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Abstract. We consider discrete time stochastic processes defined by solutions to 
some non-linear difference equations whose coefficients are autocorrelated 
random sequences. It is proved that these processes converge weakly in D[0, T] 
to diffusion processes, under the assumption that the random sequences satisfy 
some mixing condition. Diffusion approximation for stochastic selection 
models in population genetics is discussed, as the application of this limit 
theorem. 
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1. Introduction 

The change of gene frequency is usually described by a discrete time model in 
population genetics. Stochastic selection and size (random sampling) effect are the 
main stochastic factors for gene frequency change. Generally, the stochastic 
selection is autocorrelated from generation to generation. 

Experimentally observable quantities in population genetics are the distribution 
of gene frequency, moments of gene frequency, and so on. It is difficult, however, to 
obtain in the discrete time model the explicit expression for these quantities. To 
obtain it, so-called "diffusion model" (diffusion approximation) is frequently made 
use of for the original discrete time model. The explicit expression for the above 
quantities can then be obtained in the diffusion model with the help of the theory of 
diffusion processes; here, Kolmogorov forward and backward equations are 
extensively used [Kimura (1955, 1964); Jensen and Pollak (1969); Crow and 
Kimura (1970); Kimura and Ohta (1971); Gillespie (1973a, b; 1978); Hartl and 
Cook (1973, 1974); Cook and Hartl (1974); Karlin and Levikson (1974); Karlin 
and Lieberman (1974); Levikson and Karlin (1975); Takahata et al. (1975); Hartl 
(1977); Li (1977); Maruyama (1977); Ewens (1979)]. 

However, in these treatises the diffusion approximation has been introduced 
more or less heuristically. As to the adequacy of the diffusion approximation, Feller 
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(1951) studied for the first time how a passage from a Markov chain of gene 
frequencies to a diffusion process could be effected. For such discrete time Markov 
processes the convergence to the corresponding diffusion processes has been proved 
for many cases where the stochastic factor is size effect [Trotter (1958); Watterson 
(1962); Guess (1973); Sato (1976a, b, c; 1978)] and/or stochastic selection without 
autocorrelation [Okada (1979)]. On the other hand, rigorous results are few for the 
case of autocorrelated stochastic selection, where gene frequencies of a discrete time 
model do not form a Markov process. For results of weak convergence of a 
sequence of continuous time non-Markovian processes to a diffusion process, see 
Papanicolaou and Kohler (1974) and Kurtz (1975). Norman (1975) studied the 
diffusion approximation of  discrete time non-Markovian processes, but his result is 
not suitable to the autocorrelated stochastic selection. Guess and Gillespie (1977) 
proved weak convergence of the discrete time processes defined by solutions to 
linear first-order stochastic difference equations of the form 

xk+  l - x k  = A(sk) + B(s )Xk (k  = O, 1 , 2 , . . . ) ,  (1.1) 

where A and B are functions of an autocorrelated stochastic variable Sk. 

However, the difference equation of stochastic selection in population genetics 
is usually non-linear. For instance, consider a haploid model in which the genotypes 
A and a have fitness 1 + Sk and 1 in the kth generation. In this model the change of 
the gene frequency of A allele is given by 

skXk(1 -- Xk)  
Xk+ l -- Xk  -- , (1.2) 

1 + S k X k  

where Xk  is the gene frequency in the kth generation. For such non-linear cases, 
Gillespie and Guess (1978) heuristically gave the form of the limiting diffusion 
processes by patching together of linear processes. 

In this paper, we consider discrete time stochastic processes defined by solutions 
to some non-linear first-order stochastic difference equations such as (1.2). We 
prove weak convergence of the processes assuming that the sequence of bounded 
random variables {s~} is a certain qS-mixing process with mean zero. The definition 
of the ~b-mixing process and the related inequalities are given in w In w we consider 
discrete time processes {Z~k ")) defined by solutions to 

= e2 r n ) zc.  +l - + ( 1 . 3 )  

Here, {s~ ")} (n = 1,2, , . . )  is a sequence of qS-mixing processes with mixing rate qS.(k) 
such that v. = ~ = o  (al./2(k) < ~"  The sequences of positive parameters ~. and v. 
satisfy the condition lim._, o0 e.v. = 0. We prove, under certain conditions on the 
function G( Z ~  "), ~(") ~ , ~.), weak convergence of z(")(t) = 7~.) to some diffusion 
process, applying a theorem of Gikhman [Gikhman (1969)]. 

