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Abstract. We give necessary and sufficient conditions for stochastically 
bounded coexistence in a class of models for two species competing in a 
randomly varying environment. Coexistence is implied by mutual invasibility, 
as conjectured by Turelli. In the absence of invasibility, a species converges 
to extinction with large probability if its initial population is small, and 
extinction of one species must occur with probability one regardless of the 
initial population sizes. These results are applied to a general symmetric 
competition model to find conditions under which environmental fluctuations 
imply coexistence or competitive exclusion. 
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I. Introduction 

In recent years there has been much interest in modeling populations and 
communities in stochastically fluctuating environments (May 1974; Slatkin 1978; 
Turelli 1977, 1980, 1981; Chesson 1982, 1986; Ellner 1984; Abrams 1984; Shmida 
and Ellner 1985). Simultaneously, there has been a rise in empirical evidence 
that such environmental fluctuations have an important effect on population 
dynamics and community structure (Grubb 1977; Sale 1977; Connell and Sousa 
1983; Underwood and Denley 1984; Murdoch et al. 1985; Strong 1986). In the 
modeling efforts, a fundamental problem has arisen: how does one determine 
whether a population or a genotype persists, or whether the species in a community 
coexist? This problem has two parts: first defining persistence and coexistence, 
and second finding ways of demonstrating such persistence or coexistence. In 
models with a continuous state space, persistence is usually defined in terms of 
the behavior of the probability distribution of population size as time goes to 
infinity (Turelli 1977, 1981). 
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Commonly, a species has been regarded as persisting if the probability 
distribution of population size converges to that of a positive random variable. 
However, Chesson (1978, 1982) suggested that this requirement is too strict and 
proposed a weaker requirement, the stochastic boundedness criterion, which 
simply requires the distribution of population size to be bounded below by that 
of a positive random variable. There are few useful results permitting either of 
these two persistence conditions to be established for multispecies population 
models. Consequently, many workers have used the yet weaker criterion "invasi- 
bility" (Turelli 1978). This criterion relies on the fact that if the geometric-mean 
growth rate of a species at low density is greater than 1, the species can increase 
from low density. Hence it recovers from low density or "invades" the system. 
The invasibility criterion is not regarded as a satisfactory criterion by itself, but 
is often presumed to imply stochastic boundedness. Rigorous mathematical 
demonstrations are available for a variety of one-dimensional models (Norman 
1976; Chesson 1982; Ellner 1984), but it is known not to apply in all cases 
(Chesson 1982). There are some results for continuous-time two-dimensional 
models (Turelli and Gillespie 1980), but results for the corresponding discrete- 
time models are lacking. Strong support for the idea that invasibility broadly 
implies stochastic boundedness comes from computer simulations (Turelli 1980; 
Ellner 1985). 

In this article we show that invasibility implies stochastic boundedness in a 
class of two-dimensional two-species competition models described by stochastic 
difference equations. We show that if each species can invade the system in the 
presence of the other species, the species coexist in the sense that each is 
stochastically boundedly persistent. We then go on to examine cases where the 
invasibility criterion does not hold, and show that a.s. convergence of one species 
to 0 is to be expected. The main assumptions imposed on the model are mono- 
tonicity and independence of the environmental states at different times. 

Assumptions and results are given in Sects. 2 and 3. Section 4 applies these 
results to a general symmetric competition model. The proofs are in Sect. 5. 

2. Sufficient conditions for coexistence 

We consider the discrete-time competition process (X1,3(2)={(Xl( t ) ,  X2(t)), 
t =0,  1 , . . . ) ,  where the nonnegative random variable X~(t) is the population 
density of species i at time t. The competition process is dependent on an 
environment process {~(t)}, which takes values in some measurable space. The 
dynamics of the system are governed by the following equation 

X,( t  + 1) = Fi(X~(t), Xj(t), ~(1)), (2.1) 

where here, and in the sequel, (i , j)  can take only the values (1, 2) and (2, 1). 
The functions Fi are nonnegative and jointly measurable in their three arguments. 
We assume that the system is closed to immigration and therefore that Fi can be 
written in the form 

F,(x,, xj, ~) = x,f,(xi, xj, ~). (2.2) 
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Assumptions below allow f ( 0 ,  xj, ge) to be defined as the limit as xi ~ 0 of 
f (x i ,  x~, ~). While this quantity may be infinite, we assume that F~(0, x:, ~g) = O. 

To derive necessary conditions for coexistence, we need to make a number 
of  assumptions. Some of these, stated as A1, A2, A3, below, are mathematical 
technicalities, but we also make several biologically meaningful assumptions that 
indicate the circumstances for which our results are applicable. 

The first assumption is that the environment process {~(t)}~=o is a sequence 
of  independent and identically distributed random variables. This is the standard 
white-noise environment for discrete time, and it implies that (X1,X2) is a 
homogeneous Markov process. While this environment assumption rules out 
environmental correlations between years, correlations among components of the 
environment process within years are certainly permitted. For example, if ~ ( t ) =  
(~ l ( t ) ,  ~ 2 ( t ) , . . .  , ~n(t)), there is no assumption of independence between ~u(t) 
and ~v(t), for any u, v.. 

The second assumption, which is implicit in Eq. (2.1), is that the state of  each 
population is completely described by the population density (number of 
individuals per unit area). Any characteristics that vary among individuals, such 
as age, size, location, or genotype are assumed to be unimportant for population 
dynamics, or if important they are assumed to have a distribution within the 
population that can be expressed as a function of the population density and the 
environment at a given time. Under these general circumstances, Prout and 
McChesney (1985) and Prout (1986) have pointed out that an equation like (2.1) 
may yet only apply to the population density of one particular stage in the life 
cycle. For our purposes, this is not a problem because a population becomes 
extinct if- and only if all stages in the life cycle become extinct. 

The final biologically important assumption is monotonicity of  the competitive 
effects. We assume throughout that each F~(x~, x:, ~) is nondecreasing in x~ and 
xj, and positive whenever xi > 0. The monotonicity in x~ simply says that competi- 
tion occurs. Competition between species could be asymmetrical; in particular, 
our assumptions permit amensalism. Monotonicity in xi implies that intraspecific 
competition is never so severe that a higher density now means a lower density 
after one unit of time. This situation is sometimes referred to as contest competi- 
tion as opposed to "scramble" competition. It implies that the corresponding 
single-species models have very simple dynamics: monotonic convergence to a 
stable equilibrium. Some authors have suggested that in a constant environment 
many natural populations would have stable equilibria in accordance with our 
assumptions (Tanner 1975; May 1981, Chaps. 2 and 5). However, Schaffer and 
Kot (1986), discuss evidence suggesting that more complicated dynamics under 
constant environment conditions may often occur, imposing a genuine restriction 
on the applicability of our results. 

A simple model violating our assumption ofmonotonici ty of (2.1) in x; involves 
variable recruitment to an adult population according to the Ricker formula. 
Population dynamics in this model are expressed as 

Xi( t + 1) -- siX,( t )  + r~( t ) Xi(  t ) exp{ - [  Xi( t ) + a:Xj (t)]}. 

Here the c~'s and s's are positive constants, and the r~(t) represent the environment 
process ~. The first term on the right-hand side represents survival of adults and 
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the second term is recruitment to the adult population. While the results given 
here do not apply to such nonmonotonic models, Ellner (manuscript) has obtained 
some applicable results which extend the conclusions of Theorem 2.1 below. 

If monotonicity of (2.1) in xi is not assumed, then some other assumptions 
are required such as irreducibility. Irreducibility is generally difficult to check in 
specific models, and is often false for technical reasons that do not seem biologi- 
cally relevant (Ellner 1984, manuscript). These difficulties with irreducibility are 
avoided here by the restriction to monotonic situations. 

