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A b s t r a c t .  An epidemiological  model  with both a time delay in the removed 
class and a nonl inear  incidence rate is analysed to determine the equilibria 
and their stability. This model  is for diseases where individuals are first 
susceptible, then infected, then removed with temporary  immuni ty  and then 
susceptible again when they lose their immunity.  There are multiple equilibria 
for some parameter  values, and, for certain o f  these, periodic solutions arise 
by H o p f  bifurcation f rom the large nontrivial equilibrium state. 

K e y  w o r d s :  Epidemiological  model  - -  H o p f b i f u r c a t i o n  - -  Nonl inear  incidence 
- -  Time delay 

1. I n t r o d u c t i o n  

In the epidemiological  model  considered here a constant  popula t ion  is divided 
into susceptible, infectious and removed classes. Let S(t) be the fraction of  the 
popula t ion  which is susceptible at time t, I( t)  be the infectious fraction and R(t)  
be the fraction which is removed with immunity.  The classes are disjoint so that 
these fractions add to 1. The model  is called an SIRS model  since susceptibles 
become infectious, then removed with temporary  immuni ty  and then susceptible 
again after the temporary  immuni ty  is lost. 

Modellers need to know how various formulat ions  of  epidemiological  models 
influence the global structure o f  the solutions. In particular, they need to know 
whether  the endemic equil ibrium state is stable or unstable and whether  or not  
there are periodic solutions. Periodic solutions have been found in various 
epidemiological  models with constant,  nonper iodic  coefficients. Hethcote  et al. 
(1981a) have found  that an SIRS model with bilinear mass action illS, where/3  
is the constant  contact  rate, and a time delay in the removed class can have 
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periodic solutions for some parameter  values. This time delay is reasonable when 
all individuals have approximately the same period of temporary immunity. Liu 
et al. (1986, 1987) have found that periodic solutions occur for some parameter  
values in an SIRS model with nonlinear incidence of the form fliPS q, p ~ 1. AS 
described in Liu et al. (1987), deviations from the bilinear mass action incidence 
rate due to saturation or multiple exposures before infection could lead to a 
nonlinear incidence rate/3IPS q with p and q near 1. 

It is natural to ask about the interaction of these two formulations, each of 
which leads to periodic solutions. Here an SIRS model with both a time delay 
in the removed class and a nonlinear incidence rate is analysed to determine the 
number  of  equilibria, their stability and the occurrence of periodic solutions by 
Hopf  bifurcation. References to other epidemiological models with time delays 
are given in the papers cited above. A survey of mathematical epidemiology 
models has been given in Hethcote et al. (1981c). A more recent survey of model 
formulations which can lead to periodic solutions is in Hethcote and Levin (1988). 

2. Formulation of the model 

As noted in the introduction, the total population is assumed constant and the 
three classes are disjoint; thus 

S(t) + I( t)  + R(t )  = 1. (2.1) 

The nonlinear incidence rate considered here is /3IPS where p is a positive 
constant. The power of  S has been chosen to be 1 since it has been shown in 
Liu et al. (1987) that the essential asymptotic behavior is independent of the 
power of  S. Individuals recover and are removed from the infectious class at a 
rate proportional  to the infective fraction with positive proportionality constant 
7- Since this assumption corresponds to a negative exponential distribution for 
the infectious period, the average infectious period is 1/3,. A constant period w 
of temporary immunity is assumed so that the probability P(t) of remaining 
immune t time units after becoming immune is 1 for 0 <~ t ~< to, and 0 for t > to. 
The contact number o-~ 13/y is defined as the product of the contact rate/3 and 
the average infectious period 1/3,. The ratio of  the period of temporary immunity 
oJ to the average infectious period 1 /y  is denoted by r=- wy. 

The initial susceptible and infective fractions are S(0) = So>~ 0 and I(0)  = Io ~> 
0. Let Ro(t) be the fraction of the initial population which is initially removed 
and is still removed at time t. The function Ro(t) is assumed to be a continuous, 
nonincreasing function with Ro(t) = 0 for t > w. For all t/> 0 the integral equation 
for I( t)  is 

f, I( t)  = Io e-~t+ /3IP(y)S(y) e -~(t-y) dy, (2.2) 
,JO 

where the first term on the right side corresponds to the removal of the initial 
infectives and the second term is the sum up to time t of those who became 
infected at time y and  are still infected at time t. The differential equation for 
I(t),  valid for all t~>0, is 

I'( t) = - y I (  t) + /3IP( t)S( t). (2.3) 
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For all t ~>O.the integral equation for R(t) is 

fo R ( t ) =  Ro(t)+y I ( x )P( t - x )  dx, 

so that I t 
Ro(t)+y fo I(x) dx 

R(t) = , 
y f I(x) dx 

for t ~< w, 

~ r t >  w. 
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(2.4) 

(2.5) 

+ ~ t ' ( y )  1 -  t ( y )  - ~, I ( x )  dx  e - ~ ' - ' ~  dy, (2.9) 
co 

E I J I ' ( t )=-yl( t )+flIP(t)  1 - I ( t ) - y  I(x) dx -~f(t,I). (2.10) 
t 

The integrodifferential equation (2.10) with p = 1 has been analysed in Hethcote 
et al. (1981a). The model analysed in Liu et al. (1987) does not contain a delay, 
but it does contain features such as vital dynamics (births and deaths), a power 
q on the S factor in the nonlinear incidence term, and an exposed class. Since 
these three features were not essential for the existence of periodic solutions in 
the model of Liu et al. (1987), we have not included them. 

