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Abstract. A detailed analysis of a general class of SIRS epidemic models is given. 
Sufficient conditions are derived which guarantee the global stability of the 
endemic equilibrium solution. Further conditions are found which ensure 
instability for the equilibrium. Finally, the dependence of the stability on the 
contact number and the ratio of the mean length of infection to the mean 
removed time is considered. 
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w Introduction 

The study of time-lag induced oscillations in cyclic epidemic models has been the 
subject of considerable interest. The purpose of  this paper is to give a more detailed 
analysis of a general class of SIRS models derived in [4] and to determine to what 
extent the special cases of this model discussed there are representative of the model 
as a whole. 

In the SIRS model under consideration the population (assumed to be uniform, 
homogeneously mixed and of constant size) is subdivided into subclasses of 
susceptibles, infectives and removed individuals, who are, respectively, capable of  
becoming infected, infectious and isolated or immune as a result of having been 
infectious. The respective fractions of the entire population in each of these classes 
at time t will be denoted by S(t), I(t) and R(t). Individuals are assumed to pass from 
the susceptible class to the infective class to the removed class and back again to the 
susceptible class with the expected length of time of traversal for such a "cycle" 
finite. The transfer rate from the susceptible class, S, to the infective class,/ ,  is 
assumed to be proportional to product S/wi th  the proportionality constant, fl > 0, 
interpreted as the mean number of effective contacts per unit time per infective. 
Individuals enter the removed class from 1 at a rate proportional to I; the 
proportionality constant, 7 > 0, is the reciprocal of the mean infective time. To 
describe the transfer rate from R to S, we define P(t) for t ~> 0 to be the probability 
that an individual who became removed at time 0 is still removed at time t. P(t) is 
non-negative, non-increasing, P(0 § = P(0) = 1 and P(oe) = 0. We assume that 
the average length of immunity, co = ~ P(t) dr, is finite. Additional requirements 
will be imposed on P later. 
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With the preceding delineations, the SIRS model is described by the system of 
equations, 

I ( t )=Ioe-~ t+ flf'oS(X)I(x)e-'"-X)dx, (1.1) 

and 

f 'o l ( x ) e (  t g ( t )  = R o ( t )  + ~, - x ) d x ,  (1.2) 

S(t) + I(t) + R(t) = 1 for t ~> 0. (1.3) 

I(0) = Io > 0 is the initial fraction infected and Ro(t) >~ 0 is the fraction of the 
population initially removed and still removed at time t. Clearly Ro(t) ~< 1 and is 
non-increasing, and moreover, we assume Ro(t) tends to 0 as t --, + oo. It is shown 
in [4] that (1.1) - (1.2) - (1.3) admits a unique solution defined for all t >/0 and that 
the model is "well-posed" in the sense that S(t), I(t), R( t )> 0 for all t > 0. 
Moreover, when the contact number a - ill7 ~< 1 all solutions, (S(t), I(t), R(t)) of 
(1 .1 ) - (1 .2 ) - (1 .3 )  approach (1, 0, 0) as t ~  + oo. 

Equations (1 .1 ) - (1 .2 ) - (1 .3 )  may be reformulated as an equivalent scalar 
equation, 

I ' ( t ) = - 7 I +  f i l l 1 - I - R o ( t ) - T f t o I ( t - u ) P ( u ) d u l  (1.4) 

with initial condition I (0 )=  Io. When a > 1 (1.4) has a positive "endemic" 
equilibrium solution defined by Ie(t) - (1 - (l/a))/(1 + 0)7) which satisfies (1.4) 
when Ro(t) = 7 S~ IeP(U) du. 

If the removed period is assumed to have a constant duration (i.e. P(t) = 1 for 
0 ~ t <~ 0); P( t )= 0 for t >  0)), the equilibrium solution, Ie, may be locally 
asymptotically stable or unstable depending on the parameters (7, a). Using Hopf  
bifurcation techniques it is shown in [4] that the model supports stable, non-trivial 
periodic solutions for parameter values (7, a) near those at which the endemic 
equilibrium changes stability. Similar results hold when the removed class is divided 
into n >~ 3 subclasses, where the transfers Ri ~ Ri+l (i = 1, . . .  ,n - 1) and R, ---> S 
all occur at a rate ~, proportional to Ri(t) and R,(t), respectively. 

