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Abstract. The classical Lotka-Volterra equations for two competing species 
have constant coefficients. In this paper these equations are studied under the 
assumption that the coefficients are periodic functions of a common period. As 
a generalization of the existence theory for equilibria in the constant coefficient 
case, it is shown that there exists a branch of positive periodic solutions which 
connects (i.e. bifurcates from) the two nontrivial periodic solutions lying on the 
coordinate axes. This branch exists for a finite interval or "spectrum" of 
bifurcation parameter values (the bifurcation parameter being the average of  
the net inherent growth rate of one species). The stability of these periodic 
solutions is studied and is related to the theory of competitive exclusion. A 
specific example of independent ecological interest is examined by means of 
which it is shown under what circumstances two species, which could not coexist 
in a constant environment, can coexist in a limit cycle fashion when subjected to 
suitable periodic harvesting or removal rates. 

Key words: Compet i t ion-Per iodic  environment-Compet i t ive  exclus ion-  
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1. Introduction 

The vast majority of mathematical models which have been used in theoretical 
ecology to study the dynamics of population growth are autonomous, which is to 
say that they attempt to describe the growth and interaction of species with constant 
vital parameters living in a constant environment. This is true, for example, of the 
classical predator-prey and competition models of Volterra and Lotka. While it 
might be the case that this hypothesis of constant environmental and vital 
parameters is justifiable under some circumstances, a more realistic model would 
certainly allow for the temporal variation of these parameters. It is undoubtedly 
true that such temporal variation is a common and, in many cases, an important 
component in determining the dynamics of the growth and interaction of species. 

Much of the temporal variation in the environment of a species could naturally 
be assumed to be cyclic or periodic due to seasonal (or daily or other periodic) 
effects of food availability, weather conditions, temperature, mating habits, contact 

* Research supported by National Science Foundation Grant No. MCS-7901307 

0303 - 6812/80/0010/0385/$03.20 



386 J . M .  Cush ing  

with predators and other resource or physical environmental quantities. In 
previous papers the author has mathematically investigated the equations obtained 
from the most commonly used differential equations in mathematical ecology when 
the coefficients are allowed to be periodic functions of time (see Cushing (1976, 
1977a, 1977b)). It is shown in these papers that under certain conditions there exist 
positive periodic solutions of these periodic differential equations. These periodic 
solutions play the role played by positive equilibria in the autonomous theory and 
in fact they reduce to such equilibria when the coefficients become constant. 
Stability of the periodic solutions was also investigated. These results were obtained 
for n-species interactions by Cushing (1976) and the special cases of one species 
growth models and two species predator-prey interactions were investigated in 
more detail by Cushing (1977a, 1977b). 

The purpose of this paper is to investigate the case of two-species competition in 
a periodic environment. In Section 2 we will describe results for two-species 
competition which extend those obtainable from those for the more general case of 
n-species interactions studied by Cushing (1976). It will be shown that for averaged 
(over one season or period) inherent growth rates lying in appropriate intervals the 
periodic version of the classical Lotka-Volterra competition model will possess a 
positive periodic solution. The stability of this solution will be discussed. These 
results will be briefly related to the principle of competitive exclusion. Formal 
proofs appear in Section 4. 

In Section 3 a specific example is studied in detail. Besides illustrating the 
theorems of Section 2 this example is meant to demonstrate an interesting biological 
phenomenon: namely, that two competing species, one of which in a constant 
environment would be doomed to extinction in keeping with the principle of 
competitive exclusion, can under certain circumstances coexist in a periodic 
environment in a limit cycle sense. This theoretical point is made and numerically 
studied by computer simulation by Koch (1974). Our results in Section 3 establish 
analytically and rigorously the existence and stability of such limit cycles and 
describe precisely the conditions under which they exist. 

2. The Periodic Lotka-Volterra Model 

The classical two-species competition model of Lotka-Volterra can be written 

N '  1 = N l ( b l  - a l l N 1  - a 1 2 N 2 ) ,  

m'  2 = N2(b2 - a21N1 - a 2 2 N 2 ) ,  ( 1 )  

where the bl and a u are positive constants. There are three nontrivial equilibria 
E = (Nt, N2) given by 

( ( b l a 2 2  - b2al2)/A,  ( b 2 a l l  - bla21)/A),  (h i /a t  l, 0), (0, bz/a22) 

A : = a l i a 2 2  - -  a 1 2 a 2 1  

which we will denote by El, E2 and E3, respectively. Only nonnegative equilibria are 
of interest, of course. Treating these equilibria as functions of the parameter b2 (the 
inherent net growth rate of species N2), we see that equilibrium E1 is positive if and 
only if 
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bla2z/al l  < b2 < bla22/ai2 w h e n  A > 0, 

blazz/ai2 < b2 < blazi/aa1 w h e n  A < 0 (2) 

and that as b: ranges over this interval the equilibrium E1 passes from E2 to E3 (or 
vice versa). Thus E1 is a "branch" of equilibria connecting the equilibrium E2 with 
the "branch" E3. Such intersecting branches are referred to as "bifurcations" and it 
is this fundamental observation that motivates the mathematical approach taken 
by Cushing (1976, 1977a, 1977b) for the case of nonconstant, periodic coefficients 
bl, aij. 

