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Abstract. A stability condition for Hopf-bifurcating solutions from the uni- 
form equilibrium of clasical Lotka-Volterra interaction-diffusion equations 
is presented. Using this condition, it is shown that stable spatio,temporal 
oscillations exist in the framework of such equations. 
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I. Introduction 

The population dynamics of J interacting species which disperse by diffusion 
are modelled by Lotka-Volterra interaction-diffusion equations in a bounded 
domain O c R  N. 

OU------Ji-~- o-iAui q - f / ( U l ,  . . . , Uj)Ui, 
ot  

x ~ 2 ,  t>O. 

i = 1 , 2 , . . .  ,J ,  

(1.1) 

(Skellam, 1951; Segel and Jackson, 1972; Levin, 1974; Steele, 1974; Okubo, 1980; 
and others). Here, ui= u~(x, t) is the density of the i-th species at position 
x = (x~,  x2 . . . .  , x N ) '  and at time t, which is assumed to satisfy Neumann boundary 
conditions: 

Oui/On = O, i = 1, 2 , . . . ,  J. (1.2) 

In the case of J = 1, the non-existence of stable spatially non-constant equili- 
brium solutions for these equations has been settled in convex domains (Casten 
and Holland, 1978; Matano, 1979) as well as in one dimensional domains (Chafee, 
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1975). In the case of J = 2, non-existence of such solutions has also been settled 
both for 

1) predator-prey dynamics with intra-specific competition in arbitrary 
domains (Rothe, 1976, Leung, 1978; Mimura and Nishida, 1978, Williams and 
Chow, 1978; Mimura, 1979; 
and for 

2) competitive dynamics in any convex domains (Kishimoto and Weinberger, 
submitted for publication) as well as in one dimensional domains (Kishimoto, 
1981). 

Thus in the framework of (1.1) and (1.2) with two or less species, stable 
non-constant solutions are realizable only in suitable non-convex domains 
(Matano, 1979), or under more special assumptions of intraspecific cooperation 
(Segel and Levin, 1976; Mimura et al., 1978). Even for J~>3, until recently, only 
sufficient conditions for the global convergence to a constant equilibrium were 
known (Murray, 1975; Jorne and Carmi, 1977; Hastings, 1978, Conway et al. 
1978, and others). These results gave a basis for introducing a more complicated 
framework of cross diffusion (Shigesada, et al., 1979; Mimura, 1981) or of a 
spatially non-'constant environment (Fleming, 1975; Fife, 1982) to explain the 
spatially non-constant distribution of species. 

However, it was found recently, that for J~>3 the simplest system of (l.1) with 
(1.2) can have stable non-constant equilibrium solutions: the diffusive instability 
takes place not only for systems with intraspecific cooperations in one or more 
species (Evans, 1980), but also for systems with intraspecific competition for all 
species. In fact, Kishimoto (1982) gave such examples, and showed that the 
equilibrium bifurcating solution is stable. 

Thus, an interesting problem is whether the system can also have more 
complicated solutions. The purpose of this paper is partially answer this problem 
positively by showing that (1.1) and (1.2), in fact, has solutions with stable 
spatio-temporal oscillations. Since the bifurcation technique is employed, we first 
give stability conditions for the Hopf-bifurcating solutions from a uniform equili- 
brium, assuming that the nonlinear term f in (1.1) have the form of clasical 
Lotka-Volterra dynamics: 

J 

f / ( u  1 . . . . .  Uj) =pi+ • aquj. 
j = l  

We then give three examples of the system with this nonlinear term which have 
stable bifurcating solutions: one has a one predator-two prey interaction, another 
a two predator-one prey interaction, and the third competitive interactions among 
four species. 

These results, together with the recent discoveries of regular and irregular 
oscillations of the ordinary Lotka-Volterra system (May and Leonard, 1975; 
Nakajima, 1978; Arneodo et al., 1982; and others) suggest the possible im- 
portance of the further investigation of the system of clasical Lotka-Volterra 
dynamics. 