In w we consider the more general case of discrete time processes {X~")}, which 
are defined by solutions to 

X( . )  X~.) e . f (X~")){s~ ") + (.) (.) k+ a -- = e . g ( X  k , S k , e.)}, (1.4) 

wheref(x) and g(x ,  s, e) are certain functions of x and (x, s, 0- Using the results of 
w we also prove weak convergence of x(")(t) = X[~]~.j to some diffusion process. 
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The limiting properties of {Xk} of (l.2) can then be studied as a special case of that of 
{X~ "~} of(1.4). In w we apply our result to stochastic selection models in population 
genetics. 

2. Pre l iminar ies  

2.1 (o-Mixing Processes and Inequalities for Moments 

Let {Sk(CO)}k~_ ~ be a strictly stationary sequence of random variables on a 
probability space (O ,~ ,P ) .  Let ~k~k~ be a o--algebra generated by {Sksk~k~=R, 
(-- m ~< kl ~< k2 ~< m). Consider a function (o: {0, 1,2,. . .} ~ [0, 1] such that 
! = (o(0) > / (o(1)  >~ . . . ,  l i m , . .  ~ (o(m) = 0. 

Definition. {St}k~ _ ~ is (o-mixing (uniformly mixing) if, for each k ( -  m < k < m) 
and for each m (m > 0) 

sup{lP(EzlE~) -P (Ez) l ;  E1 E~'~k__oo, E 2 ~ + m }  --~ (o(m). (2.1) 

Here we regard P(E2IE,) - P(E2) = 0, i fP(E,)  = 0 [see Billingsley (1968) p. 166]. 

In this " ~ "s sectmn, we assume that {Sk}k = - ~ 1 a strictly stationary (o-mixing process 
with v = ~ = o  (ol/2(k) "< OO, S --- SUpk,o , ]Sk(O.))l "( GO and E{Sk} = O. E{x} means the 
expectation of x. For this process we get the following inequalities. 

L e m m a  2.1.  
cx) 
~, (o(k) ~< v, (2.2) 

k=0 

k(o(k) ~ (v - 1) 2. (2.3) 
k=l 

Proof The first inequality is obvious since 0 ~< (o(k) ~< 1. For each integer n (n ~> 1) 

k~(k) = i i ~(k)~ ~ (Ol/2(j)i (ol/2(k) ~<~ ( v -  ,)2. (2.4) 
k=l j = l  k=j j = l  k=j 

This leads to the second inequality. 

L e m m a  2.2.  I f {  is ~ k  _ oo-measurable and [4] ~ C1 < oo and q is j~+ m-measurable 
(m >~ O) and [ql <~ C2 < o0, then for each k,  and k2 ( -  oo <. kl <~ k2 <<. k) 

IE{{r/[o~} - E{{[~,#-~}E{~/}[ ~< 2C1C2(O(m). (2.5) 

Proof, Since we can approximate { and q by simple random variables, in treating the 
general case we may suppose that 

{ = Y. u,za,, (2.6) 
i 

q = ~. vjZB; (2.7) 
J 

where {Ai} ({Bj}) is a finite decomposition off2 into elements o f ~  k_ ~ ( ~ +  m)' Za is 
the indicator function of A. In this case 
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J 

o~'k2 ~ k 2  E{~I~ k~} = Z u,P(Ail~" k,), 
i 

= Z  i jP(AiS lg  ). 
i , j  

For  each ~k2 have F~ ~ k~, P(F) > 0 we 

= ~ uivjP(AilF)P(B~IAiF) - ~ u,v~P(A,IF)P(Bj) I 
i , j  i , j  

M. Iizuka and H. Matsuda  

(2.8) 

(2.9) 

(2.10) 

C 1C 2 ~'~ P(AIIF) ~ IP(BjIAIF) - P(Bj)L. (2.11) 
i j 

As A iF ~ ~ k ~ and Bj ~ o ~ +  ,,, the pro of  of  Lemma 20.1 of  Billingsley (1968) implies 

IP(Bj[AiF) - P(Bj)[ ~< 2qS(m). (2.12) 
J 

Therefore  we have 

This leads to (2.5). 

