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Abstract. We consider effects of competition for space in a heterogeneous 
environment, making use of nonlinear interaction-diffusion equations. Com- 
petition for space is assumed to mean mutual repulsive interactions that force 
other individuals to disperse from a crowded region. In other words, we are 
concerned with density-dependent dispersal forced by population pressures. 
Spatial heterogeneity is incorporated in the growth rates, and the environment 
is assumed to have a favorable habitat for two populations surrounded by 
largely hostile regions. Space-independent migration rates are assumed. We 
ignore the usual density-dependence in the growth rates to focus our attention 
on density-dependence in the migration rates. Our main conclusion is that 
two populations can coexist if the interspecific repulsive forces are weaker 
than the intraspecific ones. It is also emphasized that density-dependent 
dispersal in a heterogeneous environment is not always a stabilizing agent, 
and that either of two populations may become extinct by competition for 
space. Finally, the resemblance of our results to those from Lotka-Volterra 
competition equations is suggested. 
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1. Introduction 

Animal migration and non-uniform spatial distribution patterns of populations, 
together with interactions between populations, are important factors in regulating 
populations. Taylor and Taylor [31] emphasized the role of density dependence 
in migration as a behavioral response to avoid competition. Congestion of a 
population may result in severe competition between individuals. However, the 
degree of crowding is not only a product of multiplication, but also of movement 
(Taylor and Taylor [31]); and some populations disperse to avoid crowding. 
When an environment is crowded and space itself is a limited resource, it will 
be of profound value for an individual to occupy, more or less exclusively, some 
portion of space, thereby repulsing other individuals (Yodzis [33]). Therefore, 
although resource depression might be relieved by migration, there may arise 
competition for space instead of exploitation competition. 

Some models considering density-dependent migration or dispersal enforced 
by population pressures have been proposed (see Okubo [20] and Levin [13] for 
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reviews). Shigesada et al. [28] have proposed a model that incorporates both 
random and density-dependent dispersal. They also considered a directed move- 
ment toward favorable places through the gradient of the environmental potential. 
Furthermore, in their model, competitive dynamics of the Lotka-Volterra type 
are taken into consideration. They have shown that two populations that cannot 
coexist locally may do well through spatial segregation by density-dependent 
dispersal and directed movement to a favorable place. The connection between 
their model and field or experimental observations demonstrating population 
pressure effects is discussed in detail by Shig~sada et al. [28], Shigesada [26] and 
Okubo [20]. Mimura and Kawasaki [15], Mimura [14] and Mimura et al. [16] 
gave further mathematical analyses to a somewhat simplified version of the model. 
Hosono ([9, 10]) analyzed related problems from the standpoint of existence of 
traveling wave solutions. 

On the other hand, many populations appear to be regulated at levels well 
below the apparent carrying capacities of their habitats. This provides a possibility 
which cannot be explained by models that do not incorporate spatial heterogeneity 
(Nisbet and Gurney [19]). Population models which include effects of environ- 
mental heterogeneity have recently been given a good deal of attention. Gurney 
and Nisbet [6] and Namba [17] have studied single species models with nonlinear 
~diffusion and have demonstrated that the spatial distribution patterns formed 
through density-dependent dispersal in a heterogeneous environment play an 
effective role in regulating the population. Shigesada [27] and Shigesada et al. 
[29] have considered models taking effects of spatial heterogeneity in both 
dispersal and growth processes for single species models. Recently, Teramoto 
and Seno [32] have studied aggregated distribution patterns formed through 
density-dependent dispersal and heterogeneity determined by the environmental 
potential field for a single species and two species systems. Effects of environ- 
mental heterogeneities for prey-predator and competitive systems have also been 
studied (Kawasaki and Teramoto [11]; Shigesada et al. [28]; Pacala and 
Roughgarden [21]; Shigesada and Roughgarden [30], Pozio and Tesei [23, 25]). 

