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Abstract. We consider the classical single locus two alleles selection model 
with diffusion where the fitnesses of  the genotypes are density dependent. 
Using a theorem of Peter Brown, we show that in a bounded domain with 
homogeneous Neumann  boundary conditions, the allele frequency and popu- 
lation density converge to a constant equilibrium lying on the zero population 
mean fitness curve. The results agree with the case without diffusion obtained 
by Selgrade and Namkoong.  Frequency and density dependent selection is 
also considered. 
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I. Introduction 

The purpose of this paper  is to study the asymptotic behavior of  solutions to the 
following system of reaction-diffusion equations 

P, =Pxx + (hA-- no)p(1 --p) 
(1.1) 

N, = Nxx + ~T N 

in the domain [a, b] x [0, ~ )  subject to the following boundary and initial condi- 
tions 

{ px(a, t)=px(b, t )=0 

N~(a, t)= Nx(b, t ) = 0  (1.2) 

p(x,O)=po(x), N(x,O)=No(x).  
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In the above equations, p represents the frequency of an allele A in a single-locus 
two alleles model and N represents the size of the population. The functions 
~Ta, r/a and ~7 represent the fitnesses of allele A, allele a and the population 
respectively. They are given by 

'OA = P l t A A  + ( l -- p ) ' q a a ,  'rla ~- P'Oaa W ( 1 - -  p) 'r taa,  and 
(1.3) 

~? = p ~ / a  + (1 - - p ) r l a  

where ~AA, rlA,~, ~?aa are the fitnesses of the three genotypes, A A ,  A a  and aa in 
the population. These fitness functions in general may depend on x, t, p or N. 
However in this paper, except for the last section, we shall assume that they 
are a function of N only (density dependent). Note that ~7= 
p2"OA a q- 2p(1 -- p )'rlAa -'1- ( |  -- p )2'Fla a . 

Without diffusion, that is without the terms Pxx and N~x, (1.1) is a special 
case of the continuous time, multi-alleles selection model in [3], p. 191. The 
dynamics of that model, with the assumption that the fitnesses of all genotypes 
are density dependent, have been studied by Ginzburg [4]. In the two alleles 
case, Selgrade and Namkoong studied the model allowing the fitnesses to depend 
on both p and N [7]. Roughgarden considered a discrete-time version of the 
two-alleles model in [9], also without diffusion. Hadeler proved the global stability 
of spatially homogeneous solutions of the multi-alleles selection model with 
diffusion in [5]. Hadeler's method is by constructing a Lyapunov functional 
which is different from the approach in this paper. 

In the absence of diffusion, when rlAa, T~A a and ~7~a are density dependent 
and ~TN < 0, Selgrade and Namkoong showed that the system of o.d.e, has no 
periodic solution and that the solution of the o.d.e, evolves to maximize, locally, 
the population size lying on the curve ~7 =0  [1]. These facts can be proved by 
applying the Poincar6-Bendixson theorem and by showing that the eigenvalues 
of the linearized matrix at an equilibrium point, which occurs at a local maximum 
of the curve 7/= 0, are both negative. 

Suppose now we assume that the population lives in a homogeneous habitat 
and that individuals in the population diffuse randomly. Then the obvious 
question is whether the results of Selgrade and Namkoong are still valid. The 
purpose of this paper is to show that the answer is yes if we assume only density 
dependent fitnesses and that the population lives in a bounded region with no 
flux boundary conditions. For simplicity, we assume that the bounded- region is 
the interval [a, b] and that random diffusion is modelled by second derivative 
in x. 

This paper is organized into five sections. For the rest of this section, we show 
that simply adding p~  and N ~  to the o.d.e, is only an approximation to the true 
model. We also provide some justification to the study of (1.1). In the next section, 
we state our hypotheses and summarize the different cases to be considered in 
(2.3). In Sect. 3, we collect the mathematical results which we need to prove our 
theorem. The statement of the theorem and proofs are given in Sect. 4. In Sect. 
5, we consider the frequency and density dependent case where the techniques 
in Sect. 4 are still applicable. 