To analyze the system we make use of the processes Y~={Y~(t)}, which 
represent the dynamics of each species in the absence of the other. They can be 
defined by the equation 

Y~(t + 1) = Fi(Y~(t), 0, ~(t)) ,  (2.3) 

with Y~(0)= X~(0). We add the following technical assumptions. 

A1. The equation x~ = Fi(x~, 0, ~(t)) ,  can be true with probability one only for 
xi : 0 .  

A2. The distributions of the single-species variables, Y~(t), converge to unique 
positive stationary distributions as t--> oo. 

A3. There are positive numbers r~ such that 

clef 

d~(ri) = E inf lnf(x~,  Y*, ~ ( t ) ) > - o %  
O < x i < r  i 

where Y* is a random variable independent of ~(t)  having the stationary 
distribution of the process Yj. 

Assumption A1 implies that there are no absorbing points other than 0 in the 
single-species systems. Such absorbing points cause difficulties in the proofs. As 
discussed below, however, the main result of this section remains true if there is 
an absorbing point at the top of the range of possible X~(t) values. 

Ellner (1984) proves conditions that imply Assumption A2. These conditions 
include the specialization of the assumptions made here to the single-species 
case, but must be applied to both X~(t) and 1/Xi(t).  In addition, X~(t) and 
1/Xi(t)  are assumed to obey the invasibility criterion. Conditions applicable to 
nonmonotonic models are to be found in Schaffer et al. (1986). Sharp results 
about two-species systems seem to require assumptions of regular behavior of 
the single-species system. 

To see the rationale for the final assumption, note that lnf(x~,  Y*, ~(t))  is 
the growth rate of log population size. It can also be thought of as the instan- 
taneous per capita growth rate applicable to the period t to t + 1. The regularity 
condition A3 is necessary to ensure that the expected value of this growth rate 
at x~ = 0 is an accurate guide to the low density dynamics of the species. 

The invasibility criterion (Turelli (1978)) involves the quantities 

A~ = E lnf~(0, Y*, ~(t)) ,  (2.4) 

which we refer to as "boundary growth rates". The invasibility criterion says that 
species 1 and 2 should be regarded as coexisting if they both have positive 
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boundary growth rates. The heuristic reasoning behind this requirement is that 
if species i remains at low density, or heads toward extinction, the long-term 
dynamics of speciesj will be described approximately by its stationary distribution 
in a single-species system. It follows that the long-term growth rate of species i 
will be given approximately by  Ai. If A~ is positive, species i will recover from 
low density and extinction will be averted. Our main result is that this reasoning 
is correct under Assumptions A1-A3. In particular, whenever dl  and A2 are both 
POsitive, both species are stochastically boundedly persistent, or s.b. persistent 
as defined by Chesson (1982). 

Stochastically bounded persistence is related to tightness of a family of 
probability measures (Billingsley 1968). It is a weakening of the idea of  conver- 
gence to a stationary distribution on the positive real numbers. Species i is said 
to be s.b. persistent if there is a positive random variable U such that X~(t) is 
stochastically larger than U for all t, i.e. 

P(Xi ( t )  > x) >! P( U >  x), (2.5) 

for all x and t. Thus the distribution of X~(t) need not converge but it must be 
bounded below by the distribution of a positive random variable. 

Invoking Assumptions A1-A3 and also assuming that X1 and X2 have positive 
initial distributions, we can now state our main result: 

Theorem 2.1. I f  A 1 and A 2 are both positive, species 1 and 2 coexist in the sense 
that they are both stochastically boundedly persistent in the two-species system. 

For cases in which there is an absorbing point at the top of the stationary 
distribution of one of the single-species systems, we need to state an alternative 
assumption to AI: 

AI'. The equation xi = F~(xi, 0, ~(t)),  can only be true with probability one for 
xi = 0  and xi = SUpy.~ F/(y, 0, e). 

As explained in Sect. 5, Theorem 2.1 still holds when A1 is replaced by AI'. 

3. Converses 

Heuristic invasibility analyses suggest that negative boundary growth rates should 
lead to extinction for a species at low density. The results of  this section show 
that this idea is essentially correct. Moreover, we are able to show, by imposing 
some further conditions, that a species with a negative boundary growth rate will 
eventually drop to low density and converge to extinction, unless the other species 
converges to extinction instead. 

To prove the results of  this section we need to add a continuity assumption: 

A4. The functions F~(xi, xj, ~) are jointly continuous in xi and xj. 

Additionally we need to introduce the processes { Yj,~} defined for e/> 0 by 
Y~,~(0) = Xj(0), and 

Yj,~(t + 1) = Fj(Yj,~(t), e, ~(t)).  (3.1) 
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These new processes will approximate the dynamics of  species j whenever species 
i is at low density ( ~ e ) .  To obtain a bound for the growth of species i at low 
density we define 

h,(y, ~g)= sup f ( x ,  y, ~). (3,2) 
0~x~e  

We now replace A2 and A3 by the following: 

A2'. The distributions of  the random variables Yj,~(t) converge to positive 
stationary distributions as t ~ co, whenever 0 ~< e <~ e', for some positive e'. 

A3'. Let Y~,~ be a random variable independent of ~( t ) ,  having the stationary 
distribution of Yj,~(t). Then the quantity 

D,(e) = E In h~( Y*, ,  ~( t ))  (3.3) 

exists and is less than +co for some positive e. 

We can now state the first result of  this section. 

Theorem 3.1. Under Assumptions A1 or AI' ,  A2', A3' and A4, Ai < 0 implies that 
P(Xi(  t) ~ O) can be made arbitrarily close to 1, for Xi(O) sufficiently small. 

Thus we can conclude that invasion by species i fails with high probability if A~ 
is negative. 

I f  we introduce further assumptions, we can prove that With probability 1, 
one species must become extinct whenever at least one of the boundary  growth 
rates is negative. The first additional assumption ensures that no part of  the state 
space permits a species to be protected from sufficiently unfavorable sequences 
of  environmental conditions. Sufficiently unfavorable environmental conditions 
must exist that can always reduce a species to low density. Formally stated, 
this is: 

A5. There is a positive e' such that for every positive e, and each value of  (i ,j)  
((1,2) and (2, 1)) there is a set A of values of  ~( t )  with P(~g( t )~A)>O,  
having the following property. Whenever ~( t )  is restricted to the set A, 
(X~(t), Xj( t ))  eventually enters the set (0, e] x [e ' ,  oo), for all positive values 
of (x~(0), xj(0)). 

This assumption now permits us to show that a species with a negative boundary 
growth rate cannot persist in the presence of a species having a positive boundary 
growth rate. By " ~ "  we mean convergence in distribution. 

Theorem 3.2. I f  zi i < 0 and Aj > 0 then Xi( t )  ~ O, a.s., and Xj(t)=~ Y~.  

To deal with the situation where both species have negative boundary  growth 
rates we need to introduce some further restrictions, For constants m > e > 0, we 
define the sets 

S l = { O < x l < e  and 0 < X 2 < E  } 

S 3 = { x l > m  and X z > m  } 

S 2 = {Xl ,  X 2 >  O} -- ( S  1 k.) 83) , 

and we use F to denote (F1, F2). 
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A6. There are values of  m and e, and a/3 > 0 such that 

P{F[x l ,  x2, ~(t) ]  �9 $3} ~ ~P{F(x1,  X2, ~(t)  �9 $2} , 

for all (Xl, x2) �9 S1. 