We now show that our model is mathematically and epidemiologically well- 
posed. We use the methods of Hale (1977) and give only a brief outline of proofs. 

Theorem 2.1. The integrodifferential equation (2.10) with initial condition I(0) = Io 
has a unique solution which exists on a maximal interval. 

and 

I( t)= Io e-~t + I] fi lP(y)[1- I ( y ) -  Ro(y) 

fo J - y  I ( x ) P ( y - x ) d x  e-~'(t-Y) dy, 

[ fo ] I ' ( t )=-yI( t )+fl lP(t)  1 - I ( t ) - R o ( t ) - y  I ( x ) P ( t - x ) d x  ; 

so that for t 1> co 

(2.8) 

(2.7) 

The differential equation for S(t) is 

(-R'o(t) -fllP(t)S(t), for t ~  < co 
S'(t) (2.6) 

(7I( t -co)- f l lP(t)S(t)  for t >  co. 

Our model is defined by Eqs. (2.1), (2.3) and (2.5), but we can also write it 
as an integral equation or an integrodifferential equation in I(t). Using the 
relationships above, the equations for I(t) written as functions of I alone are 
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Proof. For p/> 1, the right side of (2.10) is Lipschitzian, since 

IIf(t, 11)--f(t, x2)ll <~ (y +/3p(2 + yto)+/3(1 + yto))II x,-/211 

where II X II-= sup_w_<,_<o IX(t)]. For p < 1, define a new variable U = 11-", as in Liu 
et al. (1986), then the equivalent integrodifferential equation for U is: 

u ' ( t ) = ( l - p )  - ~ , u ( t ) + / 3  l - U S ( t ) - ~ ,  -~o uS(x)  dx , 

where s = - ( l - p ) - 1 >  1. The right side of this is also Lipschitzian. Thus, by a 
standard theorem in Hale (1977), p. 42, on retarded differential equations, there 
is a unique local solution of (2.10) (with initial condition I ( 0 ) =  I0) for all p, 
which exists on a maximal interval. 

Theorem 2.2. The region 

B = - { ( S , X , R ) : O < ~ S < ~ I , O < ~ X < ~ I , O < ~ R < ~ I , S + X + R = I }  (2.11) 

is positively invariant with respect to the system (2.1), (2.3), (2.5). 

Proof  Considering separately the boundary points of B where Xo = 0, where So = 0 
and where Ro(0) = 0, we see that no solution can exit the region from the boundary. 
Also, if the initial point (Io, So, Ro(0)) is an interior point of B, define T =  
inf{ t>01S( t )X( t )R( t )  =0} and assume T is finite. Assuming R ( T ) = 0  (and so 
I ( t )  > 0  on [0, T)), contradicts (2.5). Similarly, assuming X ( T ) =  0 or assuming 
S(T)  = 0 leads to a contradiction; thus T does not exist, and so the solution must 
stay in the interior of B for all finite time. By Hale (1977), p. 42, the solution 
must be continuable for all t, thus the maximal interval in Theorem 2.1 is [0, ~) .  

3. Equilibrium states 

The system of equations derived in the previous section always has the trivial 
equilibrium which corresponds to the disease dying out. An endemic (nontrivial) 
equilibrium corresponds to persistence of the disease. Using the method as in 
Liu et al. (1986, 1987), the number of such equilibria can be determined. Recall 
or---/3/% r~-toT; the results are now summarized. 

Theorem 3.1. Let tr* =- pP(1 + r) p 1/(p _ 1)p-1. The system (2.1), (2.3), (2.5) always 
has the disease-free equilibrium (S, I, R) = (1, 0, 0), and i f  

(i) p < 1, then it has 1 nontrivial, equilibrium, 
(ii) p = 1 and cr <~ 1, then it has no nontrivial equilibrium, 

(iii) p = 1 and or> 1, then it has 1 nontrivial equilibrium, 
(iv) p > 1 and cr < or*, then it has no nontrivial equilibrium, 
(v) p > 1 and t~ = tr*, then it has 1 nontrivial equilibrium, 

(vi) p > 1 and cr > or*, then it has 2 nontrivial equilibria. 
When a nontrivial equilibrium exists it is given by (Se, Ie, Re), with Re = rIe, 
Se -- 1 - (1 + r ) Ie and/3IPSe = Tie. Thus Ie # 0 satisfies the equation 

l ~  -1 - (1 + r)I~ = 1 / ~ .  ( 3 . 1 )  

