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1. Introduction 

In continuum mechanics an internal constraint is a limitation on the possible 
motions of a material point. Examples such as incompressibility and inexten- 
sibility have a long history. Indeed, the notion of incompressibility appears in 
the early work on fluid dynamics, while inextensibility is an essential ingredient 
in the theory of the catenary, in the theory of the elastica, and in certain theories 
of membranes. Constrained materials are generally simpler in their behavior than 
unconstrained materials. This fact has often been exploited in classical fluid 
dynamics, but it was not until the pioneering research of RIVLIN 1 that its im- 
portance in more general theories was realized. 

The first truly general mechanical theory of internal constraints was developed 
by NOEL 2, who studied limitations of the form 

cp(C)=0 (C=FTF) (1.1) 

on the deformation gradient F. NOLL assumes that the (Cauchy) stress T at time t 
is determined by the history F t only to within a reaction stress T that does no work 
in any motion satisfying the constraint; i.e., 

and if 

is the stretching tensor, then 

T= ~(r) + ~, 

D = sym (I~F - 1) 

T . D = 0  (1.2) 

in any motion satisfying (1.1). NOLL proves, as a consequence of this assumption, 
that T must be a scalar multiple of the tensor Facto (C)Fr:  

T= a F ~ c~0 (C) F r (a arbitrary). (1.3) 

1 RIVLIN obtained several exact solutions for incompressible elastic solids and for incom- 
pressible Reiner-Rivlin fluids. These solutions are discussed in detail by TRUESDEI.L & NOEL 
[1965, w167 119], where complete references to RIVLIN'S work can be found. Later ADKrNs & 
RlVLrN [1955] and RIvLrN [1955] developed a general theory of elastic bodies subject to certain 
inextensibility constraints. Cf. also G~EN & ADKINS [1960, Ch. VIII. 

2 TRUESDELL & NOLL [1965, w Cf. POINCARE [1889, w [1892, w 
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Constraints involving thermodynamic variables were first studied by GREEN, 
NAGHDI & TRAPP [1970]. 1 These authors consider limitations of the form 

A (F, 0). D + B(F, O) O +c(F, 0). g=O,  (1.4) 

where 0 is the temperature and g the temperature gradient. In pIace of NOLL'S 
postulate they assume that the stress T, the entropy t/, and the heat flux q are 
determined to within reactions T, ~, and ~ that give rise to a null production of 
entropy 2 in any process satisfying the constraint; i.e. 

- - "  1 - -  
T. D - t l O - ~ - q  . g=O (1.5) 

in any process consistent with (1.4). They then establish appropriate forms for 
T, ~, and ~ completely analogous to (I.3). 

In this paper  we develop a general thermodynamic theory of constrained 
materials. We do not use relations of the form (1.1) or (1.4) to define a constraint. 
Instead, we specify the class of functions F(t), O(t), g(t) ( - ~ < t < o o )  that 
the material point can undergo; if at some time t not all values of D(t), O(t), 
and g (t) are possible, the point is said to be constrained. 

In order to motivate the underlying assumptions of our theory, let us first 
consider constitutive relations of the form a 

= ~ ( r ,  r  g'), 

T= I ' (F t, 0 t, gt) + ~, 

,7 = (F', 0', g') + (1 .6)  

q=~(F',Ot, gt)+q, 

where ~0 is the specific free-energy. Rather than adopt  a principle such as (1.2) 
or (1.5) to determine the nature of the reactions T, ~, and ~, we assume instead 
that there exists a reaction set ~t(F t, Or), depending on the histories F t and 0 t, 
such that  

1 ~) ~(Ft, Ot ) (1.7) 
--o- 

at  each time t. We then use the Clausius-Duhem inequality 

p ~ - T  �9 1 �9 D + q O + ~ - q . g < O  (1.8) 

1 TRnPF [1971] obtains several interesting exact solutions within the framework of this 
theory. 

z A slightly different approach was taken by AI, a~REUSSI & PODXO GumuGLI [1972], who 
include a reaction free-energy ~, and who assume, in addition to (1.5), that the reactions give 
rise to zero energy production. 

a Following GREEN, NAGI-mI, & TRnPP, we do not include a reaction term ~ in (1.6). 
Such a quantity could easily be included; we would then be led to the conclusion that ~ be con- 
stant in every proo~ss. 



194 M.E. GURTIN & P. PODIO GUIDUGLI: 

to determine restrictions on the reaction functional ~ .  We show that if the reaction 
sets are closed under scalar multiplication, 1 and if the reaction functional is, in a 
certain precise sense, maximal, 2 then: 

(i) The reaction functional must reduce to a function of the present values 
of F and 0. 