This restriction means that from $1, the chances of  landing next in $2 are at least 
1/8  times the chances of  landing in $3. A6 is an innocuous assumption for real 
populations, because it is satisfied whenever there is a finite limit to one species' 
per-capita growth rate. It is also satisfied if there is an upper  bound on the 
densities that can be reached. In models without such bounds, A6 is essentially 
equivalent to the existence of the moment  generating function of l n f ( 0 ,  0, ~( t ) )  
for some positive argument. For example, this will be true if the l n f ( 0 ,  0, ~( t))  
have Gaussian or double exponential distributions. Specifically, let pi.y(x) be the 
probability density function of l n f ( e - V , O , ~ ( t ) ) .  I f  l n f ( x l , x 2 , ~ ( t ) )  is 
sufficiently smooth near xl = x2 = 0, it can be shown that A6 holds whenever 

lira sup x -1 In pi, x(x) < ~ ,  

i.e. essentially whenever the upper  tail of  the density converges to 0 exponentially 
or faster. With the addition of this final assumption we obtain Theorem 3.3: 

Theorem 3.3. (b) I f  A1, z12 < O, then P(XI(t) ~ 0 or X2(t) -* O) = 1. 

Theorems 2.1 and 3.1-3.3 characterize all the behaviors of  these processes 
that are likely to be of  interest in practice. Cases where the boundary growth 
rates may be zero arise occasionally, but as Ellner (1984) has shown for the 
single-species case, the boundary growth rate by itself is then inadequate to 
characterize the asymptotic behavior of the process. 

Note that it is possible for a process to satisfy Theorem 3.1, but not Theorems 
3.2 or 3.3. For example, consider the system obeying the equation 

Xi( t  + 1) - 2Xi(t)(1 + ~(t){[1 + 9 X j  ( t ) ]  -1 - 0.1}) (3.4) 
l+x,(t) 

In the case where g~(t) takes values in the interval [8, 9], it is easily seen from 
Ellner (1984) that the single-species iterations converge to stationary distributions 
and A3' is satisfied. The remaining assumptions of  Theorem 3.1 are easily checked. 

For e sufficiently small, the interval [16, 18] is invariant for the single-species 
processes Yj,~, and hence their stationary distributions are concentrated on this 
interval. It is now easily checked that the A i are both negative. Theorem 3.1 
applies to show that for both X1 and X2 there are initial conditions giving 
arbitrarily high probabilities of  extinction. Theorem 3.3 is not satisfied, however, 
because the point X1 =)(2 = 1 is left invariant by Eq. (3.4). Since the process 
never approaches the axes from this point, the boundary growth rates are 
irrelevant. Stochastic models that have interior invariant points are uncommon 
and such points are difficult to justify as reasonable possibilities for population 
dynamics in a stochastic environment. However, interior invariant regions may 
occur if low-density growth rates are depressed by factors unrelated to competition 
(Allee effects). Assumption A5 rules out such behavior and seems likely to be 
satisfied in the majority of  applications. 
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4. Applications 

An important application of our general results is to life-history evolution in 
stochastic environments for organisms with density-dependent vital rates. In 
models of life-history evolution, X1 and X2 are regarded as competing subpopula- 
tions of a single species having different traits or "strategies". If the assumptions 
of Theorems 2.1, 3.2 and 3.3 are satisfied, the "evolutionary stable strategy" (ESS) 
can be defined as follows: strategy 1 is an ESS if and only if A~>0, and /12<0 
for any strategy 2 among the range of possible alternative strategies. Ellner (1985, 
1987) applied this result to a model of seed germination strategies of annual plants. 

The results discussed here should also find application to a variety of models 
of interspecific competition in a stochastic environment. Turelli's (1981) hyper- 
bolic version of Lotka-Volterra competition satisfies the required monotonicity 
assumptions, as do the models of Shmida and Ellner (1985) and some of the 
models of Chesson (1983, 1984). To illustrate this application of our results, we 
consider the general symmetric competition model of Chesson (1986), which 
includes as special cases the symmetric versions of a variety of other competition 
models. 

In this general symmetric competition model, ~( t )  is a vector ( ~ ( t ) ,  ~2(t)) 
of real-valued random variables having an exchangeable joint distribution. The 
key additional assumption is that P ( ~ l ( t ) =  ~2( t ) )<  1. The two components of 
the environment are in essence environmentally-dependent parameters of species 
1 and species 2 respectively. Larger values of ~ ( t )  imply better environmental 
conditions for a species, at least in the absence of competition. Each species' 
growth equation does, however, contain the environmental component of the 
other species because this environmental component affects the amount of 
interspecific competition occurring. 

To express the model mathematically, the functions f are given the form 

f(x~, xj, ~) = G(~i,  C~), (4.1a) 

where 

C~ = c(x~, ~,, xj, ~j). (4.1b) 

In this model, ~i represents the direct effect of the environment on species i, 
and Ci is the effect of competition, which may depend on the environmental 
state as well as the species' densities. For example, G could have the hyperbolic 
form 

G = a 4 - -  (4.2) 
1 + ~ x i +  ~jxj' 

in which Ci = ~ixi + ~jx~. With a = 0, this is a discrete-time form of Lotka-Volterra 
competition. In our parameterization of this model, ~i represents the per-capita 
birth rate of species i, which is assumed to be density independent. The total 
number of offspring of all species is ~1xl + ~2x2, which compete among themselves 
and as a consequence experience density-dependent mortality before the next 
breeding season. A value of a > 0 can represent the case of overlapping generations 



Invasibility and stochastic boundedness 125 

where adults survive to the next breeding season with per-capita survival rate a. 
This adult survival is assumed insensitive to environmental fluctuations and 
competition. 

Equation (4.2) can also make sense if ~ is not interpreted as a birth rate but 
as a maximum per-capita resource uptake rate (Abrams 1984). Competition then 
depresses resource uptake below the maximum possible value, and - a  is the 
amount of resource that an individual must gather to produce enough offspring 
to offset its own probability of death. 

We assume that interspecific and intraspecific competition are of equal strength 
in this model by imposing the condition 

c(xi, ~ ,  xj, fgj)= c(xj, $j, x~, ~) .  (4.3) 

The environmental variables appear as arguments in c to represent their indirect 
effects via competition. This means that they must be irrelevant when the 
associated species densities are 0. Thus, we assume that 

c(x~, ~ ,  O, ~j) = c(xi, ~;, 0, 0) (4.4) 

for all values of ~j. The function G is assumed to be an increasing function of 
and a decreasing function of C. To represent competition, c is assumed to be 

increasing in all of  its arguments. Each single-species system (X1 = 0, or X2 = 0) 
is assumed to have a unique positive stationary distribution. 

As a consequence of  the symmetry assumptions, the boundary growth rates 
of the two species are equal. Chesson (1986) shows that the sign of the boundary 
growth rates can be determined by considering the quantity 

g( e~, e;) - g( e,, e;) - g( el, ej) + g( e,, ej), (4.5) 

where 

g(e~, ej) = In G(e,,  c(O, O, xj, ej)), 

and e l >  e~, i =  1, 2. If  Expression (4.5) has the same sign for all values of the 
environmental variables, and for all values of x in the support of the single-species 
stationary distribution, then -A~ has the sign of (4.5). Note that if the second 
order partial derivatives of g exist and are continuous, then (4.5) has the sign of 

02g (4.6) 
0e; 0ej" 

The signs of  (4.5) and (4.6) have been interpreted in terms of  the general sorts 
of  life-history traits that the two species possess (Chesson 1986). Negative values 
of (4.5) or (4.6) are associated with life histories that tend to buffer a species 
from an unfavorable combination of events such as a poor  environmental par- 
ameter for the species while its competitor experiences a good environmental 
parameter. Under these circumstances, the actual value of g is greater than one 
would expect by considering the sum of the separate effects of  the unfavorable 
events. Positive values of  (4.5) or (4.6) indicate the opposite of  a buffer. In this 
case the life-history properties of the species tend to amplify such unfavorable 
combinations of events. Zero values of (4.5) and (4.6) mean that the life history 
is neutral and has neither the effect of  buffering or amplifying unfavorable 
combinations of  events. 
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The results that we have obtained here can be used to draw conclusions about 
stochastically bounded coexistence of the two species. Imposing Assumptions 
A1-A6, A2' and A3' on these equations we get the following result. 