The surface o- = o-* in or, p, r space is called the saddle-node bifurcation surface, 
by analogy with the model with no lag; it is shown in Fig. 1. When p =  1, 



Epidemiological model with time delay 53 
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Fig. 1. The saddle-node bifurcation surface o-= o-* (chopped at r = 0 and 15) 

1.10 

cor responding  to the case of  bi l inear  incidence as considered by Hethcote  et al. 
(1981a), the unique nontr ivial  equi l ibr ium for  o ->1  is given by If = 
(1-1/~r) / ( l+r) .  When p > l  and o,=~r*,  then (3.1) has the unique solut ion 
If = I m  = (1 - 1/p)/(1 + r), giving Sm= 1/p. For  p > 1 and ~r> o,*, (3.1) has two 
solutions,  11, I2 where  I lC  (0, Ira) and I26(Im, 1 / ( l + r ) ) ;  see Liu et al. (1987), 
Fig. 1. 

4. Stability of the disease-free equilibrium 

To examine  local stability of  the disease-free equi l ibr ium which is (S, I, R ) =  
(1 ,0 ,0 ) ,  it is convenient  to define g ( I ) ~ I  p and to write (2.10) in the form 
(valid for  all t>~ w) 

I ' ( t ) = - y I ( t ) + g ( I ) [ 1 -  l ( t ) -~ ,  f~o I ( t+u)  du 1. (4.1) 

This is now linearized a round  the equi l ibr ium value, I = 0, to give 

I'(t) = ( - y +  g'(O))I(t). (4.2) 

Examin ing  this equat ion gives the fol lowing results. 

Theorem 4.1. Local asymptotic stability of the disease-free equilibrium of the model 
(2.1), (2.3), (2.5) is independent of the lag w, but depends on p in the following way. 
If 

(i) p < 1, then the disease-free equilibrium is unstable, 
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(ii) p = 1, then the disease-free equilibrium is locally asymptotically stable if  
o--=/3/3,<1, 

(iii) p > 1, then the disease-free equilibrium is locally asymptotically stable. 

Note  that  in the case p = 1, 0- is a threshold pa rame te r  which determines  whether  
the disease dies out ( 0 - ~ 1 )  or remains  endemic  (0-> 1). Such a threshold  is 
c o m m o n  in epidemiologica l  models  (see, e.g., Hethcote  (1976)); but  this threshold 
does not  occur  in our  mode l  for p # 1. 

For  p = 1, a s t ronger  result  is true (Hethco te  et al. (1981a)). The disease-free 
equi l ibr ium is in fact globally asymptot ica l ly  stable for  o-~< 1. A more  restrictive 
result for  p > 1 can be derived by  similar use of  a Lyapunov  funct ion,  see also 
Liu et al. (1987). 

Theorem 4.2. I f  p > 1 and 0- < 0-1 -= PP/ (P  - 1) p-l, then all solutions o f  the model 
(2.1), (2.3), (2.5) which start in the feasible region B given by (2.11), approach the 
disease-free equilibrium, that is (S, I, R)  = (1, 0, 0), as t~oo.  

Proof Consider  the L y a p u n o v  funct ion I, then f rom (2.8) 

I ' ( t ) =  y I ( 0 - I P - l [ 1 - l - R o ( t ) - 3 "  fo  l ( X ) P ( t - x )  d x ] - l )  

<~ 3"I(0-IP-l[ i - I]  - 1) <~ yI(o'/0-1 - 1), 

since I P - ~ - I  p has its m a x i m u m  value 1 /o  5 when  I =  1 - 1 / p .  So for  p >  1 and 
0-< 05, I ' ~  < 0. Since 0- < o-1, equali ty for  I ' =  0 holds only when I = 0, which 
implies that  R = 0. Thus (S , / ,  R)  = (1, 0, 0) is the largest invar iant  subset  in the 
set where  I ' - - -0 .  By using a s tandard  L y a p u n o v  theo rem (Hale  (1977), p. 119), 
the above result is proved.  

We conjecture  that  the result  is true for all or < 0-*, but  our  p r o o f  technique limits 
the range to 0- < 0-~. 

5. Stabi l i ty  o f  endemic equil ibria 

The local stability of  a nontr ivial  equi l ibr ium Ie is examined  by  l inearizing about  
the endemic  equil ibrium. This gives the characteris t ic  equat ion  

A + y + # I~  - ~pSelPe -~ + y~ I  p 

Setting wA =z ,  gives 

zl (0-, z) -= z +  a + c(1 - e -Z ) / z  = O, 

where 

and 

thus 

(1 - e -~ 
= 0 .  