Let 2n be the total number of allele A in the population and suppose that 
all the individuals in the population diffuse at the same (unit) rate. Then if we 
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think of "qA and B as per capita growth rates of  allele A and the population, we 
have 

n t = rtxx + BA n 
(1.4) 

N,=N~x+BN. 

Since p = n~ N, a simple calculation shows that 

{ Pt = Pxx + ( BA -- Ba)p(1 - p )  +2(lo8 N)xpx 
(1.5) 

N,=Nx,~+BN. 

Except for the last term in the first equation, (1.5) is just (1.1). On the other 
hand, let (p, N)  be a solution to (1.1) and (1.2). We can prove later that (p, N)  
converges uniformly in [a, b] to a constant so that (p, N)  satisfies (1.5) at least 
approximately for large time. 

2. Hypotheses 

For notational convenience, we define ~7l = BAA, B2 = BAa, B3 = "l~aa" We assume 
the following about the functions Bi, BA-  Ba and "q. 

(i) rh(N) c clio,  OO); 
(ii) rh(0)> 0 and there exists Ki > 0 such that 

Bi(N) > 0 on [0, K~) and Bz(N) < 0 for N > K~; (2.1) 
(iii) ( 'qA-~Ta)<0 for small N and 0 7 A - - B , ) > 0  

for large N;  
(iv) (Tim --  B a ) N  ) 0; 
(v) BN < 0 .  

Remark 2.1. Conditions (iii)-(v) say that allele A (allele a) is more fit in a large 
(small) populat ion and the average fitness of  the population decreases when the 
populat ion size increases. 

From conditions (iv) and (v) and the implicit function theorem, there exist 
two funct ions/Q and /V such that B(P, ~r(p))  = 0 and ( B A  --  B,~)(P, N ( p ) )  = 0  for 
0<~p~  < 1. Let / '1  and/"2 be the graphs of these functions in Q ={(p,  N)10~<p<~ 1 
and N~>0}. Let /30=(0, K3), /31 = (1, K1) denote the endpoints of  F~, 3"0, 71 
denote the left and right-hand endpoints of  F2. We assume the following about 
F 1 and /'2- 

I f / ' 1  r  then /'1 and F2 intersect no more than once in the interior of  Q 
and any intersection must be nontangential. (2.2) 

Assuming/ '1  ~ / ' 2 ,  there are then four cases to consider: 

Case 1. /'1 is above / ' 2 .  

Case 2. /'1 is be low/ '2 .  

Case 3. F1 intersects/ '2 once with/30 > 3'0 and/31 < 71. 

Case 4. /'1 intersects /'2 once with/30 < 3'0 and/31 > Yl- 
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From the definition of  ~r, we have ~ r , ( p ) = - ~ p / ~ N .  Since ~p =2(~7a-~73), 
the function ]V is monotone increasing in Case 1 and monotone decreasing in 
Case 2. Also/ ( / ' (p)  = 0 at the point where F1, F2 intersect. From (2.2), 1V has at 
most one extremum. The point of intersection of F1 and/ '2  is a local maximum 
of IV in Case 3 and a local minimum of ~r in Case 4. 

There is also a relationship between the K~'s and the shape of  F1. Suppose 
K3 < / (2  < K1. Then Case 2 cannot occur since in that case N is decreasing and 
]Q(0) = K3, ]Q(1) = K k. If  N < g3,  "q = p27/a + 2p(1 - p )  7/2 + (1 -p)2T/3 is positive 
for 0<~p~ < 1 so that N cannot have a minimum in (0, 1). This eliminates Case 
4. If N > Ks, then ~7 is negative for 0 ~< p ~< 1 and this eliminates Case 3. Therefore, 
if K3 < K2 < K1, we are in Case 1. Similarly, if K3 >/(2 > K1, we are in Case 2. 
We call these two cases the (heterozygote) intermediate case. If / (3 < K2, g l  </(2,  
then we are in Case 3 or the (heterozygote) superior case and if / (2 < K3, K2 < K1, 
we are in Case 4 or the (heterozygote) inferior case. Note that (0, 0), (1, 0),/30 
and/31 are the boundary equilibria of (1.1) in all four cases. Internal equilibrium, 
denoted by (p*, N*),  exists for Case 3 and 4 where /"1 and /'2 intersect. We 
summarize the situation below. 