We also note that a positive equilibrium Ex is stable if and only if A > 0. That is 
to say, Ea is stable if and only if the "direction" of bifurcation of EI from E2 at the 
critical value #1 = bjazl/ali is to the right (b2 > #a), in which case there is an 
exchange of stability from E1 to E2. In the opposite case A < 0 the bifurcation of Ea 
from E2 at #1 is to the left (bz < #t) and E1 is unstable. The equilibrium E2 (or E3) is 
stable if and only if 

b2 < a21b1/a11 ( o r  b2 > a22h1/at2) (3) 

respectively. They are otherwise unstable. All of these facts are illustrated in the 
accompanying Bifurcation Diagram. 

The main result of this section is that a similar set of bifurcating branches of 
solutions exists when bl = hi(t), azj = a~j(t) are p-periodic functions of time t. The 
branches consist now of p-periodic solutions and the "bifurcation parameter" b2 is 
replaced by its average 

#=[b2]=p- l f lb2( t )d t .  

IE-E21 IE-E21 

E3 # / f 
/ f 

E1 

] b z 
~1 ~2 

A>O 

_1--<.. 
\ 

\ 
\ 

E 2 ~ 
I I . . . . .  b2 
~2 Ix1 

Z X < O  

Bifurcation diagram 

The distance of a positive equilibrium of  (1) from E2 is plotted against the net growth rate b2, all other 
parameters being held fixed. The solid lines denote stable equilibria while the dotted lines denote 
unstable equilibria. When A > 0 the bifurcation of E1 from E2 at b2 = / ~  is to the right and shows an 
exchange of stability from E2 to El. If A < 0 this bifurcation at bz = pl is to the left and the bifurcating 
branch El is unstable. Theorems 1 - 3 show that these bifurcation diagrams are qualitatively unchanged 
when the coefficients in (1) are periodic functions of  time. In this case [E - Ez] is replaced by ]N - N~ 
and b2 is replaced by [b2] while Pi = [a21N ~ and A is replaced by Ap 
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This bifurcating branch is stable if and only if bifurcation is to the right in which 
case there is an exchange of stability. 

Let P(p) denote the Banach space of continuous p-periodic functions under the 
supremum norm ['[o~. Let B(p) :=  P(p) x P(p) and let R denote the reals. The 
positive reals will be denoted by R + -- (0, + oe). By a continuum we mean a set 
which cannot be written as the union of two disjoint, nonempty open sets. By a 
positive continuum C + c B ( p ) x  R we mean a continuum such that if 
(N1, N2, ]/) E C + then the p-periodic functions Ni(t) are positive for all t. Let the 
"spectrum" be the set M:  = {# e R: (N1, N2, #) e C + for some Ni ~ P(p)}. 

The periodic logistic equations 

N' = N(bi - auN), i = 1,2 (4) 

have unique positive (stable) p-periodic solutions N o ~P(p) for bl, ausP(p)  
provided [bi] > 0 and aii(t) > 0 for 0 ~< t ~< p. This can be seen by direct integration 
(or see Cushing (1977b)). 

The existence of a bifurcating branch of positive solutions of (1) is contained in 
the following theorem. 

Theorem 1. Suppose that bl(t), ai~(t), p2(t)E P(p) are given functions of  a common 
period p which satisfy [P2] = 0, [bl]  > 0 and aij(t) > O for all t. Then there exists a 
positive continuum C + c B(p) x R with the following properties: 

(a) (N1, N2, #) ~ C + implies that N1 and N2 are positive solutions of  the periodic 
competition equations (1) with b2(t) = # + p2(t); 

(b) C + is bounded and its closure contains (N ~ O, #1) and (0, N ~ #2) where 

# l :  = [a21N0] > 0 

and N o solve the periodic logistics (4) (with b2 = #2 + p2(t) when i = 2)for some real 
#2 > O. Thus 

(c) the spectrum M is a finite interval in R + whose closure contains I~1 and #2. 

The positive continuum of periodic solutions whose existence is asserted by this 
theorem has the basic properties of the equilibrium E1 when (1) is autonomous. In 
fact, if all bi and air are constants then N o --bi/ail; 1~1 = azlbl/ala and 
~2 = a22bl/aj2 are the endpoints of the intervals in (2); # -- b2 ; and the continuum 
C + reduces to the equilibrium El. 

It is of course important in the theory of competing species to determine the 
stability of the equilibria Ei. Likewise the stability of the positive solutions on the 
continuum C + as well as the periodic solutions (N ~ 0) and (0, N ~ is of interest in 
the case of periodic coefficients in (1). (It is easy to see that the trivial solutions (0, 0) 
is locally unstable when [b~] > 0 and/or [b2] > 0.) The stability of a periodic 
solution of a periodic system of differential equations is more difficult to ascertain 
than is the stability of an equilibrium of an autonomous system. We have not 
obtained necessary and sufficient conditions for the stability of all of the above 
positive periodic solutions of (1) in the periodic case. We expect, however, that in 
keeping with the principle of competitive exclusion the solutions (N ~ 0) and/or 
(0, N ~ should be stable under conditions of "strong" interspecific competition (i.e. 
alj for i -r j are "large" compared to au) but unstable under the opposite conditions 
of"s t rong"  intraspecific competition. In the latter case the positive solutions on C + 
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should be stable so as to indicate coexistence. The periodicity of the coefficients aij 
in time, however, complicate this expectation and make it unclear what is meant by 
"strong" competition. 