Theorem 4.1. (a) I f  Expression (4.5) or (4.6) is uniformly negative, then the two 
species are stochastically boundedly persistent. 

(b) I f  Expression (4,5) or (4.6) is uniformly positive, then 

P(XI(t)--)O or X2(t ) - )0) - -1 .  

It is not difficult to see how special cases of this general symmetric model 
can satisfy Assumptions A1-A4, A2', A3' and A6. Assumption A5, however, is 
more difficult to understand. Thus we present here specific conditions that imply 
A5 for this model. We make no attempt to find the most general conditions but 
just seek some that are broadly applicable. These conditions are stated as follows: 

There are real numbers E 1 ~ E~ • E2~ E2 such that 

G(e2, c(0, 0, 0, 0)) > 1, (4.7) 

G(e'2, c(y*, eL, 0, 0)) = 1, (4.8) 

for some positive number y*, and 

P [ ( ~ ( t ) ,  ~;(t))  c A] > 0, (4.9) 

where A = [ e l ,  e~]x[e2,  eL]. 
The set A is the one required by Assumption A5, and Condition (4.9) asserts 

that it has the necessary positive probability. For a single-species system, Assump- 
tion (4.7) guarantees that a species can increase from low density when the 
environment has the value e2 or better. Assumption (4.8) guarantees that even 
under the most favorable environment in [e2, eL], intraspecific competition must 
eventually halt population increase. The proof  that these assumptions imply A5 
is given in Sect. 5. 

It is not difficult to see that the modified Lotka-Volterra competition model 
(4.2) satisfies the assumptions necessary for Theorem 4.1 for many distributions 
of (~1, ~2) on [0, oo) x [0, oo). Conditions (4.7) and (4.8) reduce to 

e; 
a + e 2 > l  and a + - - - 1 .  

l + e ~ y *  

This condition and (4.9) will be satisfied simply if P(~2 > max{ ~1,1 - a}) > 0, 
i.e. if ~1 and ~2 can sometimes be different with the larger of the two greater 
than 1 -  a. To ensure that Assumption A3' applies, we need to assume that the 
single species boundary growth rate is finite, i.e. Elln[a+E~]l<oo. It follows 
from Ellner (1984), Theorem 2.2, that Condition A2' is equivalent to 

E ln[a + ~,] > 0, (4.10) 

i.e. simply that the single-species boundary growth rate is positive; and if (4.10) 
is false, both X~ and X2 ~ 0, with probability 1. 

With these simple conditions on the distribution of (~1, ~2), it is easily verified 
that the remaining assumptions of the Theorem 4.1 are satisfied, and that (4.6) 
has the sign of - a .  Thus stochastically bounded coexistence occurs in this model 
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whenever there is some adult survival. Random exclusion occurs when a is 
negative, in which case the ~'s are interpreted as defining resource uptake rates 
and - a  is the maintenance resource requirement. In the remaining case (a = 0) 
it is easily seen that ln(X1/X2) is a classical zero-drift random walk. Thus, neither 
species is stochastically boundedly persistent (Chesson (1987)). 

5. Proofs 

The proofs make use of the following technical lemma, which is suggested by 
Problems 9 and 10 of Breiman (1968), pp. 98-99. 

Lemma 5.1. Let { V} be any process on ( - ~ ,  o0) satisfying the condition 

P ( V ( t + s ) < - I  forsomes>~O[ V(O), . . . ,  V(t))>-q(V(t)) ,  (5.1) 

for some positive nonincreasing function q. Then V ( t ) <~ 1, i.o., or V( t ) ~ ~ ,  a.s. 

Proof. Let FN=US_N{V( t )<~I} ,  and let fit be the o--field generated by 
{ V ( 0 ) , . . . ,  V(t)}. The martingale convergence theorem implies that P(FN[~t)  
I~N, a.s., as t - ~ .  Now P ( F n l ~ ) > - q ( n ) > O  whenever V(t)<-n, which means 
that l p N = l ,  a.s., if V(t)<-n, i.o. However, 1 F ~ l e ,  as N ~ ,  where F =  
{ V(t) ~ 1, i.o.}. It follows that 1 v = 1, a.s., on { V(t) ~< n, i.o.}, i.e. { V(t) ~< n, i.o.} c 
{V(t) ~ 1, i.o.}, a.s., for all positive n. The lemma now follows from the fact that 
{ V(t) ~ cO} = n~=a { V(t) ~ n, 1.o.} . 

Let (X~, X2) be the two-species competition process defined by Eq. (2.1). We 
introduce additional processes Zi, i = 1, 2, to represent the population dynamics 
of species i in the presence of species j but with species j protected from 
interspecific competition. Thus 

Zi(t+ 1) -- F~(Zi(t), Yj(t), ~(t)).  (5.2) 

In addition we assume that Zi(0)= Y/(0)= X~(0). The monotonicity conditions 
on the functions F~ then imply that Y~(t)/> X~(t), for all t, and also that Z~(t)<~ 
X~(t) for all t. These inequalities hold because X; faces interspecific competition 
but Y~ does not, and Zi faces competition from Yj rather than Xj. 

Our proof  of Theorem 2.1 goes as follows. We first consider the special case 
in which the function F~ for one of the species (designated by i) takes the special 
form 

F,(x,, xs, e) = a(xj, e)x,/(1 + bxi), (5.3) 

where the function a(xs, e) is continuous and nonincreasing in xs; and b is a 
constant. In the case that the process Yj has a stationary initial distribution we 
prove that a positive A~ implies that Z~(t) converges in distribution to a positive 
random variable (Lemma 5.2). This result is extended to arbitrary initial distribu- 
tions for Yj by a comparison argument (Lemmas 5.3 and 5.4), based on the fact 
that Yj(t) visits all intervals that are assigned positive measure by the stationary 
distribution. To deal with the general case when (5.3) does not necessarily hold, 
we construct a process ZI ~< Zi such that Z~ has the form (5.3) even if Zi does 
not. We can choose the Z~ process so that its boundary growth rate is positive 
for/t~ > 0. Since Z~ ~< Z~ ~< X~, we can conclude that X~ is stochastically boundedly 
persistent. 
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To begin the proof, we make the assumption that species i satisfies (5.3). This 
restriction is not placed on species j, however. Defining W(t) = 1/a (Yj(t), ~(t)), 
it follows that 1/Zi(t) satisfies the linear iteration 

1/Z~(t + 1) = W(t)[1/Z,(t) + b]. 

It is now easily deduced that 

 [iH10  t]1 Z~(t)=Z,(O W(u)+bZ~(O [I W(v (5.4) 

We use this formula to prove that Zi(t) converges in distribution. 
Recall that by Assumption A2, Yj(t) converges to a unique stationary distribu- 

tion from any initial distribution on (0, ~) .  If the initial distribution of the process 
{ Yj(t)} is this stationary distribution, then the process is stationary and ergodic 
(Breiman 1968, p. 136). We use the notation { Y*(t)} to represent this stationary 
process. It is easy to see that the bivariate Markov process {(Y*(t),  ~(t))} is an 
ergodic stationary process. Breiman (1968), p. 105, shows how it can be extended 
to an ergodic stationary process for negative as well as non-negative t, and we 
shall use this extended process. Defining {W*(t)} to be the corresponding 
stationary version of { W(t)}, we can define the random variable 

w*(-v). (5.5) 
u = 0  v = 0  

Using " ~ "  to signify convergence in distribution, we have our first result. 