Case 1. F1 lies above/"2; K3 <~ K2 < K1 or K3 < K2<~ K1; 
F1 is increasing; no internal equilibrium; only/31 is stable. 

Case 2 1"1 lies below/ '2;  K3>~ K2> K~ or Ka> K2>~ K1; 
/'1 is decreasing; no internal equilibrium; only/3o is stable. 

(2.3) 
Case 3. FI intersects /"2 at an internal equilibrium (p*, N*);  K3<K2,  

K~ < K2; 
F~ has a maximum at (p*, N*) which is stable. All the four 
boundary equilibria are unstable. 

Case 4. /'1 intersects /"2 at an internal equilibrium (p*, N*);  K a > K 2 ,  

K1 >/ (2 ;  
/'1 has a minimum at (p*, N*) which is unstable. The boundary 
equilibria/30 and/31 are stable while (0, 0), (1, 0) are unstable. 

There is also the special case when K1 = / (2 - -K3  = K. Then (~A--r/~)= 0 or 
= 0 can only be satisfied by N = K because of  (2.1) (iv) and (v). We regard 

this as 

Case 5. 1"1 = F2 which coincides with the line N --- K;  Ks = / (2  =/ (3  = K. 
Every point on the line N = K is an equilibrium point. 

3. Mathematical preliminaries 

The following lemma follows easily from the maximum principle [10, Thin. 10.1]. 

Lemma 3.1. Let u(x, t), v(x, t) satisfy the inequalities 

u, - uxx - f ( x ,  t, u) >i vt - vxx - f ( x ,  t, v) in (a, b) x (0, T) 

u(x, O) >~ v(x, O) in [a, b] 

u~(x, t )~v~(x ,  t ) f o r x = a ,  b, t > 0 .  

where u~, v~ denote differentiation in an outward normal direction. Then u >I v. 
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I f  u ( x , O ) > v ( x , O )  for  x in an open subinterval o f  ( a , b ) ,  then u > v  in 
[a, b] x (0, T]. 

Lemma 3.2 (Existence).  Let  O<-po(x) <~ 1 and 0<~ No(x)  ~ M be nontriviaL Then 
the system (1.1) and (1.2) admits  a unique bounded nonnegative solution p(  x, t), 
N ( x ,  t) in [a, b ] x [ 0 , ~ ) .  Furthermore, 0 < p ( x ,  t ) < l  in [a, b] for  t > 0 .  

Proof. We m a y  assume that  M is so large that  the line N = M is above the curves 
�9 / = 0  and  7/a--7/a =0 .  Since ~/ is negat ive above , / = 0 ,  the region Q ' =  
{(p, N )  I0 <~ p ~< 1, 0 <~ N ~< M} is an invar iant  rectangle  for  (1.1). First ha l f  o f  the 
l e m m a  fol lows f rom [10, T h e o r e m  14.11] and ( p , N ) E Q '  for  all t~>0. Let  
a(x,  t) = (71A -- ~/a)(1 - -p) .  Then  pt -P~x - a(x,  t)p = 0. F rom L e m m a  3.1 with u = p ,  
v = 0  and f ( x ,  t , p ) = a ( x ,  t)p, we have p > 0  on [a, b ] x ( 0 ,  oo). Similarly p < l .  
The p r o o f  o f  L e m m a  3.2 is complete .  

The  fol lowing is t aken  f rom Exercise 7, p. 127 of  Henry ' s  b o o k  [6]. 