Lemma 2.3. For each i, j and k (k <~ i <~ j )  

(i) ]E{s,sj}[ <~ 2SZqS( j -  i), (2.14) 

(ii) ]E{sisjlyk_o~}l << 2SZq~( j -  i), (2.15) 

(iii) IE{s,sj[ ~k -  ~o} - E{slsj}[ <~ 4S2q5((i - k)V(J - i)), (2.16) 

where m~n = max(m, n). 

Proof. As E{sj} = 0, Lemma 20.2 of  Billingsley (1968) and Lemma 2.2 lead to (i) 
and (ii) immediately. We show (iii). I f j  - i >~ i - k, we have 

IE{s~sjl~ k- ~o} - E{sisj}[ ~ IE{sls~l~k-~}l + IE{sisj}[ 

<~ 4S2q5(i _ j ) ,  (2.17) 

using (i) and (ii). I f j  - i < i - k, we have 

[E{sis~l~ k_ ~} - E{slsj}L <~ 2S2~b(i -  k). (2.18) 

Here we used Lemma 2.2 for 1 ~ k  and s i s j e ~ [ .  

Lemma 2.4. For each k and m ( -  oe < k < o% m >~ 1) 
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Proof. By an inequality 

j j = l  i=0  

and (iii) of Lemma 2.3, we have 

E Sk+j ~k_o~ -- E Sk+j <~ 4)(i:j) 
J J "= 

~< 16S 2 ~ q~(j )=16S z ~ j ~ ( j ) < ~ 1 6 S 2 ( v -  1) 2" 
i , j = l  j = l  
i<~j 

Lemma 2.5. For each k and m ( -  oo < k < o~, m >1 1) 

E Sk+j -- ~< 4 S 2 ( v  - 1) 2, 
) 

where 

V =  

Proof. By stationarity, we have 

Corollary 2.6. 

l l l  

(2.20) 

(2.21) 

(2.22) 

0 <~ V <. 4 S 2 v .  (2.25) 

Proof. By Lemma 2.5, we have 

E { ( j ~ = l s k + j ) 2 } / m -  V <~. 4 S 2 ( v -  l)2/m. (2.26) 

As v < oo, (2.26) means V/> 0. 
On the other hand, by stationarity, we have 

IWf <~ 2 [E{soSj}[ <~ 4S 2 ~, qS(j) ~ 4SZv. (2.27) 
j=O j=O 

By Lemma 2.4 and Lemma 2.5, we have the following proposition. 

I m ~ E{soSj} = ~, (m - [jI)E{soSj} - m 
j= -m  j= - ~  

~< 2m ~ fe{SoSAI + 2 ~ jlE{sosi}l 
j = m + l  j = l  

ares 2 Z +(/) + 4S 2 Z g'(J) <. 4S2(v - 1)2. 
j = m + l  j = l  

(2.24) 

E(sosj}. (2.23) 
j = - o o  
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Lemma 2.7. For each k and m ( -  oo < k < oo, m >t 1) 

E{(j~__lSk+j) 2 ~ k } - - m V  ~< 2082(v - 1) 2. (2.28) 

The following inequality is obvious from Lemma 20.4 of Billingsley (1968). 

Lemma 2.8. For each positive 6, 

k=l 

where c > 0 and c 4 = 768. 

The following inequality estimates the maximum of the Partial sums. 

Lemma 2.9. For each m (m >1 1), 

E max ~ sj <~ KS4mZv 2, (2.30) 
k l _ k ~ m  \ l j = l  

where K is a positive constant. 

Proof. Let 

tj = sj/Sv 1/2 (1 <~ j <~ m), (2.31) 

then by Lemma 20.4 of Billingsley (1968), we have )4} 
E tj <~ c4m 2. (2.32) 

J 

Therefore, by Corollary B1 of Serfling (1970), 

IF ( I)T} E max ,_, t~ <. K m  2, (2.33) 
k k k < ~ m  \ l j = l  

where K is a constant. Substituting (2.31) into (2.33), we have (2.30). 

Corollary 2.10. For each positive 6, 

P max sj > 6 ~< KS4m2v2/t3 4 (m >>. 1), (2.34) 
\ k  <~m \ l j = l  I /  

where K is a positive constant. 

2.2 A Criterion.for the Convergence of  the Finite-Dimensional Distribution 

Gikhman (1969) gave a criterion for the convergence of the finite-dimensional 
distribution of a sequence of ~d-valued random processes to that of a diffusion 
process. We consider the simple case of d - 1 and time homogeneity. 