Lemma 5.2. I f  the initial distribution of Yj( t ) is stationary, then 

Zi(t)~l/bHo~. (5.6) 

Proof. Note that A ~ = - E l o g  W * ( t ) > 0 ,  and therefore the ergodic theorem 
implies that 

Note also that 

t--1 

l-I W*(u) ~ O, a.s. (5.7) 
u = 0  

t--1 t - - I  d t--1 u 

I-I w*(v )= Y~ I-I w*( -v ) .  (5.8) 
u = O v = u  u = 0  v = 0  

The ergodic theorem implies 

(I W*(-v)  < e - ~ y ,  (5.9) 
V = 0  

for u sufficiently large, a.s. By comparison to a geometric series, it follows that 
the RHS of (5.8) converges a.s. to a finite random variable, which we have called 
Ho~. Hence the LHS of (5.8) converges in distribution to Ho~. The lemma now 
follows from this result, (5.7) and the formula (5.4). 

The next three lemmas extend Lemma 5.2 to arbitrary initial distributions for 
{ Yj(t)} by comparing { Y~(t)} and { Y*(t)}. To establish the basis for comparison 
we can assume that the processes {Yj(t)} and {Y~(t)} are defined on the same 
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probability space and are governed by the same process { ~(t)} but differ in their 
initial values and initial distributions. We can then prove the following. 

Lemma 5.3. For all positive initial distributions of {Yj(t)} the times 

~-- =inf{t [ Yj(t) ~< Y*(0)} 

z+ =inf{t [ Yj(t) ~> Y*(0)} 

are finite stopping times for the bivariate Markov process { Yj(t), Y*(t)}. 

Proof It is not difficult to see that z-  and ~'+ are stopping times. To show that 
they are finite we first show that 

P{Yj(t)<~y, forsome t~>0} = 1 (5.10) 

def 
for any y > y* = ess inf Y*(0). In the case where y* is an atom of the probability 
distribution/X of Y*(0), we demonstrate (5.10) also for y - -y* .  To prove these, 
we apply Lemma 5.1 to V= YJy. Defining D(y, t)= {Yj(s) ~<y, for some s ~  > t}, 
we let 

q(Yj(t))=P{D(y,  t)l Yj(t), Yj ( t -  1) . . . .  , Yj(0)}. (5.11) 

Because Y~ is a homogeneous Markov process, (5.11) is independent of t and 
Yj ( t -  1 ) , . . . ,  Yj(0). Monotonicity of Fj implies that q is nonincreasing. We know 
that P(Yj(t)  ~ o0)= 0 because Yj(t) converges in distribution to a finite random 
variable. By Lemma 5.1, to demonstrate (5.10) we must simply show that q is 
positive. 

Let y > y*, then tz(0, y) > 0, and weak convergence of the distribution of  Yj(t) 
to/X, implies that 

liminf P(Yj(t)  < y)/>/X(0, y) > 0, (5.12) 

(BiIlingsley 1968). Since this applies for arbitrary initial distributions on (0, oo), 
it follows that q is positive for all y>y*,  and so (5.10) is proved for such y. 

To demonstrate (5.10) in the case where y =y* ,  and y* is an atom of/x, let 
f (y)  = P(Yj(t) = Y*I Yj(t - 1) = y). Stationarity of/X implies 

/x{y*} =f(y*)/x{y*} + f fd/x. (5.13) 
J~ y*,~) 

By Assumption A1, y* is not absorbing, and so f (y*)< 1. This implies that 
5(y* o~)fd/x > 0. Defining A = {y If(Y) > 6, y > y*}, we see/X (A) > 0, for some ~ > 0. 
Monotonicity of Fj implies that A contains an open interval of the form (y*, y') 
with positive p~-measure. Applying (5.12) with y =y ' ,  we see that P(Yj(t)< 
y'] Yj(0))> 0, for some t, for all positive Y~(0). Thus, it follows that P(Yj(t)<~ 
Y*I Yj(0))> 0, for some t, for all positive Yj(0), i.e. q is positive for this y =y*.  
Thus Eq. (5.10) holds for such y also. 

These results together imply (5.10) for a set of y values having/x-measure 1. 
Hence we have proved that 

P ( r -  < c~[ Y*(0)) = 1, a.s., 

which means that P(z-  < 0o) = 1. The proof  for r + follows by applying the results 
above to 1/Yj(t).  
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The stopping times ~-+ and ~'- are used to construct processes that bound Y~. 
To use the lemma we note that any stopping time v for { Yj(t), Y*(t)} allows us 
to define a new process Y* by the relationships 

Y*~(t+ 1) = Fj(Y*(t) ,  ~(t+ v)), (5.14) 

and Y*(0)=  Y*(0). Since ~(t)} is an i.i.d, process, the strong Markov property 
implies that the bivariate Markov processes {(Y*(t),~(t+v))} and 
{(Y*(t),  ~(t))} are identically distributed. Since by definition Yj(r-)<~ Y*-(0), 
and Fj is monotonic, it is easy to see that Yj(t+ ~--)~< Y*-(t) for all nonnegative 
t. We can use these results to prove a law of large numbers: 

Lemma 5.4. 

1 l - - 1  a . S .  

- ~ l o g W ( u )  - > - - A ~ < O .  
t u=O 

Proof Defining W*-(t)= 1/a(Y*-(t), ~ ( t +  ~--)) we see that 

w ( t  + 7-) ~ w*~-(t) (5.15) 

because a(y, ~) is nonincreasing in y and Yj(t+ z-)<~ Y*(t). The strong law of 
large numbers for log W*-(t) implies that 

1 f--1 

l imsuP t  ~ log W(u+'r-)<<--Ai, a.s. (5.16) 
u = 0  

and hence that 

1 t--1 

l imsuP t  Y~ log W(u)<~-Ai, a.s. (5.17) 
u = 0  

Similarly, consideration of ~'+ implies 

t - 1  

liminf 1 ~ log W(u) >l-Ai, a.s. (5.18) 
t u = 0  

The lemma follows from (5.17) and (5.18). 
We are now in a position to prove that Zj(t) converges in distribution for 

general initial distributions of Y~(t). 

Lemma 5.5. If Yi(0) > 0, then 

Proof Define 

Zj(t)~l/bH~. 

d d 

H(c, d) = Y~ I] W(v). (5.19) 
u = c  v = u  

and let H*-(c, d) be the corresponding random variable involving W*-(t). It was 
shown in the proof  of Lemma 5.2 that when the initial distribution is stationary, 
H(O,d)~H~, as d~oo .  This applies to H*-(O,d) because any Y* has the 
stationary initial distribution. 
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NOW H(z- ,  t+ z-) <~ H*-(O, t), and since H* (c, d) is independent of  ~-, we 
have 

E[f{H('r-,  t + T-)}[ z-]  ~< Ef{H*~-(O, t)}, 

for every nondecreasing bounded continuous function f Because z-  takes values 
in a countable set we can now conclude that 

limsup E[f(H(,r-,  t + z - ) ) [ z - ]  ~< Ef(H~), a.s. (5.20) 

This inequality can be improved upon by noting that 

H ( O , t + z - ) - H ( z - , t + z - ) =  W(v) H(0,  z - -  1). (5.21) 
x o = ~ -  

Lemma 5.4 now implies that H(0,  t+~- ) - H ( z - ,  t+z- )~O,  a.s., as t~co .  The 
properties o f f  mean that it is uniformly continuous. Hence (5.20) and (5.21) 
imply that 

limsup E[f(H(O, t+~'-)lr-]<~Ef(Hoo), a.s., (5.22) 

from which we conclude 

limsup E[f(H(O, t ) ) [ r - ]  ~< Ef(H~), a.s. (5.23) 

Similarly 

liminf E[f(H(O, t ) ) lz  +]/> Ef(H~), a.s. (5.24) 

The fact that f is bounded means that Fatou's lemma applies to both (5.23) and 
(5.24). Thus we can integrate over the distributions of the ~-'s to conclude that 

lira Ef( H ( O, t ) ) = Ef( H~). (5.25) 

Because the class of continuous bounded nondecreasing functions is a conver- 
gence determining class, it follows that H(0,  t)~Ho~. Applying this result and 
Lemma 5.4 to expression (5.4) for Z~(t), completes the proof. 