We are concerned only with the mathematical analysis. For the observational 
aspect of these phenomena in the field, we only recommend references such as 
Schoener (1974). 
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2. The equations and its stability criterion 

In  this section, a stabili ty cri terion for  the solut ion bifurcat ing f rom a spatial ly 
cons tant  equi l ibr ium solut ion of  the diffusive Lo tka -Vol te r ra  system is given by  
fol lowing the well known  me thod  of  integral  averaging (see C h o w  and Mallet-  
Paret, 1977). Cons ider  the diffusive Lo tka -Vo l t e r r a  system paramet r i zed  by/ . t  in 
a one-d imens iona l  interval:  

( ~ Oui(x, t)/Ot= (O'i-~ [.Z~/i)Al~li(X , t)~- ri-~-j~l 

(2.1) 
O<x<Tr ,  t>O, i =  1 , 2 , . . . , J .  

Here,  u~(x, t) is the densi ty  of  the itb species at t ime t and at posi t ion x. The 
diffusion coefficients cr~ and  ),~ (i = l, 2 , . . . ,  J )  are posit ive constants.  The  diagonal  
coefficients a ,  (i = l, 2 , . . . ,  J )  are non-pos i t ive  constants,  which reflect intra- 
specific compet i t ion ,  while the off-diagonal  coefficients aq(i~j) are any real 
va lued constants.  This means  that  the interspecific relatons may  be competi t ive,  
cooperat ive ,  p reda to r -p rey  type or combinat ions .  The solution u -- (Ul, u2 . . . .  , u j ) '  
is always assumed to satisfy N e u m a n n  b o u n d a r y  condit ions:  

Ou(x, t)/Ox=O, x = 0 ,  ~'; t>0 .  (2.2) 

where  ' means  the t ranspos i t ion  of  a vector.  
Assume that  (2.1) has a spatial ly constant  equi l ibr ium solut ion Uo = 

(Uol, Uo2, . . . ,  Uoj)' (Uoi>0, i = 1, 2 , . . . ,  J )  which is i ndependen t  of /x,  so that  (2.2) 
can be writ ten as 

J 

OuJOt=(tri+lx%)Au~+ Y. a~(u/-uoj)U~, i = l , 2 , . . . , J .  
j=l 

By using J x J matr ices A = (a~) together  with J x J d iagonal  matr ices  D, G and 
U whose  (i, / ) - componen t s  are, respectively,  tr~ Ys and  u~(x, t), the system (2.2) is 
rewrit ten into a more  compac t  form:  

Ou/Ot = (D +/~ G)Au + UA(u - Uo). (2.3) 

The per turba t ion  system of  (2.3) a round  Uo and its associa ted e igenvalue p rob lem 
are, respectively,  writ ten as fol lows: 

0v(x, t)/0 t = (D +/~ G)Av + UoAv, (2.4) 

A (/x)p(/x) = - n2(D + /xG)  + UoAp(/x), n = 0, 1 . . . .  , (2.5) 

where  v = (vl, v2, �9 �9 �9 vj) ' ,  p = (Pl, P2, �9 �9 �9 PJ)' and Uo is the d iagonal  matr ix  whose 
(i, / ) - componen t s  are Uoi. 

Assume that  
A I )  for  some n = N > 0 ,  there is a real n u m b e r  6 > 0  such that,  for  any/ . t  with 

- 6 < / x  <6,  the e igenvalue p rob l em (2.5) has a unique pair  of  complex  conjugate  
eigenvalues ho(/.t) and ho(/X) such that  ho(/X) = ao(~)  + itoo(/.t), where  tOo(0) = tOo>0, 
C~o(O) - -0 ,  d a ( ~ ) / d ~ l ~ = o >  0. 

A2)  all the eigenvalues except  for  Ao and ho have  strictly negat ive  real parts  
for  any  n. 
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Then, a periodic bifurcating solution exists in the neighborhood of/z = 0; the 
first approximation is given by n = e(~b cos(toot - to) + ~  sin(toot - to)), where ~ + 
iO = (~bl, ~b2,. �9  ~bj)' +i(~0~, ~b:,. . . ,  qJl)' is the eigenvector corresponding to the 
eigenvalue )to. 

The calculation of the stability criterion for the bifurcating solution by the 
method of averaging (Chow and Mallet-Paret, 1977) is routine, but is rather long. 
We only give the final result. 

