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Abstract. The existence of both periodic and aperiodic behavior in recurrent 
epidemics is now well-documented. In this paper,  it is proven that for epidemic 
models that incur permanent  immunity with seasonal variations in the contact 
rate, there exists an infinite number  of  stable subharmonic solutions. Random 
effects in the environment could perturb the state of the dynamics from the 
domain of attraction from one subharmonic to another, thus producing 
aperiodic levels of  incidence. 
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Introduction 

Prior to the introduction of vaccines, several infectious diseases such as measles, 
chicken pox, mumps and poliomyelitis were both endemic and exhibited oscilla- 
tory levels of  incidence in large population centers of  the US. Data from New 
York City for the period between 1948 and 1964 show annual outbreaks of 
chicken pox and mumps. Measles, however, exhibits a biennial cycle; i.e. alternat- 
ing years of high and low incidence [17], [24]. Anderson and May [2] report  data 
from England and Wales showing an average four year cycle in poliomyelitis 
incidence. 

Although measles has outbreaks of  varying size in late winter and early spring, 
both longer and shorter periods have been observed. Emerson [9] observes a 
pattern of measles outbreaks of  approximately three years in Baltimore. Further- 
more, from 1928-1958, large outbreaks of  measles occurred every first, second, 
or third year with no apparent  pattern [17]. 

Mathematical models of  the spread of an infectious disease in large popula- 
tions have been based on the law of mass action whereby the rate at which the 
subpopulat ion of susceptible individuals become infected is assumed to be 
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proportional to the product of the fraction of susceptible individuals and the 
number of infectious persons in the population. The constant of proportionality 
in the mass action relation is usually referred to as the contact or transmission 
rate of the infection, or the coefficient of infectivity. Deterministic mathematical 
models of diseases that incur permanent immunity typically predict damped 
oscillations about some endemic level when the contact rate (as well as other 
parameters) is held constant in time [3, 7, 12, 17, 23]. However, as stated above, 
the observations of incidence point to the contrary. London and Yorke [17] 
attempt to infer the contact rate from existing data. Their work demonstrates that 
contact rates vary seasonally for chicken pox, mumps, and measles. More 
recently, Fine and Clarkson [10] give a more detailed analysis of the contact rate 
for measles in England and Wales. They find that while measles oscillates 
biennially, the contact rate varies annually with a high correlation to the opening 
and closing of school terms. (See also [24].) 

London and Yorke [17] formulated several mathematical models in which they 
used their calculated contact rates to simulate yearly outbreaks of chicken pox 
and mumps and the biennial pattern of measles. One of their models involves 
differential delay equations which, in general, are difficult to analyze and con- 
sequently their work consists primarily of numerical simulations. Very little 
mathematical analysis has been done on the London-Yorke differential-delay 
model. 

Both London and Yorke [17] and Dietz [7] introduced mathematical models 
involving ordinary differential equations in which the contact rate was assumed 
to vary seasonally. This class of models has proved more amenable to mathemati- 
cal analysis. Numerical simulations of the model in [7] (in which the latent period 
was ignored) indicate the possible existence of periodic solutions having periods 
one and two for suitable values of the parameters. Longer periods of 3, 4, and 
6 years are conjectured. In Schwartz [20], periods of one, two, and three were 
found numerically to coexist for measles parameters in models incorporating 
latency. 

Grossman, Gumowski, and Dietz [11] formally obtained periodic solutions 
of period two years by using perturbation methods. (See also Grossman [12] 
where delays are introduced.) Smith gave a rigorous proof  of the existence of 
period two year solutions of the Dietz model in [21]. In later work [22] it was 
shown that periodic solutions of period n years exist for many values of n and 
are simultaneously stable. All the work on the Dietz model indicated above 
ignores the latent period during which the infected individual is not yet infectious. 
However for most diseases and certainly for chicken pox, mumps and measles, 
the latent period is typically as long as the period of infectiousness or even longer 
[2, 17]. For example, for measles the infectious period is between 3-4 days while 
the latent period is 10-12 days. 

In this paper we extend the results in [22] to the more general Dietz model 
with periodic contact rate which includes a latent period [7]. In particular, stable 
subharmonic solutions of period n for many values of n are proved to coexist 
simultaneously. Numerical calculations for parameter values relevant to measles 
suggest that in addition to the period two subharmonic there exist subharmonics 
of period n, n an integer greater than 2. 
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The significance of multiple stable subharmonics of  various periods may lie 
in the possibility that random effects in the environment could perturb the state 
of the system from the domain of attraction of one subharmonic to that of  another, 
the effect of  which could be to produce aperiodic looking levels of  incidence. In 
fact, data in [17] and [9] suggest that measles has not always exhibited a regular 
biennial pattern. Moreover, the structure of  long term outbreaks is such that it 
is possible to have a very low number  of  cases for several years, followed by a 
large increase in the number  of  cases over a time interval of  approximately one 
year. 

In Sect. 1 the main results are described and their significance discussed. The 
proof  of  the main theorem is outlined in Appendix A. Section 2 contains the 
numerical results of  our computations of  subharmonic solutions. Included is a 
discussion of the stability of  the orbits as well as a discussion of the dependence 
of solutions on the forcing amplitude of the contact rate. 