(ii) The reaction sets are subspaces. 

(iii) The reactions obey (1.5) in each process. 

(iv) The extra entropy production a 

d ~(r ,  0', g')+ ~(r ,  0', g'). o ~ =  - p - ~  
(1.9) 

, , �9 1 - ~ ( F  t, 0,  g ) 0 - - ~ - ~  (F t, 0 t, g ' ) .g  

must be non-negative in every process. 

This last result, since it does not involve the reactions, can be used, in the 
standard manner,4 to establish restrictions on the response functionals ~, T, ~, 
and ~. 

Next, we define the concept of material symmetry, as applied to constrained 
materials, and we use this concept to define, in the usual way, the notions of 
isotropy and fluidity. We then prove that: 

(v) For  a fluid, the only possible deformation-temperature constraint is 
temperature-dependent compressibility, the only possible purely mechanical 
constraint is incompressibility. 

(vi) For  an isotropic material, the only possible constraint on the temperature 
gradient is g - 0  (perfect conductivity). 

We begin by defining 

= (F, 0), ~ = (O, 0, g), ~ = (?, ~), 

where all of the above are functions of time. The function ~ is called a process, 
the values u of u are called reactions. In view of these definitions, the extra 
entropy production eE defined by (1.9) is a functional of the process 2: 

and the Clausius-Duhem inequality (1.8) reduces to 

~(/~)+~. ~_-__0, (1.10) 

1 This assumption is based on past experience with special theories of constrained materials. 
Indeed, in each of these theories, if ~ is a reaction, then so is ct~ for every scalar a (cf. (1.3)). 

2 This assumption insures that the reactions have maximum indeterminacy compatible 
with the second law. 

a More precisely, aElpO is the specific extra entropy production. 
4 The abstract formalism developed by GURTIN [1968] (see also TRUF~DELL [1969, Ch. 3], 

COLEMAN & OWEN [1970]) can be applied, almost without change, to establish restrictions on 
the response functionals similar to those first arrived at by COLEMAN 11964]. 
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where by (1.7) u ) (1.11) 

at each time t. We take (1.10) and (1.11), rather than the more complicated 
expressions (1.6)-(1.8), as the starting point for our theory. We assume that 
has values in some set F, that $ has values in an inner product space A, and that 

(?t) c A. This allows us to develop a theory that is applicable not only to simple 
materials, but also to rods, multipolar media, and other more general materials. 

2. Notation 

Throughout this paper ]R denotes the reals, iR + the strictly positive reals; 
we use the word " t ime"  as a synonym for "real number". 

Let A be a set, and let 

FOR, A)= the space of all functions from ]R into A. 

The history of ?EF(IR, A) up to time t is the function ?t: [0, ~ ) ~ A  defined by 

r'(s)=~,(t-s). 

Given two functions r ,  ~,~F(IR, A), we write P~3' for the function in FOR, A) 
defined by 

~<>r(t)={fl(t), t < 0  
?(t), t>0.  

Let ~ c FOR, A). We say that ~ is translation invariant if given any ~ , ~  and any 
he R,  the function 

t~7(t+h) (IRMA) 

also lies in ~ .  We shall apply the above definitions to a function class 

~ =FOR, A1) x FOR , A2) 

and to functions in ~ .  This is done in the obvious manner: by identifying 
FOR, A1)x FOR, A2) with FOR, A 1 x A2). 

Finally, when A is contained in an inner product space, 

RC(R, A)={?~F(IR, A): ~ is right-continuous}, 

RD OR, A) = {V ~ F(R,  A): ~, is right-differentiable}, 

and we write ~ for the right-hand derivative of ~eRD(IR, A). 
For convenience, we also use the following notation: 

~ =  the vector space associated with three-dimensional Euclidean space, 

Lin = the space of all tensors (linear transformations) on ~,  
Sym={F~Lin:  F=Fr} ,  
Skw = {F~Lin: F = - Fr}, 

Lin + = {F~Lin: det F > 0} 
Orth + = {Q~Lin + : QrQ = QQr= 1} 

Unim + = { H eL in  + : d e t H =  1}. 
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Of course, here det is the determinant and F r is the transpose of F. Further, 

sym F = �89 + F T) 

is the symmetric part of F, tr is the trace operator, and 

A . B = t r ( A B  r) 

designates the inner product on Lin. Cartesian products of the above spaces 
will always be endowed with the natural inner product; e.g., for 

(A, u), (B, v)eLin x ~ ,  

( A , n ) . ( B , v ) = A . B + u . v .  

3. Abstract Theory of Constraints 

Throughout  this section F is a set, A is an inner product space. 