However, in these models, effects of interspecific repulsive forces that cause 
movements to avoid crowding are not considered explicitly, except for Shigesada 
et al. [28] and Teramoto and Seno [32]. In this paper, we will investigate the 
combined effects of density-dependent dispersal and spatially variable growth 
on distributions of competing populations. However, we will not consider the 
usual competitive dynamics, which are expressed through decrease of growth 
rates in the presence of competing populations. It is suggested that "extrinsic 
population control by Malthusian killing agencies is partly an illusion borne of 
man's obsession with mortality" (Taylor and Taylor [31]). Thus, it may be more 
rational to expect migration before population densities rise so high as to cause 
severe competition, unless migration brings a great risk. Therefore, we ignore 
density dependence in growth rates, to focus our attention on density dependence 
in dispersal rates, or competition for space. 

In the next section, we precisely state our model. Then, we analytically search 
for stationary spatial distributions of two populations. Then we will numerically 
solve the system to examine stability of stationary solutions and reveal the 
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condition for coexistence of two species. Finally, we will discuss some points 
regarding our results on competition for space. 

2. Model 

We consider the following system of equations as a model of competition for 
space in a heterogeneous environment; 

- -  : 02 
Oulot dl~x2[(Ul+~ 

(1) 
0 2 

OU20t = 82 ~ X  2 [(u2 + Od2/dl)U2] ~- g2(X)U2' 

where ul and u2 are population densities of two species, and t and x respectively 
represent time and the coordinate of one-dimensional space. In the interaction- 
diffusion equations (1), nonlinear diffusion terms are the same as in Shigesada 
et al. [28], although we neglect random diffusion effects and leave only purely 
density-dependent terms. The expression implies the repulsive transition in 
Okubo's [20] classification, in which the transition probabilities depend only on 
conditions at the point of  departure. That is, movement is determined by the 
state of the point of departure and individuals are compelled to migrate to avoid 
crowding, by both intraspecific and interspecific repulsive forces, al and a2 are 
parameters that measure the strengths of interspecific repulsive forces in com- 
parison with those ofintraspecific ones, and d 1 and dz are coefficients of diffusivity. 
Alternative models also are proposed for density-dependent dispersal (Busenberg 
and Travis [5] and Gurtin and Pipkin [8]), and a simplified version has been 
studied in detail from the standpoint of spatial segregation of competing popula- 
tions (Bertsch et al. [3, 4]). However, we choose the system (1) in this paper ,  
since effects of interspecific exclusion can be clearly appreciated in (1). 

We assume that t h e g r o w t h  rates of two populations do not depend on 
population densities, although they depend on the spatial position, reflecting 
environmental heterogeneity. It may be interpreted as an approximation when 
the population densities are far below the carrying capacities of the environment 
because of  movements to avoid crowding. We consider a heterogeneous environ- 
ment in which a favorable habitat for growth of the populations is surrounded 
by a hostile universe. Thus, we assume that the continuous function gi(x) is 
positive in the neighborhood of x = 0 and that it decreases monotonically to -co 
as [x[ goes to infinity (Gurney and Nisbet [6]). 

If ai = 0 or uj(t, x) =- O, then each of the two equations in system (1) reduces 
to 

Oui 02 
O--t : di ~X 2 (ui)2 -~ gi(X)Ui' (2) 

which is the Directed Motion Model by Gurney and Nisbet [6] (see also, Gurtin 
and MacCamy [.7]). If  g~(x) =- O, then Eq. (2) becomes 

3U i 32 
0~ : di -~x2 ( Ui )m' (3) 
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with m = 2, which is known as the porous medium equation that describes a gas 
flow in a porous medium. A solution of Eq. (3) with m > 1 has a finite speed of 
propagation if it has an initial distribution vanishing outside a finite region, which 
is an important difference from the case of  a solution of the linear diffusion 
equation with m = 1; and it has a bounded support  for any t > 0 if the property 
is satisfied at t = 0  (see, for example, Aronson [1]). With respect to Eq. (2), it 
has been shown that it has a stable equilibrium solution with free boundaries 
whose support  is bounded (see Aronson [2] for an introduction to the problem). 
That is, if a population is dispersing in a density-dependent manner,  its distribu- 
tion approaches a stable configuration with a finite range, and it never goes to 
extinction regardless of the surrounding hostile region. 