With regard to the stability of the periodic solutions (N0, 0) and (0, N o ) of (1) we 
have Theorem 2. 

Theorem 2. Suppose that the bl and aij satisfy the conditions in Theorem 1. The 
periodic solution (N ~ O) is (locally uniformly asymptotically) stable as a solution of 
the periodic system (1) if and only i f #  = [b2] < #l = [a21N~ and is unstable if 

# > #1. (5) 

Likewise, the periodic solution (0, N ~ of the periodic system (1) is stable if and 
only if [bl] < [alzN ~ and is unstable if 

[bl] > [a12N~ (6) 

These stability results correspond exactly to those (3) for the equilibria E2 and 
E3 in the case of constant coefficients. 

The stability of the periodic solutions (N ~ 0) and (0, N ~ deals of course with the 
question of the extinction of one of the species and the survival of the other. Thus, a 
necessary condition for the coexistence of the two species would seem to be, first of 
all, the existence of a positive periodic solution of (1) and secondly the inequalities 
(5) and (6). These conditions are in fact sufficient in the constant coefficient case as 
can be seen from the first case in (2) to which they reduce when the coefficients are 
constant. For the periodic case, however, the sufficiency of these conditions is not 
obvious. 

For bifurcation phenomena such as is being considered here in Theorem 1 the 
rule of thumb concerning stability is the so-called principle of the "exchange of 
stability". This principle asserts that if bifurcation occurs as a parameter is 
increased through a critical value, if this bifurcation is "to the right" and if the 
"trivial solution" off which the bifurcation occurs passes from stable to unstable as 
this parameter passes through the critical value, then locally near the bifurcation 
point the bifurcating branch consists of stable solutions (e.g. see Sattinger (1973)). 
We saw this principle at work in the case of constant coefficients (see the 
Bifurcation Diagram above). Theorem 3 below establishes, at least locally near the 
critical value Pl, this exchange of stability for the bifurcating branch of periodic 
solutions in Theorem 1. 

Let 

yz(t)'= exp (f~0 (#1 + p 2 ( s ) -  a21(s)N~ 

and let yl(t) be the unique p-periodic solution of the linear equation 

Yl 0"1 2al 1 NO)y1 o ' = - -  _ N l a l 2 Y  2 .  

Thus 
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where the Green's function is given by 

J" Y(t)(1 - Y(p))-1/Y(s), 0 ~< s ~< t <~ p, 
G(t, s) 

~Y(t +p)(1 - Y(p))- l /Y(s) ,  0 <~ t < s <~p, 

(; ) Y(t) = exp (rl(s) - 2al l(s)N~ ds . 
o 

Note thatya(t) > 0 for all t. Also since Jr1 - 2a l tN  ~ = - [ a l tN  0] < 0 we see 
that the Green's function G(t,s) > 0 and hence y~(t) < 0 for all t. 

Finally define the quantity 

Ap ;= [azl(t)y1(t) + a22(t)y2(t)]. 

Theorem 3. Suppose that bi and a~j satisfy the conditions in Theorem 1. In a sufficiently 
small neighborhood of  (N ~ 0, #1) the positive continuum (N1, N2, #) described in 
Theorem 1 has the form 

Nl(t)  = N~ + eyl(t) + zl(t,e), N2(t) = 5y2(t) + Zz(t, 5), 

# = # 1 +  eAp + fl(5) 

for small ~ > 0 where zi(', e) ~ P(p) and Izil | fl(~) are 0(52) near ~ = O. Moreover the 
Floquet exponents ei of  the system (1) linearized at Ni(t) have the form 

e1(5) = - [a l lN  ~ + 7~(e), ez(e) = - cA, + y2(5) 

where 71 and72 are respectively 0(5) and O(e 2) near e = O. Thus, the bifurcation at #1 is 
to the right if  A p > O, in which case the positive solutions on this branch are stable, and 
to the left i f  dp < 0 in which case these solutions are unstable. Also Na(t) <<. N~ for 
all t and small 5. 

From Theorem 3 we see that Ap is the quantity which measures the "strength" of 
interspecific competition and the possibility of (limit cycle) coexistence. It is easy to 
show that if all coefficients in (1) are constants then Ap = A. 

Whether the solutions along the entire branch given in Theorem 1 are stable 
when Ap > 0 is an open question. Our final theorem gives sufficient, but not 
necessary conditions for which this is true. 

Theorem 4. Suppose that bl ~ P(p) and, in addition to the conditions in Theorem 1, the 
coefficients a~j ~ P(p) satisfy 

aax(t) > a21(t), azz(t) > a12(t) (7) 

for all t. Then any positive p-periodic solution of  (1) is (locally uniformly 
asymptotically) stable. 