Lemma 3.3. Suppose 12 = [a, b ], f : R -~ R is cX , f (0 )  = O, f ( u ) / u is strictly monotone 
for  u > 0 and l imu_~ f ( u ) / u  < O. Then any solution u >i 0 o f  ut = uxx + f ( u )  in 
1 2 x ~  + with u = 0  on 012 (or O u / O v + h u = O  on 012, given h ~ O )  will tend to a 
nonnegative equilibrium. I f  the linearization about u = 0 has no positive eigenvatues, 
then u ( . ,  t ) o O  as t~oo .  Otherwise, u tends to the unique positive equilibrium 
solution, or u =- O. 

Corollary.  In L e m m a  3.3, suppose f ( u ) / u is decreasing for  u > 0 so that there exists 
K > 0 such t h a t f ( u )  > 0 on (0, K ) ,  f ( u )  < 0 for  u > K. Let u satisfy the boundary 
conditions ux(x, t) = 0 for  x = a, b and t > O. Then limt_,o~ u(x,  t) = K uniformly on 
[a, b]. 

Lemma 3.4. Let  p (x ,  t), N ( x ,  t) be the nonnegative, nontrivial solutions o f  (1.1) 
and (1.2). Let  K+ = max(K1 ,  K2, K3), K_  = rain(K1,  K2, K3). Then given ~ > O, 
there exists T > 0  such that K _ - e < ~ N ( x ,  t )<-K+ + e  for  t ~  T a n d x ~ [ a ,  b]. 

Proof. We only prove  the right inequali ty,  the p r o o f  of  the left inequal i ty  is 
similar. Let g ( N ) =  m a x ( r h ,  r12, r/3). Then  clearly r l ( N ) ~ < g ( N )  for  N~>0.  We 
can construct  an f tha t  satisfies the condi t ions  in the corol lary of  L e m m a  3.3 
with K+ < K < K+ + e and  g ( N ) N  ~< f ( N ) .  Then  Nt - Nxx - ~ N  i> 
Nt - N ~  - f ( N )  in [a, b] • [0, oo). Let ~r be  the solut ion to _Nrt -/~-x~ _f(_~r) _- 0 
in [a, b] • [0, oo), _K/-(x, 0) = N ( x ,  0) on [a, b] and  ~/-~(x, t) = 0 for  x = a, b and 
t > 0. Then  according to the corol lary of  L e m m a  3.3, ~/- converges un i formly  to 
K as t -~ oo. Therefore ,  given e > 0, there exists T > 0 such that  for  t/> T, ~r ~< 
K+ + e. F r o m  L e m m a  3.1 with u = _~r, v = N, we have N ~< .N. Therefore  N ~ ~r ~< 
K + +  e on [a, b] • [T, oo). The  p r o o f  of  L e m m a  3.4 is complete .  

The fol lowing theo rem is t aken  f rom T h e o r e m  2.3 of  Brown 's  p a p e r  [2] which 
deals with the system 

ut = D u ~ + F ( u )  in 12 •  + (3.1) 

where  u = ( u ~ , . . . ,  urn), F: R "  ~ ~'~ is a smoo th  funct ion,  D = d i a g ( d l , . . . ,  din), 
d~ > 0 for  each i, and 12 = R or [a, hi. When  12 = [a, b], we assume that  u,(x ,  t) = 0 
for  x = a, b and  t >  0. Also, u(x,  O) = Uo(X) is a b o u n d e d  funct ion defined on /2 .  
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Theorem 3.5. Let F be smooth and assume there is an isolated critical point u* of 
F, i.e. F( u* ) =  O. Assume that there exists a one-parameter family of  rectangles 
~(z)  = {u c Rm I a(~ -) ~ u ~ A(~')}, ~- c [0, 1] with X(1) = {u*}, 2(7)  contracting for 
�9 ~ [0, 1) and where a(z)  and A('r) are continuous with a(~') increasing and A(7) 
decreasing. 

Then if u(x, t) is a solution to the Cauchy problem mentioned above satisfying 
u(x, T) ~ X(O) for all x c ~2 and some T ~  > O, then lim,_,o~ u(x, t) = u*, uniformly 
for x ~ .  