In section 2 we consider the general model (1.4) and derive sufficient conditions 
on P(t) so that the endemic equilibrium is the asymptotic limit of all positive 
solutions of (1.4). Section 3 is devoted to determining qualitative conditions on P(t) 
that ensure that the endemic equilibrium is unstable for some choice of a and 7. In 
the final section we consider the dependence of the stability of the endemic 
equilibrium on the parameters, (0)7, a). 

w Global Stability 

The goal of this section is to derive conditions on the probability P(t) which imply 
global stability of the endemic equilibrium state for the model (1.1) - (1.2) - (1.3). A 
general, yet unintuitive, condition is provided by the following theorem. 
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Theorem 2.1. Assume  

97 

(2.1) 

g(z) = e z - 1, #(0) = O, 

~(U) = ~[e  AV ~ ] e  P(I)) dv for  
0 

goo 
f( t )  = -  flRo(t)+vflI~JP(u)du for t>~0. 

Cleadyf ( t )  ~ 0 as t --* oo and the measure # has finite total variation on 0 4 u ~< 
equal to 7(o" - 1), 

Equat ion  (2.4) is now in the form studied by Londen;  in order  to make use of  his 
results there we must  verify: (i) solutions of  (2.4) are bounded and (ii) Re fi(v) > 0, 
where fi denotes the Fourier  t ransform of  the measure /~. An argument  by 
contradict ion may be used to verify (i). Details are omitted. (ii) follows equally 
easily f rom (2.2) since, for  all v, 

f:cos ] Re fi(v) = 1 + 7 (vs)P(s) ds . 

Thus,  Theorem 3 of  [6] applies and we may conclude g(z(t)) ~ 0 as t ~ 0% and the 
theorem is established. 

u > 0 ,  

and 

where 

and 

1 + 7  f cos(vs)P(s)ds > 0  f o r  all y e N .  (2.2) 

Then all solutions o f  (1.1) - ( t .2)  - (1.3) satisfy 

l i m ( S ( t ) , l ( t ) , R ( t ) ) = ( 1 , l ~ , o 9 7 I e ) .  
r~ oo 

Proof .  The limits of  S(t) and R(t)  will follow from (1.2) and (1.3) once the limit of  I(t) 
is established. Thus  it suffices to consider (1.4) alone. 

Since I(t) > 0 for all t >/0 we may make  the change of  variable 

z(t) = ln(I(t)/Ie). (2.3) 

In terms of  the new variable z(t), (1.4) becomes 

z'(t) = - f t o g ( z ( t - u ) ) d # ( u ) + f ( t  ) (2.4) 

and 

z(O) = ln(lo/Ie) 
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Remark  2.2. I f  the length of time an individual spends in the removed class is 
denoted by the random variable z, it is easily seen that (2.1) is equivalent to 
requiring z to have two moments. Also, (2.2) holds whenever co = ~o P(t) dt < 1/7, 
i.e. whenever the mean removed time is less than the mean infective time. 

Remark  2.3. Both (2.1) and (2.2) are implied by 

P(t + s) <<, P(t)P(s) for all t, s ~> 0. (2.5) 

Indeed, h(t) - In P(t) is a non-positive subadditive function for t ~> 0. By Theorem 
7.6.1 of [5] 

h(t) h(t) 
-= l i m -  = inf - -  

t-.oo l t>o t 

is finite. Since P ( t ) ~  0 as t ~ 0% we conclude c~ < 0 so that for all large t, 
h(t) < (~/2)t and P(t) < e~/z)t; (2.1) follows since ~ < 0. 

For (2.2) it suffices to note from (2.5) that for v ~> 0 and" each n = 0, 1,2 . . . .  

cos(vs)P(s) ds = cos(vs) P(s) - P s + ds >~ O. 
,)n(2r~/v) dn(2n/v) 

Note that P(t + s)/P(s) may be given the interpretation as the conditional 
probability that an individual will remain immune t more units given that he has 
already been immune s units. Thus, (2.5) asserts that the probability that an 
individual remains immune an additional t units is a non-increasing function of 
time, that is, short removed periods in a sense are more likely than long ones. In 
discussing a non-cyclic S I R  model with delay in the infective class, Wang [10] 
makes use of the assumption (2.5) with a similar interpretation to obtain estimates 
on the maximum number of infectives. 