These results and observations support the expectation that two competing 
species can coexist if and only if interspecific competition is "weaker" than 
intraspecific competition and hence support the principle of competitive exclusion 
in a periodic or seasonally fluctuating environment. The stability results above are, 
however, incomplete. Those in Theorem 3 are only local while the strong conditions 
in (7) require that intraspecific competition be pointwise for all time greater than 
interspecific competition and is not necessary for stability even in the case of 
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constant coefficients. Further study of this question of coexistence in a periodic 
environment could prove interesting. 

As a simple illustration of the above consider the case when the competition 
coefficients a~ are positive constants while the inherent net growth rates b~(t) are 
p-periodic functions. If the logistic equation (4) is divided by N and integrated over 
one period, one finds that [N ~ = [bi]/aii and # 1  = a21[b1]/a11. Moreover, 
division of the equations in (1) by N~ and N2 respectively followed by an integration 
over one period shows that for any positive solution of (1) 

[b~] = [auNi] + [aijNj], 1 ~< i 4: j ~< 2. (8) 

For  constants a~j we find in the limit as we approach (0, N ~ #2) along the continuum 
C § in Theorem 1 that 

[bl]  0 --- a12[N2], #2 -- a22[ N0] 

so that [,12 = a22[b1]/a12. Consequently, the spectrum of those # = [b2] for which 
positive p-periodic solutions exist when the aij are constants contains the interval 
with endpoints #1 = a21[bl]/alx > 0 and /./2, = a22[b1]/ax2 > 0. Compare this 
with (2). 

By Theorem 2 the solution (N ~ 0) (or (0, N~ is stable if and only if 
# = [b2J < a21[bl]/all (or [b2] > a22[bl]/a12). By Theorem 4 the positive so- 
lutions on C § are stable if al 1 > a21 and a22 > a12, a condition stronger than the 
condition A > 0 needed when the bi are also constant. Thus, these results are nearly, 
but not exactly identical with those for (1) with constant coefficients. 

3. Avoiding Competitive Exclusion by Means of Environmental Periodicities 

Although the generalization is not complete, the main thrust of the results in 
Section 2 is that qualitatively, in so far as coexistence versus competitive exclusion is 
concerned, the theory of competition is to a large extent the same in a periodic 
environment as it is in a constant environment. This does not mean, however, that 
interesting and unusual phenomena cannot occur because of environmental 
periodicities. To illustrate this point we will show in this section that it is possible for 
two species to coexist in a periodic environment when in a constant environment 
they could not coexist. 

This possibility, besides serving as an illustrative example of the results of 
Section 2, is of independent ecological interest. It was raised and studied in an 
interesting paper by Koch (1974), who attributes the original idea to Hutchinson 
(1961). The idea is that at low population densities when resources are abundant 
competition between two species is low and consequently both species increase 
(roughly exponentially) as they would in isolation. If one species is the superior 
competitor, then this increase will continue until population densities are such that 
the increased competition causes a decline in the density of the inferior competitor. 
However, should both species at this point in time suffer a significant loss in density 
for some reason (such as seasonal harvesting or a seasonal "kill") so that both 
densities return to approximately the same previously low levels, then the cycle is 
renewed. If this common loss in density is repeated periodically, it seems possible 



392 J.M. Cushing 

that the inferior species will not suffer competitive exclusion, but that the species 
will coexist in a periodically fluctuating (limit cycle) fashion. 

Using differential equations as theoretical models (including the Lotka- 
Volterra system) Koch (1974) shows by means of computer studies that this 
possibility is indeed born out. The results of Section 2 above can be used to prove 
rigorously the existence of the limit cycles observed by Koch and to establish 
conditions under which they are stable. 

The Lotka-Volterra equations for two-species competition are frequently 
written 

N',  = r i N , ( K 1  - N i  - a N 2 ) / K l ,  

N'2 = r2N2(Ke - f lN i  - N e ) / K :  (9) 

where r~ > 0, K~ > 0, a and fl > 0 are constants. Here rz is the inherent, unrestrained 
growth rate of species N~, Ki is the carrying capacity of species Ni in isolation from 
Nj and a, fl are constants which measure the amount of competition between the 
species. We suppose here throughout that 

K1/K2 > max{a, 1/fi}. (10) 

This implies in (9) that the equilibrium (Nb N2) = (K,, 0) is a global attractor (in 
the first quadrant). Thus (10) implies that N2 will go extinct in competition with the 
"superior" species N,. 

Suppose now that each species suffers an additional periodic, per unit rate of 
change in density as modeled by the modified system 

N '  1 = r l N I ( K 1  - N1 - aN2)/K1 - p l ( t ) N 1 ,  

N 2 = r2N2(K2 - f lN i  - N2) /K2 - hp2(t)N2. (11) 

Here 

p l ( t ) , p 2 ( t ) ~ P ( p ) ,  [P23 = 1, h e R  (12) 

and the p-periodic functions Pl and hp2 describe this periodic, per unit rate of 
change of N1 and N :  respectively. We wish to show that (1 l) can, under the right 
circumstances, possess a stable positive p-periodic solution even when (10) holds. 
We are particularly interested in this possibility when pz(t) >~ 0 and h > 0, that is 
when the species suffer a periodic removal or kill rate. 