A 

a -= r + O)fllPe -- ooflpSeI~ -1 = r(1 - p  + 0-I~), 

c -= rwfllee = r20-I~ > 0; 

(5.1) 

(5.2) 

(5.3) 

c = ar+ rZ(p - 1). (5.4) 
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Equation (5.1) has a zero root itt a + c = 0 ,  which (from (5.2), (5.3)) is 
equivalent to 1 - p  + O-IeP(1 + r) = 0; which is true for Ie =Im on the saddle-node 
bifurcation surface where o- = or*. Complex (including nonzero purely imaginary) 
roots of (5.1) occur in conjugate pairs. To locate the purely imaginary roots, set 
z = iy (y > 0) in (5.1) multiplied by z. Then equating real and imaginary parts gives 

y:  y sin y 
C = l _ c o s y  a -  1 - c o s y  y ~ (0, 27r), (5.5) 

as parametric equations for the lowest neutral surface. The characteristic equation 
(5.1) is a special case of  an equation considered by Hethcote et al. (1981b, 
Appendix) and by Brauer and Ma (1987). However, since it plays a vital role in 
subsequent analysis here, we redraw part of  this imaginary root curve as our Fig. 
2, and restate the following results. 

Theorem 5.1 (Hethcote et al. 1981b). 
(a) a + c = 0  /ff (5.1) has a zero root. 
(b) The roots of  (5.1) with Re z>~O lie in a bounded domain, so no such root 

can come in from infinity. 
(c) I f  a + c < O ,  then (5.1) has at least one positive real root. 
(d) I f  a + c > O ,  a > 0  and c<a2 /2 ,  then all roots of  (5.1) have negative real 

parts. 
(e) I f  a + c > 0 ,  a < 0  and c < a : / 2 ,  then (5.1) has exactly two roots with 

nonnegative real parts. 
(f) I f  a + e > O  and the point (a, c) lies below the imaginary root curve given 

parametrically by (5.5), then all roots of  (5.1) have negative real parts. 

o / 
\~ / 

\ 3o / 
\~ / / 

\,\ ~o- / /1 'o=  ~- 

a+c:O ~ \, ~r2 / / 

"'""~, ~I / 
, ,-2. a> . + ~  I . . / "  

i 

1'o a 

Fig. 2. The imaginary root curve (5.5) for  (5.1) with y c ( 0 , 2 7 r ) .  As y ~ 2 ~ r - ,  the neutral  curve 
approaches  c = a2/2, shown  here as a broken curve 
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We use Fig. 2 and the above statements to prove the following local stability 
results. 

Theorem 5.2. I f  p < 1 and r <- 2 or / fp  < 1/2, then the unique endemic equilibrium 
( Se, Ire, Re) is locally asymptotically stable. 

Proof When p < 1, a > 0 and so a + c > 0. For a purely imaginary root the line 
given by (5.4) with slope r and negative intercept on the c axis must intercept 
the neutral curve. But the slope of the imaginary root curve is 2 at a = 0 and is 
greater than 2 for a > 0 ;  see Fig. 2. For r<~2 such an intersection is impossible. 
Thus by Theorem 5.1(f), all roots of  (5.1) have negative real parts; thus the unique 
endemic equilibrium (as found in Sect. 3) is locally asymptotically stable. The 
condition c < a2/2 in Theorem 5.1(d) in combination with the line (5.4) requires 
that a2-2ra+2r2(1 -p )>O.  This is certainly true for p < l / 2  (for any r > 0 ) ,  
which completes the proof. 

As p --> 1- with ~r < 1, Ie~  0 SO that the endemic equilibrium coalesces with the 
disease free equilibrium. Note that in the model with no delay, Liu et al. (1987) 
find that the unique endemic state is locally asymptotically stable for all p < 1. 
The case p = 1 with delay is given in Hethcote et al. (1981a). 

Theorem 5.3. I f  p > 1 and cr > ~*, then the smaller endemic equilibrium 11 ~ (0, In) 
is unstable. 

Proof When p > 1 and or > o-* and Ie = I1 < Ira, then 

a + c < r(1 - p )  + r(r+ 1)Im/Sm = r(1 --p) + r(1 -- Sm)/Sm. 

But Sm = I/p, so a + c < 0 .  Thus by Theorem 5.1(c), Eq. (5.1) has at least one 
positive real root, and so the smaller equilibrium 11 is always unstable. 

As p--> 1 § I1-> 0 so that the smaller endemic equilibrium coalesces with the 
disease free equilibrium. For p > 1 and o- > o-*, the larger equilibrium value of 
Ie, namely I2c(Im, 1 / ( l + r ) )  makes a + c > 0  with a > 0  if o~> c r*( l+r ) .  Thus 
the local stability of  12 is more complicated. The following theorem gives a 
sufficient condition for stability which is proved by considering the slope of the 
neutral curve in Fig. 2 and the line c = ar+ r2 (p -  1) as in Theorem 5.2. 

Theorem 5.4. I f  p > 1, ~r > ~r* and r < min{2, zr / ( 2 p -  2)1/2}, then the larger endemic 
equilibrium 12 is locally asymptotically stable. 