Example  2.4. Consider the S I R S  model in which the class R is divided into two 
subclasses, R~ and R2. Denote by Rj (t) and R2(t) the fractions of  the,population in 
each of these classes and assume the transfer rate between Ra and R2 is proportional 
to Ra(t), the transfer rate from R 2 to S is proportional to R2(t) and the transfer rates 
from S to I and I to R1 are as described earlier. The model S ~ I ~ R1 ~ R2  ~ S is 
governed by the equations 

I '  = - 7I + illS; I(0) = Io > 0, (2.6) 

R'~ = - ~IR1 + 71; RI(0) = R~,o >~ 0, (2.7) 

R 2 = - 82R 2 -b ~1R1; R2(0) ---- R2,o ~ 0 (2.8) 

and 

s( t)  + I(t) + Rl( t )  + R2(t) = 1; t >t 0 

with el,/32 positive proportionality constants. 
Equations (2.7) and (2.8) may be integrated so that 

R(t) = Rl( t )  + R2(t) = Ro(t) + 7 I(t - s)P(s)ds  
0 

(2.9) 
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where 

and 

t 

Ro(t) = Rl(O)e -~*t + Rz(0)e -~2t -q- Rl(O)gle -e2t e(~2-")"du 
0 

p ( t ) = e - ~ , ' +  ele-~2tftoe(,2-~,),du" 

With P and Ro as above,  each solution of  ( 2 . 6 ) - ( 2 . 7 ) - ( 2 . 8 ) - ( 2 . 9 )  may  be 
identified with a solution of  ( 1 . 1 ) -  ( 1 . 2 ) -  (1.3). Since e~, e2 > 0, (2.1) is satisfied by 
P and Ro(t) ~ 0 as t ~ oo. Fo r  (2.2), an e lementary  computa t ion  reveals 

f ]  ele2(E1 -~- ~2) 
1 + 7 cos(vs)P(s) ds = 1 + 7 (e21 + v )(e2 + v2) 2 2 > 0 for  all v. 

Therefore,  by the theorem all solutions of  ( 2 . 6 ) -  ( 2 . 7 ) -  ( 2 . 8 ) -  (2.9) satisfy 

(S(t), I(t), R ,  (t), R2 (t)) ~ ( 1 ,  Ie, Z Ie ' L Ie~ 
ka ~a g2 I 

where 

Remark 2.5. For  the more  general model  S ~  I ~  R 1 ~ R 2 - *  ' �9 " - +  Rn ~ S where 
n > 2, it is known that  the endemic equil ibrium ceases to be globally a t t ract ing for  
all values of  the parameters ,  in fact, in the case el = e2 = " �9 " = e, = e, the model  
possesses (for var ious a, ~ and ~) an unstable  endemic equil ibrium and a stable 
periodic solution (see [4] and Example  3.3). Fo r  the case n = 1 global stability of  
the endemic equil ibrium was shown in [-3]. 

w An Instability Criterion 

As discussed in the remarks  following Theorem 2.1, the endemic equil ibrium for  
(1.1) - (1.2) - (1.3) is globally a t t ract ing provided the removed  time is in some sense 
"smal l" .  We will now show, on the other  hand,  that  when the removed  t ime is 
" la rge"  the endemic equil ibrium can always be made  unstable for  appropr ia te  
choices of  a and 7. 

Theorem 3.1. Assume (2.1) and 

for some v, ~ > O. Then for some a > 1 the "equilibrium solution" I(t) - Ie of(1.4) is 
unstable. That is, there exists a 6 > 0 and sequences {I,,(0)}, {Ro,m(')} and {t,,} such 
that tm> O, Im(O ) ---> Ie, IIRo(t) - 7Ie ~2 P(u) dull~ -+ 0 and ]I(tm,/m(0), Ro,,,) -- Iel 
> 6. (11"11~ denotes the usual L~-norm on ~+.) 
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Proof. Under the change of variables (2.3), it suffices to show that the zero solution 
of (2.4) (wheref(t)  - 0 and z(0) = 0) is unstable. By [-7] we need only show that for 
some 7 > 0 and a > 1 there is a zero, 2, of  

e- sP(s)ds (3.2) 

with Re2 > 0. Let 2 = # + iv and consider real and imaginary parts of  A(2) = 0: 

( a - 1 ) ,  [ f~cos(vs)e_~Sp(s)ds I (3.3) 