In the notation of Section 2 

bl = rl - p l ( t ) ,  52 = r2 - hp2(t), au = rl/Ki, 

a12 = ar l /K1 ,  a21 = f lrz/K2. 

Thus in order to apply Theorem 1 it is necessary to assume 

rl > [PI]. (13) 

Theorem 1 then implies that positive p-periodic solutions of (11) exist and bifurcate 
from (N ~ 0, #1) where N o is the positive p-periodic solution of the periodic logistic 
growth equation 

N' i = Nl(rl --pi(t) - r l N 1 / K i )  
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and #a = flr2[N~ > 0. But [N ~ = Kl(r I - [pl])/r I so that 

#1 = flrzKl(q - [Pl])/rlK2 > 0. (14) 

As far as the stability of these p-periodic solutions is concerned we content 
ourselves with an application of Theorem 4 even though (7), as pointed out above, is 
only sufficient and not necessary for stability. The inequalities (7) are equivalent to 

(q/r2)~ < K1/Kz < (rt/r2)/fi. (15) 

Under these conditions we have positive p-periodic solutions for 
# = I-b2] = r2 - h lying in an interval whose closure contains #, as given by (14) 
(and in particular near #2), that is to say for h in an interval whose closure contains 
the critical bifurcation value her : =  ( r 2  - -  #2) or 

hot = r2(1 - fiKa(rl - [pl])/rlK2). (16) 

Since we wish h to be positive we require her > 0, or in other words 

K1/K2 < rl/(rl - -  [Pl])fl- (17) 

An investigation of the required inequalities (10), (13), (15) and (17) leads to the 
following conclusion: suppose that the parameters of  the systems (9) and (11) satisfy 
the inequalities 

~z < Klr2/K2q < lift < K1/K2. (18) 

I f  the p-periodic removal rates pi(t)~ P(p) satisfy (12) and 

rl(1 - K2/flK,) < [Pl] < rl (19) 

then all positive solutions of(9) tend to the equilibrium (Ks, O) as t --+ + oo while the 
system (1 l)possesses a stable, positive p-periodic limit cycle for h lying in an interval 
whose closure contains the positive number hcr given by (16). 

Remarks. (1) The conditions rl > [Pl]  and (17) are the only conditions required for 
the existence assertion in the above statement (including her > 0). The added 
constraint (10) guarantees that species N2 goes extinct in the constant environment 
case modeled by (9). The remaining parameter constraints are sufficient, but not 
known to be necessary for the stability assertion above as it is based on Theorem 4. 

(2) Note that it is required by (18) that the superior species N1 have a larger 
inherent growth rate: r~ > r2. In view of Remark 1 it is not clear that this constraint 
is necessary for the conclusions drawn above. 

(3) Also note that it is required by (18) that ~fi < 1. Again it is not clear that this 
is necessary for the stability of the periodic solution, but Koch (1974) reports that he 
was numerically unable to find limit cycles when ~fl = l, the so-called case of 
"perfect competition" (as was originally considered by Volterra). 

(4) It is interesting to note that only the averages of the periodic per unit removal 
rates appear in the above analysis. Thus, if for example one takes the point of view 
that a removal program for both species is to be instigated in order to save the 
inferior competitor N2 from competitive extinction as based on the ideas above, 
then for the application of the above theory the amplitudes and phases of the 
periodic removal rates pi(t) are irrelevant per se as far as success defined by the 
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existence of a stable limit cycle is concerned. But one must exercise care, however, 
because of the many constraints needed above. The species must be "eligible" in the 
sense that their parameter values rl, Ki and ~,/~ are restricted by (18). Moreover the 
averages of the removal rates over one period must be carefully chosen: I-P1] must 
satisfy (19) and h must be "close to" her. 

(5) It is easy to see that (18) and (19) imply 

0 < hcr< [Pl]. (20) 

In particular [Pl] > 0, which is to say that some removal of the superior species N1 
is required. Furthermore this means that, at least near the occurrence of 
bifurcation, h < [pl] or in other words the superior species must be removed at a 
greater rate than the inferior species. While we have not proved that h < [p~] on the 
entire bifurcating branch of Theorem 1, this would seem to be the expected 
situation as based, if nothing else, on the constant coefficient case and the author 
speculates that this in fact is true in general. If this is indeed true then it is necessary 
for the limit cycle coexistence of these two species that the superior species be 
removed at an average rate greater than that for the inferior species. 

(6) It is allowed in the above considerations and conclusions that both 
p~(t) =- constant. In this case, however, the conclusions are not very interesting. It is 
a trivial observation that if the constant growth rates r~ in (9) are decreased by a 
constant amount then there can possibly result a positive stable equilibrium. 

Also it is not difficult to see that if the general system (1) has a positive periodic 
solution when all the interaction coefficients aij are constants ,  then the competition 
system obtained from (1) by replacing the periodic growth rates bi by their averages 
[bi] results in an autonomous system which possesses a positive equilibrium (equal, 
in fact, to the averages (IN1], IN2])). This can be seen by dividing the equations in 
(1) by N1 and N2 respectively and integrating over one period. 