Let P be a J • J matrix such that its first column is ~,  the second column is 
~, and the other j th  columns (j = 3, 4 . . . .  , J)  are ~j, where ~ is taken so that 
P - l ( - N 2 D  +UoA)P = A. Here, (0 o01 

A =  too 0 

0 A3 
where A3 is ( J - 2 ) •  ( J - 2 )  matrix. Let @ be the (i,y)-components of p-1. We 
define a square symmetric matrices Bk = (bkij)(k = 1, 2) by bk, = (ckia~ + aj~ckj)/2. 
Denoting by �9 and ~ ,  respectively, the diagonal matrices whose (i , /)-components 
are 4~ and Oj, we have a quantity K as 

K = -(~b'B~ +,'B2){(UoA) -1 + (1 /2 ) ( -4N2D + UoA)-I}(1/4)((I~A~ + XIrAt~) 

- Re[{(d~'B1 - O'B2) + fr0'B, + ~b'B2)} 

�9 {(-2itoo +UoA) -~ +(1/2)(-2itoo-4NZD +UoA) -~} 

+ ( 1 / 8 ) ( ~ -  iaIt)A(~b- i0). (2.6) 

If  K < 0 ,  the bifurcating solution is stable, while if K > 0 ,  it is unstable. 

3.  E x a m p l e s  

In this section we show, by giving examples, that the system (2.2) and (2.3) with 
intra-specific competition can really have a stable spatio-temporal oscillation 
Hopf-bifurcating from the spatially constant equilibrium Uo, under the ecologically 
plausible assumptions on its interspecific interactions. We also give some consider- 
ations on the behavior of  the solutions�9 

Example I (I predator-2 prey case) 

Consider the case: 

(316 ) ( 0 )  
D = 3 1 6  , G = 0 , 

2844 1 

( i )  ( - 6 3 2  10112 2212 
no = , A =  - 1 5 8 0 0  -948 -9401 

-2528 -12  008 -8532 

. 

The first species S 1 is predator while the second $2 and the third S3 are preys. 
The two preys are competing. In this competition, $3 always goes to extinction 
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in the absence of the predator. Since the existence of the predator  relaxes this 
competition, the system has unique stable constant coexisting equilibrium Uo for 
/z < 0. We also remark  that the parameters  are set so that each prey can thrive 
by itself, while the predator  cannot survive in the absence of its prey. 

The characteristic equation (2.5) obtained from u0 is 

det(A I + N2(D +/z G) - UoA) = A 3 + {(3476 +/z) N 2 + 10 112}A 2 

+316{(6004 + 2/x)N 4 

+(32 864+ 5tz)N 2 +210 614}A 

+ 99 856{(2844 +/z) N 6 + (22 752 + 5 / ~ ) N  4 

+(4 270 582 + 1606/z)N z +6 431 548} = 0. 

The bifurcating solution is given by 

u = Uo + e2{(-83 424, - 3 9  685, 74 260)' cos(158~/3-~t  - to) 

+~/3~-8(-316, 1343, -316) '  sin(158~/3158t - to)} cos x + O(e3). (3.1) 

Using these values, the K in (2.6) is given by K = -  1.03314596. �9 �9 x 1012, and 
the u is stable. 

Let us rewrite (3.1) into the following from: 

u = no + e 2(85 293.0 . . .  cos(158~/3158 t + 2.931 8 5 . . .  - to), 

85 256.5 . . .  cos(158~/3158t- 2.054 61 . . . - t o ) ,  

76 353.7 . . .  cos(158~/3158 t + 0.234 724 . . .  - to))' cos x 

+ O(e3). (3.2) 

From (3.2) one sees that the species pass the peaks of  their prosperity in the 
order of  $3, $2, $1, $3 . . . . .  This ordering is the only one which satisfies the 
plausible condition that $2 supersedes $3. Numerical computations show that 
stable large amplitude oscillations exist for larger values of/z. We give the portrait 
of  the u for /x = 6 in Fig. 1. One can check that the ordering $3, $2, S1 is also 
valid in this case. 

Example 2 (2 predator-1 prey case) 

D =  t ,80 90 14401 0 ( ~ I 
Uo 

(i) ( 90 450,80, 
= , A =  17 280 -270  - 5 9 4 0 / .  