I f  r > 7r/(2p -2)1/2, the line c = ar + r2(p - 1) always intersects the imaginary root 
curve, so the equilibrium 12 is unstable for some parameter  values and stable for 
others. 

6. Hopf bifurcation 

For values o fp  > 1 when o- > o-*, Hopfbi furcat ion  may occur at the larger endemic 
equilibrium /2 as a conjugate pair of  roots of  the characteristic equation cross 
the imaginary axis, and a similar possibility exists for the unique endemic 
equilibrium for p c (1/2, 1]. The Hopf  bifurcation surface in pcrr space (i.e. where 
two conjugate roots of  the characteristic equation (5.1) are purely imaginary) is 



Epidemiological model with time delay 57 

10 p = 0.75 / p  = 1.0 

~ ~ / ~  p = 1.5 

(. / p=2.0 

<~ ~p=2.5 

10 20 30 4 0  

r=2.0 

. r  

f J  
r = I0.0 

10 20 30 40 

1 8 

6 

4 

2 

= 5.0 

.0 

a = 2 0 . 0  

1 2 5 

C p 

Fig. 3a--c. C r o s s - s e c t i o n s  o f  the  H o p f  b i f u r c a t i o n  su r f ace  cr = or** t r u n c a t e d  at  r = 10 a n d  o- = 40. The  

in te r io r  s t a r t i ng  po in t s  c o r r e s p o n d  to the  in te r sec t ion  wi th  the  s a d d l e - n o d e  b i f u r c a t i o n  su r f ace  cr = o'*. 

a p f ixed at  0.75, 1.0, 1.25, 1.5, 2.0, 2.5; b r fixed at  2.0, 4.0, 10.0; ccy  fixed at  5.0, 10.0, 20.0 
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denoted by o-**(p, r). Cross-sections of this Hopf  bifurcation surface are shown 
in Fig. 3. The results of numerically computing the Hopf  bifurcation surface o-**, 
the direction of bifurcation and the stability of the bifurcating periodic solutions 
are given in Sect. 7. 

The following lemmas give results necessary to establish the existence of a 
Hopf  bifurcation. 

Lemma 6.1. I f  iy with y > 0 is a root of (5.1), then it is a simple root, and no integral 
multiple of iy is a root. 

Proof. Assume that zA (or, z) = 0 has a double (multiple) root, then 2z + a + ce -z = 
0. Together with (5.1) this gives 

z 2 + ( 2 + a ) z + a + c = O .  (6.1) 

Setting z = iy, y > 0, equating real and imaginary parts gives y2 = a + c and a = -2 .  
But a = - 2  implies c = 2 (see Fig. 2), and so y = 0. This contradicts our assumption 
(5.5) on y, and proves that iy must be a simple root. From (5.5) 

y2 = 2c - a 2, (6.2) 

which is positive because the imaginary root curve in Fig. 2 is above the parabola 
c = a2/2. Given fixed parameters p >  1, or> or* and r, a value of 12 is uniquely 
determined from (3.1), thus a unique value of y > 0 results from (5.2), (5.3) and 
(6.2). Similarly for p ~ (1/2, 1] because there is a unique nontrivial equilibrium. 
Thus no integral multiple of iy can be a root. 

Lemma 6.2 (Transversality Condition). The real part of a characteristic root of 
(5.1) changes sign as the imaginary root surface o'** is crossed. 

Proof Taking the partial derivative of zA(o', z ) =  0 and using (5.1) to eliminate 
the exponential term, gives 

( z 2 + ( 2 + a ) z + a + c )  OZ+(Oaz-OC ( z2+az~ l=O.  
0o" \0o-  ,90" \ c c / /  

From Lemma (6.1) the coefficient of the partial derivative of z is nonzero at an 
imaginary root. Dividing, taking conjugates, using (6.2) and (5.4) gives 

sgnx ' (c r**)~-sgn(Re0~ ) a t z =  iy, y>O, 

= s g n [ ~ ( r ( a + c ) - c ( 2 + a ) ) ] .  

By differentiating (5.2) and (3.1), it can be shown that 

Oa c pc 
- - =  4- > 0  
atr r~r o- (a+c)  

because (a + c) > 0 in the region of interest. Thus 

sgn x'(o-**) = sgn[r(a + c) - c(2+ a)]. (6.3) 
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Now, considering p fixed, and differentiating (5.4) with respect to y, gives 

Oc Oa Or 
- - -  r - -  = (a + 2r(p - 1)) - - .  
Oy Oy Oy 

So Or/Oo-= 0 iff Or/Oy = 0 iff Oc/Oy-r Oa/Oy = 0. (Note that on the imaginary 
root curve the term a +2 r (p -1 )  is positive, for all p > l / 2 . )  But, from the 
definitions of a and c, Oa / Oy = ( a + c ) / y and Oe / Oy = e(2+ a ) / y. Hence Or~Oct = 0 
iff c(2+ a) - r(a + c) = 0. It follows that the minimum point of the imaginary root 
curve in the o-, r plane (for fixed p) occurs when r = c(2+ a)/(a + c). From (6.3), 
x'(cr**) changes sign at this v~ilue of r, that is at the minimum point of the r(o') 
curve. The complex conjugate pair has negative real part below (outside) by 
continuity and Theorem 5.4, and so positive real part above (inside). Thus the 
transversality condition is verified. 