1. The model  and main results 

Assume a given populat ion may be divided into the following categories: 
Suscep t ib les - -  those capable of  contracting the disease 
Infective - -  those capable of transmitting the disease 
E x p o s e d -  those who are infected but not yet infectious 
R e c o v e r e d -  those who are immune. 
We follow Dietz [7] in making the following assumptions: 

1. The population consists of  susceptibles, infected but not yet infectious, 
infectious, and immunes. The population size is constant. 

2. The disease is not lethal; equal and constant birth and death rates ~ are 
assumed. 

3. The population is homogeneous and uniformly mixing. 
The contact rate, /3, is defined as the average number  of  effective contacts 

with other individuals per infective per unit time. An exposure or effective contact 
of  a susceptible by an infective is an encounter in which the infection is trans- 
mitted. 

4. An exposed individual 's probability of  becoming infectious in a specified 
time interval is independent of  time after initial contact; hence the probabili ty 
of still remaining in the exposed class at time r after initial contact is e - ~ ,  where 
1 / a  is the mean latent period. 

5. After an individual enters the infectious class, the probabili ty of that 
individual recovering at time r is given by e -~ ,  where 1 /y  is the mean infectious 
period, and y is called the recovery rate. 

6. Recovered individuals are permanently immune. 
Letting S, E, I, R denote respectively the fraction of the populat ion which is 

susceptible, exposed, infectious, and recovered, the above assumptions lead to 
the following system of  ordinary differential equations: 

s '=~,-~s-~is  (1.1) 

E '  = ~ I S  - (p. + a ) E  
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I '  = aE  - (/, + 3,)1 

R ' =  y I - t z n .  

Notice that the first three equations are sufficient for the description of  the model 
since S + E  + I  + R  = 1. 

We begin by reviewing what is known about system (1.1) when/3 is constant 
(see [6]). There are two steady states: (S, E, I, R) = (1, 0, 0, 0) and (S, E, I, R) = 
(So, Eo, Io, Ro) where 

0* + ~)(** + y) 
So - (1.2) 

Eo_/Z +Ylo 
o~ 

~ , (O-  1) 
Io 

/3 
The latter steady state lies in the positive octant provided 

O -  > 1. (1.3) 
0* +~)0.  +y) 

Steady state (1.2) is usually called the endemic steady state. Q is biologically 
interpreted as the reproductive rate for the infection; i.e. the number of  secondary 
cases produced by a single infectious individual in a population of susceptibles 
in one infectious period. Therefore an infectious disease can be endemic only if 
the reproduction rate exceeds unity. 

It is not difficult to show by the Routh-Hurwitz test [6] that when (1.3) holds 
the endemic steady state is asymptotically stable, and the trivial steady state 
is unstable. The question of whether the endemic steady state is globally stable 
for all initial conditions in the interior of the first octant appears to be an 
open question [15]. It will be assumed throughout that (1.3) holds. Estimated 
values of Q for mumps, chicken pox and measles are roughly 7, 9, and 16 
respectively [2]. 

We are interested in the case that the contact rate is periodic of period one year: 

/3(0 =/3o(1 + ~ cos 27rt). (1.4) 

For this reason it is convenient to take a year as our unit of time. ~ With this 
convention, the birth and death rate, /z, will be such that 1//z is 50 years, the 
average latent period prior to becoming infections, 1/(/z +a ) ,  is typically a few 
days to a week, the same is true for the average infectious period 1/(/z + g). We 
exploit the fact that /z, 1//z+ee, 1//z + y  are 0(10 -2) by introducing a small 
parameter e as follows: 

/3olo = t z ( O  - 1) = e (1.6) 

l Al though the periodic term in the contact rate is idealized, it approximates the (monthly) measles 
contact rate computed in (17) for New York City data. However, it does not approximate as well 
the data (weekly) in (10), al though their data do appear to be seasorial. 
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A 2 
/x +o~ = - - ,  

e 
0<e<< 1. 

A3 / z + y - -  
e ~ 

New variables (x, y, z) are introduced by setting 

S = So(1 +x),  E = E0(1 +y),  I = Io(1 +z). (1.7) 

Incorporating (1.4), (1.6) and (1.7) in (1.1) yields the following system of equations 
which has the property that when 6 =0,  the endemic equilibrium becomes 
(x, y, z) = 0: 

x ' =  -e [07  +6  cos 2~t)x +(1 +6 cos 27rt)z +6 cos 27rt (1.8) 

+xz(1 +6  cos 2~-t)] 

y'  =/12 [6 cos 27rt +x(1 + 6 cos 27rt) + z(1 + 6 cos 27rt) 
e 

- y  +xz(1 + 6 cos 27rt)] 

O 
z' = a--2 [y - z] where ~ -= > 1. 

e Q - 1  

Before proceeding further in analyzing the periodic system (1.8) we need 
information concerning the eigenvalues of the linearized system about the endemic 
steady state when 6 -- 0. For 6 = 0, the endemic steady state is the origin and we 
have the following lemma, the proof  of which will be left to the reader as it 
involves routine algebra and a straightforward application of the Implicit Function 
Theorem. 

Lemma 1.1. The eigenvalues corresponding to the linearized system (6 = O) 

ti) I7 o lIit '= za e -~12/e A2/e 

& / e  - 1 3 / ~ /  

are given by A+, A_, A 3 below: a•  er+ iv +O(e2), where 

p=~/ A2A 3 = ~  /z[Q--1] (1.9) 
~/ A2+A3 1/(l~+C~)+l/( tz+y) 

A2A 3 - - ( A  3 r = + A2)2r/< 0 
2 (A  3 + A2) 2 

(32 + 33) 
h3(e)= - - + 0 ( e ) .  

e 

Observe that the endemic steady state is asymptotically stable but the attraction 
is weak. There is a rapid relaxation onto a center manifold on which orbits slowly 
spiral into the origin. The underlying mechanism we will exploit is the weakly 
damped oscillation on the center manifold. To leading order, the frequency of 
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this oscillation, ~,, depends on the reproduction rate, Q, the birth rate,/z, and the 
sum of the latent and infectious periods [2, 7]. 

