for a share of  the carrying capacity of  the environment. This model 
shows that a stable polymorphic  host-parasite equilibrium is possible. (The model 
depends, in part, on ideas of  this paper.) The model also shows that a host mutant 
that is resistant to all parasite strains will take over and wipe out parasite infections 
by reducing their hosts to low population levels. 

The analysis of  these two models shows certain parts of host-parasite co- 
evolution. For completing the picture, models are needed which include the full 
interaction of different strains of both hosts and parasites. Such models can be 
formulated. By their complexity, they have resisted mathematical  analysis so far 
and constitute a continuing challenge. 

Acknowledgement. Research on this paper has been supported by Sonderforschungsbereich 123 at 
the University of Heidelberg. The authors thank B. Fiedler for helpful discussions. 

Appendix 

First we prove persistence of the disease if one of the strains has a basic reproductive rate strictly 
larger than unity. See the corresponding result in Sect. 5. 
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Step 1: The disease cannot eradicate the population. 
We in t roduce  

I~(t) 
Uj(t) = N( t )  

and  rewri te  pa r t  of  the sys tem (4). 

N 
- - = ( f ( N ) - b ) -  ~ o~iu i 
N i=~ 

fiJ=flj l i - R  - v j - % - f ( N ) +  a,u,. 
Uj i=  i = l  

Set u =Yi '= l  ui. As u~<l  we obta in  

ti 
- < ~ N  Z f l i - f ( N ) - u .  
U i = l  

with v,  = mint~i_<,, v~. Suppose  that  N(t)-~O for t ~ o o .  Then u ( t ) ~ O  for t ~ o o .  Thus 

- - - > f ( 0 )  - b > 0 
N( t )  

for t ~ oo. Hence  N grows exponen t i a l l y  for large t, a cont rad ic t ion .  

So far we have  proved  tha t  

lira sup N( t )  = e 0 >  0. 
t ~ o o  

Suppose  tha t  

lira inf  N ( t ) = O. 
t ~ o o  

Then,  for any  0 < e < e0, there  exist  sequences  t,n , w,, -+ oo for m ~ 0o such that  

N ( t , , ) = e ;  .N(t)<~e, t,,<~t<~t,,+'rm. 

C h o o s i n g  e smal l  enough  and  a rgu ing  a bi t  more prec ise ly  than  before  we find 8, s > 0 such tha t  

N(t )>~6N(t ) ,  tm+s<~t<~t,,+Tm. 

Hence  
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I e>~N(t , , ,+: ' , , , )=eexp - a~ s "e ~(T,.-~)->oo, rn~oo. 
1 

This con t rad ic t ion  proves  Step 1. 

In  a s imi la r  way we now show 

Step 2: The disease persists in the population i f  at least one strain has a basic reproductive rate exceeding 
unity. 
Withou t  res t r ic t ing genera l i ty  we assume tha t  K/o-~ > 1; ~r~ <~ o'i, j = 1 , . . . ,  n. Suppose  tha t  

I i ( t ) ~ O  , t-->oo. 

By (8), I j ( t ) ~ O  for t-~ oo. As N is b o u n d e d  away  from 0 by Step 1, we find tha t  I j ( t ) / N ( t ) ~ O  for 
t ~ o o .  This  impEes N ( t ) ~  K for t--~co. See the N e q u a t i o n  in  (4). Thus  11 grows exponen t i a l ly  for 

large t. See the 11 equa t ion  in (4). This con t rad ic t ion  impl ies  tha t  

l i m s u p  I t ( t)  = e t > 0. 
t ~ o o  

Suppose  tha t  

l im in f  I~ ( t )  = 0. 
t ~ c ~  
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Then,  for any  0 < e < e l ,  there  exis t  sequences  t,., r , .  --> oo, m ~ co such tha t  

I i ( t m ) = e ;  Ii( t)<~e, tm<~t<~t,~+'r,~. 

Arguing  as before ,  for any  t5 > 0 we can choose  e > 0 so smal l  tha t  

f ( K - 2 8 ) - b -  ~ c ~ I i / N > O  , tm<~t<~tm+~%. 
i = l  

Then  there  exis ts  some s = s (8 )  > 0 such tha t  

N ( t ) ~ K - ~ ,  t . , + s ~ t < ~ t , . + ' c , . .  

From the R equa t ion  in (4) we ob ta in  

R(t)<~5, t . ,+s<~t<~t , .+r , .  

prov ided  we choose  s large enough .  By a s s u m p t i o n  we now choose  8 > 0 such tha t  

3 1 ( K - 2 ~ 5 ) - a  l - b -  v 1 = r / > 0 .  

F r o m  the 11 e q u a t i o n  in (4) we ob ta in  tha t  

e >~ 11 (t,, + ~',n ) = e e - (~+b+~)~  �9 e n(~--s). 

This  is a con t rad ic t ion  because  ~-~, --> o0, m ~ co. 

Secondly  we exp la in  the local asymptotic stability of  the equ i l ib r ium (9) in  more  de ta i l  (see Sect. 

8). 
I f  we l inear ize  (4) a round  the equ i l ib r ium (9) we ob ta in  the l inear  sys tem 

wi th  

j ~ l  

Jj = C j l j ( ~  - ~ j ) ,  j = 2  . . . . .  n. 

i = l  

~: = f ( N *  ) - b + N * f '  ( N * ) .  

n -  1 e igenva lues  of  the va r i a t iona l  mat r ix  are g iven by  h = f l j ( g l - o - j ) , j  = 2 , . . . ,  n and  hence  are 

s tr ict ly nega t ive  by  assumpt ion .  The r ema in ing  three  e igenvalues  are roots  of  the p o l y n o m i a l  

A 3 + a 2 h 2 + a l h  + a  0 

wi th  

a o = (a  1 b - ~b - ~vl) f l l I*  

a I = f l l I * ( b - ~ + v l + a l ) - ~ b  

a2 = fll I*l + b -  ~. 

Accord ing  to the  R o u t h - H u r w i t z  cr i ter ion (see, e.g. Boyce and  D iP r ima  (1977), Sect. 5.3, Problem 

*20) this  p o l y n o m i a l  has  roots  wi th  str ict ly negat ive  real  par ts  only,  i f  ao, a l ,  a2 > 0 and  a 0 < a 1 a 2. 
Check ing  these  condi t ions  is an  e l emen ta ry  a lgebra ic  exercise  p rov ided  one has  der ived  the  fol lowing 
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relations from the equilibrium equations: 

~ < ~ f ( N * ) - b = ~ T  L <mm~ fll l*, vl + b ]" 

Recall that f '  ~< 0. 
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