The fact that X~(t)>1 Z~(t) now allows us to conclude stochastically bounded 
persistence for Xg(t) when F~ takes the form (5.3), that is: 

Lemma 5.6. I f  F~ takes the hyperbolic form (5.3) then 

liminf P(X~(t) > x) >~ P(1/bH~> x) 

for all positive x. 

To prove stochastically bounded persistence for the general case we note that 
Condition A3 allows the monotone convergence theorem to be applied to di(ri) 
and so we can conclude that there is a positive r such that 

di(r)/> �89 > 0, (5.26) 

for some positive r. Given such an r, define 

a(y, ~ ) =  inf f (x ,  y, ~) (5.27) 
O ~ x ~ r  
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and let F'i be defined by the RHS of (5.3) with b = 1/r. The process Z'~ is defined 
in terms of F'i identically to the definition of Zi in terms of F~. These two processes 
have an inequality between them: 

Lemma 5.7. Zl( t )  <~ Zi(t) for all t. 

Proof. First note that for 0 <~ z <~ r, F'i (z, y, 3)  ~< F~ (z, y, 3 ) / (  1 + bz); while for z > r, 
we have SUpz F'~(z, y, 3) = ra(y, 3) ~ F/(r, y, 3) <~ Fi(z, y, 3). Thus we conclude 
that F~(z, y, g') ~ Fg(z, y, 3) for all z, y, 3. The proof  is now completed by mathe- 
matical induction noting that Z~(0)--Z~(0) and using the fact that Z l ( t ) ~  Z~(t) 
implies 

Zl ( t+  1) -- F~(Z'~(t), Yj(t), 3(t))  <~ FI(Z~(t), Yj(t), ~( t ) )  

<~ F~(Z~(t), Yj(t), ~( t ) )  = Z,( t+ 1). 

This result yields the following immediate generalization of Lemma 5.6. 

Lemma 5.8. liminf P(Xi (t) > x) >1 P(1/bHoo > x) for all positive x. 

This lemma is merely another way of stating Theorem 2.1. 
To prove Theorem 2.1 for the case in which there is an invariant point at the 

top of the range of the single species process, i.e. when Assumption AI' replaces 
A1, we define x~* = supy,~ F~(y, 0, e). Under AI', the stationary distribution of 
Yj(t) assigns probability 1 or 0 to x*. In the latter case, the point x* can be 
removed from the state space, and Assumption A1 can be used. In the former 
case, we simply define Z~ with Y* substituting for Yj. It is still true that Z'~ ~ X~. 
Lemma 5.2 then applies to Z'~, and the conclusions of Lemma 5.8 follow 
immediately. 

To prove Theorem 3.1 we must show that the boundary growth rates, the Ai, 
can be approximated suitably using the stationary distributions of the Y~,~. We 
begin by showing that the stationary distribution, /~,  of Y~ converges to the 
stationary distribution, ~, of Y~. 

Lemma 5.9. As e ~O, I~=#Iz, and Di(e)-> Ai. 

Proof The monotonicity assumptions on the F~ imply that 

Yj.~,(t) ~ Yj,~(t)-< Y~,0(t), (5.28) 

whenever 0 <  s < e'. It follows that the sequence {/x,, 0 <  s < s'}, where e' is any 
positive number, is a tight sequence. Moreover, the monotonicity of the sequence 
implies that it converges weakly as e-~0 to some probability measure /~*. To 
prove that /z* equals/z, note that the continuity assumptions A4 on the F~ imply 
that 

Ef[Fj(x~, e, ~(t))]--> Ef[F2(x, O, ~(t))] ,  (5.29) 

as e ~ 0, whenever f is a bounded continuous function and {x,} is a positive 
sequence converging to a positive number x. Defining U~ to be the transition 
operator of { Y~,~}, this can be restated as (U ~f ) (x , )~  (Uof)(x).  Lemma A2 of 
Chesson (1982) now implies that 

f u~f d~ ~ f Uof d~ * (5.30) 
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for all bounded continuous f. However, since the Ix, are stationary measures, the 
LHS above equals ~fdix~, which converges to ~fdix*. Thus I Uofdix* =jfdix*,  
proving that Ix* is the unique stationary measure of Yj, o, i.e. Ix* = IX. 

To complete the proof of the lemma we note that the continuity assumptions 
A4 imply that h~(y, ~) is jointly continuous in e and y. Random variables Y* 
having the stationary distribution IX~ can be assumed to form a monotone 
increasing sequence converging everywhere to Yy*,o (Billingsley (1971)). This 
means that h~(Y* ~(t))J, ho(Y*o, ~(t)). Assumption A3' and the monotone 
convergence theorem now imply that 

D,(e) ~ A, (5.31) 

as s$O.  
Since & <O,  assume that z has been chosen so that D~(s)<0. Define the 

process {Z~,~} to approximate {X~} near 0 by Z~.~(O)=Xi(O) and Z i ,~ ( t+ l )=  
Zi,~(t)h~(Yj,~(t), ~( t ) ) .  

Lemma 5.10. As too t ,  Zi.~( t)-~O, a.s. 

Proof. Applying Lemma 5.4 with h~(Yj.~(t), ~g(t)) substituted for W ( t )=  
1/a(Yj(t),  ~(t)), we see that 

1 t--1 a,s .  

- E log h~(Yj.~(t), g'(t)) , Oz(e)<0 .  (5.32) 
t u=o 

Since In Z~,~(t+ 1 ) - l n  Zi,~(t)=ln h~(Yj,~(t), ~(t)) ,  this proves the lemma. 
On the set At = {X~(0), X i ( 1 ) , . . . ,  X~(t - 1) ~< e}, it is easily seen that X / u )  >~ 

Yj, du ) ,  u = 0  . . . .  , t, and X~(u)<~Z~,~(u), u = 0  . . . .  , t + l .  From Lemma 5.10, it 
follows that 

Xi(t)-~O, a.s., on A ~ -  At. (5.33) 
t = 0  

The proof  of the theorem thus requires a proof  that P(A~)--, 1, as X~(0) ~ 0. To 
this end we note the following technical lemma. 

Lemma 5.11. Let the sequence of random variables { Ut} satisfy a law of large numbers 
] t--1 a.s .  

- ~ U~ ~ Ix < 0. (5.34) 
t s=O 

Then 

) P s p ~ U ,>x  ~0,  a s x - ~ .  
s ~ O  

Proof The hypothesis of the lemma implies that there is, a.s., a last time that 
t - - I  t - - I  

~s~o Us i> O. It follows that sup, ~ 0  Us exists as a finite random variable. The 
lemma follows immediately. 

Note that 

[ ] P(A~) = P sup E logf~(X,(u), X~(u), Cg(u)) ~ e - l o g  X,(0) 
u ~ 0  

[ ] ~>e sup E logZ, .~(u+l) /Zi .~(u)~e-logX,(O) . (5.35) 
u ~ O  
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Lemma 5.11 applies to log Zi,~(t+ 1)/Zi,~(t)= U,. We conclude that P(Aoo)~ 1, 
as X~(0)-~ 0. This completes the proof  of Theorem 3.1. 

To prove Theorem 3.2 we make further use of the monotonicity properties 
of the process (X1, X2). In particular, if (X~, X~) is another competition process 
obeying the same iterative equation as (X1, X2) but having possibly different 
initial values, then the following lemma is easily proved. 

Lemma 5.12. I f  X~(O) <~ XI(O) and Xj(O) >! X~(O) then Xi( t) <~ Xl (  t) and Xj( t) >1 
X~(t) for all t. 