Our aim at this point is to make a change of variables in (1.8) so that when 
(3 = 0 the resulting linear part  is close to its Jordan form. In addition, further 
analysis will require the assumption of a small amplitude periodic perturbation 
in (1.8). Inspection of (1.8) shows that this will be the case only if 6/e  is small. 
With these remarks as motivation we proceed as follows. Let 

g=(31e  

ix ] =~, -e(A2+A3 fi(z-y) 

A3y -I- A2Z 
7 - -  

A2 -.~- A 3 

~ = z - y ,  

(1.10) 

where v is given in Lemma 1.1. While this transformation appears to mix up the 
various epidemiological classes, a glance at (1.8) indicates that one should expect 
z - y  to be small, say order e, hence (1.10) should take the particularly simple form 

X ~-- - -  -1- 0 ( e  3) 

y = 37 +0(e)  

z = y -  0(e). 

(1.11) 

In fact we will show later that this is the case. Epidemiologically, Eq. (1.1 l) has 
the interpretation that the ratio of  infectives to exposed individuals is 7 / a  to 
order e. 

Putting (1.10) in (1.8) and ignoring the bar over (3 we obtain 

2'= -~, f  +efl('Y, f ,  ~, t, e, (3) 

A3 
y ' =  ~,~(1 +)7) + uA2 +A3 xz 

_ A3z 
+ u 2 6 c o s 2 7 r t ( l  + Y + A 2 + A 3 )  

(1.12) 
+ ef2(,~, )7, ~, t, e, (3) 

EZ ' =  -- (A2 -t- A3)Z-t-  Ef3(.1-C, )7, Z, t, 6, (3), 

where 

f ( x ,  y, z, t + 1, e, (3) = f ( x ,  y, z, t, e, (3) 

f (0 ,  0, 0, t, 0, 0) = 0, i =  1,2,3. 

The f are explicitly written out in the appendix (see (A.2)). 
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X ' = - Y  
Y ' =  X ( l + v )  

Fig. 1. A plo t  of the phase  por t ra i t  of  

the case when  e = 6 = 0 us ing Eq. (1.13) �9 

Y 

, , , , , . . uum. , , , .  , , , , . , . , . . , , , , , , , ,  
. . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  X 

y - - !  

We will treat  e and 6 as small  pa ramete rs  in (1.12). Setting e = ~ = 0  in (1.12) 
we obta in  the reduced equat ions 

~ ' =  u~(1 +37) (1.13) 

Z = 0 .  

This reduced  two-d imens iona l  system is precisely the one encounte red  in some 
earlier work  on a related S -~ I -~ R model  [2 l, 22]. The system (1.1 3) is conservat ive 
with first integral  given by V = x2+ 2 y - 2  l n ] l  + y]. In Fig. 1 above  we give the 
phase  portrai t  of  (1.13). 

It is interesting to observe  that  if we write u = ln(1 + y )  and use (1.13) to write 
a second order  differential equat ion for u we obtain u " + u Z ( e U - 1 ) = O .  This 
equat ion  was first derived over  fifty years ago by H. E. Soper  [15] as the limiting 
case of  a difference equat ion  model  which he derived for  the spread  of  an infection. 

The  essential  feature of  Fig. 1 is that  the origin is a center  su r rounded  by 
per iodic  orbits with per iods  ranging be tween 2~-/u  near  the origin to +co near  
the invar iant  line y = -  1. In part icular ,  for every integer n, 2 ~ / v  < n < oo, there 
is a per iodic  solut ion of  (1.13), (:~,(t), 37,(t)), o f  least per iod n. These  solutions 
of  the reduced  equat ion may  be excited by per iod one forcing at the correct  
ampl i tude.  Hence  we are led to expect  n-per iodic  solutions of  (1.12) near  F,  = 
{(x, y, z): (x, y, z ) =  (ft,(t), 37,(t), 0), 0 ~  < t ~  < n} at least for suitable small values of  
e and  & To illustrate this, we state the fol lowing theorem which is p roved  in 
Append ix  A. 

Theorem 1.2. Let ( ~,(  t ), 37,( t ) = ( ~n( t + n ), 37n( t + n) denote a periodic solution o f  the 
reduced equation (1.13), where n > 2 ~ /  ~,. Let 

;o y 2 ~ v  2 yn(t) c o s 2 ~ r t d t # O  (1.14) 
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- 2 r  
3'1 ~ (Area interior to F,), 

and for a e  [0, n), lel<< l, 181<< 1, Zet 

B(a, e, 8)= - y l e  + y28 cos 2zra +0([el +181) 2. (1.15) 

If  (~ ' ,  ~" ) spans the n-periodic solutions of the variational equations of (1.13) 
about (~,,y,) ,  and (a, ~, 6) is such that B(~, e, 6 )=0 ,  then equation (1.12) has 
an n-periodic solution (g,)7, ~) given by 

g(t) = s  + ct) +0(lel(1 +161)) (1.16) 

y( t) = f , (  t + a) +0(I e] + 161) 

eA 2 
e(t)- v2 ,_ .y ' ( t+,~)+0([e]+161)  2. 