This observation applies to the system (11) being considered in this section. 
Thus while, as we have shown above, system (11) can have a stable positive periodic 
solution when (9) has no positive equilibrium, it is nonetheless true that system (9) 
will have in this event a stable positive equilibrium if ra and ra are replaced by the 
averages r~ - [Pl] and r2 - h respectively. One might then be tempted to say that it 
is no surprise that the species coexist in the periodic environment since their 
averaged parameter values indicate the existence of a stable equilibrium. This 
would be, however, beside the point and in view of the first sentence above in this 
remark (6) would be a trivial observation anyway. The point being made here (and ! 
believe it is the point made in Koch's paper) is that coexistence is possible in a 
periodic limit cycle sense in a genuinely periodic environment in which species suffer 
a strictly seasonal reduction in numbers or density. Obviously the dynamics of such 
a case would not be adequately described by averaged parameters and a study of 
equilibrium states. Thus, the emphasis in the above analysis is on the case when the 
pi(t) are nonconstant, periodic functions (for example with rather narrowly defined 
support intervals as in the numerical examples below) as opposed to when they are 
simply taken to be constants. 

A numerical study of system (11) was carried out in order to demonstrate not 
only the existence and stability of the periodic solutions described above, but to 
study other features of the solutions of these periodic competition equations. The 
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numerical integrations, carried out by high speed computer, where performed for 
the removal rate functions defined on the unit interval 0 ~< t ~< 1 by 

0 <<. pi(t) = ~sin n ( t -  di)/wi for di <~t <~ dl + wi 
(21) 

to for all other t 

and extended periodically with per iodp = 1. Here the constants di ~> 0 and wi > 0, 
which satisfy 

0 ~< d,. < d~ + wl ~ 1, 

allow variation in the phase and duration of the removal rates. In this case 
[Pi] = 2wi/n. 

Figure 1 illustrates the competitive exclusion of the inferior species N2 for h 
larger than the critical bifurcation value her > 0 and the coexistence of the two 
species when 0 < h < her. The parameter  values for both graphs in Fig. 1 are such 
that in the absence of  the periodic removal of  both species (i.e. for system (9)) 
species N2 would go extinct. Fig. 1 (b) is one of many numerical integrations for 
h < her which resulted in limit cycle coexistence. In all cases observed, the variation 
in species N~ was greater than that of  the inferior species Nz. Fig. l(b) shows a case 
when the densities of  both species have rotrghly the same averages; this was not 
always seen to be the case, however. As is to be expected, for h < her near h ,  the 
species N~ was considerably larger (pointwise for all t) than N2 while as h was 
decreased towards zero the opposite was true. Limit cycles were also observed for 
h < 0, which is to say that the spectral interval contains zero in its interior, but this 
means of course that species N2 is not removed, but added to the population. I f  h 

500  - 

/ , 00  

700  - 

N 1 

I I ; I 

a 0 T I I I 

Fig. 1. Solutions of the competition system (11) are shown for K1 K2 1000, ct =�89 /~- 
dl= wl = �89 Figure a shows the extinction of species N2 for h = 2.0 > her ~ 0.60964 while b shows limit 
cycle coexistence for h = 0.1 < her 
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5 0 0 -  N1 

b 4 0 0  i I I I ' l 

5 0 0 -  N1 

O. L00 I I I I q T 
1 2 3 4 

Fig. 2. Shown here are solutions of  (11) with the same parameter  values K1 = K2 = 1000, ~ = �89 fl - ~ ,  
d2 = wx = w2 = �89 as in Fig. 1. Figure a is for da = 0 while b is for dt = �88 and hence illustrate the effects of  
one-half  cycle and one-quarter  cycle phase shifts in the removal rate function pl(t) respectively 
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b 400 
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I i i T 
3 4 

Fig. 3. These solutions are for the competit ion system (11) with parameter  values K1 = K2 = 1000, ~ = ~, 
fl = ~ ,  d~ = �89 as in Fig. 1. Figure a is for wl = 050  and w2 = 0.49 while Fig. h is for wl = 0.49 and 
w z = 0.50 and show the effects of  a two percent change in the durat ion of  actual removal of  species Nz or  
Nx respectively 
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was decreased sufficiently, then as predicted above the superior species goes extinct, 
but in no case was this observed for h > 0. 

Figure 2 shows the effect of phase shifts in the removal rates. In Fig. 1 both 
species are removed in phase while in Fig. 2 they are removed one-half cycle out of 
phase or one-quarter cycle out of phase in (b) or (a) respectively. The main effect of 
these phase differences was a resulting similar phase shift in the density oscillations. 
Also noticable are changes in amplitude and "shape" in the oscillation of the 
inferior species N2. Fig. 2 is to be compared with Fig. l(b). 

In both Figs. 1 and 2 the species removals were performed for the same duration 
of time (i.e. w~ - w2). Fig. 3 illustrates the effect of changes in relative lengths of the 
duration of actual removal (or what amounts to the same thing here, of changes in 
the relative averages [-pl] and [P2]). It is perhaps no surprise that a shortening of wl 
causes a pointwise increase in the superior species N~ accompanied by a decrease in 
N2 while a shortening of w2 has the opposite effect. These changes are more 
sensitive to changes in Wx than in w2. Fig. 3 is to be compared to Fig. l(b). 