Let {y,(t), (t e [0, T-l)} be a sequence of real-valued random processes satisfying 
the following conditions. 

(1) There exist a sequence of families of monotonically increasing {r-algebras 
{o~,(t), (t~[0, T])}, a sequence of decompositions {t,k, k = O , l , 2 , . . . , m , ;  
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n = 1,2 . . . .  } o f  the interval [0, T ] ,  0 = t,o < t,a < . "  < t,,.. = T, maxkAt,,---, 0 
(n -~ oo), and real-valued cont inuous  functions a(z) and b(z), (z ~ ~) such that  

a) y,( t )  is Y , ( t ) - m e a s u r a b l e  for any t~ [0, T] ,  n = 1 , 2 , . . . ,  

b) P(IAY.k[ > b]~.( t .k))  = p'.kAt.k, (2.35) 

C) E{zo(Ay, k)Ay, kI~,(t,k)} = b(y,(t,k)) At, k + P'~'k A tnk, (2.36) 

d) E{z~(Ay,k)(Ay,k)Zl~,(t,k)} = a(y,( t ,k))At ,  k + p',~At,k, (2.37) 

where At, k = t,<k+~)- t,k, Ay,k = y,(t,~k+~)-- y,(t,k), Z~(X)= 1, if [X I < 6, and 
)~(x) = 0 otherwise, 6 is an arbi t rar i ly  fixed positive constant .  

(2) The functions b(z) and c(z) = a l / Z ( z ) ,  together  with their derivatives up to 
four th  order  inclusive, are cont inuous  and bounded.  

nan--  1 

. . . . . .  t ( 2 . 3 8 )  (3) ~ E{P,k + IP,~I + IP,kl} A ,k --' 0 as n --* oo. 
k = 0  

(4) The  distr ibution o fy , (0 )  converges weakly to that  of  a r a n d o m  variable Y0. 

Theorem 2.11 (Gikhman) .  Assume (1), (2), (3) and (4), then the finite-dimensional 
distribution o f  y,(t) ,  (t ~ [0, T ] )  converges weakly to that o f  a diffusion process with 
diffusion term a(z) and drift term b(z). Its initial distribution is the distribution o f  yo. 

3. The Case Corresponding to Diffusion Processes with Constant Diffusion Term 

In this section we consider weak convergence of  a sequence of  real-valued discrete 
t ime stochastic processes {Z~k "), k = 0, 1 ,2 , . . . } ,~  1, defined by solutions to (1.3). 
Considering (1.3), we introduce the following condit ions:  

[S-] t~k~")~k: ~ - ~  (n = 1 , 2 , . . . )  is a sequence of  strictly s ta t ionary @mixing  processes, 
on a probabi l i ty  space ( O , ~ , P ) ,  with v, = ~=oq~,1/2(k) < 0% S =  
sup,.k,o~ IS~")(CO)[ < 0O and E{s~ ")} = 0 (k = 0, 1 , 2 , . . . ,  n = 1 ,2 , . . . ) .  Here,  ~b,(k) is 
mixing rate of  the process {s~")}. {v.}~= l is a non-decreasing sequence. S(o ") 
(n = 1,2 . . . .  ) have a c o m m o n  distribution. 

V o0 t:~s~"~s~")~ (n = 1,2, . .), [E] e, and e,v, tend to 0 as n tends to oQ. Let V, = Z.,k = - oo ~ t  0 k J 
then there exists a positive cons tant  ~ = lira,_, o~ V,/v,. 

Remark. I f  F" exists, then 0 ~< V ~< 4S 2 is obvious  by Corol lary  2.6. 

[I]  G(z,s ,O is a funct ion on ~ • [ -  S , S ]  • (0, 1) satisfying 

(i) G(z, s, ~) = H(z, s) + R(z, s, ~). (3.1) 

Here  R ( z , s , e ) i s  a uni formly  bounded  funct ion,  and l i m ~ 0 k ( e  ) = 0, where 
k(e) = sup~,~ IR(z, s, 0[. 

(ii) H(z, s) is four th  cont inuously  differentiable with respect to z, and together  
with its derivatives up to four th  order  inclusive are cont inuous  and uniformly 
bounded.  