Remark 3.1. Contracting in the above theorem means that the vector field F(u)  
points strictly into ~(z)  for u belonging to the boundary of ~(z) .  

The following is taken from Theorem 14.17 of Smoller's book [10]. 

Theorem 3.6. Consider (3.1) with g2 = [a, b], ux(x, t) = 0 for x = a, b and t > 0, 
u(x, O) = Uo(X). Assume that (3.1) admits a bounded invariant region • and that 
Uo(X) c 2 for all x ~ g2. Let tr = Ad - C where A > 0 is the principal eigenvalue of  
-~2//0x2 on J~ with homogeneous Neumann boundary conditions, d = 
min{di; i = 1 . . . .  , m} and C = max{ [ dFu I: u e 2}. dFu is the Jacobian matrix o f f  
at u. I f  o- > O, then there exist positive constants C1, C2 such that lu(x, t) - ~( t) 1 <~ 
C1 e-~t uniformly for x in [a,b], Ig(t)l<~C2 e-~t" for t > 0  where f i ( l )= 
1/IJ~ I ~ u ( x ,  t) dx and g( t) = d~/ d t -  F(  ~). 

4. Theorem and proofs 

We show in this section that the solutions to (1.1) and (1.2) with appropriate 
initial conditions, converge uniformly to the stable constant equilibrium for Cases 
1 through 4 of our model. Case 5 has to be treated differently. Recall that Cases 
1 through 5 are described in (2.3). 

Theorem 4.1. Let (p, N )  be a nontrivial bounded solution to (1.1), (1.2). Then in 

Case 1. l i m t ~ ( p ,  N) = (1, K1) uniformly on [a, b]. 

Case 2. I f  I'2 is above the line N = K3 or if  p(x, O) <~  in [a, b], where ~ is the 
smallest positive root to the equation (~IA--7/~)(p, K3)=0, then l imt.~(p, N ) =  
(0, K3) uniformly on [a, b]. 

Case 3. Let (p*, N*)  be the internal equilbrium and suppose 70< K1 where ~/o is 
the left-hand endpoint of  ['2. Suppose also that there exist e > 0 and a curve F in 
Q' = {(p, N)l 0 <~ p ~ 1, 0 ~ N <~ M}  such that F is increasing, lies between lr" 1 and 
F 2 and passes through the points (e, K1 - e), (p*, N*)  and (1 - e, K2+ e). Then 
limt_~(p, N) = (p*, N*) uniformly on [a, b]. 

Case 4 (Threshold behavior). Let (p*, N*) be the internal equilibrium. Suppose 
there exist e > 0 and F that lies between F1 and ['2 for p* + e <~ p ~ 1, F increases 
from the point (p*+e ,  K 2 - e )  to i l l=(1 ,  K1) and p o ( x ) ~ p * + e  on [a, b]. Then 
limtooo(p, N ) = ( 1 ,  K1) uniformly on [a,b]. However, if  (po(x) ,No(x))  is 
sufficiently close to (0, K3), then timto~(p, N) = (0, K3) uniformly on [a, b]. 
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Case 5. Let h be the principal eigenvalue of  the operator -02/Ox 2 on [a, b] with 
homogeneous Neumann boundary conditions. Let f =  ( ~qA -- ~a)p(1 - -p) ,  g = r l N  
and C = m a x { l f p [ ,  ITNI. Ig~l, IgNl: 0~<P <~1, O ~ N ~ M } .  Suppose A > 4 C .  Then 
lim,_.oo(p, N )  = (/5, K )  uniformly in [a, b] for some constant/5. 

Proof F r o m  L e m m a s  3.2 and  3.4, we m a y  assume that  there exists e > 0 such 
that  e <~ po(x) <~ 1 - e and K_ - e <<- No(x) <<- K+ + e on [a, b]. F rom Theo rem 3.5, 
it suffices to show that  there exists a family  of  contract ing rectangles ,Y(r), 
decreasing to the constant  equi l ibr ium such that  (po(x), No(x ) )c  X(O). We do 
so by  defining the appropr i a t e  X ( r )  in each case. For  convenience,  we define 
f (p ,  N )  = (~TA -- r/a)p(1 - -p )  and  g(p, N )  = ~N. 