(~r-1)TZf~sin(vs)e-usP(s)ds. (3.4) 
0 = v  l + c o y  

By (2.1) the function v --* ~ cos(vs)P(s) ds is continuously differentiable and is non- 
constant by the Riemann-Lebesgue lemma. Therefore by (3.1) we may find Vo > 0 
so that ~ cos(vos)P(s)ds < 0 and 

fl =_ (d/dv) cos(vs)P(s) = - sin(vos)sP(s) ds r O. 
0 

Let 7o I - - ~ cos(vos)P(s)ds and a0 > 1 be defined so that (3.4) holds when 
# = 0, v = Vo and 7 = ~o. 

Define F: N+ x ~2 ___+ ~2 by 

I Re A(# + iv;a, 7o)~ 
F(#; v, o') = 

Im A(p + iv; ~, Yo)J" 

By the choice of  Yo, ~o and v0, F(0; Vo, ao) = (0, 0). By (2.1), F can be extended to a 
continuously differentiable function in a neighborhood of (0, v0, O-o) and, in fact, 

det Dr Vo, O'o) - - -  r O. 
1 +COCo 

The result now follows f rom the Implicit Function Theorem. 

Remark 3.2. The hypothesis, (3.1), of  the theorem is satisfied if for some s > 0 

1 - P(2s) > 4(1 - P(s)). (3.5) 

We demonstrate that (3.5) implies the existence o fa  v such that ~ cos(vs)P(s) ds < 0 
(which in turn implies (3.1) for some 7). Assume the contrary and define Q to be the 
even extension of P to N. The Fourier transform of Q satisfies 

O_,(v) = f ~ ~ e-~SQ(s) ds = 2 f ~ cos(vs)P(s) ds >~ O for all v. 

A standard fact from harmonic analysis (e.g. [9], p. 15) asserts that since Q e LI(N), 
0 >~ 0 and Q is continuous at 0, then ~)e L~(N), the inversion formula holds and 
Q(O) = ~_~ Q(x)dx. Thus integrating the trigonometric inequality 

1 - cos(2vs) = 2(1 - cos2(vs)) ~ 4(1 - cos(vs)) 
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against  0(v),  we obtain  

[1 - Q(2s)] ~< 411 - Q(s)]. 

Since Q(s) = P(s) for s ~> 0, (3.5) is contradicted,  establishing the implication.  
As before (1 - P(s))/(1 - P(2s)) m a y  be interpreted as the condi t ional  p roba-  

bility that  an individual 's  immune  period is less than  s units given that  it is less than  
2s units. Thus  (3.5) suggests that  instabili ty o f  the endemic equil ibrium results when 
long removed  periods are more  likely than  short  ones. Condi t ion  (3.5) is clearly 
satisfied when the removed  period is assumed to have constant  length 03. (See 
section 1.) 

Example 3.3. For  the general mult iple removed  class model ,  S ~ I ~ R 1 ~ R2 
- �9 �9 --* R,  ~ S, of  R e m a r k  2.5 (with e = el = ez = �9 �9 " = ~,), the associated p roba-  
bility is 

(gt) 2 (et)"- i  ] _~, 
P(t)  = a + + ZV. + ' + ( - iAe . 

One obtains  easily tha t  

1 - P ( t )  1 
lim - . 
t~o 1 - P(2t) 2 ~ 

Thus,  (3.5) is satisfied for  n > 2 ; for  n = 1, 2 (3.5) mus t  obviously fail to hold in light 
o f  Example  2.4 and R e m a r k  2.5. 

w D e p e n d e n c e  o f  S t a b i l i t y  on  a a n d  0 3 7  

We conclude with a br ief  discussion of  the stability of  the endemic equil ibrium as a 
funct ion of  the rat io  of  the mean  removed  t ime to the mean  length o f  infection and  
the contac t  number .  The  following l emma easily adapted  f rom [1, 23 provides a 
useful way of  determining local asympto t ic  stability of  the endemic equilibrium. 

Lemma  4.1. Assume that 

A (2) ~ 0 for  all Re 2 ~> 0. (4.1) 

Then the endemic equilibrium solution of(1.4)  is locally asymptotically stable in the 
sense that given e > 0, there exists an ~ > 0 such that iftIRo(t ) - 7 e S~ P(U) dull~o < tt 
and ]Io - Ie[ < r/then ]]I(t, Io, Ro( ' ) )  - /~ [ ]~  < e andI(t ,  Io, Ro( ' ) )  ~ Ie as t ~ + ~ .  