(/12 "t-/-13) 

The requirement that "/2 r 0 restricts the set of integers n > 2r for which 
the method yields n-periodic solutions (1.16) (see Table 1 for some computed 
values). In [22] it was shown that there is an infinite subset, P, of the positive 
integers containing 1, 2, and 3 such that if n e P there is an open dense set of v, 
2~r/v < n, for which both 3'2 ~ 0 and the nondegeneracy conditions on the vari- 
ational equation are satisfied. 

The approach we have taken to find subharmonic oscillations follows closely 
recent work of J. Hale and P. Taboas [14] and Hale, S. Chow and J. Mallet-Paret 
[5] (See also [22]) where we encountered Eq. (1.15) in a similar context. Since 
the following description of the solution of (1.15) appears in [22] only a brief 
account will be given. The Equation B(a, e, 6 )=  0 is the so-called bifurcation 
equation (see the appendix for more detail). It is to be solved for the phase angle 
t~ e [0, n) for small (e, 6). In [22] we show that there are two smooth curves 
described by functions e+(6) and e_(6) for small 6, e~(0)= 0 and these curves 
are tangent at the origin to the lines e = +(y2/y03,  respectively. The two curves 
separate a neighborhood of the origin in the (e, 6) plane into two regions as 
depicted in Fig. 2. 

Referring to Fig. 2, for (e, 3) in region S c there are 2n solutions a of (1.15) 
corresponding to 2n periodic solutions of period n of the form (1.16). More 
precisely, for (e, 3)~ S C there exists ai ~ [0, 1), i = 1, 2, such that (ai +j, e, 3) solves 
(1.15) for j = 0, 1 , . . . ,  n -  1, i =  1, 2. The periodic solutions (1.16) corresponding 
to am + j  are just translations by t ~ t + j  of a single n periodic solution, similarly 
for a2. If  we identify these translates then there are really just 2 distinct n periodic 
solutions of the form (1.16) for (e, 3) in S ~. One solution is a saddle (unstable 
with one dimensional stable manifold) and the other is a node which is stable 
for e > 0 and unstable for e < 0 (see [22] or [5]). In region S there are no n-periodic 
solutions near F,. Except for the assertions concerning stability, most of  the above 
description of solutions of B = 0 is easy to see by simply ignoring 0(]e I +131) 2 in 
(1.15) and solving. 

Let us examine the implications of Theorem 1.2 and the preceding discussion 
to Eq. (1.1) in terms of the original variables S, E, I, R and the original parameter 
3 appearing in (1.4). Recalling (1.11), we find that for those n for which y2 ~ 0, 
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if 27r/u < n, there is a stable periodic solution of period n of (1.1) (with fl given 
by (1.4)) of the form 

S = So + -  g.( t  + ol) +O(e 2 + el l) (1.17) 
/) 

In (1.17), e =/30/o is positive and recall from (1.2) that So = 1/Q, Io=0(e  2) and 
Eo = 0(e2), the latter estimates follow from So = 0(1). Assuming 6 is positive, (1.17) 
is valid for 0 <  e, 6/e < p for some sufficiently small P (depending on n) and 
only if e < e+(6/e). Recalling the fact that e = 6-- -6 /e  = 0, the requirement that 
e < e+(6/e) can be crudely expressed as ~ > (Yl/Y2) e 2 (we have approximated 
e+ by (72/Yl) 6/e). Hence (1.17) is valid only if the amplitude ~ exceeds a 
threshold value given approximately by (yl/'/2) e 2. Of course, the requirement 
that 0 <  e, 6/e <p for some unknown number p is the usual price to be paid for 
employing Implicit Function Theorem techniques. 

The ratio 7~/72 is a rough measure of the size of the parameter region in 
which the solution (1.17) of period n exists. If Yl/Y2 is small the region is large 
and the solution is likely to be observed while if yl/y2 is large the region is small 
and it may be difficult to observe the solution. In Table 1 we display some 
computations of the ratio Yl/Y2 for the subharmonics of period n for parameter 
values relevant to measles listed in Table 2 below. (Notice that 2~-/u e (2, 3).) 

Fig. 2. A schematic of the  local 
region in (e, 6) space is depicted. In 
the region S c, there are 2n solutions 
of the bifurcation equation 1.15. See 
text for further details 

E_(8/ ~ , ( 8 )  

S c 

E 
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n 3 4 5 

3'1/3`2 0.79 1.27 1.94 

I. B. Schwar tz  and  H. L. Smi th  

Table  1. 71/3`2 vs. per iod (n) 

Notice that lower order subharmonics are more likely to be observed; i.e. the 
domains of existence for lower order subharmonics may be larger than for higher 
order subharmonics. 

2. Numerical simulations 

Here we describe the behavior of  the periodic solutions of  equation (1.8) as a 
function of the forcing amplitude, 3. First, we restrict our analysis to that of  
measles. The parameters for measles are listed in Table 2. (See London and Yorke 
[17], Schwartz [19], Yorke et al. [20].) 

Since e = tx(Q - 1), if we fix the reproductive rate of  infection, Q, e is fixed. 
We take 3, the forcing amplitude in Eq. (1.4), to be our variable parameter.  The 
techniques used for computing periodic orbits are presented in Appendix B, along 
with an analysis of  how we compute the Floquet multipliers. 