The nontrivial equilibrium point (Ie for l < p  ~< 1 and 12 for p > 1) is locally 
asymptotically stable for parameter values outside the Hopf bifurcation surface 
o-** and is unstable for parameter values inside the cr** surface. 

We use the Hopf bifurcation theorem for functional differential equations as 
formulated by Stech (1985). To cast our model in the correct form, we take (2.10), 
and let I = Ie(1 + X ) ,  where Ie is the unique [resp. larger] nontrivial solution of 
(3.1) when p ~< 1 [resp. p >  1]. Rescaling time by setting t = w~- and defining 
X~(u) = X ( r +  u), gives 

( I ) X'('r)=r(p-1)X~(O)-o-rlP~ X,(O)+r X~(u) du +H(cr, X~). (6.4) 1 
The nonlinear part is 

H(o', ~O) : r[(1 + ~O(0)) p - 1 -p~O(0)] 

ro-IP~[p~b(O)+p(p 1)02(0)/2+ .][~0(0)+r f ;  1 du] . . . .  ~(u) 

-= H2(6, 0 ) +  H3(q,, 6, 0 )+"  �9 �9 (6.5) 

where ~ is a o--dependent, symmetric, bounded j-linear form (as in Stech 1985, 
(2.2)). 

Here these forms are 

Ha(~tl, ~2) rp(p-l____~)2 I/]l(0){//2(0)--T[P~l(0)][~O2(0)br f r ~ r i  p o q~2(u) du] 
--1 

[ fo 1 2 [p62(0)] ~l(0)q-r ~l(U) du , 
-1 

r p ( p - 1 ) ( p - 2 )  
H3(~,, ~2, r  ~P1(0)62(0)03(0) 

6 

r~ P ( p -  l) { ol(O)4'2(O)[ O3(O)+ r qJ3(u) du] 

+~l(O)~3(O)[~2(O)q-r f~l ~2(u) du] +~2(O)~3(O) 

"[~l(O)+rf~1~Ol(u)du]}. 
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The linearized problem from (6.4) and the characteristic equation have been 
considered in Sect. 5. Since (6.4) is a scalar equation, ~ and ~:* in Sect. 2 of Stech 
(1985) are chosen to be 1. We use Theorem 2.1 and Remarks 2.2 and 2.6 in Stech 
(1985) to obtain the theorem below. The lemmas above show that the hypotheses 
are satisfied. 

Theorem 6.3. With the notation above, there is an e > 0 and a real solution 
X(r,  or, C, o~) defined for real C, I f l  < e, Iv - y l  < e, I ~ -  ~**1 < e and re  ~, such 
that (6.4) has a 27r/ v periodic solution, namely 

X ( r ,  o', C, v ) = 2 C  c o s ( v r ) + O ( C  2) 

where 

with 

v = y(o-) + Im{M3(~r, y(~r))}C2 + ~(C4), 

M~(~, ~) =- N~(~, ~)/aa/oz(~, z), N3(< ,,) - 3H~(,p, q,, e)  

+ 2H2(~#, A2,2 e2 ' ' )+2H2(% A2,o), 

~(s )  -~ e 'v~ for  s <~ 0, A2,2 -= Hz(q~, ~) /A (or, 2iv), 

and A2 ,o-  2H2(~0, ff)/A(o-, 0). Also K3(o-) ~ Re{M3(o-, y(o-))} and, in the generic 
ease when K3(o'**) ~ 0, 

x ' ( ~ * * ) ( ~ -  ~**)11/2 
c = 

For sgn{x'(cr**)K3(tr**)} < 0 [ resp. >0] the bifurcation exists for  o- > ~r** [ resp. 
o'< tr**]. When/(3(0-**)  < 0  [resp. >0] the bifurcation is orbitally asymptotically 
stable [ resp. unstable]. 

Note that, to find the direction of the bifurcation, we require only the sign of 
x'(tr**), which can be found from (6.3). Also A(tr, z) is given by (5.1) and 

a a / a z = 2 + a + z + ( a + c ) / z  

(cf. Lemma 6.1) with z = iy on the imaginary root curve. The ~ required to 
compute K3(o-**) are calculated as: 

H2(~, q~) = iyp - rp(p - 1)/2, 

H2(ff, A2,2 e 2~y*) = A z , 2 p [ - r ( p  - 1) + iy - A(cr**, 2iy)1/2, 

H2(~o, qS) = - r p ( p  - 1)/2, 

H2(~, a2,0) = a2 .op[ - r (  p - 1) - a + iy ]/ 2. 
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7. Numerical calculations 