The above property was discussed orginally by Namba  [17]. Particularly, 
when the growth rate &(x) takes a specific quadratic form, 

(4) 
\x~/  3 

he found a simple expression for the stationary solution, in terms of a fourth-order 
polynomial (Fig. 1); 

x \ ~ /  x \  2 
u*(x)=ci 1-2~ / |1+2~1,  iflxl<x*, 

x~ /  \ x~ /  

= 0 if Ixl >/x*. 
(5) 

The boundaries x = i x *  divide the environment into the populated and unpopu- 
lated regions and the solution satisfies both u*(x) = 0 and Vu*(x) = 0 at the free 
boundaries x = •  where x* = ~/#xi and ci = 7rix~/(Sdi). We will also use the 
specific form (4) later for numerical calculations. Equation (2) and some extended 
systems have been studied by Peletier and Tesei [22] and Pozio and Tesei [23, 
24, 25]. 

9L (x] 

u t 

-x~* 0 xt* 

Fig. 1. An example of the growth rate gi(x) and the 
stationary solution u*(x) of Eq. (2), where x = +xi* are 
free boundaries 
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3. Existence of coexistent stationary solutions 

The above considerations show that the system (1) has two stationary solutions 
(u*(x) ,  0) and (0, u*(x)) .  Needless to say, (0, 0) is also a stationary solution of 
the system (1). However, it does not attract our attention, since it corresponds 
to the state in which nothing is alive. Hereafter, we will ignore it. Our main 
interest is whether or not coexistence of two species is possible in the presence 
of competit ion for space. We must search for a non-negative and non-zero solution 
in which both Ul(t, x) and u2(t, x) are positive for some x. We call this solution 
a coexistent solution, or simply a positive solution. It is very difficult to solve 
generally the correspondent stationary problem to the system (1). Therefore, we 
impose another assumption, 

g2(x) = ~gl(x) ,  (6) 

that is, g2(x) and &(x)  are proportional  to each other. This means ecologically 
that the favorable habitats for two populations coincide and that the hostile 
regions are also the same for both species. It may be a reasonable assumption, 
if two competing species are ecologically similar. 

By virtue of  the additional assumption, we can obtain a positive stationary 
solution in some cases. First, we assume that a positive stationary solution 
(/~l(X), /~2(X)) satisfies 

/~2(x) = Tiff(x); (7) 

that is, the solution a2(x) itself is in proport ion to ffl(x). Note that this is only 
a convenient assumption, and there is no reason to assume (7). Then the stationary 
problem corresponding to the system (1) can be written, making use of  only gl(x) 
and a~(x); 

0 2 
0 = dl(1 + a~y) ~ x  2 (Ui)2-~ - g~(x)ffx, 

(8) 
0 2 

0 = d2y(y + a2) Ox----i ( a l )  2 "q- ~ ' } / g l ( X ) a l  �9 

From the previous consideration, we know that each equation of the system (8) 
has a solution with free boundaries. However, these two solutions must coincide 
with one another in order that they comprise a solution of the stationary problem 
of  the system (1). Thus a compatibility condition can be obtained as a condition 
on the ratio of  coefficients of  the system (8); 

d2y(y + a2) _ fly (9) 
dl(1 + celT) 1 

Then, we can determine 3' from the above condition; 

d, fl - d2o~2 (10) 
Y = d2-  dlalfl" 

In order that ul and u2 are non-negative, y must be positive. Therefore, we can 
obtain a sufficient condition for existence of a positive stationary solution of the 
system (1). 
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Theorem 1. Suppose that gl(x) and g2(x) are chosen so that the reduced eq. (2) 
has a positive stationary solution with free boundaries. Further assume that gl(x) 
and g2(x) satisfy the relation (6). Then the system (1) has a positive stationary 
solution with free boundaries, 