When 6 = 0, all solutions are seen to exhibit damped oscillations that converge 
to the origin as t approaches infinity. I f  6 is positive but small (say less than 
0.075), periodic orbits having period I bifurcate from the origin. Figure 3 is a 
projection onto the x - z  plane of periodic orbits having period 1 for several 
values of  6 between 0.0 and 0.15. 2 

To plot the norm of a periodic solution as a function of 8 we let qS~( �9 ; 0, xu) 
denote the solution of Eq. (1.8) such that r 0, xo) = x0 and r  0, x0) = xo; 
i.e. q5 ~ is a periodic orbit having period T passing through Xo at t = 0 for a fixed 
value of 3. We define the norm of ~b 6 as 

11r 0, Xo). 0, Xo) , 

where the ( . )  denotes the usual 12 inner product. Figure 4 depicts the norm of 
O as a monotonic increasing function of 8. It is found numerically that at a value 

/x = 0.02 (year) -1 

a = 1/0.0279 (year) -1 

y = 1/0.01 (year) -1 

/30 = 1575.0 (year) -1 

Q ~ 15.73807 

e ~ 0.29476 

Table 2. 

2 The smooth  orbi t  appears  as a po lygon  due  to choice  of  step size in plot t ing.  
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0050 

X 

0 0~01 
-075 

! I I i I I I 

125 

Fig. 3. A plot of  periodic orbits of  period 1 projected onto the Z - X  plane. The parameter  e was 
fixed at 0.29476137 while 6 was varied 

of ~2~0.11479 one of the values of the Floquet multipliers is - 1 ,  signalling the 
presence of a period doubling orbit bifurcating off the period 1 branch. It is 
further observed that if one continues to follow the period 1 solutions for 6 > 62, 
the period 1 solutions become unstable. Figure 5a depicts the stable branch of 

1 &O 

II ~ 

100 I I I 
62 0 20 

6 

Fig. 4. A plot of  the norm of the period 1 orbits as a funct ion of  6 illustrates the monoton ic  behavior  
of  the no rm of the solution. For values of  6 < 62, the period 1 orbits are stable, while for 6 > 62, the 
orbits are unstable 
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I1 ~ 

a) 

1#,0 

P2 

1 O0 I I I 

5 2 02  

6 

0 3o 

-o  030 I I t I 
-050 075 

b) Z 

Fig. 5a. A plot of the norm of the bifurcating period 2(P2) solution from the period 1 (PI) solution. 
The P2 branch is stable, b. A plot of the period 2 orbit corresponding to 6 ~ 0.114856 projected onto 
the X - Z  plane 

period 2 solutions (P2) bifurcating from the period 1 (P1) branch at 8 = 82. A 
plot of  a period 2 orbit is shown in Fig. 5b. 

Theorem 1.2 implies that in addition to a subharmonic period 2 orbit, there 
exist subharmonic solutions that bifurcate from large amplitude solutions appear- 
ing in the reduced model  (1.14) when e = 8 = 0 .  Keeping e fixed at the value 
given in Table 2, we begin to fol low the period 3 orbits as a function o f  8 with 
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the period 3 orbit found in Schwartz [20]. The theory in section 1 predicts stability 
of  the bifurcating solutions is such that we expect them to appear in saddle node 
pairs; i.e. there should exist for each value of  3, one stable periodic orbit and 
one unstable periodic orbit. Both period 3 and 4 solutions exhibit coexistence of 
saddle-node pairs of solutions. The bifurcation diagram for the period 3 orbits 
is illustrated in Fig. 6a. Our numerical analysis is kept local since we are only 

3 O0 - 

u 
Y 3 - -  

L 
Y3 : . . . .  

2.65 I I - -  

0 071 0 078 

a) 

I 

i i 

[I I I I 
t o 

63 83 

6 

700 

-1 O0 

-01 

b) 

I I I I I I 
o &o 

x 

Fig. 6a. A plot of the norm of the period 3 solutions as a function of t~ for the set of  measles parameters 
given in table 2. ~5~ denotes the turning point at which the onset of bifurcation occurs. For a fixed 
value 6 = t~~ 6~, there exists a saddle-node pair of period 3 orbits, b. A plot of two period 3 solutions. 
SP3 corresponds to a stable orbit from the upper branch, while UP3 corresponds to an unstable orbit 
from the lower branch 
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interested in the neighborhood about the bifurcations. The turning point, 6~, 
marks the coordinate (e, 6) in parameter space where the bifurcation occurs. For 
6 > 6~, but close to 6~, there are two period 3 solutions. 

At 6 = 6 o in Fig. 6a, there correspond two periodic solutions with norms 
equal to y~ and yl3, where y~ is the solution corresponding to the upper branch 
and y/ is the solution corresponding to the lower branch. All solutions on the 
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Fig. 7a. A plot of  the period 4 solutions as a function of & For 6 > 6~, two period 4 solutions appear 
as saddle-node pairs. The lower branch is unstable for 6 > 6~. The upper branch is stable for 6 [ (6~, 68). 
For 6 > 68, a stable period 8 orbit bifurcates from the branch of period 4 orbits, and the period 4 
branch becomes unstable, b. A plot of the period 4 orbit at 6 = 6~ projected onto the X - Z  plane 
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Fig. 8. A summary of the bifurcation analysis 
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upper  branch correspond to stable p'eriod 3 solutions, while all solutions on the 
lower branch correspond to unstable solutions. Figure 6b illustrates a stable 
solution (SP3) from the upper  branch at 8 ~ 7.5003 • 10 -2. The unstable solution 
(UP3) from the lower branch was found at 8 = 7.6152 x 10 2. 