The results in the previous sections allow us to calculate the H o p f  bifurcation 
surface o-**, the direction of bifurcation and the stability of  the bifurcating 
periodic solutions. It is convenient to generate o-**(r ,p)  by calculating cross- 
sections for fixed p. For fixed p > 1, the quadratic equation (5.4) for r has one 
positive real root. Thus each y ~ (0, 27r) gives values of a and c in (5.5) which 
lead to a unique positive value of r. For p = 1 Eq. (5.4) has the unique root 
r = c / a  = - y / s i n  y which is positive for y c (Tr, 27r). For �89 < 1, Eq. (5.4) has 
two real roots iff a 2 -  4 ( 1 - p ) c  ~ 0 which is equivalent to cos y/> 3 -  4p. In this 
case for y c ( 2~ - - a r c  c o s ( 3 - 4 p ) ,  2~-), the smaller r root of Eq. (5.4) generates 
the lower right part of the imaginary root curve and the larger r root generates 
the upper  left part. 

Thus for fixed p, each y value determines values of  a, c and r. By combining 
(3.1) and (5.3) we find 

F1+(,+r)q.FLl'-. 
L r2 j Lr=j (7.1) 

Hence the cross-sections in the o~r plane of the Hopf  bifurcation surface for fixed 
p are generated as y takes on different values. Cross-sections for fixed r are 
generated by varying y ~ (0, 27r), solving (5.4) for p and then using (7.1) to find 
or**. Cross-sections for fixed ~r are generated by varying y ~ (0, 2~-) and solving 
(7.1) iteratively for r while using (5.4) to find p in terms of r and y. These 
cross-sections are shown in Fig. 3. The interior starting points of  the H o p f  
bifurcation cross-section curves in Fig. 3 correspond to the intersection of cr = o'** 
with the saddle-node bifurcation surface o-= ~r*. In Fig. 3a the left part  of the 
p = 1 curve approaches ~r = 1 as r approaches infinity, but the left part of the 
p = 0.75 curve eventually curves back to the right as r increases (the asymptotic 
behavior is given in the Appendix).  

The quantities sgn{x'(~r**)} and K3(o-**) are evaluated numerically using 
(6.3) and the formulae in Sect. 6. The calculations verify the result proved in 
Lemma 6.2; namely, that sgn{x'(o-**)} is negative for cr to the left of  the minimum 
point of  the imaginary root curve in the ~rr plane and is positive to the right. For 
�89 ~< 1, K3(cr**) is usually negative so that the bifurcating periodic solutions 
are orbitally asymptotically stable and occur for parameter  values above (inside) 
the H o p f  bifurcation surface, but /s can be positive. For example, if p = 0.75, 
then K3 is negative along the cross-section curve in the ~rr plane except on the 
upper  left portion between (1.35, 14.5) and (1.28, 53.5). For p > 1, K3(~r**) is 
negative except when y is near 2~-. Thus fo rp  > 1 the bifurcating periodic solutions 
are usually orbitally asymptotically stable and occur for parameter  values above 
the H o p f  bifurcation surface, but for large ~r the periodic solutions are unstable 
and occur for parameter  values below the H o p f  bifurcation surface. Asymptotic 
values of  K3 for y near 2~  are found in the Appendix. The stability constant K3 
is negative for all points shown in Fig. 3. 

To demonstrate limit cycle solutions, the system (2.1), (2.3), (2.6) with linear 
Ro( t ) ,  p = 1.5, r = 4.0, o-= 20.0 was solved numerically for different initial data. 
Phase plane solutions are given in Fig. 4. 
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1 
1 

0 S 1 0 S 1 

a b 

Fig. 4a, b. Phase plane solutions to system (2.1), (2.3), (2.6) with linear Ro(t ) and with p = 1.5, r = 4.0, 
tr = 20.0 and w = 300 giving Se = 0.12, I e = 0.18. a S(0) = 0.2, I(0)= 0.8; limit cycle approached from 
outside; b S(0)= 0.1, 1(0)= 0.2; limit cycle approached from inside 

8. Discussion 

It is interesting to compare  the results for this model  which includes both  a time 
delay in the removed class and nonl inear  incidence with the results for the model  
which includes only a time delay in Hethcote  et al. (1981a) and with the results 
for the model  which includes only nonl inear  incidence in Liu et al. (1987). 

For  p < 1 in our  model  there is an unstable disease-free equilibrium and a 
nontrivial equilibrium. The nontrivial equilibrium is stable for 0 < p < �89 and also 
for �89 < p ~< 1 with parameter  values outside the H o p f  bifurcation surface o -*~. For  
�89 < p <~ 1 with parameter  values inside the surface ~r**, the nontrivial equilibrium 
is unstable and usually orbitally asymptotical ly stable periodic solutions appear  
for parameter  values just inside the H o p f  bifurcat ion surface o-**. Note  that 
bifurcated periodic solutions did not occur  for the model  of  Liu et al. (1987) for 
p ~< 1 so that the periodic solutions here are due to the delay. 