We now proceed to show tha t  ( 1 . 1 ) -  ( 1 . 2 ) -  (1.3) has a locally asymptot ica l ly  
stable endemic equil ibrium if either (i) the ratio of  the second momen t s  of  the 
infective t ime to the removed  t ime is sufficiently large compared  to the contac t  
number  or (ii) the ratio of  the mean  removed  time to the mean  infective t ime is 
sufficiently small compa red  to the contac t  number .  

Theorem 4.2. Assume (2.1) and 03 7 >1 1. I f  either 

1 +coy  
(i) a -  1 < -  

y2m 
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o r  

(ii) a - 1 > 2(1 + 0)7) 

holds where m = S~ sP(s) ds is f inite by (2.1), then the endemic equilibrium is locally 
asymptotically stable. 

Proof. For  (i), we apply  a result o f  Stech [8, Theorem 1] (where " a "  = (a - 1)7 and 
"t/(s)" = p ( -  s)/(y(a - 1))) and conclude tha t  all zeros of  A have non-posi t ive real 
parts  when (a - 1)]/(mT/(1 + 0)7)) < 1. Moreover ,  since ImA( iv)  = 0 implies 

1 + 7co I "~ sin(vs) sP(s) ds 
- <~ m ,  

( a -  1)72 J o VS 

purely imaginary  zeros are also impossible.  
Suppose (ii) holds;  we first show that  there are no purely imaginary  roots.  Since 

2 = 0 is never a root ,  we m a y  integrate by par ts  to obta in  

Using this relation in A(iv) = 0 and separat ing real and imaginary  parts ,  we arrive at 

sin(vs) dP(s) = - (4.2) 
Y 

and 

f ]  1 ~- 0)]/ y2 1. (4.3) COS(VS) dP(s) -- (a -- 1)72 

Squaring each equat ion and adding, 

which gives 

2 (1 ~- 0)7) V2 1 = ~< 1, 
+ -- 1)72 -- 0 

((1 +  ,)ff + 
< 

and the assertion. 
To  show that  there are no roots  with Re 2 > 0 we fix ao and 70 so that  (ii) holds 

and assume A(2o; ao, 70) = 0 with Re 20 > 0. Fo r  6 ~> 0 define P~(s) = e-~Sp(s) and 
denote by 0)o and A~ the corresponding entities obta ined by replacing P with P~ in 
their definitions. Rout ine  est imates show that  A~ (analytic for  R e 2  > -  6) 
converges uniformly on compac t  subsets o f  Re ). > 0 as 6 ~ 0 and with y ~ [0, 70]. 
Rouche ' s  theorem applied to a small disk centered at 2o implies tha t  A~o(2; a0, 70) 
has a roo t  7. with Re 7. > 0 near  20 if 6o > 0 is chosen sufficiently small. Also, choose 
60 so small that  (ii) holds for  co = 0)~o, a = ao and ] / =  70. Now,  the zeros of  
A~ (" ; ao, ]/) mus t  leave Re 2 > 0 as ]/ decreases f rom 70 to less than  co;- 1 (by R e m a r k  
2.2). An easy est imate of  (3.2) shows that  any zero, 7., of  A~ o with~ 7. >/0  mus t  
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satisfy 15[ ~< (ao - 1)7o. Thus A~(2) must have a purely imaginary zero for some 7 
[0)~o 1, 7o]. This is a contradiction, proving the final assertion. 

To summarize, when the mean removed time, 0), is less than the mean infective 
time, 1/7, the endemic equilibrium is always globally attracting (see Remark 2.2). 
Theorem 4.2 implies that when the ratio 0) 7 exceeds one there is at most a bounded 
interval of contact numbers, given by 

2(1 + coT) 1 
72(Z  2 -}- 0)2) ~ (3" - 1 ~< 2(l  + 0)7); m = _ ( Z 2  ~_ 0)2) 

(where 272 is the variance of z) on which the endemic equilibrium can fail to be 
locally asymptotically stable. For fixed variance, this interval increases in size as the 
ratio 0)7 increases. This was observed in the special case of constant removed period 
in [4]. 
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