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O. Introduction 

In this paper we study a mathematical model of a population consisting of n species 
with age-specific interactions. The dynamics of such a population is described by 
means of density functions ui(t, x), where t denotes time, x stands for age and i 
indicates the ith species. The governing equations for this model are 

i t ui(t, x) + u~( , x) + di(x)uZ(t, x) + f (x ,  u(t))ui(t, x) = 0, (la) 

ui(t ,o)=f;b,(x)ui(t ,x)dx, t,x>~O, (lb) 

ui(O, x) = u~(x), i = 1 . . . .  , n. (lc) 

The functions bZ(x) and di(x) denote the age-dependent "natural" vital (birth and 
death) rates of the/ th  species, where "natural" means that no interactions in the 
population occur. The functionf(x,  u) describes the increase of death rate of the ith 
species resulting from interactions in the standing population u. Hence all 
quantities bi(x), di(x),f(x, u) are nonnegative andf (x ,  0) - 0 for all i. Since ui(t, x) 
represents a density, ui(t, x) should be nonnegative for all x, t. Furthermore, since 
ni(t) = ~ u~(t, x) dx is the total number of individuals of the ith species in the 
population, we should have uZ(t, . )~LI (~+)  for all t, i. 

The nonlinearity f(x,  u) has the general form 

(F) f(x,u) = g(x,  f ; k(x,y)h(y,u(y))dy) 
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w h e r e  h R "+ 1 ~ ,, 2 []~rnlrn [l~ml + 1 n . + ~+, k: ~ + ~  + , g: ~ ~ R + ,  see section 2 for the 
hypotheses imposed on h, k, g. (F) allows for a reasonable biological interpretation: 
there are ml independent factors w~(x) which control the death rates: g~(x, w(x)).  
The values of wj(x) in turn are determined by the standing population u according 
to 

wj(x)  = kjt(x,  y)hl(y, u l ( y ) , . . . ,  u , (y))  dy. 
l=1 ~ 0  

If wj(x) - w# for all j, the interactions are said to be separable. In the simplest case 
one would have m ~ = n, wj = S~ ~ u~(y) dy, the factors being now just the total sizes of 
the single species, but certainly such an assumption and even the separability 
hypothesis (cp. [13]) is too restrictive. It will become clear in section 3 that, as far as 
existence of equilibrium solutions is concerned, dispensing with separability means 
a transition from finite to infinite dimensional problems. 

Note that we suppose the birth rates b~(x) to be independent of the standing 
population u, which perhaps is the most severe restriction in our present approach 
although it seems to be reasonable in many situations. In a forthcoming paper we 
shall dispense with this assumption. 

The model described above was first proposed by von Foerster [-5] ; see also the 
derivation in [6]. For n = 1 a detailed analysis may be found in Gurtin and 
MacCamy [-7] who admit b = b(x,  u) but assume separability. See also Sowunmi 
[14]. Coffman and Coleman [2] studied (1) for n = 1 under the hypotheses of a 
specific reproductive age x I. Di Blasio [-13 proved well-posedness of (1) for n -- 1 
with diffusion. For further biological background we refer to Rotenberg [-13]. 

Our approach relies on the theory of semilinear evolution equations and so we 
consider (1) as an ordinary differential equation in an appropriate Banach space: 

( e l )  u' = Au  + F(u), u(O) = Uo. 

Since ui(t, . )~LI(R+)  should hold, it is natural to consider X =  (LI(R+)) ", to 
i di(x)u ~, the domain of which will be specified later, and to choose (Au)i(x)  = - u x - 

put F(u)i -= - f i (x ,  u)u i. Clearly, A is a linear but unbounded operator in X. Finally, 
we shall study (P1) in the standard cone K ~ X since only nonnegative solutions are 
biological significant. 

The linear part A of problem (1) will be studied in section 1. By means of  
abstract results concerning the initial value problem (P1) we shall prove well- 
posedness of (1) in section 2 under mild assumptions on the structural functions 
d~, bz,J}. In section 3 we shall take up the existence problem for equilibrium solutions 
of (1), i.e. solutions independent of t. Again, using some abstract invariant set 
techniques for (P1), we shall prove a very general existence theorem. Finally, in 
section 4 we also give some stability results for equilibrium solutions. 

Some notations used throughout all of this paper are listed below: 
An+ = { X  ~ ~ n  : X i  ~ 0, i = 1 , . . . ,  n} denotes the standard cone in ~". For p 

[1, oo] we let LP(a, b) be the usual spaces ofp-summable functions defined on the 
interval (a, b), let L p -- LP(R+) for short, and let L[o c be the set of all measurable 
functions which are p-summable on compact subsets of ~ +. u ~ WI'P(a,  b) means 
u ~ LP(a, b) is absolutely continuous with u' ~ LP(a, b), and W~o ~ is defined similarly 
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as Lfo c. C[a, b] denotes the space of continuous functions defined on [-a, b] with 
values in R or C. I f  X is some Banach space, we put BR(u) = {v ~ X: [u - v[ <~ R}, 
and fi(B) denotes the ball-measure of  non-compactness of  the bounded subset 
B c X ,  i.e. 

fl(B) = inf{r > 0: B admits a finite covering by r-balls}, 

and for any bounded linear operator T: X--, X we put 

fl(T) = fl(TBI(O)). 
By (., .)_+ we denote the semi-inner products on X given by 

max 
(u,v)+_ = min {(u,v*): v*~X*, [v*[ = Ivl, (v,v*) = Iv]2}, 

where X* stands for the normed dual of  X and (., �9 ) indicates the natural pairing 
between X and X*. 

1. The Linear Problem 

This preliminary section is devoted to the study of the one-dimensional free 
problem, i.e. 

u, + ux + do(x)u = O, 

u(t,O)=f;bo(x)u(t,x)dx, 

u(O, x) = Uo(X). 

Let the following assumptions hold: 

(Ao) bo ~ L ~ c~ L 1, bo ~> 0 a.e., do ~ Ll~ o, 

We define Y = L ~, Ko = {u~ Y: u/> 0 a.e.} and 

(Aou)(x) = - (u' + do(x)u) for 

x, t ~> 0, 

d0 ~> 0 a.e. 

(2) 

u 6 D(Ao), 

D(Ao)={u~Y:u~W~oJ, Aou~Y,u(O)=f;bo(x)u(x)dx}.  (3) 

It  is easy to verify that Ao is a closed densely defined linear operator in Y. In the 
following we shall consider several properties of Ao. 