(i) if ar 1 and d2 1 d2 ----</3< 012, 
dl al  dll 

or 
d2 < d 2 1 

(ii) / f a l a 2 < l  a n d - 7 a 2 < / 3  
d l a  I" al 

(11) 

If gl(x) and g2(x) specifically satisfy (4), then/3 equals r2/ri. However, note that 
the sufficient conditions (11) for existence of a positive stationary solution do 
not depend on the specific forms of the functions ga(X) and g2(x) so long as the 
reduced Eq. (2) has a positive stationary solution. Hitherto, it is found that when 
either of conditions (11) is satisfied, system (1) has three stationary solutions 
(u*(x),  0), (0, u*(x))  and (t~l(X), U2(X)) (see Fig. 2). However, the stability of 
these solutions is not yet known. Moreover, we have not determined whether a 
positive solution may exist or not when conditions (11) are not satisfied. Even 
if conditions (11) are satisfied, we have not determined whether or not the 
stationary solution is uniquely determined. In other words, it is not certain whether 
there exists another positive stationary solution of system (1) in which u2(x) and 
ul(x) are not proportional. These questions will not be dealt with in this paper 
and remain to be solved. 

However, it is certain that there always exist two stationary solutions (u*(x) ,  O) 
and (0, u*2(x)). If 13 becomes large enough to satisfy either of conditions (11), 
then a positive stationary solution (51(x), u2(x)) appears. If/3 increases further 
to violate the upper condition, then the solution disappears (see Fig. 3). If the 
positive stationary solution is stable and a solution with positive initial data 
approaches it, then two populations can coexist permanently. However, if it is 
unstable and a solution approaches either of two solutions (U*l(X),O) and 
(0, u*(x)) ,  one population must go to extinction. Since it is also a difficult problem 
to examine stability of these stationary solutions analytically, we will solve 
numerically the system (1) to investigate stability and reveal the conditions for 

dl=1.00 o~i=0.25 vi=I.00 xl=l. O0 
d2=l. O0 ~2=2.00 r 2 = 3 . 0 0  x2=l.O0 

42 

a la 

Ul 

Fig. 2a--e. Examples of 
stationary solutions of system 
(1). a (u*(x), 0); b the 
positive stationary solution 
(a,(x), a2(x)); e (0, u*(x)). 
Note that they have same free 
boundaries x = :i:x* 
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Fig. 3. The relation between the 
value of/3 and the number of 
stationary solutions. In case (B), 
there exist three stationary solutions 
including a positive one since/3 
satisfies conditions (11) 

(A1) 

a2 

[B1] 

a2 

[CI] 
J 

\ /  
I 
a2 

[B3] 

[A2] 

u 1 

[B21 

Ul 

[C2] 

1 

coexistence. This will also provide a partial answer to the questions mentioned 
above. 

4. Stability of  stationary solutions 

In this section, we solve numerically the system (1) by an explicit method, 
assuming the specific quadratic form (4) for gl(x) .  We use r2( = rl/3) as a para- 
meter, fixing other parameters.  Two cases should be distinguished depending on 
whether al  a2 is larger than 1 or not. Although an extensive repetition of numerical 
calculations cannot substitute for an analytical proof, we should perform these 
as systematically as possible to avoid bias. Thus, we prepare a set of  12 initial 
data (Fig. 4). In (U1A), (U1B), (U1C), (U1D), (U1E) and (U1F), the population 
Ua is more abundant  than u2, and vice versa in (U2A), (U2B), (U2C), (U2D), 
(U2E) and (U2F). I f  solutions with initial data from (U1A) to (U1F) approach 
(0, u*(x) ) ,  this implies that the population Ul goes to extinction regardless of  
initial superiority to u=. Then, we may well suppose that only (0, u*2(x)) is stable, 
and that the species 1 always becomes extinct. On the other hand, if solutions 
with initial data from (U2A) to (U2F) approach (u*(x),  0), we can expect that 
only (u*~(x), 0) is a stable stationary solution and that species 2 must perish in 
the long run. I f  every solution with one of 12 initial data in the set approaches 
the positive stationary solution (~l(x), ~2(x)), we may expect that the solution 
is stable for a larger class of  initial data and that two populations can permanently 
coexist, since none of two populations becomes extinct, regardless of  the initial 
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INITIAL DATA 

(U1A) 

~2 

A 

(U1D) 

(U18] 

L~ 2 

A 

(U1C) 

LL 
L[? 