(iii) H(z, s) is cont inuous  and uniformly bounded  on ~ x [ -  S, S] .  
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[II]  Z(0")e E (n = 1 ,2 , . . . )  are random variables satisfying 

(i) Z(o ") is independent  of  {S(k")}~~ _~ (n = 1,2 . . . .  ). 
(ii) Z(o ") converges weakly to a r andom variable Zo ~ ~ as n ~ oo. 

First, we prove the convergence of  the finite-dimensional distribution applying 
Theorem 2.11. F rom here on, let T be an arbitrarily fixed positive constant.  

Theorem 3.1. Assume [S], [El ,  [I]  and [II] .  Define a sequence o f  continuous time 
stochastic processes {z(")(t), t E [0, T]},~= 1, by 

z(,)(t) = 7(,) (3.2) ~ [t/e~v.], 

where Ix]  is the largest integer that does not exceed x. 
Then the finite-dimensional distribution o f  z(")( t ), ( t ~ [0, T ] )  converges weakly to 

that o f  a diffusion process z(t), (t 6 [0, T ] )  whose infinitesimal generator ~ is 

P 8 2 a 

- 2 8z z ~- #H~(z)8--z' (3.3) 

and the distribution o f  z(O) is that o f  zo. Here we put  

1 
/t = l i m - - ,  (3.4) 

n --* o0 Vn 

and 

H~(z) = e { H ( z ,  s(o")(~o))}, (z e ~). (3.5) 

Remark.  Hs(z) is four th  cont inuously differentiable, and together with its de- 
rivatives up to four th  order  inclusive are uniformly bounded,  since H(z, s) satisfies 
(ii) of  [I]. 

Proof. Let ~,,~-(") (m ~> 0, n >_- 1) be a a-algebra generated by ~(,h"tug ,k=O and Z(o "), and 
o~(") 1 be a a-algebra generated by Z(o "). Z~ ") is o ~ )  1-measurable by the definition of  
Z(k "). Let 

~,~.(t) = ~" (") (n >/ 1). (3.6) ~" [tl~v.] - 1 

{~' ,( t) ,  t e  [0, T1} ,~ l  is a sequence of  monotonical ly  increasing a-algebras, and 
z(")(t) is ~ . ( t ) -measurab le .  

Next,  we define a sequence of  decomposit ions {t,k, k = 0, 1,2 . . . .  , m, ;  n >/ 1 } of  
the interval [0, T ]  as follows. Let  

t,k = k~, (0 <~ k <<, m.  - 1), t,,., = T, (3.7) 

where 

and 

y, = ~2v,[1/~,(e,v,)a], (0 < a < x), 
3 (3.8) 

m, = [T/y,]  + 1. (3.9) 

y, and At,k = t,(k+ 1) -- t.k (0 <~ k <~ m,  -- 1) tend to 0 as n tends to 0% because of  
[E]. 
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Let 

a(z)  = V, (3.10) 

b(z)  = l~Hs(z). (3.11) 

We prove  that  the condi t ion (3) of  Theo rem 2.11 is satisfied for {z~")(t), 
T ~ t ~ [0 ,  ] } , = t - F ~  , m  n - 2 ,  

where 

A z  (n) A Z (n) nk = Z(n)(tn(k+ 1/) - -  ZIn)(tnk) = ~ , .  [ t . ~ / + . ] ,  (3.12) 

By (3.6) and (3.12), we have 

= P(I&.Z[~2~/+~ > 61g 172~/+oj- 1)/me2v,,, (3 .1  5)  

" = E A z  (n) A z  (n) P.k { ,,kZ~( . k ) f ~ . ( t . k ) } / A t . k  -- b(z(")(t.k)) 

Z(n)  (n) oZ- = E { A , .  t t .k/~,,,dZ,~(AmZ[t~k/~,,. l) [~ [7~,/~b~l-1}/meZ, v. 

_ , , u / Z < . )  ~ ( 3 . 1 6 )  tXa's \  [t.k/~vn]]~ 

= E : t A  Z( , )  ~2 Z ( , )  ~ (n) 2 t~ m [t.k/~b.]: " z~(Am V.k/,~4)I~* V.~/~.~. j -1}/me,  v,  -- l/, (3.17) 

for  k = 0, 1,2 . . . .  , m, - 2, where 5 is an arbi trar i ly fixed positive constant .  
In the following, it is enough to assume that  H ( z ,  s) is a linear combina t ion  o f  the 

p roduc t  o f  uni formly  bounded  funct ions on N and [ - S, S] ,  because we can obta in  
the essentially same est imat ions in L e m m a  A.4 and L e m m a  A.5 under  the condi t ion 
(iii) of  [I]  using Stone-Weierstrass  theorem and the un i form tightness of  the 
distr ibution of  Z~ "). 