(i) First we study the spectrum a(Ao) of Ao. Therefore, we solve 

v' + do(x)v + 2v = f ,  (4a) 

v(O)=f;bo(x)v(x)dx (4b) 

where f e  Y and 2 s C. The solutions of (4a) are given by 

u(x)=exp(-qo~176 ) (5) 
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where 

q ) ~  

Inserting into (4b) we find 

v ( O ) ( 1 - f ~ b o ( x ) e x p ( - q ) ~  

f: = bo(x) exp( -  ~o~ f (y )  exp(~~ dy dx. (5') 
o 

From (5) and (5') it is easy to see that the essential spectrum ~re(Ao) of Ao is 
contained in the half-space 

~re(Ao) c {2eC: Re2 <~ - d o = - essliminfdo(x)} 
ao  

x --~ co 

and 

o-(Ao) c {2sC:  Re2 ~ b ~ = esssup(bo(x) - do(x))}. 
Jr 

Moreover, within the strip - d ~ < Re 2 ~< b ~ only isolated eigenvalues of Ao may 
be found. These are exactly the solutions of 

f ]  b o ( x ) e x p ( -  2 x -  f l  do(v)&)dx = l. (6) 

There is exactly one real solution 2o ~ possibly 2 o ~< - d ~ and Re 2 < 2 o holds for 
any other eigenvalue 2 of Ao. Note that the eigenspace corresponding to 2 o is one- 
dimensional and is generated by the positive function exp( -  ~o~ Therefore, by 
a direct calculation it is easy to verify that (Ao - ,~~ = 0 implies Aou = 2~ 
hence 2 o is a simple eigenvalue. 

(ii) Let us recall the Hille-Yosida Theorem on generation of Co-semigroups [8]. 

Theorem A. Let A be a closed, densely defined, linear operator in a Banach space X. 
Then, a necessary and suffi'cient condition for A to generate a Co-semigroup 
U(t) = e At in X is 

"there are constants M > O, ~o ~ N such that 

1(21- A)-"J <~ M(2 - co)-" holds for all 2 > co, n~N."  

In this case, U(t) is of  type (M,~o), i.e. IU(t)J ~ M'e~t  for teN+, and U(t)u = 
l i m , ~ ( I -  (t/n)A)-"u holds for all u s X ,  t s  ~+. 

Now, equalities (5) and (5') easily imply the estimate 

1(21- Ao)-lJ ~< 1/(~ - b ~ for 2 > b ~ (7) 

hence Ao generates a C0-semigroup Uo(t) of type (1, b ~ in Y, by Theorem A. 
Moreover, (5) and (5') also imply (2I - Ao)-aKo c Ko for 2 > b ~ thus from the 
exponential formula easily follows invariance of Ko under Uo(t), i.e. Uo(t)Ko c Ko 
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for all t~ R+. The semigroup Uo(t) admits the representation 

= ~ u ( x - t ) e x p ( - f : _ t d o ( z ) d z  ) ,  

(Uo(t)u)(x) ( v ( t _ x ) e x p ( _ f l d o ( ~ : ) d z ) ,  

where v(x) denotes the solution of the integral equation 

and 
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x~> t, 

(s) 
x < t  

v(x) = f l blo(X- y)v(y)dy + f~  b~(x,y)u(y)dy (9) 

) 
~-x+r "x 

b~(x,y) = bo(X + y)exp - Jr do(Z)&). 

(iii) In section 3 we shall need some sharp estimates of the ball-measure of 
noncompactness fi(Uo(t)) of Uo(t) in Y. To obtain such estimates, fix t > 0 and note 
that by (8) Uo(t) decomposes in a natural manner: Uo(t) = U~ + U~ where 

~(Vo(O.)(x), x >1 t, ~o, x >1 t, 
~ ( t ) u  

(0 ,  x < t, ~ ( t ) u  = ) (Uo(t)u)(x) ,  x < t. 

Put 

and 

TI" LI(O, t) ~ LI (0, t), Txu = f l  b~(x - y)u(y)dy, 

7"2: L l ~ LI(0, t), Tzu= J o  b~(x,y)u(y)dy; 

then by (A0) it is not hard to verify that Tz is compact and T1 is bounded with 
spectral radius zero. Thus, by (9) we get 

((I - T1) - 1T2u)(t - x) exp - do(z) dz , x < t, 

hence U~ is a compact linear operator for t fixed. Thus, we obtain 

fl(go(t)) = fl(U~l(t)) <<. I~(t)l ~< e-d~ (10) 

where d~ = ess infdo(x). 

2. Existence for the Nonlinear Problem 

As indicated in section 0, we want to put problem (1) into the framework of 
evolution equations in Banach spaces. In order to get an idea how this can be 
carried out we have to prepare some basic facts from that theory. 
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Let Xbe a Banach space, D c Xclosed, A a generator o fa  Co-semigroup U(t) in 
X and F: D ~ X be locally Lipschitz and bounded (F(B) is bounded for each 
B c D ) .  

We are interested in the following abstract initial value problem 

(P1) u' = Au + F(u), u(O) = Uo ~ O. 

A function u of class C 1 with values in D n D(A) satisfying (P1) is called a strict 
solution of (P1). It is convenient to consider also 

(P2) u ( t ) = U ( t ) u o + f ~ o U ( t - s ) F ( u ( s ) )  ds. 

Continuous solutions of (P2) are called mild solutions of (P0.  By "variation of 
constant" each strict solution of (P1) is a mild solution, but the converse need not be 
true. 

Suppose, to each Uo e D there exists a local mild solution of (P1) in D. Then, it is 
easy to see that 

(S) lim h-  ~ d(U(h)u + hF(u), D) = 0 for all u ~ D 
h~0+ 

holds true, where d(.,  D) denotes distance to D. Usually, (5) is called "boundary"  or 
"subtangential condition" w.r. to (P1). The following well-posedness result for (Pa) 
holds (cp. [9] or Ell]):  

Theorem B. Let X, D, A, F be like above and suppose (S) holds. Then, 
O) to each initial value Uo e D there is exactly one local miM solution u(t) to (P1) 

with values in D; it depends continuously on u0; 
(ii) if  F is C 1 in D (i.e. F is the restriction of  a Cl-function F defined on some 

neighborhood of  D), solutions u(t) with u(O)~ D(A) are strict solutions of  (Pa); 
(iii) i f  there are some ~o, ~o ~ ~ such that 

(Av, v)_ <~ ~OolVl 2 for all v~D(A),  

(F(u),u)_ <~ KoIHI 2 for all uED 

hold, each solution u(t) extends to R+ and has 9rowth 

[u(t)l ~< lu(0)le (~'~176 for all t~ ~+. 