By a process class we mean a set 

~ cF( IR,  F) x F(~.,  A) 

with the following properties: 

(P1) ~ is translation invariant; 1 

(P2) if ~ i = ( ? ~ , / . 0  and p2=(72,/.2) belong to ~ ,  and if ?~(0)=~2(0), then 
~10P2 belongs to ~ .  

Let ~ be a process class. For  convenience, we write 

~0={~0: ~o=P(0)  for some ~E~'}, 

Fo={Yo : (?o,;~o)e~o for some /.o}, 
(3.1) 2 

~ ,  = {~, : p ,  =po for some ~E~},  

F* = {7" : (?*,/.*)~t~* for some /.*}, 
and, for ~oeFo, 

Ao(Yo) = {/.o: (Yo, ~o )~o }  �9 (3.2) 

By (P0, given any ~ = ( 7 , / . ) ~  and any time t, 

r ' y(t)~Fo ' p t e ~ , ,  y t e F ,  ' / . ( t )~Ao(y(t))"  

Let ~ r  (Yo, 2 o ) ~ o ,  a * e ~ * ,  and y*E F*. We use the following terminology: 
is a process, ~o is a site, Ao is aflux, p* is a process history, y* is a site history, 

Fo is the site cross section, A o (?o) is the flux cross section at the site ~o. We say that 
is constrained if Ao(Yo) is a proper subset of A for some site ?o~F o, ~ is un- 

constrained if Ao(?o)=A for all yoeFo . 

By a functional for the extra entropy production on ~ we mean a mapping 

~-: ~ - }  F(IR, IR); 

1 Thus if ~ is "constrained", the "constraints" cannot depend explicitly on the time. 
2 Here ~o is the history of ~ up to time t=O. 
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in any process 9, ~(9) is a real-valued function of time whose value ~(9)(t) at t 
is the extra entropy production at time t in the process 9. 

A reaction functional for ~ is a mapping ~ that assigns to each site history 
?*~ F* a non-empty set ~ (y*)c  A with ~ (?*) closed under scalar multiplication. 
We call ~ (y*)  the reaction set for ?*; the elements u  are called reactions. 
If 9= (? ,  ;t) is a process, and if u ]P,-~A satisfies ~ ( t ) e ~ ( ? ' )  for all t, then (9, 
is called a process-reactiun pair (for ~' and ~).  Given a process-reaction pair, 

tr = ~. ~, (3.3) 

is the entropy production due to the reaction. 

Let ~ be a functional for the extra entropy production on ~ ,  and let ~ be a 
reaction functional for ~ .  Then ~ is thermodynamically admissible relative to 
if ~ is the maximal reaction functional consistent with the following: 

Dissipation Axiom. If (9, ~ is a process-reaction pair (for ~ and ~ )  with 
9 = (?, ~), then 

b(9)+~.~>o. 

The assumption of maximality is the requirement that: if ~ '  is another reaction 
functional for ~ consistent with the dissipation axiom, then ~ ' <  ~ ,  i.e. 

~'(~*)=~(~*) 

for every ?*~F*. Clearly, there exists at most one thermodynamically admissible 
reaction functional. Indeed, by the assumption of maximality, if both ~ and R '  
are thermodynamically admissible, then R ' < R  and ~ < ~ ' ,  so that R = R ' .  

Theorem 1. Let ~ be a process class, let ~ be a functional for the extra entropy 
production on ~ ,  and let ~ be a reaction functional for ~ .  Then ~ is thermody- 
namically admissible relative to ~ if  and only if: 

O) for every site history ?*~ F* 

(r*) = Ao (?* (0)) ' ;  (3.4) 
(if) for every process 

~(9)~_o. 

We postpone, until later, the proof of this theorem. The next corollary is a 
direct consequence. 

Corollary 1. Let ~ and ~ satisfy the hypotheses of  the theorem, and let ~ be a 
reaction functional for ~ with ~ thermodynamically admissible relative to ~. Then: 

O) ~ is thermodynamically admissible relative to every non-negative functional 
describing the extra entropy production on g~. 

(if) In each process-reaction pair the entropy production (3.3) due to the reaction 
is zero. 

(iii) The reaction functional reduces to a function of the present site: 

~(?*)=~(r*(O)) .  

14 Arch. Rational Mech. Anal., VoL 51 
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(iv) For each site ~'o the reaction set ~(~o) is a subspace of A. 

(v) ~ is unconstrained if  and only i f  

for every site ~o. 

Given a process class ~ and any 2: ~ F(]R, IR+), it is clear from the theorem 
and (i) of the corollary that the reaction functional ~ defined by (3.4) is the only 
reaction functional for ~ that is thermodynamically admissible relative to 2. 
Thus, as would be expected, the reactions depend only on the nature of the 
constraint and are independent of the particular constitutive functional ~ describing 
the extra entropy production. For this reason, the mapping ~ defined on the site 
cross section Fo by 

~(7o)=Ao(7o) x (3.5) 

is called the thermodynamically admissible reaction function for :. 