The  r ight-hand sides of  the inequalities in L e m m a  A. 1, L e m m a  A.3 and L e m m a  
A.5 tend to 0 as n ---, 0% since me,, ~ oo and m % ~ v ,  -~ 0 as n -~ co in this case. I f  we 
consider sufficiently large n, the condi t ion me,2 < 6 / M  in these lemmas  is satisfied 
for all m since m e  2 ~ 0 as n ~ co in this case. By (3.15), (3.16), (3.17) and these 
lemmas,  we have 

ran--2 

s ' I " l  I " T  --,  {P,k + P,k + P,k ~ At ,k  --" 0 as n oo. (3.18) 
k=0 

E ' E . . . .  E . . . . .  It  is easy to see that  {P,(,,. ~)}, tlP,(~. ~)[} and ~IP,(,,._ a)l} tend to 0 as n - ,  o% 
by the same way. 

Therefore,  condi t ion (3) of  Theorem 2.11 is satisfied. Since all the other  
condit ions of  this theorem are clearly satisfied, we get the conclusion. 

Next,  we consider weak convergence in D[0,  T] .  D[0,  T ]  is the space of  
functions on [0, T ]  tha t  are r ight-cont inuous and have left-hand limits, and with 
the Skorohod  topology,  D[0,  T ]  is a separable  metric  space (see Billingsley (1968)). 

m = [1/e . (e .v . )a] ,  (3.13) 

A j Z ~  ") = Z(~)+j - Z ~  "~ ( k , j  ~> 0). (3.14) 
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Let P,  be a probabil i ty measure on D[0, T ]  induced by z(")(t), ( t~ [0, T]) .  The  
convergence of  the finite-dimensional distribution of  z(")(t) to z(t) leads weak 
convergence of  z(")(t) to z(t) in D[0, T ] ,  if {p,}~o= 1 is uniformly tight (see Theorem 
15.1 of  Billingsley (1968)). By Theorem 8.2, Theorem 8.3 and Theorem 15.5 o f  
Billingsley (1968), a sufficient condit ion for uniform tightness of  {P,} in D[0, T ]  is 
that following [T- I ]  and [T-2] are satisfied. 

IT - l ]  For  each positive t/, there exists a K such that  

P([z(")(0)] > K) ~< ~/ (n >7 1). (3.19) 

IT-2] For  each positive e and r/, there exists a 6, with 0 < 6 < 1, and an integer no 
such that  

P(\t<~s~t+,jsup ]z(")(s)-z(")(t)[>... e)/6<<.q (n>.no), (3.20) 

for all t ~ [0, T - 6]. 

We can really show that [T - l ]  and I-T-2] are satisfied, as follows. 

Theorem 3.2. Assume all the conditions of Theorem 3.1, then {z(")(t)}~= 1 converges 
weakly in D[0, T] ,  to the diffusion process z(t). 

Proof [T - l ]  is obvious,  as we assume (ii) of  [II] .  We show that  IT-2] is satisfied. 
By the definition of  z(")(t), we have 

sup Iz(")(s) - z(")(t)[ = sup 7(.) _ 7(,) L ~-"[s/e2nvn] L '  [ t / e2v~] l  

~< max(lAkZ[~']~v.ll; 1 <~ k <% [6/eZv,] + 1). (3.21) 

If we put  m = [6/~2v,] + 1, then the condit ion m < e/Me 2 in Lemma A.6 is satisfied 
for all m and n (n >~ nl) for sufficiently small 6 (6 > 0) and large n,. We choose such 
a 6 and consider n such that  n t> nl. Using Lemma A.6, we have 

P(t<ssup+o[z(")(s) - z(")(t), >... e) 

(") E~/~.~v.] 1) <~ P(max(lAkZtt/~J; 1 <% k <% + >1 e) 

<% 6 K([a/~,v,]e,v,/6 + - ([6/e,v.]e, + e , )m}  , (3.22) 

where K and M are positive constants. Since ~. 2 and e, v, tend to 0 as n --+ 0% we can 
choose a (5 with 0 < 6 < 1 and an integer no (no >~ nl) such that  (3.20) is satisfied for 
all t ~ [0, T] .  