(U2A) (U28) (U2C) 

t~ 1 

21 
A 

2; 

~2 

(U1EI  

/ 3 _  
a 2 

[UIF; 

u 1 

I 

~2 

a b 

{U2D) 

~2 

A_ 

(U2EI 

3 

(U2F! 

ul  

U . ?  

Fig. 4a, b. The set of 12 initial data used to calculate numerical solutions of system (1). a In (U1A), 
(U1B), (U1C), (U1D), (U1E) and (U1F), the population ul is abundant, and b viee versa in (U2A), 
(U2B), (U2C), (U2D), (U2E) and (U2F) 

disparity in abundance.  However,  even in this case, we cannot  assume that any 
solution with non-negat ive initial data approaches  the positive solution; for if 
the int ia l  support  is confined to a border  region, it may  vanish because o f  the 
finite speed of  propagat ion.  This means ecologically that  a popula t ion  may become 
extinct before it can reach a favorable habitat  if the intial distribution ranges 
within a severely harsh region. 

Then, we will exhibit some examples of  numerical  solutions. First, we show 
the cases in which the condi t ion a l a  2 > 1 is satisfied (Fig. 5), or the interspecific 
repulsive effects are stronger than the intraspecific ones. In Fig. 5a, r2( = rl/3) is 
too small to satisfy condit ions (11), and we have only two stationary solutions 
(u*(x) ,  0) and (0, u * ( x ) ) .  We can demonstra te  that u2 vanishes as time goes on. 
This is true for all six initial data f rom (U2A) to (U2F).  We may suppose that 
only (Ul*(X), 0) is stable and that the species 2 definitely become extinct because 
of  the relative smallness o f  r2 as compared  with q .  Furthermore,  we can expect 
that  there exists no stable positive stationary solution. Thus, when two populat ions  
are compet ing for space through repulsive forces to enforce migration, one o f  
them may be extinct because o f  harshness of  the border  environment ,  a l though 
it never goes to extinction in the absence o f  the rival species. In Fig. 5b and c, 
the cases with 1"2( = rift) sufficiently large to satisfy the first condi t ion of  (11) are 
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Fig. 5a-d. Examples of numerical solutions of system (1), in case of alOt2> 1. The parameter r~ 
becomes larger and larger from a to d. However, in b and e, nothing other than the initial data differs. 
The first of  conditions (11) is satisfied in b and c 
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-4  - -  • ~ 4 -'4 

Fig. 5 (continued) 

60 

- -  • 4 d 

shown. No differences other than the initial data exist between them. In Fig. 5b, 
the population ul, which has a large initial population, forces u2 to extinction. 
On the contrary, in Fig. 5c the initially superior population u2 survives and ul 
becomes extinct. This implies that the results of competition depend on initial 
conditions and that the initially superior species eventually excludes the other. 
In this case, every solution with the initial data chosen from the set in Fig. 4 
approaches either of (u*(x), 0) and (0, u*(x)). Furthermore, we have examined 
some other cases with initial data that are not shown in Fig. 4. We have also 
confirmed convergence to (u*(x), 0) or (0, u*(x)), even when Ul and u2 have 
similar initial abundances. Therefore, we can expect that the positive stationary 
solution (~7a(x), ~2(x)) is unstable and also that there exists no other stable positive 
stationary solution. If  r2(= rl/3) increases further and the conditions (11) are not 
fulfilled, any solution approaches (0, u*(x)) irrespective of the initial superiority 
of ul (Fig. 5d). Thus, we may suppose that only (0, u*(x)) may be stable and 
that the species 1 may definitely go to extinction due to the relative largeness of  
r2 compared with r~. The cause of extinction can be attributed to competition 
for space because it never goes to extinction in the absence of the rival species, 
however harsh the surrounding environment may be. In summary, in case of 
competition for space, two populations cannot coexist if interspecific competitive 
effects are severer than intraspecific ones, which is a familiar conclusion from 
the Lotka-Volterra competition equations. 