Theorem 3.1 implies that for every e ' >  0 there are positive numbers e and p 
such that 

P(Ao~] X~(0)= e, Xj(0)= e ' )=p .  (5.36) 

Using Lemma 5.12 we see that this extends to the statement 

P(A~  I X~(O), Xj(0)) ~>p, (5.37) 

whenever X~(0) <~ e and Xj(0) ~> e'. This shows that whenever the process enters 
the set B = (0, e] x [e', m), there is probability at least p that X~(t) --> 0. A straight- 
forward generalization of Lemma 3.2 of Chesson (1982) now yields the following. 

Lemma 5.13. (Xi(t), Xj(t)) ~ B, i.o., implies Xi(t) --> O, a.s. 

To see when (Xi(t), Xj( t ) )E B i.o., we introduce the process {V(t)} defined 
by the equation 

V( t) = max{Xi( t)/ e, e'/ Xj( t)}. (5.38) 

Note that V(t)~< 1 implies that (X~(t), Xj ( t ) )~  B. The monotonicity properties 
of (X1, X2) imply the following. 

Lemma 5.14. There is a positive nonincreasing function q on (0, ~)  such that 

P(V( t+s )<~l  f o r s o m e s ~ O l V ( O ) , . . . ,  V ( t ) ) ~ q ( V ( t ) ) .  (5.39) 

Proof Define 

q(v) = P(V(t+s)<~ 1 for some s~OlX~(t)  = ev, Xj(t) = e'/v).  

Lemma 5.12 and the Markov property of (X1, X2) immediately imply inequality 
(5.39) and that q is nonincreasing. That q is positive is a simple consequence of 
Assumption A5. 

The particular process { V} defined here satisfies Lemma 5.1. Combining this 
with Lemma 5.13, we can now conclude: 

Lemma 5.15. I f  Ai <O , Aj>0,  then Xi(t)-->0, a.s. and X ~ ( t ) ~  Yj*. . 

Proof From Lemma 5.1 we have a.s. either V(t)<~ 1, i.o. or V( t )~oQ The first 
possibility implies X i ( t ) ~  O, a.s., by Lemma 5.13. The second possibility implies 
that 

X i ( t ) > e n  or X~(t )<e ' /n ,  (5.40) 

for t sufficiently large, for every n. To see that this scenario has probability 0, define 
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and 

w.(t) =7.=, l~:,jr176 

As a consequence  of  (5.40), 

P ( V ( t )  --> 0o) ~ E l iminf  ( U , ( t )  + W,( t ) )  <. l iminf[EUn(t)  + EW,( t )] .  

However ,  the distr ibutions of  the Xi(t)  are a tight sequence because  Xi(t)  <~ Y~(t), 
which converges in distribution. It follows that  EU,(t)--> 0 as n--> co, un i formly  
in t. L e m m a  5.7 implies that  1 /Xj  (t) is tight also, which means  that  also E Wn (t) --> 0 
uni formly  in t. Thus P ( V ( t )  --> co) = 0, and we can conclude that  X~(t) --> O, a.s. 

To show that  Xj( t )  converges in distribution, we note that  Xj( t )  ~< Yj(t). The 
distr ibution of  Yj(t) converges to ~, the unique s ta t ionary distribution. This 
means  that  the distr ibutions of  Xj (t) are tight and any limit v of  these distr ibutions 
obeys the inequali ty v(x, co)<~ t.e(x, co), for  all x. To prove  the reverse inequali ty 
we define Y~,r(t), for  t ~  > T by letting Y~.T(T)= Xj(T) ,  and 

Y~,T(t+ 1) = Fj(Y~,T(t), e, $(t)) .  

Assumpt ion  A2' implies that  the distr ibutions of  Y~,r(t) converge,  as t--> co, to 
the measures /z~ ,  which in turn converge to ~ as e-> 0 ( L e m m a  5.9). 

Since X~(t)-->0, a.s., there is a last t ime ~- for  which X~(~ ' )>e.  I f  T > r ,  
Y~,r( t) < Xj( t). Thus 

P(Y~,T( t )~Xj ( t ) ,  for  all t ~  > T)--> 1 

as T->co. In  part icular ,  for  T sufficiently large, 

P(Y~,r(t) <~ Xj( t) ) >i 1 - 6, 

for  t ~> T, given arbi t rary 6. It  follows that  

P [ x <  Y~,T(t)]<~P[x<Xj(t)]+3, 

for  all x. The limiting distr ibutions of  these r a n d o m  variables  must  satisfy this 
same inequality,  and since 6 is arbitrary,  this means  that  

~ ( x ,  co) < ,,(x, co). 

N o w  letting e ~ 0, and recall ing that  v(x, co) <~ tz(x, co), we see that  v = ~. Hence  
the distr ibutions of  Xj( t )  converge to /z ,  i.e. X j ( t ) ~  Y*. 

To prove  Theorem 3.3 we begin with the following: 

Lemma 5.16. Let W be the e v e n t  {Xl(t)-->0 or X2(t)->0}. I f  Al<O and A 2 < 0  , 
then both of  the events 

{max(Xl ( t ) ,  X2(t))  < 1/n, i.o.} 

and 

{min(Xl( t ) ,  X2(t)) > n, i.o.} 

occur a.s. on W c, for every n > 1. 
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Proof Let V1 and 112 be defined by (5.38) with i =  1 and 2, respectively. As in 
Lemma 5.15 we have that V,(t)~oo and V2(t)~oo, a.s. on W c. This implies that 
a.s. on W ~, for t sufficiently large 

Xl(t) and X2( t )<  1/n, or X,(t) and X2( t )>  n. (5.41) 

On W c, l i m s u p X , ( t ) > 0  and by comparison with Y, as in Lemma 5.15, 
liminf X, (t) < oo, a.s. Thus W c = W ~ c~ {limsup X1 > 0, liminf X1 < co}. Let 

Lk = W ~ ~ {liminf X, > 1/k, limsup X, < k}. 

We have L k c  Lk+l c �9 �9 .W ~ and W ~ = l im  Lk. For k >  n, on Lk, X~> 1/k i.o. By 
(5.41), with k substituted for n, X1 and X2 are both > k  and hence >n ,  i.o., a.s. 
on Lk. Symmetrically, X~ and X2 are both <l/n, i.o., a,s. on Lk. Letting k ~ o o  
proves the lemma. 

To complete the proof  of  Theorem 3.3, we now use A6 to show that P(  W ~) = 0. 
Let X = (X1, X2) and define the events 

A, = { X ( t -  1) �9 s , ,  x (  t) �9 s~} 

and 

B, = { X ( t -  1) �9 S~, X ( t )  �9 $2}. 

Lemma 5.16, plus (5.41) show that W c c  {A, i.o.}, a.s. By the extended Borel- 
Cantelli Lemma,  

{e,  i.o.} = { ft=x P[A,+ilX(t),X(t-1),...,X(O)]=oo},a.s. 

By the Markov property, 

P[At+aIX(t),..., X(O)] = P[X(t+ l) �9 S3[X(t)]l{x(,)es,} 
~P[X(t + 1) �9 S2[X( t)]llx(oes,} 

= ~P[B,+, IX(t) , . . . ,  X(O)]. 

Hence 

{A, i.o.}c {,~l P[Bt+l[X(t),...,X(O)]=~176 = {B, i.o.}, 

which means that WCc {B, i.o.}, a.s. Choosing n appropriately in (5.41) shows 
that W c c { B  t finitely often}, a.s., and hence that P(  W e) = 0. This completes the 
proof  of  Theorem 3.3. 

To show that the competit ion model in Sect. 4 satisfies the necessary assump- 
tions of Theorem 3.2 we must show that Assumption A5 is implied by Assumptions 
(4.7), (4.8) and (4.9). 