With a view toward proving the theorem, we now establish 

Lemma 1. Let # be a proeess class. Then given a site history ~* e F* and a f lux 
~oEAo(7* (0)), there exists a history ;~* such that 

(V*, ~*) ~ # *, ).* (0) = ~o. (3.6) 

Proof. In view of (3.1)3,4, there exists a process ~=@, ~) such that ~o=~.;  
and, by (3.1)1 and (3.2), there exists a process ~7=(~, ).) such that ~(0)=r*(0) 
(=~(0)) and ).(0)=). o. By (P2), ~=(7,).)=~<>~ belongs to ~ ;  if we define 
~.=;~o, then (V*,).*) satisfies (3.6). [] 

Proof of Theorem 1. Assume first that (i) and (ii) hold. Then a simple calculation 
shows that ~ and ~ satisfy the dissipation axiom. To see that #~ is maximal, let 
~ '  be a reaction functional for # consistent with the dissipation axiom. Choose 
~*=(7", ).*)e#*. By (3.1)3 there exists a process ~=(V, ;0 such that po=~. .  
Let Xo ~Y~' (7") and define u ]P, ~ A by 

, t=~O. 

Since ~ '  has values that are closed under scalar multiplication, 0 belongs to each 
reaction set; thus (~, ~ is a process-reaction pair (for ~ and ~'),  and we conclude 
from the dissipation axiom (applied at t = O) that 

a(/2)(o) + , o .  x* (o)>__ o. 

This inequality must hold for every *o ~ R' (~*). Thus, since ~ '  (~*) is closed under 
scalar multiplication, 

*o" ~.* (0) = 0 

whenever (r*, L*)e#* and ~o~#~'(r*). Thus letting Ao~Ao(7*(0)), we conclude, 
with the aid of Lemma 1, that 

~o" ;% =0; 

hence ~'(7")=Ao(7"(0)) ' .  Thus ~ ' < ~  and ~ is maximal. 
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To prove the converse assertion, assume that ~ is thermodynamically ad- 
missible relative to ~. Then the dissipation axiom applied to a process-reaction 
pair (p, ~ with ~ arbitrary and u  leads to (ii). Next, let Y be the reaction 
functional defined by 

for y*~ F*. It then follows from (ii) and the assertion established in the last 
paragraph that 5" is thermodynamically admissible relative to ~. Thus, in view of 
the remark made in the paragraph preceding the theorem, ~ =  5~. [] 

4. Mechanical Theory 

a) General Theory 

The mechanical theory of simple materials falls within our framework provided 
we let 

F = Lin +, A = Sym, 
and identify 

7~-*F, A*-*D, ~<-* T, 

where F is the deformation gradient, D=sym(/~F -1) the stretching tensor, and 
the Cauchy reaction stress. Thus we assume that each process class ~ under 

consideration is a subset of 

~z- = {(F, U): F e RD (JR, Lin + ), D = sym (FF- 2)}. (4.1) 

It is interesting to note that, by (ii) of Corollary 1, 

 .O=O 

for every process-reaction pair; i.e., the power expended by the reaction stress 
vanishes. This assertion is the starting point of the mechanical theory of con- 
strained materials proposed by NOLL and discussed in the Introduction. Further, 
by (iii) of Corollary 1, the thermodynamically admissible reaction functional 
~ ( F  t) for a given process class ~ c ~ "  must reduce to a function ~?(F(t)) of the 
present value of F. 

Generally, for the process classes of physical interest, the sites F o lie in a 
manifold d / c L i n  +. With this in mind, we introduce the following definition. 
A constraint manifold is a connected CX-manifold ~ c L i n  + with the following 
properties: 

(Mx) l~dt ;  

(M2) if Fo~J / and  Q~Orth +, then QFo~,At. 

We denote by ,//(Fo) the corresponding tangent space at Fo ~ ~r 
Condition (M~) is simply the requirement that the reference configuration be 

chosen judiciously; (M2) asserts that , / /  be invariant under changes in frame, 
L e., that ~ / b e  objective. 

Let ~ c ~- be a process class, and let .~g be a constraint manifold. We then 
say that ~ is compatible with r if the site and flux cross sections corresponding 

14" 
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to ~ satisfy 1 

Fo = d / ,  
(4.2) 

Ao(Fo)={DoeSym: Do=sym(F'Fol), F'e  J/~;(Fo)}, Foe~g. 

The next result demonstrates that this notion is not empty. 