For the period 4 solutions, a similar numerical result holds. Figure 7a pictures 
the turning point at 8 = 8]. For 8 > 8~, two period 4 solutions appear  in saddle 
node pairs. The unstable solution is on the lower branch and has a 1-dimensional 
unstable manifold. On the upper  branch of solutions we find that for 6 ~ (8~, 88), 
the period 4 orbits are stable. However, at 8 = 88, one of the Floquet multipliers 
is - l, signalling a bifurcation of a period 8 orbit from the period 4. We have not 
followed the period 8 orbit. When 6 > 6s, the period 4 solution on the upper  
branch becomes unstable. Figure 7b depicts the period 4 orbit at 6--6~.  A 
summary of the previous bifurcation figures is given in Fig. 8. 

I f  one reduces e, and then computes the value of 8 at that value of e for 
which a turning point occurs, one can check to see if the threshold predicted by 
Theorem 1.2 holds for parameters near measles. Table 3 exhibits some of these 
computations. For the given value of e, the value of 8 in the left column is the 
value at which a turning point occurs. For 6 greater than this threshold value, 
two period 3 orbits appear.  From Table 1, locally (near e = 8 = 0 ) ,  we predict 

Table 3. 
c ~/e 2 

7 .18687  x 10 . 2  2 .9466 x 10 i 0 .82775 

7 . 1 3 9 0 0 3 x 1 0  -~ 2 . 9 3 1 1 x 1 0  1 0 .83095 

6 .75575  x 10 -2  2 .7992 x 10 -1 0 .8621958  
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that if 6/e2> 71/72, where 71/Y2-~0.79, bifurcation of period 3 orbits occurs. 
Although the ratio of 8 /e  2 is slightly larger in Table 3 than 71/72, nevertheless, 
the calculated values are all within 10% of the predicted value. The global 
properties of this bifurcation manifold will be discussed in detail in a later paper. 

The model produces oscillations that have very low minima of infective 
incidence. However, the addition of noise upon the contact rate may tend to 
keep the number of infectives large enough for the epidemic to remain recurrent 
in addition to having aperiodic levels of incidence. 

Appendix A 

In this appendix we give a proof of  Theorem 1.2 concerning the differential equation (1.12). The plan 
of the proof is to use results of  N. Fenichel [25] concerning the existence of  a center manifold for 
singularly perturbed ordinary differential equations in order to reduce the dimension of  the problem 
from three to two. Thus, we will reduce the study of  equation (1.12) to the study of  a perturbation 
of the planer conservative system (1.13). Then, we will apply the methods of J. Hale and P. Taboas 
[14] and Chow, Hale, and Mallet-Paret [5] to the resulting equation as in [25]. 

We begin by rewriting (1.12) in terms of  the fast time ~" = t/e and making the equation autonomous 
by the addition of a trivial dependent variable as follows. 

x = e [ - .~  + e/,(~, ~, ~, o, e, ,s)] 

fi=e[v,2(l+y)+v A3 g2.+vZBcos2~rO(l+y+ ':13 ~.)+ef2 ] 
/12 -~-/13 /12 "J- A3 

= -- (A 2 + A3)Z + sf3 (A l)  

~=0 

In (A1) " . "  = d/dr, and the f are given to lowest order by 

f,(~,#,;~,0, e, 6)=-~(r /  -~2A3 '~ + ':132, ~ ( l  -~za3 '~+0([e]+[6]) (A2) 
( & + & ) U  - ~ (  y & + & /  ( & + & I U  

f2(~'s176 & ( ~ )  (/12 +/13)2 ;~ 1 +)~ + +0(lel +lal) 

f3(,, )7, ,, 0, e, a ) = - - a z v - ' ~ ( 1  +33 + ~ ) + 0 ( , , ,  + ld )  

We may view (AI) as a one-parameter family of  vector fields, X ~, on R4x S 1 since the right hand 
side is periodic in 0. X ~ possesses a manifold of  equilibria given by 

~ : ~ = 0 .  

Given the compact set Kb ={(~,~,0, & O)~R4• [~[~< b,[37[~< b, [6[~<b} on ~, Theorem 9.1, [25], 
implies the existence of a global center manifold for the vector field X ~ x0 ((AI) with the addition 
of  e ' =  0) near K b. 

The center manifold can be represented by a smooth function 

Y.=eh(Y~,.9,6,0, e), (2,.~,t~,O,e)~KbX(--eo, eo) (A3) 

for some e 0 > 0. We emphasize that the locally invariant center manifold given in (A3) is global in 
that it is defined for (x, y, 6, O) ~ K b for sufficiently small e. In particular h is periodic in 0 of  period 
one.  
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The flow (A1), restricted to the center manifold, is given by 

x=  ~[-937+~L] 

)7 = e[92(1 +J7)+ v26 cos 2~'0(1 +37)+ el2] 

,~=0 

0 = e  

where 

(A4) 

f1(2, 37, O, e, 3) =fl(.~, 37, eh, O, e, 6) 

A3 
f2(~, 37, 0, e, 3) = 9 A3 .~h + v 2 6 cos 27rOh +f2(.~, 37, eh, O, e, 3). 