4. General Case 

In this section, we consider a sequence of  discrete time processes 

(kak"), k = 0, 1 ,2 , . .  "}~= 1, 

defined by solutions to (1.4). We prove that  a sequence of  cont inuous time processes 
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x(")(t) = Xl~}~v,j (t~ [0, T])  (4.1) 

converges weakly to a diffusion process x(t). Considering (1.4), we introduce the 
following conditions: 

[III] f ( x )  is a function satisfying 
(i) There exists an open interval L = (xl,xz),  ( -  ~ ~< Xl < xz ~< ~ )  such 

that f ( x )  > 0 on L. 
(ii) If [xi[ < ~ ,  thenf(xi)  = 0 and there exists a positive constant B such that 

f (x)  < B[x - x~[ for any x e L  in some neighbourhood of x~. If [x~[ = ~ ,  then 
lira . . . .  ( -  l)i~.~(1/f(y))dy = ~ for fixed c 6 L  (i = 1,2). 

(iii) f ( x )  is fifth continuously differentiable on L. f (x) ,  together with its 
derivatives up to fifth order inclusive, are continuous and uniformly bounded on L. 

[IV] g(x,s,e) is a function on L • [ -  S ,S]  x (0, 1) satisfying 

(i) g(x, s, e) = h(x, s) + r(x, s, e). (4.2) 

Here r(x,s ,O is a uniformly bounded function, and lim~_~0?(e)=0, where 
?(e) = supx,s]r(x, s, 0J- 

(ii) h(x, s) is fourth continuously differentiable with respect to x, and together 
with its derivatives up to fourth order inclusive are continuous and uniformly 
bounded. 

(iii) h(x, s) is continuous and uniformly bounded on L x [ -  S, S]. 

[V] X~o")~ L (n = 1, 2 , . . . )  are random variables satisfying 
(i) X~o ") is independent of tok~(")~~ - ~ (n = 1,2, . . .).  

(ii) X~o ") converges weakly to a random variable Xo s L as n ~ ~ .  

Applying Theorem 3.2, we prove the following theorem. 

Theorem 4.1. Assume IS], [El,  [III], [IV] and IV], then {x(")(t), ( t s  [0, T])},~= 1 
converges weakly in D[0, T]  to a diffusion process x(t) whose infinitesimal 9enerator 
fqis 

= +f (x )  df(x)  + 
2 dx ~xx' (4.3) 

and the distribution o f  x(O) is that o f  Xo. Here we put 

h~(x) = E{h(x, s~o~)(o))) } (x e L) (4.4) 

and 

= E{ (S~o') 2}. (4.5) 

Remark. (i) The solution X~ ") of (1.4) always stays in the interval L for sufficiently 
small ~,, because of [III] and [IV]. 

(ii) Weak convergence in D[-0, T]  implies the convergence of the finite- 
dimensional distribution in this case, since x(t) is continuous with probability one 
(see Billingsley (1968), p. 124). 

(iii) Recently, Kushner and Huang (1981), using a method of the martingale 
problem of Stroock and Varadhan (1979), obtained general results for weak 
convergence of  a sequence of stochastic difference equations defined on Ne to a 
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diffusion process, where the mixing rate q~,(k) is independent  of  n. In this case, for  
L = R, Theorem 4.1 reduces to a special case of  their results. 

Proof  Define a sequence of  discrete time processes {Z~"!, k = 0, 1,2 . . . .  },~ 1 by a 
t ransformat ion of  the sequence of  processes ('fX(n)k , k = 0, 1,2, .  �9 "},% 1 as follows. 

Z~ ") = F(X~ ")) (k >~ O, n >~ 1), (4.6) 

where 

fl 1 
F(x) = f ~  dy (x ~ L), (4.7) 

fo r  fixed c e L. By [III] ,  {Z~ ")} is a sequence of  real-valued processes, F(x) is sixth 
differentiable on L, and F(x) is invertible. Let  P = F(z) be the inverse function of  
F(x). 