Proposition 1. Let Jg be a constraint manifold, and let ~ be the set of all pairs 
(F, D)e~ with FeRD(IR, Jg). Then ~ is a process class compatible with ~g. 

The proof of this proposition is based on 

Lemma 2. Let J/I be a constraint manifold. Then given Foe.,g and F'effl(Fo) , 
there exists a function F e RD (JR, ~g) such that 

F(0)=Fo, 

Proof. Since d / i s  a C 1-manifold, there exists an ct > 0 and a class C 1 function 
G: [ -  ct, a] -~ d / s u c h  that 

G(0)=Fo, 
Choose FeRD(]R, dl) as follows: F( t )=G( -~ )  for t<ct, F(t)=G(t) for 
- c t< t<c t ,  and F(t)=G(~) for t>~.  [] 

Proof of Proposition 1. It is a simple matter to verify that ~ is a process class 
and that (4.2)1 holds. To establish (4.2)2 choose Foe.,g. Trivially, 

Ao (Fo) c ~ = {D O e Sym: D O = sym (F' Fo 1), F 'e  J/~(Fo)}. 

Choose Doe~.  Then there exists an F'e.,g(Fo) such that 

Do = sym (F' Fo 1). 

By Lemma 2 there exists an FeRD(]R, Jg) such that 

r(0)=Fo, 

If we let D=sym(l~F-1),  then (F, D ) e ~ ,  and hence D(t)eAo(F(t))  for all t. 
But D(0)=Do;  thus DoeAo(Fo), and hence ~ A o ( F o ) .  Therefore ~=Ao(Fo)  
and (4.2)2 holds. [] 

Proposition 2. Let ~ be a process class compatible with a constraint manifoM ~g. 
Then ~ is constrained if and only if  

dimJg < 8. (4.3) 

Again the proof is based on a lemma. 

Lemma 3. Let .,g be a constraint manifoM. Then 

Skw =J,[(1). (4.4) 

1 At  first sight, it might appear that  (4.2) 2 is a consequence of (4.1) and (4.2) 1. That  this 
is not  so is clear f rom the following counter-example:  take ~ equal to the set of all (F, D ) e ~  r 
such that  F is a constant  function with value in ..r Then ~ is a process class with F o =  ~ ' ,  but  
A(eo)={o}. 
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Proof. By (M1) and (M2)  , Orth + c ~r and the proof follows from the fact 
that the tangent space to the manifold Orth + at l e Or t h  + is the space Skw. [] 

Proof of Proposition 2. Assume that ~ is constrained. Then for some F o e./r 
Ao(Fo)~=Sym, and hence there exists a DoeSym, Doq~Ao(Fo). Let F'=DoF o 
(so that Do=sym(F'Fol).) Then, by (4.2)2, F ' r  hence ~r But 
~ (Fo)  is a subspace of Lin and dim L in=9 ;  thus dim ~ / = d i m  J/f(Fo)<8. 

Conversely, assume that (4.3) holds. Then, in particular, dim ~ ( 1 ) ~ 8 ,  and 
there exists an F ' eLin  such that 

F ' ~ ( 1 ) .  (4.6) 

Let Do--sym F' and assume that DoeA0(1 ). Then there exists a G ' e ~ ( 1 )  such 
that Do=sym G'. Thus sym F ' = s y m  G' and F'=G'+ W, WeSkw. By Lemma 3, 
We~/[(1); thus, since J~(1)is a subspace, F'=G'+Weff[(1), which contradicts 
(4.6). Thus Do~A0(1); hence Ao(1)=t=Sym and ~ is constrained. [] 

Given a constraint manifold J//, it is clear from (4.2)2 that the (thermo- 
dynamically admissible) reaction function ~ defined by (3.5) is the same for each 
process class ~ compatible with J//. For this reason we call ~ the reaction function 
corresponding to Jg. 

b) Examples 

We now give some examples of constraint manifolds and use our previous 
results to determine the corresponding reaction functions. 

(1) Incompressibility. ~ Here 

J / =  {F e Lin + : det F = 1} = Unim +, 

sll (F) = {F' e Lin: tr (F' F- 1) = 0}, 

and we conclude from (3.5) and (4.2)2 that both Ao(F ) and the reaction set ~ (F)  
are independent of F, and, since 1 �9 D = tr D, that 

A o = {D e Sym: tr D = 0}, 

~ = { ~ 1 :  ~elR). 

Thus each reaction stress T e ~  is an arbitrary pressure: 

T= - p l .  
(2) Rigidity. Here 

Jg = Orth+, 

Ao={O}, 

-- Sym, 

so that the reaction stress is an arbitrary symmetric tensor. 