Conditions sufficient for (S) are given in 

Lemma C. (i) I f  (I - 2A ) - ~ D = D for all 2 ~ (0, 21) holds for some 21 > O, then U( t) is 
leavin9 D invariant. 

(ii) Suppose U leaves D invariant and (So) : limh~0 +h- 1 d(u + hF(u), D) = O for 
all u ~ D. Then (S) holds. 

(iii) Suppose D ~ D(A) is dense in the closed set D = X and (ii) holds. I f  
(Au + Fu, u)_ <~ O for all u ~ D ~ D ( A ) ,  lul >1 R, then (S) holds w.r. to D~BR(O). 

(iv) Suppose D = X is closed convex and (S) holds w.r. to D. I f  u* ~ D(A*), 
H =  {u~X:  (u,u*) >>. c}, B c ~ D  # 0, and (u,A*u*) + (Fu, u*) >~ 0 for all uE 
D n OH, then (S) holds w.r. to D c~ H. 
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Part  (i) of  Lemma C follows directly f rom the exponential  formula  in Theorem 
A and (ii) also is easily verified. On the other hand, (iii) and (iv) require some more  
arguments f rom semigroup theory,  a p roo f  is given in the appendix. 

Now,  let us turn to problem (1). As already indicated in section O, it is natural  to 
choose X =  yn = L I ( ~ + , ~ , )  normed by [ul = max{[ui[, i =  1 , . . . , n }  and to 
consider as closed subset D = K = {u e X: ul/> 0 a.e., i = 1 . . . .  , n} the s tandard 
cone in X. We suppose 

(A) for each i = 1 . . . .  , n: bi ~ L ~ c~ L 1, d~ e Lion, di, bi/> 0 a.e., 

and define A = d iag(A1, . . . ,  A,) where Ai denote  the operators  described in (3), 
section 1, where index "0"  is replaced by " i " .  Then, by section 1, A generates a Co- 
semigroup U(t) given by U(t) = diag(U1 ( t ) , . . . ,  U,(t)) which is leaving Kinvar iant .  

Moreover ,  if we put  do = mini d~o, do~ = mini d~,  b~ = maxi b~ where d~, d~,  
bi~o are defined like d ~ d ~ b~ respectively, we have 

[U(t)l ~< e b J,  f l(U(t))  <~ e -a~ for  t e N + .  (13) 

Concerning the nonlinearities f~ we will suppose 

f ( x , u )  = g ( x ,  f ~  k (x ,y )h(y ,u (y ) )dy)  

h: ~+ x ~% --* R+ is continuous,  h(y, 0) - 0 and 

Ih(y, 4) - h(y, ~)l ~< L[~ - ~l holds for  all y, 4. 

(F2) k: ~ .  x E+ -~ ~,~1,~ is measurable and bounded,  and 

{k(., y):  y ~ ~ + } is equicontinuous.  

(F3) g" ~ + z E'~' -~ ~_  is continuous,  g(x, 0) ==- 0 and 

[gi(x, q) - 91(x, 0)[ ~< M(p)lq - O[ for  all i and It/I, [01 ~< p, 

x~  N+, where M(p) is cont inuous and increasing. 

Now, it is easy to verify that  F: K ~ X defined by 

(F(u)(x))i = - fi(x, u)ui(x) (14) 

is locally Lipschitz, bounded and, moreover ,  since f~ ~> 0, 

lim h- ld (u  + hF(u),K) = 0 holds for  all ueK.  
h ~ 0 +  

Thus, applying Lemma C and Theorem B we obtain 

Theorem 1. Let (A), (F) as well as (F1) ~ (F3) hold and let Uo ~ K. Then, there is exactly 
one mild solution u(t) of(12) defined for all t >~ 0 in K. It depends continuously on Uo 
and has growth 

[u(t)[ ~ [u(O)[e b~t, t >>. O. 

Moreover, if h(x, 4) =- ~ and g(x,t/) is C 1 w.r. to t/, solutions u(t) satisfying u(O)~ 
D(A) c~ K are strict solutions. 

(F) 

where 

(FO 
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Note that growth estimate follows from 

ui(t) = Ui(t)Uoi + f'o Ui(t- s)Fi(u(s))ds <~ Ui(t)Uol 

and that the last assertion holds true since in that case F is differentiable. 

(14a) 

3. Existence of Equilibrium Solutions 

Now, we turn our attention to the question of existence of equilibrium solutions to 
(1) 

~'i + di(x),Pi(x) + f~(x, ~)~i(x) = 0, (15a) 

�9 ~(O)=f~b~(x)q,~(x)clx. (15b) 

Of course, we are interested in solutions ~ ~ D(A) ~ K only. Recall the definition of 
2~ as the real solution to 

f~  bi(x)exp(- 2 x -  f l  di(z)dz)dx = l, (16) 

and put 2o = max~ 2~. These quantities will play an important role in the sequel. 
First, we note that the trivial solution (bo = 0 always satisfies (15). If 2~ < 0 for 

some i, by (14a) we obtain ui(t) ---> 0 in L 1 as t ~ 0% for any solution u(t) of (1) with 
u(0) ~ K, since [ Uz(t)[ is exponential decreasing; cp. also the introductory remarks of 
section 4. Hence, if )-0 < 0 holds, ~o - 0 is the only equilibrium solution of (1). 
Thus, a necessary condition for existence of nontrivial equilibrium solutions of (1) is 
2o >~ 0 and each equilibrium �9 will satisfy ~(x)  - 0 for each i with 2~ < 0. This 
means that the ith species will die out if it cannot sufficiently reproduce. Moreover, 
each nontrivial solution of (15) admits the representation 

ebi(x) = ebi(O)exp(- f l  d~(z)dz - flfi(z, cb)dz), i = l, . . . ,n, (17) 

hence, if2~ > 0 but sup{fi(z, u): z~ ~+, u~K} < 2iv holds, we obtain ~i(x) = 0 by 
(15b). Therefore, necessary for q~(x) to be nontrivial in case 2~ > 0 is 

sup{fi(z,u): z~[R +, u~K} >1 2~o . 