A I q -A  3 A 2 q-A 3 

The local invariance of  the center manifold implies that 

1 
h(g, 37, 3, 0, 0) = ~ f 3 ( ~ ,  )7, 0, 0, 0, 6). (A5) 

The theorem of Fenichel implies that all solutions of (A1) which exist for all rE R and remain 
in some neighborhood of K b in R 4 x  S ~ lie on the center manifold. Thus we have reduced our problem 
to the study of system (A4) in which we now return to the fast time t: 

~' = - v37 + eg(2r - sci37) 
(A6) 

37'= 92(1 +37) + v26 cos 2eft(1 +)7) - e~2x2(l +37). 

In obtaining (A6) we have made use of (A5), ignored terms which are quadratic or higher order in 
(e, 6), and introduced the notational simplification: 

A 2 A  3 
~2 = (A2 +A3)2 , r < 0  as in (1.9), ~1 = 1 - - ( 2  . 

Since the higher order terms in (e, 3) do not affect the subsequent  analysis it is permissible to ignore 
them. 

Equation (A6) is a perturbation of the conservative system (1.13). We study (A6) for the existence 
of subharmonic  solutions of period n near F ,  = { (~ ( t ) ,  y~(t)): 0 < t < n} following the work in [22] 
which is based on [5] and [14]. Before we begin, some remarks are necessary. First, the compact  set 
K b must  be chosen such that F ,  is contained in the ball of  radius b about the origin. We assume 
this has been done. Secondly, it follows from the theorem of Fenichel that if (A6) possesses an 
asymptotically stable subharmonic  of order n, ( 2 (0  , 37(t)), near F,, then (x(t) ,  y(t) ,  z(t))  will be an 
asymptotically stable solution of  (1.12), where 

z(t)  = eh(x(t) ,  y(t), 3, t, e). (A7) 

Indeed, in [25] it is proved that solutions collapse onto the center manifold at the exponential rate, 
O(e kt/~), where k = A z + A  3. 

Let us now consider the problem of  the existence of n-period solutions of (A6) near F .  = 
{(~.(t), y.(t)): 0 <  t <  n} where (x . ( t ) ,  y . ( t ) )  is an n-periodic solution of  the unper turbed equation 
(1.13). Since the following analysis is entirely similar to that employed in [22] we give here only an 
abbreviated version. 

Assume that 2 . (0 )=  0, y . ( 0 ) >  0 so that 2. is an odd function of t and 37. is an even function, if 
(ul(t),  u2(t)) is an n-periodic solution of  (A6) near Fn for all t, then we may write 

u l ( t - , ~ )  = ~ . ( t )  v , ( t )  

u : ( t - a )  ft.(t) -k 0 2 ( t )  , 

for some a, 0 < a < n. The phase c~ is introduced to account for the arbitrary normalization of the 
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phase (:~.(t), .gn(t)). The perturbation v satisfies vl(0)= 0 and the equation 

0 
v'= A(t)v +ef~n(t)(2r-\ ~2:~ (t)(1 +y.(t))]~Zl)Tn (t))~ + 6(v2 COS 27r( t -  o0(1+ p. ( t ) ) )  

where 

(A8) 

0 - - 1 )  
A(t)= v (1 +)Tn(t)) )~,(t) 

and terms (e, 6, v) which are of quadratic or higher order have been dropped. The equation (A8) is 
an inhomogeneous linear equation for which A(t) and the inhomogeneous term are n-periodic in t. 
We seek an n-periodic solution v(t) giving the order e I and 61 terms in a perturbation series for u. 
One of the assumptions made in Theorem 1.2 is that (x'~, y'~) spans the n-periodic solutions of (A6) 
with e = 3 = 0. Thus the adjoint equation 

W'= -A(t)'W 

has one n-periodic solution up to a constant multiple. As in [22], it is easily checked that this solution 
may be taken to be (~.(t), 37.(0/1 +y.(t)). The Fredholm alternative gives a' necessary and sufficient 
condition for the solvability of (A8), namely, 

+ 0 
fo ~[e($n(2r--'lY'~))\~:2"f2(1--yn)] 6(p2COS27r(t--a)(l+'n))}'('n/(~;'n)) dt=O" (19)  

If (A9) holds, there will be exactly one n-periodic solution of (A8) satisfying vl(0 ) = 0. Equation (19) 
represents the lowest order terms in the bifurcation equation. In order to see that (19) coincides with 
the first two terms in (1.15) note that Yn is even in t and 

Io -2- -2-, dt=O xny,, dt = - XnXn 

so that 

( (2r-~cly , )$  ] + ~:22~yn) dt=2r $~(1 + y . )  dt 

=-2r f" Y-.Y" dt 
v Jo 

=~ff int fr .  dXdy" 

The above nonrigorous argument can be made rigorous by application of  the Implicit Function 
theorem as in [22]. Note that (1.16) follows from (A5) and (A7). 

Appendix B. Computation of Periodic Orbits of Periodically Forced Differential 
Equations 

Here we briefly describe the techniques used in computing the periodic orbits for system (1.8) and 
their Floquet multipliers. The basic idea is to embed the non-autonomous differential equation into 
a higher dimensional autonomous differential equation and then use standard homotopy (continu- 
ation) techniques to compute periodic orbits as a function of a parameter for autouous systems. (See, 
for example, Doedel [8] and Rheinboldt [18].) 
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Let f :  R '~ x R x R ~ R" be a smooth function such that f (x ,  t, A) =f (x ,  t + 1, A) for all (x, t, A) in 
the domain  o f f  We consider the problem of computing periodic solutions of period p for 

x'  =f(x ,  t, A). (BI) 

Equation (B l) has a periodic solution of period p for a fixed A if and only if there is a vector x(0) = x 0 
such that x(0) = x(p). It has a minimal  period p if 

x (0 ) r  x ( 1 ) ~ .  �9 �9 r x ( p -  1). 