1 cf. TRUESDELL &NOEL [1965, w 
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(3) Inextensibility 1 in the direction e in the reference configuration, where e 
is a unit vector. For this example, 

~g=  {F~Lin+ : [Fe[ =1}, 

(F) = {F' ~ Lin: (F r F ' ) .  (e | e) = 0}, 

Ao (F) = {D E Sym: D.  (Fe | Fe) = 0}, 

(F) = (~(Fe | Fe): ~ ~ } ,  

and the reaction stress 
T= o~(Fe | Fe) (~ arbitrary) 

is an arbitrary pure tension (or compression) in the direction Fe. 

(4) Orthogonality preserving with respect to the directions e and f in the 
reference configuration, where e and f are orthogonal unit vectors. Here 

~ ' =  {F~Lin+ : Fe. F f = 0 } ,  

./~ (F) = {F' s Lin: (F TF'). sym (e | f )  = 0}, 

A o (F) = {D e Sym: D .  (e | f )  = 0}, 

~ (F )  = {~ sym(Fe | F f):  ~]R},  
and 

T= ~ sym (Fe | F f )  (~ arbitrary) 

is an arbitrary pure shear corresponding to the direction pair (Fe, F f).  

c) Material Symmetry 

Let ~ be a constraint manifold. A tensor Hc Un i m + is a symmetry trans- 
formation for ~ provided 

d.[=J[ H. (4.7) 

This definition, in conjunction with (3.1) and (4.2)2, implies the following trans- 
formation laws: for every Fe  ~ and every symmetry transformation H, 

Jt;(FH) = ~ ( F )  H, Ao(FH)=Ao(F ) , ~ ( F H )  = #~(F). (4.8) 

It is not difficult to verify that the set ff of all symmetry transformations is a 
subgroup of Unim +. We call ff the symmetry group 2 for .g ,  and we say that J /  
describes a fluid if 

= Unim + , 
a solid if for some P~ J I /  

p @ p - t  ~Or th  +, 

I Cf. ADKINS & RIVLIN [1955], RIVLIN [1955], GREEN &ADKINS [1960, Ch. VII], TRUES- 
DELL & NOLL [1965, w 

2 The definitions contained in this paragraph arc due to 1NIOLL [1958]; see also TRUESDELL 
NOLL [1965, ~31-33].  In these definitions P describes the deformation gradient from the reference 
configuration to an undistorted configuration. 
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an isotropie material if for some PeZ-/ 

Orth + c p f g p  - t .  

The next theorem shows that for a fluid the only possible constraint is incom- 
pressibility. 

Theorem 2. Let Zr describe a fluid. Then either each process class compatible 
with .t[ is unconstrained, or ~r describes an incompressible fluid. 

Proof. Let 
I={o~IR: ~ 1 e./[}. 

Choose F e Lin +. Then H = (det F) ~ F -  1 e Unim + = ~, and by (4.7) 

F ~ ~r ~ FH ~..r ~ (det F) ~ 1 e./ /=~ (det F) ~r e I. 

On the other hand, since H - l e  ~, 

(det F) ~ ~ I =:, (det F) ~r 1 e ~ =~ (det F) § H - 1 ~ j / = ~  F ~./[. 
Thus 

Z / =  {F~Lin + : (det F)~eI}. (4.9) 

Let to: Lin + ~ R be defined by tO (F) = (det F) ~. Then to is continuous, and by (4.9) 

1 =  to = to -  ' (1) .  

Thus I is connected (since ~r is). Assume that I has a non-empty interior ~. 
Then to-~ J )  is an open set in Lin, and it follows that ,,~(F) =Lin  and dimZr 9. 
We therefore conclude from Proposition 2 that if the process class ~ induced 
by Zr is constrained, then I must have an empty interior. The only connected sets 
in IR with this property are singletons. Thus, and by (M1), if ~ is constrained, 
I={1}, and Z-/ describes an incompressible fluid. [] 

Here we let 

and identify 

5. Thermodynamical Theory 

a) General Theory 

F = L i n  + x]R +, A = S y m  x IR x ~, 

7*-+(F, 0), I*--*(D, O, g), ~+-+(T, - ~ ,  _ 1 ~ ) ,  

where F is the deformation gradient, D the stretching tensor, 0 the temperature, 
g the temperature gradient, T the Cauchy reaction stress, ~ the reaction entropy, 
and ~ the reaction heat flux. Thus we assume that each process class under con- 
sideration is a subset of 

�9 ~ ' =  {(7, 2): ?=(F ,  0), I = ( D ,  O, g), 7eRD(]R, F), D=sym(/~F-~),  g~F(I~, ~f)}. 
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We conclude from (ii) of Corollary 1 that 

- -  " 1 - -  ~.D-~0+-6q .g=0 (5.1) 

in every process-reaction pair, which is the initial assumption of the theory 
proposed by GREEN, NAGnI~I & Tr, APP [1970]. Further, by (iii) of Corollary 1 
the thermodynamically admissible reaction functional for any given process 
class must reduce to a function of the present values of F and 0. 