In the separable case k(x, y) - k(y) equations (15) reduce, after integration, to the 
finite-dimensional problem 

f ~ b i ( x ) q i ( x , P ) d x = l , i = l , . . . , n ,  

P~ = ~ t v kij(y)hj(y, clql(y,P) .... ,c,q,(y,P))dy, i :  1 , . . . , k  
j = l  �9 ] O  

where 
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q,(Y,P) = exp(- fl d~(z)d~ - fl g,(z,P) @. 
I f  P, c is a solution, the corresponding equilibrium is given by ~ (x )  = c~qi(x, P), 
i =  1 , . . . , n .  

But if there is no separability, (15) becomes a proper infinite-dimensional 
problem which even in case m = m~ = n = 1 is by no means as simple. Our main 
result on existence for (15) is 

Theorem 2. Let (A), (F), (F1)~(F3) hold, let do > 0 and 2o > O. Suppose,for each i 
with 2io > 0 there is 0 < Ni <~ oo such that 0 < #1 <<. di(x) - b~(x) for  x >1 N~, and 
R~ > 0 such that 

bi(x) ~ di(x) + inf fi(x,u):  u e K :  ui(x)dx >1 Ri 

Then, (1) has at least one nontrivial equilibrium solution. 

for x <~ Ni. 

Roughly speaking, the main assumption of Theorem 2 states that  for the species 
with a positive net reproduction rate (i.e. 2~ > 0) the birth rate bi(x) is bounded by 
the death rate if their frequency in young ages is large enough: S~' ui(x) dx >~ Ri, no 
matter  what age distributions the other species are. Such an assumption seems 
to be natural in competition models. As a more concrete example for a situation 
when Theorem 2 applies consider m = n and h(y, 4) - ~ as well as ml = 1 and 
gi(x, p) ~ oe as p ~ oo uniformly for x finite, and i with 2/o > 0. Then, if also 
inf~,r <.N, ki(x, y) > 0 holds for all such i, the assumptions of Theorem 2 are fulfilled, 
hence there is a nontrivial equilibrium solution of (1). 

The proof  of  Theorem 2 is an application of a general result on equilibrium 
solutions of  the abstract problem (P1) : 

(Pa) A cb + F(q~) = O, q~ ~ D(A) n D. 

This result is a slight generalization of Theorem 7.2 in [11] or Theorem 8 in [12], a 
short proof  is given in the appendix at the end of these notes. 

Theorem D. Let D be a closed convex bounded subset of  a Banach space X, A be a 
generator o f  a Co-semigroup o f  type (1, COo) in X, F: D --* X be locally Lipschitz and 
bounded such that 

(S) lim h-ld(U(h)u + hF(u), D) = 0 
h ~ O +  

(c) 

for all u e D, 

fl(F(B)) <~ lqfl(B) for B c D, fl(U(t)) <~ e '~ for t6 ~+, COl + tq < 0 

are satisfied. 
Then, problem (P3) admits at least one solution ~ ~ D(A) c~ D. 

For  the application of Theorem D we use X, A, Flike in section 2. Thus, we have 
to construct D c K bounded with 0 ~ D and such that D remains invariant w.r. to 
(P1) (i.e. (S) holds) and such that (C) is satisfied. 
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Proof of  Theorem 2. We m a y  assume 2~ > 0 for i = 1 . . . .  , r  and 2~ ~< 0 for  
i = r + 1 . . . . .  n. We shall construct  some closed convex bounded  D c K~{0} such 
that  (S) holds w.r. to D. This will be done  in three steps using L e m m a  C. 

i) First, consider 

D R = {ueK: [u[ ~< R, Ur+l . . . . .  u, = 0}; 

DR is closed, convex and bounded.  To  obtain  invariance of  DR w.r. to (P1), by 
L e m m a  C iii) it suffices to prove  

(Au + Fu, u)_ <~ 0 for u eD(A) c~ K, ]u] >1 R. (18) 

To  verify (18) we have to compute  ( . ,  . )_ in X, this is done  in the following Lemma.  
Since the p roo f  is very simple and uninteresting for the sequel we omit  it here. 

Lemma.  (i) Let u, v ~ Y; then 

L o 1 
(ii) Let u, v ~ 32 = Y"; then 

(u, v) x - = min{(ui, vi) Y _ : i with Iv& = Ivlx}. 

Hence, we obtain  

(u , v ) x -<- Iv [min{ f~u i ( x ) sgnv i ( x )dx : iw i th f~ l v i ( x ) [dx=M} .  

Now,  for  ueD(A)  c~ K, lull = R we get 

(Au + F(u), u)- <. lul ( - u; - di(x)ui - f ( x ,  u)ui) dx 
0 

= [u, f~ ( b i ( x ) - d i ( x ) - f ( x , u ) ) u i ( x ) d x  

=[u[ ( . . - ) d x +  ( . . . ) d x  
Ni 

1 1_ x<~Ni 

in case I~'ui(x)dx < Ri, and (Au + F(u),u)_ ~ 0 if I~o~u~(x)dx >1 R~ by the 
hypotheses  of  the Theorem.  Therefore,  (1 8) holds, provided R is chosen such that  

m a x ( R i + e s s s u p ( b ~ ( x ) - d i ( x ) ) ~ ) < ~ R .  (18') 
i= 1,...,r x<~Ni 

ii) Fo r  technical reasons which will become clear later, we want  to restrict D R  in 
order to control  the decay of  functions u e D at  infinity. For  this purpose  we let 

el(x) = exp(f I d i ( z ) d z - d ~  "x/2) 
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and consider 

De= {UeDR: f]ui(x)~pi(x)dx <~ a, i=  l , . . . , r  t 

where a > 0 will be fixed later. Al though qh(x) ~ ~ as x ~ ~ ,  D e is closed convex 
and bounded.  We shall verify (S) w.r. to D e directly. So let Uo e D e and i e  {1 . . . .  , r} 
be fixed. Then 

~< R + 1 for  all n ~ ,  (19) 

provided t > 0 is sufficiently small. Now,  vg = ( I -  2Ai)- lu~ satisfies (2 > 0) 