Case 1. F rom (2.3), there exists a curve F in Q'  such that  F is be tween  F1 and  
/"2, F is increasing,  e defined above  is so small  that  (e, K 3 - e )  lies on F and 
finally, the r ight-hand endpo in t  of  F equals /31=(1,  K1). Let A ( r ) =  
(1, rK1 + (1 -- r ) M )  and a(r)  lies on F such that  a(0)  = (e, K3 - e), a(~-) increases 
to a (1)=/3~  as r~ ' l .  Let X ( r ) =  {(p, N)la('c)<~(p, N)<~A(r)} forO<~r<~l.  Then 
X ( r )  is a family  of  rectangles in Q'  decreasing to X(1)= /31  as r~ ' l .  For  each 
0 ~< r < 1, since the u p p e r  and  lower sides of  X ( r )  lie on opposi te  sides of  F1 and 
the left side o f  2 ( r )  lies above / "2 ,  X ( r )  is a contract ing rectangle except  for the 
right side that  lies on p = 1. There,  f =  0 and  (f, g) points  toward  /31. Brown 's  
theorem can be extended to cover  this case. Since e <~po(x)~< 1 and K 3 - e  <~ 
No(x) <~ M, we have (po(x), No(x)) c X(0) on [a, b]. Our  result then follows f rom 
Theo rem 3.5. 

Case 2. We first assume that  F2 is above the line N = K3. By continuity,  we may  
assume t h a t / ' 2  is above  the line N = K3 + e where  e is defined at the beginning 
of  the p r o o f  and is sufficiently small. Since F1 is decreasing,  there exists a curve 
F such that  F lies be tween  F1 and F2, F is increasing, the lef t -hand endpoin t  
o f  F is /3o = (0, K3) and (1 - e, K3q- 8) lies on F. Let A ( r )  lie on F for  0<~ r<~ 1, 
A ( 0 ) = ( 1 - e ,  K 3 + e ) ,  A ( r )  decreases to A ( 1 ) = f l o  as r~ ' l .  Let a ( r ) =  
(0, r K 3 + ( 1 - r ) ( K , - e ) )  and 2 ( r ) =  {(p, N)la(r)<~(p,  N ) ~ < A ( r ) }  for  0<~ r~< 1. 
We also choose  A ( r )  such that  the lower  right corner  of  the rectangle X(~-) lies 
b e l o w / ' 1 .  Then  2;(7) is a contrct ing rectangle (except  on the left side) and 2 ( r )  
decreases  to ~ ( 1 )  = (0, K3) as r~' 1. Also (P0, No) c X(0).  Our  result then follows 
f rom T h e o r e m  3.5. For  the second ha l f  o f  Case 2, we observe t h a t / ' 2  is above 
El on the interval [0, fi]. A p r o o f  similar to the first ha l f  would  yield the desired 
result. 

Case 3. We assume that  K1 < K3, this being the more  difficult case to prove.  
Note  that  Yl, the r ight -hand endpoin t  of  F2, is above K2 since (~TA -- ~?a)(1, K2) = 
rh(K2 ) < 0. Similarly K2 > N*.  Let A(r )  lie on F for  0 <~ r ~< 1 and decreases  f rom 
A(0) = (1 - e, K 2 +  e) to A(1) = (p*,  N * )  as r ] '  1. Similarly, let a('r) lie on F for  
0<~ r ~  < 1 and  increases f rom a(0)  = (e, Kl  - e) to a(1)  = (p*,  N*) .  We also choose 
A ( r )  and a ( r )  such that  the rectangle X ( r )  = {(p, N)la('r  ) <~ (p, N )  <~ A(r)}  has 
its lower r ight -hand corner  lie be low F~. Then  it is easy to see that  X,(.r) is 
contract ing for  0 ~< r < 1, X ( 1 ) =  (p*,  N * )  and (P0, N o ) c  X(0).  Our  result then 
follows f rom Theo rem 3.5. One way to guarantee  the existence of  F in the 
hypotheses  of  the theorem is f o r / ' 2  to be increasing. This happens  for  example  
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if "01-{-'r/3--2~2(0 on [0, M] .  Note that if Yo is above Ka and KI<K3,  then 
contracting rectangles cannot be constructed since ( f  g) will be pointing outward 
on the left-side below F2. (See Fig. 1). 