With a view toward generalizing the notion of a constraint manifold in- 
troduced in Section 4, let (~g, .At) be a pair consisting of: 

(i) a C 1_manifold J / i n  Lin + x N + with tangent space ~ ( F o ,  0o) at (Fo, 0o) ~ J / ;  
(ii) a mapping JV" that assigns to each (Fo, 0o )e .g  a non-empty subspace 

JV'(Fo, 0o) =~.  
Then (~g, ~ )  is a constraint pair provided the following three conditions 

are satisfied: 

(N1) (1, 0o)~Jg for some 0o~lR+; 
(N2) if (Fo, 0o)e./t' and QeOr th  +, then (QFo, 0 o ) ~ g  and Qr.A~(QF o, 0o)-- 

..r 0o); 
(N3) dim Jf'(Fo, 0o) is the same for all (F o, 0o)~ .g  (we write dim .A/" for 

this number). 

We shall study processes restricted by (~' ,  JV') in the following manner: 
i f ( t ) ,  O(t))~Jg and g(t)~.Ar(F(t), O(t)) for all t. More precisely, a process class 
9 ~ ( c  ~')  is compatible with (~' ,  Jg') if the site and flux cross sections correspond- 
ing to ~ satisfy 

/~o =~g, 

Ao(Fo, Oo)=9(Fo, 0o) x J/ '(Fo, 0o), (Fo, 0 o ) ~ g ,  (5.2) 1 
where 

9(Fo, Oo)={(Do, 0'): Do=sym(F'Fol),  (F', O' )~ (F o ,  0o)}. 

An example of a process class 9 ~ compatible with an arbitrary constraint pair 
(Jg, ~V') is furnished by the set of all pairs (~,, ~.)s~" with v=(F, 0), ,~=(D, 0, g), 
(F, O)ERD(IR, J[), g~RC(]R,~t"), and g(t)s.A/'(F(t), O(t)) for all t~lR. The proof 
of this assertion is almost identical to the proof of Proposition 1. 

Proposition 3. Let ~ be a process class compatible with a constraint pair 
(~g, .A/'). Then 9 ~ is constrained if  and only if  

dimdt'=<8 or dimuV'=<2. 

We omit the proof; it is completely analogous to the proof of Proposition 2. 

The next theorem is a direct consequence of (3.5), (5.2), and the fact that 
~(Fo,  0o) and JV'(F o, 0o) are subspaees of Sym x ]R and "//', respectively. 

1 Of course, by (5.2) we mean that (Do, O',go)~Ao(Fo, Oo)<~(Do, O')~9(Fo, Oo) and 
~oe~(eo, Oo). 
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Theorem 3. Let (deC, Jff) be a constraint pair. Then the thermodynamically 
admissible reaction function ~ is the same for each process class compatible with 
(de, ~ ) .  Moreover, 

~(Fo, 0o)=:(Fo,  0o) x ~(Fo, 0o) 

for every (Fo, 0 o ) ~ ,  where 

g-(Fo, 0o)= ~(Fo, 0o)', 

-~(Fo, 0o)= ~(Fo,  0o)'. (5.3) 

An interesting consequence of (5.3) is that 

~.o-~b=0, ~.g=0 

for every process-reaction pair, a result much stronger than our original result (5.1). 

In view of Theorem 3, u  ~ t is areaction, i.e. Ye~(Fo, 0o), 
if and only if 

\ t O /  

(T, -~/)~g-(go, 0o), ~-~(Fo, 0o). 
Thus the reaction function ~ can be specified in terms of a reaction function ~" 
for the stress and entropy and a reaction function .~ for the heat flux. 

b) Examples 

We now give several examples of ,4/' and ~ ,  and for each we determine the 
corresponding reaction functions 5 and .~. For convenience, we now write 
(F, 0), F', 0', D, and g for arbitrary elements of ~ ' ,  Lin, IR, Sym, and ~ .  

(1) Temperature-dependent compressibility. 1 Here J / / i s  specified by a relation 
between det F and O; i.e. there exists a non-empty subset or ]R + • IR + such that 2 

(F, 0)~ JC'<e-(det F, 0)~J. 