For p > 1 the disease-free equilibrium is always locally asymptotical ly stable 
and a saddle-node bifurcat ion occurs at o- = or* so that there are 0, 1 or  2 nontrivial 
equilibria when o- < o-*, o- = o-* and or > o-*, respectively. For  or > o-* the smaller 
equilibrium is always an unstable saddle and the larger equilibrium is locally 
asymptotical ly stable outside the ~r** surface and is unstable inside the surface. 
Al though the periodic solutions arising near the H o p f  bifurcat ion surface o-** 
are orbitally unstable for large o-**, they are usually orbitally asymptotical ly 
stable and occur  a round  the unstable equilibrium for parameter  values inside the 
or** surface. These results for p > 1 are similar to those for the model  with 
nonl inear  incidence o f  Liu et al. (1987) except that  periodic solutions can occur 
here for all p > 1 instead o f  for p > p~ > 1 and the stability of  the periodic solutions 
is different here. 

For  p = 1 the model  here is the same as in Hethcote  et al. (1981a) and the 
results here agree with the results there. For  p = 1, the contact  number  o- is the 
average number  of  adequate  contacts per infective during the infectious period. 
I f  o-<~ 1, then each infective spreads the infection to at most  one new infective, 
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a n d  t h e  d i s e a s e  d i e s  o u t .  I f  o- > 1, t h e n  e a c h  i n f e c t i v e  h a s  m o r e  t h a n  o n e  a d e q u a t e  

c o n t a c t  s o  t h a t  t h e  d i s e a s e  r e m a i n s  e n d e m i c ,  a n d  t h e  i n f e c t i v e  r e p l a c e m e n t  n u m b e r  

~rSe is 1 a t  t h e  e n d e m i c  e q u i l i b r i u m .  F o r  t h e  m o d e l  h e r e  a n d  t h e  m o d e l  o f  L i u  

e t  al.  ( 1987 ) ,  t h i s  i n t u i t i v e  t h r e s h o l d  i n t e r p r e t a t i o n  f a i l s  f o r  p ~ 1. F o r  0 < p  < 1 

t h e r e  is n o  t h r e s h o l d  s i n c e  t h e  d i s e a s e  a l w a y s  r e m a i n s  e n d e m i c .  F o r  p > 1 t h e r e  

is n o  c l e a r  t h r e s h o l d  i n t e r p r e t a t i o n  s i n c e  t h e  d i s e a s e  d i e s  o u t  f o r  o- < or* a n d  a l s o  

f o r  s o m e  i n i t i a l  c o n d i t i o n s  w h e n  cr > o-*. 

Acknowledgement. We thank H. W. Stech for conversations about the Hopf  bifurcation calculations. 

Appendix 

Here we calculate the asymptotic values of  the stability constant K 3 in Theorem 6.3 as y + 2~r-. Let 
y = 2 ~ ' - e  where e-~0 +. From Eq. (5.5) we obtain 

47r 7re 8-a "2 877" 2~ 2 
a - - - - 2 - - - ,  c ~- 2 - b -  

e 3 e 2 e 3 

From (5.4) we find r ~ K / e  where K = 2~-(1 - , / 2 p  - 1)/(1 - p )  for p > 1 and for the lower branch of 
the Hopf  bifurcation curve when �89 < p  < 1, K = 2~r for p = 1 and K = 2r +-/2-p - 1)/(1 - p )  for the 
upper branch of the Hopf  bifurcation curve when �89 < 1. Using (7.1) and r ~  K / e  yields 

r ~ [K2o'**/8"/7 "2] 1/p. 

Asymptotic expressions for quantities in Theorem 6.3 are 

A(  cr**, 2iy) ~ 2~e, 

p ( p - - 1 )  F 24~'2+ 12~.'] -~ ip(p--1)cr  
H3 ~ 6 ~ - e  L K ( p - 2 )  - K J 3 ' 

A2,2 ~ - K p ( p  - 1)/(4"a'e2), 

H2(r A2, 2 e 2'~'s) = p A z , 2 [ - K ( p  - 1)/e + 2~'i]/2, 

A2, o ~ - K p ( p  - 1)e/(8~2), 

H2( q~ , A2,o) = pAz ,o[-  K ( p - 1) - 4~']/(2e). 

The expression for N 3 is dominated by its second term so that 

N 3 ~ K2p2(p  - 1)2/(4~re 3) - Kp2(p  - 1)i/(2e2).  

Then 

0A ** 
- -  (o" , iy) ~ 4"rr/E - i4~r/e 2, 
Oz 

K 3 = R e ( N 3 / ~ z  ) Kp2(p-1)[K(p-1)+2].16cre z 

Thus as y ~ 2~'-, K3 is positive for p > 1. For p = 1 we calculated in Hethcote et al. (1981a) that the 
stability constant is negative. For �89 < 1 the bracketed expression above is positive so that K 3 is 
asymptotically negative. 
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