Second, we deal with the case in which a1~2 < 1, or the interspecific repulsive 
forces are weaker than the intraspecific ones (Fig. 6). If rE(= r~/3) is too small or 
too large and the second condition of (11) is not satisfied, the result is the same 
as before (Fig. 6a, d). If r2 is too small, then we may suppose that only the 
stationary solution (u*(x), 0) is stable, and that u2 definitely goes to zero (Fig. 
6a) even if it is initially superior in number. When r2 is too large, or ra is relatively 
small compared with r2, then it can be expected that the only stable stationary 
solution is (0, u*(x)), and that the survivor is species 2 (Fig. 6d). 
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Fig. 6a-d. Examples of numerical solutions of system (1) in case of cela 2 < 1. r 2 is increasing from 
a to d. In b and c, in which only the initial data differ, the second of conditions (11) is satisfied 



12 

dl =1.00 
d2=I, 00 

o~ 1=0.25 
& 2 = 2 . ~  

r i=1.00 
r2=4.20 

x1=1.00 
x2=1.00 

T. Namba 

60 

-d -- • "---> 

Fig. 6 (continued) 

4 -4 -- x ~  4 d 

Finally, we investigate the case in which the second condition of (11) is 
satisfied, or the positive stationary solution (al(x) ,  ff2(x)) exists (Fig. 6b, c). It 
can be appreciated that a solution approaches the coexistent solution both in 
Fig. 6b and c. This is also confirmed for the other ten initial data in Fig. 4. 
Therefore, we may suppose that the coexistent solution is stable for a large class 
of initial data, and that permanent coexistence is possible irrespective of which 
species is initially superior. An analogous statement to the case of the Lotka- 
Volterra model can again be made in terms of competition for space. If inter- 
specific repulsive forces are weaker than intraspecific ones, coexistence of two 
species is possible, so far as their growth rates are balanced. 

Results of numerical simulations can be easily summed up in the form of a 
bifurcation diagram, with r2 being a parameter (Fig. 7). In the diagrams, the peak 

d l~l. OO oq=l. O0 rl=l. O0 Xl=1.00 
42=1.00 ~z2=2. O0 x2=l. O0 

'3 

z 

bJ 
o_ 

a 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

- ~ _ - - - ~  
0.5 l.O 1.5 2.0 2mS 

r2 

dl=l. O0 ~1~0.25 rl=l.O0 xl=l.  O0 
d2=l. O0 ~2~2. O0 x2=l. O0 

o 

o_ 

I01 0 2.0 3.0 4.0 5.0 

~'2 

Fig. 7a,  b. Bifurcation diagrams of  system (1) as r 2 being a parameter in case of  a O~la2> 1 a n d  b 

UlC~2 < 1. T h e  peak density of  ul at x = 0 is used as a representative of  a stationary solution 
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density of  Ul at x = 0 in a stationary solution is used as a representative of the 
solution. Therefore, three branches arranged in the order from top to bottom in 
Fig. 7a and b respectively express the stationary solutions (u*(x),O), 
(/~l(X), /~2(X)) and (0, u*(x)). A circle in these figures means that convergence 
of some solutions to the stationary solution corresponding to the circle is numeri- 
cally verified. A solid line expresses a stable branch, and a broken line denotes 
an unstable branch. If  r2 is sufficiently small, only the branch (u*(x), 0) is stable 
in both figures and species 2 will go to extinction. On the other hand, if r2 is 
sufficiently large, only the branch (0, u*(x)) is stable and species 1 will become 
extinct. When r2 takes an intermediate value, two alternative possibilities arise 
depending on the values of aa and a2. If aloz2 is larger than 1, then the branch 
of the positive solution is unstable and two branches of (u*(x), 0) and (0, u*(x)) 
are both stable (Fig. 7a). This means that a solution approaches either of two 
stable solutions, depending on the initial conditions. On the contrary, the branch 
of positive solutions is stable when ala2 is smaller than 1 (Fig. 7b). Therefore, 
though the branch of positive stationary solutions bifurates from those of trivial 
solutions (u*(x), 0) and (0, u*(x)) in both cases, stability of the branch depends 
on the direction of bifurcation. 