In cases of practical interest there exists a class C 1 volume-temperature function 
f :  IR + ~ ]R + with3 f'=l:0 such that 

(det F, 0)~or F =f(0) .  
In this instance, 

~ ' (F ,  0)= {(F', 0'): tr(F'F-1)=m(O)O'}, m=f ' / f ,  

~(F ,  0)= {(D, 0'): trD=m(O)O'}, 

Y (F, 0) = {(I", - ~ ) :  (1", ~) = 0~(1, m (0)), ~ elR}. 

Thus ~ and g- depend only on 0, the reaction stress is an arbitrary pressure 

T= - p l ,  

1 Cf. TRAPP [1971]. 
2 The manifold structure on .At imposes certain restrictions on .f. 
a Heref'=df/dO. This should not be confused with F' and 0', which are not derivatives but 

arbitrary elements of Lin and R. 
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and the corresponding reaction entropy is given by 

q= -m(O)p .  

(2) Temperature-dependent extensibility 1 in the direction e in the reference 
configuration, where e is a unit vector. Here there exists a class C 1 function 
f :  N + -~ ]R + withf '4=0 such that 

(F, 0)~.,/[.r189 ]Fel2=f (O). 
For this case 

(F, 0) = {(F', 0'): Fe . F' e = f '  (0) 0'}, 

(F, 0) = {(D, 0'): D . (Fe ~ Fe) = f '  (O) 0'}, 

9"(f ,  0) = {(r, - ~ ) :  (r, ~) = ~ (re | re, f '  (0)), ~ ~ } ,  

so that the reaction stress 

T= ~ Fe | Fe (~ arbitrary) 

is an arbitrary pure tension (or compression) in the direction Fe, and the corre- 
sponding reaction entropy is given by 

~=~f'(O). 

(3) Perfect conductivity. Here the temperature gradient g is constrained to be 
zero, so that 

~(f, 0) = {0}, 

(f, 0)-- ~, 

and the reaction heat flux ~ is completely arbitrary. 

(4) Perfect conductivity 2 in the direction e in the reference configuration, 
where e is a unit vector. For this example, 

.W'(F, O)= {g: Fe. g=O}, 

.~(F, 0)= {q: q=~Fe, ~elR}, 

so that the heat flux is an arbitrary vector 

= ~ Fe (~ arbitrary) 
parallel to Fe. 

c) Material Symmetry 

Let (~g, -4/') be a constraint pair. The symmetry group ~ for (.At', ~4/') is the 
(group) of all HeUnim + such that 

(f, O)~,At o ( F H ,  O)e~g, 

( f ,  0 ) ~  =~./:(F, O)=~(FH, 0). (5.4) 

1 Cf. TRAPP [1971]. 
2 Cf. GR~F.N, NAGI-IDI, & TRAPP [1970]. 
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We say that (~t', d/ ') describes a fluid if 

a solid if for some (P, 0o) ~ ~t' 
fg = Unim + , 

p f~p-  1 ~ O r t h  +, 

an isotropic material if for some (P, Oo)e Jr 

Orth + c p f g  p -1 (5.5) 

Clearly, the relations (4.8) have obvious analogs in the present theory. 

The next result shows that when the material is isotropic, the only possible 
constraint for heat conduction is perfect conductivity. 

Theorem 4. Let (.11, ~ ' )  describe an isotropic material. Then either the tem- 
perature gradient is unconstrained (Jff==-~, .~---{0}) or the material is a perfect 
conductor (~/'= {0}, .~ = ~/r). 

Proof. By hypothesis and (5.5), if QeO r th  +, then 

H=p -1Qp~(#. 

Thus, since (P, Oo)eJr we may conclude from (5.4) that 

.eft(P, Oo)=~r (PH, 0o)=.A"(QP, 0o). 

On the other hand, by (N2) 

Therefore 
Jff (QP, 0o)= Q.Ar (P, 00). 

~'(P, 0o)= Q..4r(P, 0o) 

for every Q~Orth  +, and the only two subspaces o f ~  with this property are {0} 
and ~ .  Thus d/'(P, 0o) equals {0} or ~ ,  and the proof follows from (Na). []  

The next theorem shows that for a fluid the only possible constraint for F 
and 0 is temperature-dependent compressibility, i 

Theorem 5. Let (..r ~ ' )  describe a fluid. Then either the deformation gradient 
and temperature are unconstrained (~==-'1/', 3"----{0}), so that both the reaction 
stress and the reaction entropy vanish, or the material exhibits temperature-dependent 
compressibility. 

We omit the proof, which is similar to that of Theorem 2. 

Acknowledgment. We acknowledge with gratitude the support of this research by the National 
Science Foundation and the Consiglio Nazionale delle Ricerche. 

1 Theorem 4 also gives the possible constraints on the temperature gradient g in the case of a 
fluid, since such a material is isotropic. 
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