4. Proofs 

Many of the results described in Section 2 are special cases of those proved in an 
earlier paper by the author concerning n-species interactions to which the reader is 
referred (Cushing (1976)). 

Proof  o f  Theorem 1. (a) By direct application of Theorem 1 and the Remark 
following the Corollary in Cushing (1976) we have the existence of an unbounded 
continuum C - - { ( N 1 , N 2 , p ) ~ B ( p ) x  R} such that (N1,N2) solves (1) with 
b2 -- # + P2. This continuum contains (N ~ 0, #1) in its closure and in a neigh- 
borhood of (N ~ 0, #2) consists of positive solutions Ni(t) > 0. Let C + be the 
maximal positive subcontinuum of C whose closure contains (N ~ 0, #1). 

"toe C+ (b) To begin we will argue that any sequence S = {(NI,,, N2,,, #,)~, = i from 
is bounded in B(p) x R. This will show that C § is bounded. 

The assumption 0 < alj(t)~ P(p) implies that alj(t) ~> 6 > 0 for all t and some 
constant 6 > 0. First we show that the sequence of first components N~,, ~ P(p) is 
bounded. Let t. ~ [0,p] be such that Nl,~(t.) = [N~,.[~, N'l,.(t. ) = 0. Then from (1) 
we have 

Ihll~ >~ b~(t.) = a~a(t.)lN~,.[~ + a~2(t.)Nz,.(t.) >~ 6IN~,.I~ 

which shows that [Na,.[o~ is bounded. 
Now let t* and ** t. e [0 ,p ]  be such that 

Nz,.( t  ) = N2,.(t ) = 0, Nz,.(t*) = m. : = rain Nz,.(t), 
[O,p] 

Nz,.(t**) = [N2,.I~. 

From (1) we get the two equations 

#. +pz( t*)  = azx(t .)Na,.(t .)  + a~z(t.)m., 

#. + p2(t**) ** ** ** = azl(t  n )Nl,.(t. ) 4- a22(t. )]N2,.I~. 

From these equations and the fact thatp2(t) and Nl,.(t) are bounded in t and n we 
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conclude that if the sequence S is unbounded then so must all three sequences #., 
IN2,,I~ and m, be unbounded. Thus, extracting a subsequence if necessary, 
m, ~ + ~ and for large enough n we get 

bl( t )  - ax l ( t )Nl , , ( t )  - axz(t)N2, .( t )  <~ bl( t )  - al l ( t )Nl , , ( t )  - 6m,  < 0 

for all t. This implies N'a,,(t ) < 0 for all t which contradicts N I , , e P ( p ) .  
Consequently S cannot be unbounded and hence C + is bounded in B(p)  x R. 

Solutions of (1) are either never zero or identically zero. Since C is unbounded 
while C + c C is bounded it follows that C + must "leave" the positive cone of 
positive solutions at some point other than the bifurcation point (N ~ 0, #~). That  is, 
C + must contain in its closure either (0, 0, ]22) or (0, N ~ #2) ~:B(p) x R for some 
]22 ~ R. The proof  of (b) will be complete if the first case can be ruled out. 

If (N1, Nz) is any positive solution of (1), then division by Ni followed by an 
integration over one period in (1) shows that 

[bi] = [a,N~] + [aljNj], 1 ~< i # j ~< 2. (22) 

Suppose (N~,,, N2,,, #,) e C + converges in B(p) x R to (0, 0, #2) for some #2 e R. 
Then (22) implies 

[bl] = [a l lNl ,n]  + [alzN2,n] --~ 0 as n ~ + oo 

which contradicts the assumption that [-bl] > 0. 
(c) C + is bounded implies that the spectrum M of C + is a finite interval in R 

(which by (b) contains Pl and #2 in its closure). We need only prove that this interval 
lies in R +. 

If (N1, N2,/~) ~ C + , then (22) implies 

# = [azzN2] + [-azlN1] >/0. 

Clearly # = 0 if and only if (N1, N2) = (0, 0). But in (b) above we ruled out 
(0, 0, 0) ~ C + . Thus, # ~ M implies # > 0. 

P r o o f  o f  Theorem 2. If we set xi = Ni - N ~ xj  = Nj  for 1 <~ i # j  ~< 2 in (1) and 
ignore higher order terms, then there results the uncoupled, linear periodic system 

x', = ( -  auU~ + ( -  al jU~ 

x~ = (bj - a j ,N~ 1 <~ i ~ j <~ 2. 

This uncoupled system is easily seen to be (uniformly asymptotically) stable if and 
only if [bj - a j iN ~ < O. 

P r o o f  o f  Theorem 3. That the continuum (N~, N2, #) has a parametrization in terms 
of a small parameter e follows from standard and very general perturbation or 
Liapunov-Schmidt methods. For  example Theorem 1 of Cushing (1979) applies 
straightforwardly to the operator formulation of (1) in the proof of Theorem 1 in 
Cushing (1976). Both N~ and # are infinitely differentiable in 5. Substituting these 
expressions for N~ and/~ into the system (1) and equating coefficients of ~ terms, one 
finds a linear system 

y'~ = (rl - 2a~lU~ - N~ Y'z = (#~ + P2 - a z lN~  
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for the p-periodic coefficients yg(t). The solution of this system yields Yl (t) and y2(t) 
as defined prior to Theorem 3. 