2(v ' ,+divO+vi=u ~, vi(O)=f]bi(x)vi(x)dx 

hence by integrat ion 

f: ; a >~ u~pi dx >~ vi~Pl dx + 2 (v I + divi)~oi dx 
o 

= v ~  dx + 2 do v~o~ dx + vi(N)~o~(N) - 

and N - ~  oQ yields 

a >~ f ] vi~p, dx + )~[~- f ] vi~o, dx - b~(R + l) 1 

which in turn implies ~v~(x)~o~(x)dx <~a, provided ( r >  2b~(R + 1)/do~. By 
induction it is easy to see that  

I - n A~ bl~O i dx <~ a holds for all n e ~ ,  

provided t > 0 is small enough,  hence by exponential  fo rmula  (Theorem A) 

< if h > 0 i s  sufficiently small. (19') 

Now,  let u(h) be the solution of  (P~) with initial value Uo. We already know u(h) ~ DR 
for all h > 0 and I U(h)uo + hF(uo) - u(h)[ = 0(h) as h --* 0 + ,  but  also u(h) ~ D e for  
h > 0 small and so (S) holds w.r. to D e. In fact, considering the / th  componen t  ui(h) 
again, by ( t9 ' )  we obta in  

ui(k)cpi dx = Ui(h)uioCPi dx + Ui(h - s)Fi(u(s)) ds cpi dx < a 
, Jo  

since F,.(u(s)) <<. 0 and Ui(t) preserves inequalities. 
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iii) Finally, we want  to exclude 0 f rom D~o and for  this purpose  we consider the 
intersection of  D~ with some appropr ia te  half-space H. For  to construct  H,  f rom 
the hypotheses  of  Theorem 2 recall that  2o > 0, a fact we did not  use up to now. Fo r  
i = 1 . . . . .  r we consider the eigenfunctions ~ki(x) of  the p rob lem adjoint  to 
Ai v i ,, " = 2or , i.e. 

t i Oi = -- bi + d,O~ + 2o~9, O,(O) = 1. (20) 

I t  is easy to verify that  O~(x) > 0 for  all x e N +  and O~(x) ~ 0 as x ~ o% and tha t  
O~ ~D(A*)  for  all i. Put  O = (O~ . . . .  , O~, 0 , . . . ,  O)eD(A*),  

H =  u e X : ( u ,  tp)= r  , 

where p > 0 will be fixed below, and define D = D~o ~ H. Obviously,  D c K\{0} is 
closed convex bounded.  T o  prove  that  (S) holds w.r. to D we will use L e m m a  C (iv). 
Since f ( x ,  0 ) -  0 for  each i, there is ro > 0 such that  fi(x, u)~< 2~ holds for  
i = 1 . . . . .  r if [u[ ~< ro. Now,  let u~D~onSH;  then ~ O i u l d x  <. p for  i = 1 . . . . .  r, 
hence 

f :  ( ) - - 1 (  )--1 lUll = ul dx <~ min ~ki(x) p + min rpi(x ) a <~ ro \x<~N \x>~N 
choosing N large enough first and then p > 0 small enough. This  observat ion and 
(20) yield 

r f;  (u, A'u)  + (Fu, u*) = 
7 

ui[r + bi - d~r - f~(x, u)r  dx 

= Y, u~r - f~(x ,  u)] dx >1 0 
T 

hence, by L e m m a  C (iv), (S) holds w.r. to D. 
iv) We are going to prove  that  condit ion (C) of  Theorem D holds. Fo r  this 

purpose  we put  V( t )=  U(t)e -~' and G(u)=  ?u + F(u); the pair  V(t), G also 
corresponds  to ( P 0  since (P~) m a y  be writ ten as u' = Au - yu + 7u + F(u) and 
A - 7 generates the semigroup V(t). 

F r o m  estimate (10), section 1, we obtain  

fl(V(t)) = fl(U(t)e -rr) <~ e -(a~ for  t e  ~+ .  (21) 

On the other hand,  we also have 

fl(a(B)) <~ 7//(B) for  B c D (22) 

provided ? > 0 is chosen such that  

y ~> sup{f~(x,u): x ~ + ,  i = 1 , . . . , r ,  u~D} ,  

which is possible by (F1)~(F3) .  In  fact,  let ~ > 0 and B c D be given and  choose 
{vJ}] c X such that  B ~ U~ B,(vJ), where c~ ~</3(B) + e/47. Moreover ,  choose 
N > 0 large enough tha t  ~ff Iv~(x)l dx ~< ~/87 holds for  all i,j. Since {fi(x, u): u ~ D} is 
bounded  and equicont inuous in x ~ [0, N ]  by (F1)~  (F3), Arzela-Ascoli 's  theorem 
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implies the existence of functions w~ e C[0, N],  v = 1 . . . .  , s /such that 

[7 - f ( x ,  u) - w~(x)[ ~< ~/4' maxlvJl 

holds in [0, N]  for all u s D and suitable v = v(u). Defining w~(x) = w~(N) for x ~> N 
extends w ~ to all of R +. Now, put z~J(x) = wY(x)v4(x) to obtain 

i z t 

I(~ - f ~ ( . ,  u))u/ - z ~ l  < 1(7 -f~( . ,u))(u,  - v{)l + I(~ - f~ ( . ,  u) - w/)v/IV j 

< 7~ + sup  Iv -f~(x,  u) - w~(x)l Iv{I 
x<<.N 

+ s u p  17 - f~(x ,  u) - w;(x)[ Iv{I dx 
x >~ N N 

~< 7fl(B) + d/4 + e/4- Iv{I f~o maxlv~ ~ + (7 + Iw;(N)I) JN Iv~ldx 

hence IG(u) - z vj] <. 7fl(B) + e. Therefore, G(B) ~ U~,J B~, (z ~j) i.e. (22) holds since 
> 0 may be chosen arbitrarily small. By assumption do > 0 and so all hypotheses 

of  Theorem D are satisfied and therefore the proof  of Theorem 2 is complete. 
q.e.d. 

Using another simple trick weakens the assumption that do > 0: 

Corollary 1. Let all of  the hypotheses of  Theorem 2 hoM except that "do > 0" is now 
replaced by "d~ > 0". Then, the conclusion of  Theorem 2 also holds. 