Note first of all that if (~i, ~fj) �9 A and xi, xj are confined to a bounded domain 
(xi, xj <~ K <oo), then we can conclude, using the continuity and monotonicity 
of  G, and equality of  Ci and Cj, that 

G ( ~ .  C,) 
< p, (5.42) 

o(~j, G) 
where p is a constant less than 1. 
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If (g'~(t), ~ ( t ) )  is fixed at (e l ,  eL), then the single-species process Yj(t) must 
converge to a finite nonrandom value y'<~y*. If instead we have simply 
(~(t) ,  ~j(t))cA, then we clearly have limsup Yj(t)<-y '. Now Xj(t) ~ < Yj(t) and 
so it follows that Xj(t) is bounded less than infinity. Since the LHS of (5.42) 
cannot be more than 1 for ( ~ ( t ) ,  g'j (t)) e A, we can conclude that X~(t) is bounded 
less than oe also. The boundedness of Xj(r implies that 

G( ~j(u), C:(u)) < p-,/2 (5.43) 
u=0 

for t sufficiently large, because the RHS converges to infinity. Combining this 
with inequality (5.42) we conclude 

G(g'~(u), C~(u))<p '/2 (5.44) 
u = O  

for t sufficiently large. It follows that Xi(t)-->O, as t-~oe. As a consequence of 
this, continuity of G and Assumption (4.7), there is an e' such that 

G(~j(u), c(xj, ~j(u), Xg(u), g~,(u)) > 1 (5.45) 

whenever xj < 2 e '  and u is sufficiently large. It follows that (X~(t), Xj(t)) event- 
ually enters the set (0, e] x [e', co). Hence Assumption A5 is satisfied. 

Acknowledgements. We are grateful for several helpful comments of anonymous reviewers. P. Chesson 
was supported in part by NSF grant BSR-8615028, and S. Ellner was supported in part by a Sir 
Charles Clore postdoctoral fellowship at the Weizmann Institute of Science. 

References 

Abrams, P.: Variability in resource consumption rates and the coexistence of competing species. 
Theor. Popul. BioE 25, 106-124 (1984) 

Billingsley, P.: Convergence of probability measures. New York: Wiley 1968 
Billingsley, P.: Weak convergence of measures: applications in probability. CBMS-NSF Regional 

Conference Series in Applied Mathematics 5. Society for Industrial and Applied Mathematics, 
Philadelphia, Pennsylvania (1971) 

Breiman, L.: Probability. Menlo Park: Addison-Wesley 1968 
Chesson, P. L.: Predator-prey theory and variability. Annu. Rev. Ecol. Syst. 9, 323-347 (1978) 
Chesson, P. L.: The stabilizing effect of a random environment. J. Math. Biol. 15, 1-36 (1982) 
Chesson, P. L.: Coexistence of competitors in a stochastic environment: the storage effect. In: 

Freedman, H. I., Strobeck, C.: (eds.) Population biology (Lect. Notes Biomath., vol. 52, pp. 
188-198) Berlin Heidelberg New York Tokyo: Springer 1983 

Chesson, P. L.: The storage effect in stochastic population models. In: Levin, S. A., Hallam, T. G.: 
(eds.) Mathematical ecology: Trieste Proceedings (Lect. Notes Biomath., vol. 54, pp. 76-89) 
Berlin Heidelberg New York Tokyo: Springer 1984 

Chesson, P. L.: Environmental variation and the coexistence species. In: Case, T., Diamond, J.: (eds.) 
Community Ecology, pp. 240-256. New York: Harper and Row 1986 

Chesson, P. L.: Interactions between environment and competition: how fluctuations mediate 
coexistence and competitive exclusion. In: Hastings, A.: (ed.) Community ecology (Lect. Notes 
Biomath., vol. 77) Berlin Heidelberg New York Tokyo: Springer: 1988 

Connell, J. H., Sousa, W. P.: On the evidence needed to judge ecological stability or persistence. 
Am. Nat. 121, 789-824 (1983) 



138 P.L. Chesson and S. Ellner 

Ellner, S. P.: Asymptotic behavior of some stochastic difference equation population models. J. Math. 
Biol. 19, 169-200 (1984) 

Ellner, S.: ESS germination strategies in randomly varying environments. I. Logistic-type models. 
Theor. Popul. Biol. 28, 50-79 (1985) 

Ellner, S.: ESS germination strategies in randomly varying environments. II. Reciprocal-yield laws. 
Theor. Popul. Biol. 28, 80-116 (1985) 

Ellner, S.: Alternate plant life history strategies and coexistence in randomly varying environments. 
Vegetatio 69, 199-208 (1987) 

Grubb, P. J.: The maintenance of species richness in plant communities: the regeneration niche. Biol. 
Rev. 52, 107-145 (1977) 

May, R. M.: On the theory of niche overlap. Theor. Popul. Biol. 5, 297-332 (1974) 
May, R. M. (ed.): Theoretical ecology: principles and .applications, 2nd edn. Boston: Blackwell 1981 
Murdoch, W. W,, Cbesson, J., Chesson, P. L.: Biological control in theory and practice. Am. Nat. 

125, 344-366 (1985) 
Norman, F.: An ergodic theorem for evolution in a random environment. J. Appl. Probab. 12, 661-672 

(1976) 
Prout, T.: The delayed effect on fertility of preadult competition: two-species population dynamics. 

Am. Nat. 127, 809-818 (1986) 
Prout, T., McChesney, F.: Competition among immatures affects their adult fertility: population 

dynamics. Am. Nat. 126, 521-558 (1985) 
Sale, P. F.: Maintenance of high diversity in coral reef fish communities. Am. Nat. 111,337-359 (1977) 
Schaffer, W., Ellner, S., Kot, M.: The effects of noise~on some dynamical models in ecology. J. Math. 

Biol. 24, 479-524 (1986) 
Schaffer, W. M., Kot, M.: Chaos in ecological systems: the coals that Newcastle forgot. Trends Ecol. 

Evol. 1, 58-63 (1986) 
Shmida, A., Ellner, S.: Coexistence of plant species with similar niches. Vegetatio 58, 29-55 (1985) 
Slatkin, M.: The dynamics of a population in a Markovian environment. Ecology 59, 249-256 (1978) 
Strong, D. R.: Density vagueness: abiding the variance in the dynamics of real populations. In: 

Diamond, J., Case, T. (eds.) Community ecology, pp. 257-268. New York: Harper and Row 1986 
Tanner, J. T.: The stability and intrinsic growth rates of prey and predator populations. Ecology 56, 

855-867 (1975) 
Turelli, M.: Random environments and stochastic calculus. Theor. Popul. Biol. 13, 140-178 (1977) 
Turelli, M.: Does environmental variability limit niche overlap? Proc. Natl. Acad. Sci. USA 75, 

5085-5089 (1978) 
Turelli, M.: Niche overlap and invasion of competitors in random environments. II. The effects of 

demographic stochasticity. In: Jager et al.: (eds.) Biological growth and spread, mathematical 
theories and applications, pp. 119-129 (1980) 

Turelli, M.: Niche overlap and invasion of competitors in random environments I. Models without 
demographic stochasticity. Theor. PopuL Biol. 20, 1-56 (1981) 

Turelli, M., Gillespie, J. H.: Conditions for the existence of stationary densities for some two 
dimensional diffusion processes with applications in population biology. Theor. Popul. Biol. 17, 
167-189 (1980) 

Underwood, A. J., Denley, E. L.: Paradigms, explanations, and generalizations in models for the 
structure of intertidal communities on rocky shores. In: Strong, D. R. Jr., Simberloff, D., Abele, 
L. G., Thistle, A. B.: (eds.) Ecological communities: conceptial issues and the evidence, pp. 
151-180. Princeton: Princeton University Press 1984 

Received September 23, 1987/Revised September 9, 1988 