The adjoint system 

Wta = - -  (ra - 2 a a l N ~  w2 = ( N ~  - (#1 +P2 - a21N~ 

has one independent, p-periodic solution given by wa = 0, w2 = l /y2.  
The e 2 terms in (1) lead to a linear, inhomogeneous system 

z' 1 = (rl - 2 a l l N ~  + ( -  a l z X ~  + Y l ( -  a l l y1  - alzy2) ,  

z2 = (#i  + P2 - a z l N ~  + yz(Ap - a z i y l  - -  azzy2 )  

for a p-periodic solution zi whose inhomogeneities must be orthogonal to the 
adjoint solution Wl = 0, w2 = 1 / y 2 .  This yields A v = [ a z l y l  -b azzy2] as desired. 

Finally, we must compute the Floquet exponents ei of the system (1) linearized 
at the branch solutions as they are functions of  e. Let 

N1 = x l  + ( N  o + eyl + ezl) ,  Nz  = X2 "+" @Y2 q- eZ2) 

in (1) and drop all terms of second or higher order in xi. This results in the linear 
homogeneous system 

x'  a = (rl - 2 a l l U ~  + ( -  a12N~ 

+ e ( -  2allY1 - a12Y2 + "" ')xa + e ( -  alzya + "" ")x2, 

x'z = (#l + P2 - a z l N ~  

+ e ( -  aely2 + "" ")Xl + e(Av - a z l y l  - 2a22Y2 q- ' "  ")x2 

where the dots denote terms of order e or higher. From the general theory of linear, 
periodic systems we know that the Floquet exponents e~ = e~(e) of  this linear system 
are infinitely differentiable in e (because the coefficients of  the system are). 
Moreover, when ~ = 0 these exponents are easily seen to be e, (0) = - [as i N  ~ < 0 
and e2(0)  = 0. Thus, 

ei(e) = - [ a l l N  ~ + ~l(e), e2(E) = e7(~) 

for small e where 71(e) = 0(e). We need yet to compute 7(0). 
It is not difficult to show that ev(e) is a Floquet exponent if and only if the 

following linear, homogeneous system has a nontrivial p-periodic solution: 

x'  1 = (rl - 2a11N~ + ( -  al~_U~ 

+ e ( -  2al lY1 - alzY2 + "" ")Xl + e ( -  aa2yl + " "  ")x2 - /~7(e)Xl, 
t 

XZ = (#1 q - P 2  --  a x l N ~  

+ e(--  a21y2 + "" ")Xl + e(Ap - azly1 - -  2a22Y2 + ' "  " ) X 2  - -  e y ( e ) x 2 ,  (23) 

It is again a straightforward application of perturbation or Liapunov-Schmidt 
techniques to show that there indeed exists a function 7(e) for which this system has 
a nontrivial p-periodic solution x~ = Yi + e~i + " " ,  (~(t)~P(p) where the dots 
denote terms of order 0(e 2) and the yi(t) are as defined in Theorem 3. We are here 
not so interested in the details of  this standard proof, but rather are interested in 
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f ind ing  7(0). This  we can  do  by  e q u a t i n g  coeff icients  o f e  te rms  in  (23), a p rocedu re  
which  resul ts  in  a l inear  i n h o m o g e n e o u s  system for the coeff icients  ~i(t): 

~'1 = (r l  - 2a11N~ --k ( -  a12N~ + ( -  2alxya - a l zy2  - 7(0))yl - a12YlY2, 

(2 = (~1 -[-P2 -- a l l N ~  - aZlYlY2 d- (Ap - a z l y l  - 2azzy2 - 7(0))y2 

whose  i n h o m o g e n e o u s  terms m u s t  be  o r t h o g o n a l  to the ad jo in t  so lu t ion  Wl = 0, 
w 2 = 1/y 2. This  o r t h o g o n a l i t y  c o n d i t i o n  impl ies  

7(0) = - [ a21y l ]  + Av - [a21Y1 - 2azzy2] = - Ap 

as was to be proved.  

P r o o f  o f  Theorem 4. Let ~N* N*a be a posi t ive  per iod ic  so lu t ion  o f  (1) a n d  set \ 1~ 2 /  

xi = (N~ - N * ) / N * .  Subs t i t u t i ng  in to  (1) a n d  i g n o r i n g  h igher  o rder  t e rms  we o b t a i n  
the l inear ized  system 

x'i = ( -  a~iN~)xi + ( -  a~jN*)xj,  1 <. i :~ j <<. 2. 

This  system is ( u n i f o r m l y  asympto t i ca l ly )  s table  if 

m a x  { -  a , ( t )N*( t )  + aj i( t )N*(t)}  <. - e < 0 
1<~i4:j<~2 

for all t (see Coppe l  (1965), pages  41 a n d  59). Since the  posi t ive  per iodic  so lu t ions  
N*( t )  are  b o u n d e d  a w a y  f r o m  zero we see t ha t  this  s tabi l i ty  c o n d i t i o n  is e q u i v a l e n t  
to  (7). 
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