Indication of  Proof. We only have to alter step (iv) in the proof  of Theorem 2, and 
this will be done by means of a new norm on Xdefined in the following manner:  For 
u ~ Y put 

Ilul[ i = sup IV/l(t)e~tu[r, where e = d~/2. 
t > ~ 0  

I1" I1 ~ is equivalent to I' Ir and we have IIU~(t)llg ~< e - ~  for t e  ~+. Then, for u E X  
define Ilull = maxl Ilu~ll/. With respect to this norm, similar to (21), we obtain 

flllql(V(t)) <~ e - ~ §  for t~ ~+, (21') 

where flll.ii denotes fl-measure w.r. to I1" II. N o w ,  surprisingly the analog to (22) also 
holds: 

filI.II(G(B)) <<. 7flll.ll(B) for B ~ D. (22') 

This can be seen by passing through the proof  of (22) taking the new norm into 
account. Thus, Theorem D may be applied in this case, too. q.e.d. 

4. Stability Analysis for Equilibrium Solutions 

We start recalling some definitions f rom stability theory. Again, let X be a Banach 
space, A be a generator of  a C0-semigroup in X, F: BR((b) --* X Lipschitz and 
differentiable at ~, and let ~ be an equilibrium solution of 

(P3) A(b + F((b) = 0. 
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Definition. (i) q~ is stable (w.r. to (P1)) if to each e > 0 there is 6 > 0 such that 
[~b - Uo[ < 6 implies that the mild solution u(t, Uo) of (P1) exists on all of  •+ and 
satisfies [ ( b -  u(t, Uo)[ < e on R+. 

(ii) ~ is asymptotically stable if it is stable and there is 6o > 0 such that 
l i m , ~  u(t, uo) = q' holds for all I~ - uoI ~< 8o. 

(iii) (b is unstable if it is not stable. 

One method to study stability of  (P1) is to consider the linearization of (P1) 

(P4) w' = Aw + F'(r = Aow. 

It is possible to characterize stability of  �9 w.r. to (P1) almost completely by means 
of spectral properties of the operator A,,  To state this result we need some further 
preparation concerning Co-semigroups; see Hille/Phillips [8]. If  A generates a Co- 
semigroup U(t) = e At in X, we put 

Coo(A) = lim t -~ loglU(t)], Col(A) = lim t -1 log/3(U(t)). (23) 
t ~ o o  t ~ o o  

It is a standard argument in semigroup theory to show that both limits exist and of  
course we have co~(A) <~ coo(A). Moreover, e ~176 and e ~ are precisely the radii of  the 
spectrum of U(t) and of the essential spectrum of U(t), respectively. Since 

e *(A)t = cr(e at) and e av(a)t= trv(eAt)\{O} 

holds, where crp denotes point spectrum, we also have 

Coo ~> sup{Re2: 2~a(A)}, col ~> sup{Re2: 2~ae(A)}, (24) 

but, in contrary to the case of  bounded A, strict inequalities may occur. On the other 
hand, if Coo > Co~ holds, the first inequality in (24) becomes an equality, hence to 
each e > 0 there is M, >7 1 such that 

I U(t)l ~< M~ exp((sup Re a(A) + e)t) for t ~ E +. (24a) 

Moreover, if all eigenvalues 2 of  A with Re 2 = sup Re(A) are simple, in this case we 
even obtain 

[U(t)[ ~< Mexp(supRea(A)t )  for t~R+.  (24b) 

Theorem E. Let A be a generator of a Co-semigroup in Banach space J(, F: BR(~) --* X 
be Lipschitz and differentiable at ~, let q~ satisfy (P3) andput Ae = A + F'( r Then, 
we have: 

(i) Coo(Ae) < 0 implies asymptotic stability of ~. 
(ii) Coo(Ae) > 0 and Col(A,) ~ 0 imply instability of lb. 

This result is proved in Dalecki/Krein [4] for the case of bounded A but their 
proof  extends to our setting almost directly. Note that in case Co0(Ae)= 0 
linearization yields no information and as known from ordinary differential 
equations in N" both stability and instability may then occur. Let us also mention 
that in case e At is a compact operator for t >~ to ~> 0, there results Col (A) = - oe and 
equalities hold in (24). Hence, if X is finite-dimensional, Theorem E reduces to the 
classical result of Ljapunov for ordinary differential equations. 
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We want to apply Theorem E to problem (1). So let X, A, F be as described in 
section 2. First, consider the trivial equilibrium ~bo - 0. Since F'(q~0) = 0 we obtain 
a rather complete description of the stability behaviour of ~b0 -= 0: 

Theorem 3. Let (A), (F) as well as (F 0 ~ (F3) hold. 
(i) I f  2o < O, ~o =- 0 is asymptotically stable andu(t) --* 0 as t ~ os holds for any 

solution u(t) with u(O)~ K. 
(ii) I f  2o = 0, ~o - 0 is stable in K. 

(iii) I f  ,%o > O, ~o =- 0 is unstable. 

For a proof  note that (i) and (iii) are directly implied by Theorem E, whereas (ii) 
follows from (14a), (24b) and simplicity of 20. 

Next, we consider some fixed nonnegative nontrivial equilibrium solution ~ of  
(1). Thus, we may assume ~ ~ 0 for i = 1 , . . . , r ,  4~ - 0 for i =  r + 1 , . . . , n  and 
r ~ { 1 , . . . ,  n}. Since differentiability of F at 4~ is crucial for Theorem E, we have to 
assume 

(F4) m = n, h(x, 0 - 3, g(x, tl) is of class C 1 w.r. to t/. 

Note that g'(x, q), the derivative o fg  w.r. to r/is uniformly bounded in x, by (F3)- If 
(F4) holds, F is of class C 1 and we get 

(F t (~ ) )W) i (X)  = - -  f i ( x ,  ~ ) W i ( X  ) - -  ~)i(X)~ti(X, K ~ ) ( K w ) ( x ) ,  (25) 

where (Kw)(x) = ~ k(x, y)w(y) dy and g'i denotes the ith row of g'. Put 

p(x, y) = g'(x, K~)k(x,  y) (26) 

and define 

to obtain 

(Pq~w)i(x) = ~i(x x, y w(y 
0 i '  

(BcW)~(x) = - w'~ - 4 ( x ) w ~  - f ~ ( x ,  ~ ) w ~ ,  (27) 

A~w = B~w - Pew, D(A~) = D(Be) = D(A). (28) 

Since P~: X--* X is a compact linear operator we have 

f l ( e A . t )  = ~(eB.t) <~ m~e(~-d.)t for t~ N+, 

where the last inequality is obtained like (13). Therefore, if doo > 0 we deduce 
~ol(A.) ~< - d~ < 0 and so the stability behavior of (1) at ~b is determined by the 
location of the eigenvalues of A ,  alone. Thus, by Theorem E we get 

Theorem 4. Let (A), (F) as well as (F1) ,,~ (F,) hoM and let d~o > O. Then , / fRe  # < 0 
holds for all eigenvaIues of  A,~, ~ is asymptotically stable. I f  Re # > O for at least one 
eieenvalue of  A , ,  q~ is unstable. 