Case 4. Without loss of  generality, we assume that K~ </<3. Note that since 
r / ( p , / ( 2 ) > 0  for all p, K 2 < N * .  Also 7~<K2.  Now let A(~-)= 
(1, rKI+(1-'r)(K3+E)) and a(a-) lie on F, a(r) increases from a ( 0 ) =  
(p*+e, K2-e )  to a ( 1 ) = ( 1 ,  K1) as ~-1'1. Let X,(~')={(p,N)la(z)<~ 
(p, N)~< A(z)}. Then 2 ( z )  is a contracting rectangle (except on the right side) 
for each 0 ~  < r  1 and decreases to ~ ( 1 ) =  (1, K1) as ~'1' 1. Also (po(x), No(x)) 
~(0)  from our hypotheses. The first half  of  Case 4 follows from Theorem 3.5. 
The proof  of  the second half  is the same. Sufficiently close means (po, No) belong 
to a rectangle that lie under  F2 and contains/30 = (0,/(3) on its left side. Note 
that F2 is decreasing if rh + ~73 - 2,12 > 0. 

Case 5. All points on the line N - - - K  are equilibrium points. The solutions to 
(1.1) without diffusion increases and turn left below N = K, decreases and turn 
right above N = K. From Lemma 3.4, N converges to K uniformly on [a, b]. 
From Theorem 3.6 and our hypotheses, to show that p converges to some value 
/~ it suffices to show that the spatial average/5 approaches a constant. Note that 
the norm of the matrix dFu is no greater than 4C by Schwarz's inequality. Since 
d•/dt= (1 - ]q I /K)~ , (x ,  t)+g(t) where lq~(x, t)l is bounded and [g(t)] ~< c2 e -'t, 
it suffices to show that N converges to K sufficiently fast so that ] 1 -  ~/KI is 
integrable. Let r / + (N)= m ax{r / l (N) ,  r/2(N), r/3(N)} on [0, co). Then r /+>0  on 
[0, K) ,  ~7+ < 0 on (K, oo). Also ~7 <~ r/+ and 0 = Art - N~x - *?N ~ Art - Nx~ - ~/+N. 
Let 7,/3 > 0 satisfy N(x, O) ~ K + y on [a, b] and • - /3  > 0 where 8 > 0 is chosen 
so that ~7+(N) ~< ~(1 - N / K )  on [0, K + 1']. Then w = (K + y e -m) satisfies w, - 
wx~ - r/+w ~> 0, w~ = 0 and w(x, O) >i N(x, 0). The first inequality follows from the 
fact that -rl+(w)w >- -*l+(w)K >i ~57e -~'. Therefore, Lemma 3.1 implies that 
N - K  ~< 7 e-~'. Similarly we can show that -7"e-O"<~ N - K  so that N, and 

N 

K 3 

YO 

Y1 

I" 

D C 

1 

Fig. 1. Initially, D C  has to be below K1. If 
70 > K1, then part o f  A D  will be below F 2 so 
that 2 (0 )  cannot  be contracting 
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hence/V, converges to K exponentially. The proof  of Case 5 is complete and so 
is Theorem 4.1. 