3780 -1337 - 2 1 6 0 /  

The first species is prey while the other two species are predators. The system 
has unique stable constant equilibrium solution no. The characteristic equation 
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r_ 

Fig. 1. Portrait of the Hopf-bifurcating solution of Example 1 when/z = 6. 

(2.5) obta ined  f rom Uo is 

det()t I + N~(D + tzG) - UoA) = ,~3 +{(1710 + / ~ ) N  2 + 2520}ff  

+90{(4500 + 3 / z ) N  4 +(12 870 + 4 /~)N 2 + 14 628})t 

+8100[(2800 + 2 / x ) N  6 +(14 400 + 7 / z ) N  4 

+(1 232 916 +9 63 /~ )N  2 +253 710} = 0. 

The bifurcat ing solut ion is given by 

u -~ Uo + e~((24 150, - 4 3  650, 46 235)' cos (6~/7-9-~ t  - to) 

+479995(10 ,  330, - 3 5 ) '  s i n ( 6 4 ~  995t - to)) + O(~3). 
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= Uo + e2(24 315.0 . . .  C O S ( 6 ~ / ~ t  -- O. 116 5 8 . . .  - to), 

103 037.7 . . .  C0S(6~/}-9 995 t -- 2 .0082. . .  -- to), 

47 282.8 . . .  cos(6~/79 995t +0.210 9 2 . . .  -- to))' cos x 

+ O(e3). 

Using these values, one sees that the value of K = -2.668 883 094 . . .  x 10 j~ assures 
the stability of u, and that the species pass the peaks of  their prosperity in the 
order of  Sl, $2, $3, S l , . . . .  

Example 3 (4 species case) 

Elementary calculations show that H o p f  bifurcation never takes place in the 3 
species competitive system. However, it takes place in the 4 species system. 
Consider the case: 

tl t t ~ i 1 G =  0 

D =  2 12 ' 0 1] '  

1 , 
Uo = A =  

- 1 5 - / 3  -13  - 3 0  -21 \ 

- 4 2  - 2 9 - / 3  - 3 6  -18  

-18  - 3 4  - 3 2 - / 3  - 2 8  ' 

- 5  -17  -27  - 2 6 - / 3  

where /3 =0.722 875 71 . . . .  In this system all the species are competing. In 
particular, the third species $3 expels the fourth species $4 in the absence of the 
other species. Similarly, the second species $2 expels $3, and the first $1 expels 
$2, while $1 and $4 coexist in the absence of the other species. The total system 
has unique stable constant equilibrium Uo for /x  <0. The characteristic equation 
(2.5) obtained from Uo is 

det(a I + N2(D +/xG)  - UoA) = A 4 + {(16 + / z ) N  2 + 104.891}I 3 

+{(53 + 4 / z )N  4 +(1246.69 +78.1686/z)N 2 

+ 566.335}A 2 

+{(62 + 5 /x )N 6 +(2678.62 +201 .783 /z )N 4 

+ ( - 2 0 5 3 . 6 6 -  355.555/z)N 2 + 12 384.8} 

+{(24 +2/~)N 8 +(1536.81 + 123.614/z)N 6 

+ (-3458.38 - 434.226/z)N 4 

+(165 854.04 + 13 394.5/x)N 2 +26 150.6} = 0. 
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The bifurcating solution is 

u = Uo + e2(( -0 .326 786, 1, - 0 . 3 3 4  960, - 0 . 2 7 4  405)' cos(10.3984t - to) 

+(0.795 896, 0, - 0 .846  634, 0.413 870)' sin(10.3984t - to)) 

+ O(e 3) 

= u0 + e 2(0.860 371 cos(10.3984 t - 1.960 39 - to), cos(10.3984 t - to), 

0.910 487 cos(10.3984t + 1.947 53 - to), 

0.496 574 cos (10 .3984 t -2 .156  2 7 -  to))' 

+ O(e3). 

Using these values, one sees that the value o f  K = - 1.089 352 7 . . .  assures the 
stability of u, and that the species pass the peaks of their prosperity in the order 
o f  $4, $3, $2, $1, $4 , . .  �9 �9 We remark that this order is compatible with the inter- 
specific relations which we mentioned above. We also remark that the phase shift 
between the coexisting pair $4 and $1 is rather small, which is also plausible. 
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