Although stability of nonnegative equilibrium solutions of (1) is almost 
completely characterized in Theorem 4, it may be very difficult to estimate the real 
parts of the eigenvalnes of A~ or even to compute them. Before we consider some 
special cases we note some general facts concerning ae(A,). 
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First, consider B , ;  eigenvalue with largest real par t  o f  Bo is 2 = 0, one 
eigenfunction being ~ itself. Thus,  stability behaviour  depends on how Po alters 
o>(B~) into o>(A~). 

Secondly, since (P~w)~ =- 0 for i = r + 1 , . . . , n ,  the point  spectrum o'e(A~) 
decomposes  into n -  r + 1 par ts :  eigenvalues of  the opera tors  (B~)~, 
i = r + 1 . . . .  , n, i.e. the ith componen t  of  B , ,  and eigenvalues of  A~, i.e. A ,  
restricted to the first r components .  Since B ,  is diagonal ,  it is an easy mat te r  to 
est imate the former.  In fact, their real par ts  are less than  #~o, w h e r e / ~  is defined as 
the real solution of  

f ~ e-UXb~(x)exp(- f l  di(~)dz - flf~(~, g ')dz)dx = l ; (29) 

cp. (6) in section 1. I f  #~ < 0 for all i = r + 1 , . . . ,  n, only eigenvalues of  A~ m a y  
have positive real parts ,  but  on the other  hand  #~ > 0 for  some i e  {r + 1 . . . .  , n} 
implies instability of  ~. No te  tha t  it is possible to have 2~ > 0 but  #~o < 0, i.e. the 
trivial state of  the ith species m a y  be stabilized by the presence of  other  species. 

We are going to consider some 

Special Cases. (i) Suppose 9 and k are independent  o f  x, i.e. the death  rate increase 
arising f rom popula t ion  interactions is equal for  all ages. Then 

p(x , y )  = p(y)  = o' k ( y ) ~ ( y  k(y)  
0 

and the calculation of  eigenvalues is considerably eased. In fact, suppose 0 r # e C, 
R e #  ~> 0 is an eigenvalue of  A ,  with eigenfunction w, and let #~ < 0 for  
i = r +  1 , . . . ,n .  Put  q = ~ p ( y ) w ( y ) d y  and let ie{1  . . . . .  r}; then integrat ion 
yields 

wi(x) = q~i(x)e-UX[wi(O)/q~i(O) + qJ#] - cbi(x)qi/#, 

and using bounda ry  condit ion (4b) we obtain  wi(0) = - ePi(O)qi/#, hence 

wi(x) = - ~i(x)qJl~ for  x e N +, i = 1 . . . .  , r. 

Moreover ,  we have wi(x) = 0 for  i = r + 1 . . . .  , n and so we obtain  

f> f: q = (y)w(y) dy = - #-1 p(y)(cI)(y)q) dy, 

i.e. - # is an eigenvalue of  the r x r -matr ix  R whose entries are 

Rij = j'~ pij(y)q)j(y)dy. (30) 

This latter claim also holds if # = 0, as can be seen by a similar considerat ion.  No te  
also tha t  #~ = ~.~ - f ~ ( r  in this case. Summariz ing we obtain  

Corollary 2. Let g, k be independent of x. Then: 
O) I f  fi(cb) < 2iof ~ some ie{r + 1 . . . .  ,n}, ~ is unstable. 

(ii) I f  fi(~) > 2io for i = r + 1 , . . . ,  n and R defined by (30) admits some 
eigenvalue with negative real part, q) is unstable. 
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(iii) I f  f ( ~ )  > 2~ for i = r + 1 , . . . ,  n and all eigenvalues of  R have positive real 
parts, ~b is asymptotically stable. 

Note  that  in case of  only one equation,  i.e. n = ml = r = 1, (30) becomes trivial: 

R = f ~ p(y)~(y)dy = g'(f ~ k(y)~(y)dy) f~ k(y)r 
Since k ~> 0 we have instability if f ' ( q~ )<  0 holds and asymptotic  stability if 
f'(~b) > 0. 

(ii) Suppose k is independent  of  x, i.e. we have separability. For  n = 1 this case 
was studied in [6] and [13]. Then,  

p(x, y) = g'(x, K~)k(y) = p(x)k(y). 

Again, let # ~ C\{0}, Re # ~> 0 be an eigenvalue of  A~ with eigenfunction w and let 
#~ < 0 for i = r + 1 , . . . , n .  Put  q = ~ k ( y ) w ( y ) d y  and let i 6 { 1 , . . . , r } ;  as before 
integration yields 

w~(x)=Cbi(x)e "X[wi(O)/q~i(o)-fleuYp~(y)dyq 1, 
and by (4b) we obtain 

(1-~,(O)-if;b,~,e-"Xdx)w,(O)+(f]b,(x)~,(x)fle-"(X-'p,(y)dy)q=O 
which we write as 

On the other  hand, 

where 

D(#)w(O) + R(#)q = o. 

t 
~ o (3  

q = k(y)w(y) dy = S(#)w(O) - T(p)q 
0 

T(p)ij= ~ f:kil(Y)~t(Y)flPlj(z)e-U(Y-~)dT, dY, 
l=1 

and 

S(#)ij=f~ki~(y)e-UYq~j(y)/q~(O)dy for  

Thus,  the pair (w(0), q) is a nontrivial  solution of  

l <~i<~ml, 

- S(#)  I + T(#)/I 

which implies that  # is a zero of  r  defined by 

~ , ( p ) = d e t ( D ( p )  R(p) ~. 
\ -  S(p) I +  T(p)/  

(31) 

(32) 

1~<i, j ~ m l  

1 <~j<~r.  