5. Discussion 

We have considered effects of competition for space in a heterogeneous environ- 
ment. It is assumed that competition for space means mutual repulsive interactions 
that force other individuals to disperse from a crowded region, and that it does 
not imply decrease of the growth rates. The latter assumption may be rational 
when those repulsive forces are effective in decreasing population densities 
sufficiently below the carrying capacities so as to reduce competition for resources 
other than space. Spatial heterogeneity has been incorporated in the growth rates, 
and space-independent migration rates are assumed. The environment is assumed 
to have a favorable habitat surrounded by largely hostile regions. This assumption 
may be ecologically reasonable: the border of a habitat must be hostile for many 
populations since, or else the population can further extend its range. From these 
assumptions, we have considered a kind of  nonlinear interaction-diffusion model 
that is similar to the models of Shigesada et al. [28] and Gurney and Nisbet [6]. 
Our main conclusion is that if the interspecific repulsive interactions are weaker 
than the intraspecific ones and the growth rates of two populations are balanced, 
then they can coexist permanently. 

Previously, it has been emphasized that two competing populations can coexist 
by virtue of  dispersal and environmental heterogeneity, even if local coexistence 
is impossible when no migration occurs (see for example Levin [12]; Shigesada 
et al. [28]; Namba and Mimura [18]). However, we have shown that density 
dependent dispersal in a heterogeneous environment sometimes results in extinc- 
tion of one of two populations, although none of them become extinct in the 
absence of  the other population however hard the environmental condition might 
be. Therefore, mutual repulsive interactions that exclude other individuals may 
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cause an inevitable damage if the effects are too strong, and migration in a 
heterogeneous environment is not always a stabilizing agent. 

Another striking fact is the resemblance of our results to those from the 
Lotka-Volterra competition equations. The usual statement that two populations 
can coexist if interspecific competition is weaker than intraspecific competition 
holds without any modification, even if we interpret the term competition as 
competition for space in the sense of our model. The correspondence may become 
clearer if we consider the Lotka-Volterra competition equations in the following 
form; 

I Ul q_ ol lu2q dUl= rl 1 - -  !u~, 
dt 1r I 

du2 = r2 I u2 , 
at ~ J 

(12) 

where r~ is the intrinsic growth rate and Ki is the carrying capacity (i = 1, 2). ai 
(i = 1, 2) measures the strength of interspecific competition as compared with 
that of intraspecific competition. There will not arise any confusion although we 
have used the same symbols in the system (12) as in (1). As is well-known, the 
ordinary differential equations (12) have at most three non-negative steady-state 
solutions except for (0, 0). Two bifurcation diagrams that illustrate stability of 
these steady state solutions are shown in Fig. 8, with the carrying capacity K2 
being a parameter. Complete coincidence of them with those in Fig. 7 can be 
clearly understood. We might expect that these simple structures are to some 
extent reflecting true processes in the natural environment. 

There remain some unresolved problems. The first is the question of unique- 
ness of the positive stationary solution. The second is to prove that a stable 
positive stationary solution does not exist when conditions (11) are violated. A 
final problem is an analytical proof of stability of stationary solutions. These 
problems may be tough. However, simple results confirmed by our numerical 
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Fig. 8a, b. Bifurcation diagrams of the Lotka-Volterra equations (12) as the carrying capacity K 2 
being a parameter, in case of acr la  z > 1 and b a la2 < 1. The size of  u~ is used as a representative of 
a steady state solution 
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simulations seem to assert the necessity of  resolving these problems in the near 
future. 
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