5. Frequency and density dependent selection 

In this section, we shall examine the possibility of extending the results in Sect. 
4 to the case when ~7~, 72, ~73 are both frequency and density dependent. Consider 
the reaction-diffusion equations (1.1) subject to the boundary and initial condi- 
tions (1.2). We continue to assume conditions (2.1) except that we replace (2.1)(i) 
by ~Ti(P, N)  E C1([0 ,  1] x [0, oo)) and (2.1)(ii) by ~Ti(P, 0) > 0 and rh(p, M)  < 0 for 
some M >  0. Of course (1.3) is still valid. 

Let Q' be defined as before. Then Q' is an invariant rectangle so that solutions 
of  (1.1), (1.2) with initial data in Q' exist for all t > 0 and lie in Q'. From (2.1)(iv) 
and (v), N(p)  and ~r(p) are defined on [0, 1]. Let /'1, F2 be their graphs and 
let flo,/31 be the endpoints of 1"1, 3'0, '~1 be the endpoints of F2 in Q'. Since 
% ~2(~TA--~/a), we cannot say anything about the monotonicity of  F~. We 
continue to assume (2.2) so that we have the four cases listed right after (2.2). 
In Cases 3 and 4, let (p*, N*)  be the intersection of F1, F2 inside Q'. It is clear 
that/30,/31, (0, 0), and (1, 0) are the boundary equilibria in all four cases and 
(p*, N*) is the internal equilibrium in Cases 3 and 4. The stability properties .of 
these equilibria (assuming no diffusion) remain the same as in the frequency 
independent case. Thus /31 is stable in Case 1, /30 is stable in Case 2, (p*, N*) 
is stable in Case 3 and/30,/31 are stable in Case 4. Lemmas 3.1, 3.2 and Theorem 
3.5 are results taken from elsewhere and will not be affected by our new assump- 
tions. Lemma 3.4 is still valid if we replace K+, K_ by K+ = max{N(p)[0<~p ~< 1} 
and K_ = min{~(p)10~<p ~< 1}. The proof  is very similar to that given in Sect. 3. 

We are now ready to examine the results of Cases 1 through 4 of Theorem 
4.1. The idea is to find a family of contracting rectangles 2~(r)= 
{(p, N)[a(r) <<- (p, N)  <~ A(r)} in Q', 0 ~< r <~ 1, such that (Po, No) E ~ (0) and 2 (1) 
equals to the desired stable equilibrium. 2 ( r )  is contracting if the left side lies 
above F2, the right side lies below/"2 and the top and bottom of 2 ( z )  lies on 
opposite sides of/"1. Since/"1 and/ '2  are not monotone, there is no general way 
of constructing Z ( r )  like the frequency independent case and the fact that 
(Po, No)E 2(0)  generally becomes an additional hypothesis on the initial data. 
We discuss the four cases briefly below. 

In Case 1, suppose/31 is the maximum point of  F1 (i.e. K§ occurs at p = 1). 
Then one can construct an increasing curve F between/ '1  and/"2 such that its 
right hand endpoint is/31- The left hand endpoint (= a(0)) should be extended 
as close to the p =0  axis as possible. Then one can choose a(z) to lie on F and 
A(r) to lie on the p = 1 axis above/31 for 0 ~  < z<~ 1, both converging to/31 as z]' 1. 
In Case 2, suppose/30 is the maximum point of F1. Then the method used in the 
second half of Case 2 of  Theorem 4.1 may be employed to construct ~(~).  Case 
3 is perhaps the most difficult case since the internal equilibrium (p*, N*) need 
not be a local maximum of FI. All one can say is that F2 is increasing at (p*, N*) 
and if F1 is also increasing there, then one can construct locally an increasing 
curve F between/ '1 and/"2 that passes through (p*, N*).  Then one can construct 
~(~') at (p*, N*).  If  F1 has a very negative slope at (p*, N*),  then the construction 
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of 2 ( z ) ,  even locally, may not be possible. Finally in Case 4, suppose ~1 is the 
maximum point of FI for p* ~<p ~< 1, then one can construct an increasing curve 
F between F 1 and F2 with right hand endpoint at i l l .  One can then construct 
,~(~-) as in the frequency independent case. 
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