(33) 
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Summariz ing  we get 

Corollary 3. Let  k be independent o f  x. Then, 
(i) I f  l~  > O for  some i E {r + 1 . . . .  , n} or ~p(p) admits a zero o f  positive real part,  

is unstable. 
(ii) I f  #~ < 0 f o r  i = r + 1 , . . . , n  and tp(p) = 0 has no solutions in C with 

nonnegative real part, ~ is asymptotically stable. 

In case n = ml  = r = 1, ~(p) reduces to 

$(p)  = D(p)(1 + T(p)) + R(p)S(p)  

where now D, T, R, S are complex-valued functions. 
I f  p ( x ) = e ' ( x ,  K e b ) < O  for all x ~ + ,  we obtain  $ ( 0 ) < 0  and since 

limp_. ~ tp(p) = 1 always holds, there is a positive zero of  $, hence r is an unstable 
equil ibrium solution, in analogy with the case when g is independent  o f  x. On the 
other  hand,  i fp(x)  > 0 for  all x ~ ~ +, it is easy to see tha t  $(p)  > 0 for all p ~ ~ +, but  
it m a y  happen  that  ~0(p) has conjugate complex zeros with positive real part .  

Appendix 

We are going to prove  L e m m a  C, parts  (iii) and (iv) as well as Theorem D. 

Proo f  o f  Lemma C (iii). Let r e D ,  Iv] > R; we claim there is 6 > 0 such tha t  
v( t) = U( t)Vo ~ D satisfies 

Iv( t ) l<<.tv lexp(-J~oiV(s) l -2(Fv(s) ,v(s))_ds)  for  tE [0 ,6 ] .  (34) 

In fact, since D c~ D(A)  is dense in D, there is (v,) ~ D c~ D(A)  such that  ]v.[ > R and 
v, ~ v. vn(t) = U(t)v, ~ D c~ D(A)  satisfies ( D -  : left upper  Dini-derivative) 

D-Iv,( t ) l  Iv,(t)[ ~ (v',, v,)_ ~< (Av,  + Fv,, v.)_ - ( f v , ,  v,)_ ~< - (gv,, v,)_ 

for t ~ [0, 6], where 6 > 0 is sufficiently small. In tegra t ion yields (34) with v replaced 
by v,, and passing to the limit we arrive at (34) since ( . ,  .)_ is lower semicontinuous.  
It  is also clear that  6 = 6 (0  > 0 can be chosen uniformly positive if v is also al lowed 
to vary  in some compac t  set c D with iv] i> R + e > R. 

Now,  let u(t) be any mild solution of  (P1) in D and suppose ]u(t)] > R. I f  we let 
Vh(S) = U(s)u(t - h) for  t > h > 0, by (34) we obtain  

(lu(t)l - lu(t - h)l)lu(t)l 

<~ (u(t) - u(t - h), u(t))_ 

<~ (g(h)u(t  - h) - u(t - h),u(t))+ + U(t - s)F(u(s))ds, u(t) 
t - h  

+ h(Fu(t), u(t))_ + o(h), 

provided h > 0 is sufficiently small. Division by h > 0 a n d  passing to the limit 
h ~ 0 + yields 
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O-lu(t)]  lu(t)[ ~ [u(t)12( - lu(t) l-2(Fu,  u)_)  + (Fu, u)_ = O, 

where we used lower semicontinuity of (  ", �9 )_ again. Thus D-lu(t)l ~< 0 holds for all 
t > 0 such that lu(t)] > R. This inequality in turn implies lu(t)l ~< R in R+ provided 
lu(0)l ~< R, hence D n BR(0) remains invariant with respect to (P1), and so (S) holds 
for D n BR(0). q.e.d. 

P r o o f  o f  L e m m a  C (iv). Let Xo e / z /n  D, e > 0 and consider the approximate 
problem 

(P] )  u' = A u  + Fu - e(u - Xo), u(O) = Uo. 

Since D is convex it is easy to verify that (S) also holds for D with respect to (P]). Let 
u,(t) be the mild solution of (P]). Put q~(t) = (u~(t), u*); then we have 

r + h) - ~o(t) = (us(t), U*(h)u* - u*) 

) + g ( t  + h - s)(Fu~ - e(u~ - Xo)) ds, u* . 

Dividing by h > 0 and passing to the limit h ~ 0 yields 

~p'(t) = (u~(t), A ' u * )  + (Fu~(t), u*) - ~r + e(Xo, u*), 

since u * ~ D ( A * )  and h - l ( U * ( h ) u  * -  u * ) ~ A * u *  with respect to the weak*- 
topology on X* ; cp. [8]. Hence, for Uo ~ D n H we obtain ~p'(t) > 0 for all t with 
q~(t) = c, and ~o(0)>~ c, which in turn implies r (u~(t), u*)>~ e, i.e. u,( t )~ 
D ~ H. Passing to the limit as e ~ 0 + implies u(t) ~ D n H for all t /> 0 provided 
u o ~ D n H ,  hence D n H  is invariant with respect to (P1). Therefore, the 
subtangential condition (S) also holds for D n H. q.e.d. 

P r o o f  o f  Theorem D. For simplicity let us assume that X is separable. The 
hypotheses of  Theorem D imply that to each initial value Uo there is exactly one 
global mild solution u(t;  Uo) in D and it depends continuously on Uo, by Theorem B. 
Thus, the solution operator for (P1) S(t): D ~ D defined by S(t)Uo = u(t; Uo) is 
continuous. But we also have 

/3(S(t)B) <<. k(t)/3(B) for all B = D countable, (35) 

where k( t )  = e ~'~ + ~,)t < 1. In fact, since Xis separable/3 commutes with integration 
(see M6nch and von Harten [10]), thus we obtain 

(; ) q)(t) = f l (S( t)B)  <~ f i (U(t)B) +/3  U(t - s )FS ( s )Bds  o 
<...eWltfl(B)-l-ftoeC~ 

which in turn implies (35), by Gronwall 's  Lemma. 
Now, by an extension of Darbo 's  Fixed Point Theorem due to Daher [-3], S ( T )  

admits a fixed point, i.e. (P1) has a T-periodic solution for each (small) T > 0. 
Finally, let T, = To �9 2 -"  ; then the corresponding T,-periodic solutions u,(t) are To- 
periodic, hence from (35) we deduce /3({u,(t)})= 0. So there is ~(t) and a 
subsequence u,k(t ) -~ eb(t), and ~(t) is constant since it is T,-periodic for each n ~ ~.  

q.e.d. 
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