Therefore, if qSa(. , 0, Xo) is the unique solution of (B1) for A fixed such that qSa(0; 0, Xo)= x0, then 
computing periodic orbits of  (B 1) is equivalent to finding those vectors x 0 satisfying ha (P ; 0, Xo) - x o = 
0. If TAp : R" ~ R" is defined by Tap(Xo) = 05 a (p ; 0, Xo) , then ~b a ( . ,  0, Xo) is a periodic solution having 
period p if and only if x o is a fixed point of  TAp; i.e. T~p(Xo)= x o. In order to compute unstable 
periodic solutions as well as stable ones, one needs to compute the linear variational equations along 
a periodic orbit. In particular, if Y(t)  is a matrix such that 

Y'(t)  = cgf(t &A(t; 0, Xo) , A)Y(t), Y(O)= I, (B2) 
0 x  ' 

then the derivative of TAp is given by 

dTAP(x o) = O~a (p; 0, Xo), 
XO 

since O(ax/OXo(., 0, Xo) satisfies (B2). If x* is a fixed point of TAp, then the Floquet multipliers are the 
eigenvalues of  dTap(x ). 

The initial computat ion of  a periodic orbit is done as follows. Let [o,p] be partit ioned in the 
following way: 

O=to<t l  < . . . < t  m ~ < t , , = p .  

For each j = 0 ,  1 , . . . ,  m - l ,  let Oa(tj; tj, x2)=x j. 
Let ~r~ : R" -~ R ' ,  be defined by 

If Xoe R" is a fixed point of  TAp , it is necessary and sufficient that the following continuity and 
boundary  conditions hold for the nm-dimensional  vector x = (x0, x l , . . .  , x,,_l): 

xj+l=Tr)(xj) ,  j = 0 , 1  . . . . .  m - I  (Bla) 

X 0 : X m .  

The problem of finding a fixed point of  TAp is equivalent for finding an x ~  R " "  satisfying (Bla).  
Equation (BIa) may be solved by a Newton iterative technique, and it is described in detail in 
Schwartz [20]. 

The advantage of decomposing [0, p] into m subintervals is that it allows us to make computat ions 
of unstable periodic orbits as well as those of  stable periodic orbits. Furthermore, it is less sensitive 
to initial conditions than computing the fixed points of  TAp since the Lipschitz constant  of  the vector 
field is effectively reduced by a factor of  m. 

We now consider the technique of embedding equation (B 1) into a higher dimensional  au tonomous  
system. Let q : [ - 1 ,  1Ix[-1,  1]-~ R, and let 

f(x~ t, A) = fo(X) + Aq(sin 27rt, cos 27rt)fl(x ). 

Consider  the following reduced 2-dimensional system: 

y '=  Ay  +g(y), (B3) 

where 

A 1 = ( -Y t (Y~  +Y~)~ 
' -Y2(Yl +y2)/"  
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Equation (B3) has (Yl, Y2)(t) = (sin 27rt, cos 2r as its solutions passing through (Yl, Y2)(0) = (0, 1). 
Furthermore, the solutions can be shown to be isolated. 

Let z = (x, y) be a vector in R" • R 2, and let h : R" • R 2 x R ~ R "+z be given by 

h(z, 3,)= ( f~ + Aq(Yl' Y2)fI(x)'). 
\ Ay  +g(y) ] 

Then the expanded autonomous system for (B1) and (B3) is given by 

z '= h(z, A). (B4) 

We now use the continuation methods described in [8] to follow a branch of periodic orbits as a 
function of parameter. The method used to compute periodic orbits at a particular parameter value 
was that of  collocation. (See, for example, Keller [16] and Ascher [1].) 

In order to determine the Floquet multipliers of the periodic orbit, we need to know the Floquet 
multipliers of Eq. (B3). Since (sin 2~-t, cos 2~'t) is a periodic solution of period 1 to Eq. (B3), it follows 
that one of its Floquet multipliers is equal to 1. Let pj and P2 denote the Floquet multipliers to Eq. 
(B3). If we are at a p-periodic orbit of  system (B4), and since (sin 2~-t, cos 2~rt) is a p-periodic orbit 
of (B3), then Abel's formula [Hale [13], page 82] applied to system (B3) implies 

PiP2 = e-2P. 

But pl = 1 implies P2 = e 2p, which in turn implies that the solutions to (B3) are stable. Furthermore, 
this can be used as a check on the accuracy of  the computation of  the Floquet multipliers. 

Now that two of the Floquet multipliers are known, the remaining n Floquet multipliers can be 
determined and the stability of the original equation can be inferred. (Note that these n remaining 
Eloquet multipliers are exactly the eigenvalues to dTap(x*) given above). 

As a final note on the numerical computations, we remark that all computations were done on a 
VAX 11/780 which has a 32 bit word. Double precision was used throughout our calculations. The 
accuracy of the computed periodic orbits was monitored by comparing the results of collocation to 
those of multipoint shooting for the same set of parameter values. In addition, the Floquet multipliers 
of Eq. (B3) were used to monitor the accuracy of  the linear equation solvers. 
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