First, we prove weak convergence of  z(")(t) = 7(,) t,, some diffusion process 
applying Theorem 3.2. The  increment of  Z~ ~3 is 

AZ(k ") = Z(")k+l -- Z~ ") = F(X~)+ 1) - F(X}, ")) 

- d r t y ( " h  AXe"' + 1 dZFtx(,).CAX(,h2 + ntY(") s (") e,), (4.8) 
- d x  ~"k , 2 dx 2 ~ k ] \  k J ~ . \ " k  , k , 

where 

AX(k ") = : k  +Y<") a -- X~ ">, (4.9) 

and 

Q(X ">, s~ "), e,) : F(X~")+ 1) - F ( X ~  ")) - dF(x~  ">) AX~ ") d z r (  X("hCAX("h2 (4.10) 
1 

k dx 2 dx 2 k Jk k / " 

Q is a function of  (X~ n), s~ "), ~.), since ~k+Y(") 1 and AX~ ~) are functions of  (X~ "), s~ "), e.). 
We show in Appendix that  

sup JQ(x, s, e)l/e 3 < oe (4.11) 
x , s , ~  

for sufficiently small ~ (see Lemma A. 7). Substituting (1.4), (4.2) and (4.7) into (4.8), 
we have 

AZ~ ") = e,s (")k + %2 ( - , ~ k  ,~k ,  -- �89 2 ~2mY(") s(") e,,), (4.12) 

where 

q(x, s, 0 = r(x, s, ~) + Q(x, s, e)/~ 2. (4.13) 

By condit ion (i) of  [IV] and (4.11), q(x, s, e) is uniformly bounded and 

sup[q(x, s, e)] ~ 0 (e ~ 0). (4.14) 
x,s 

Therefore,  we have 

AT(hi ~nS~ hI-t- ~  ~ k .' ~ k  ' ~k = o 2 L / ( 7 ( n )  s(")a + ea, R(Z~ "), ~(") e,), (4.15) 



Convergence of Non-Markovian Processes Related to Population Genetics 

where 

and 

s 2 df P,z 
n(z, s) = h(P(z) ,  s) - 5 -  Yxx ( ( ))' 

R(z, s, e) = q(~'(z), s, e). 

119 

(4.16) 

(4.17) 

5. Stochastic Selection Models in Population Genetics 

Let us interpret and apply the result of the preceding section to stochastic selection 
models in population genetics. 

is the infinitesimal generator of the limiting diffusion process x(t). 

g 2 (~2 { l / - # V ~ ( x ) + # h s ( x ) } ~ x  (~ = 5 f  (x) ~x 2 + f(x) 

Therefore, 

(4.23) 

By [III], [IV] and (4.14), we have 

sup lg(z,s)l < oo, (4.18) 
z,s 

sup IR(z, s, ~)f < 0% (4.19) 
z , s , g  

sup JR(z, s, e)[ ~ 0 (e ~ 0). (4.20) 
2,S 

Using [III], [IV], IV], (4.18), (4.19) and (4.20), wecan see that all the conditions of 
Theorem 3.2 are satisfied for the sequence of processes {Z~ ")} defined by the 
transformation of {X~ ")} by F. Therefore, {z~")(t)} converges weakly in D[0, T] to a 
diffusion process z(t). By Corollary 1 to Theorem 5.1 of Billingsley (1968), we have 
weak convergence of {x(")(t)} in D[0, T], since F(z) is continuous. 

Finally, we decide the infinitesimal generator of the limit process x(t). We can 
represent z(t) by the following stochastic differential equation of Ito type, 

dz(t) = ~rl/2 dB, + #Hs(z(t)) dt, (4.21) 

where Hs(z) = E{H(z, s(0"))}, (z e ~), and Bt is a one-dimensional Brownian motion. 
Using Ito's formula [Ito (1961), p. 187], we have a stochastic differential equation 
for x(t) = F(z(t)) as follows. 

dF 1 d2/" _ 
dx(t) = Zz dz(t) + ~ ~z ~ vdt  

rz df 
= f(x(t)){ ~-1/2 dB, + pH,(z(t)) dt} + -~f(x(t))~xx(X(t)) dt 

- -V ' /Z f (x ( t ) )dB,+f(x( t ) ) {~ ' -#V~x(X( t ) )+#hs(x( t ) ) }d t .~  (4.22) 
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First, consider the haploid model represented by (1.2). In order to include the 
case E{Sk} ¢ 0 ,  wewrite the random variablesk of the  stationarystochastic process 
in (1.2) as 

S k = ~ 1 7 k + ~ z S ,  (5.1) 

where 

E{17~} = 0, (5.2) 

is a positive constant much smaller than 1, and 5 is a constant of the order of 1. 
17 cc Random variables {17k} are uniformly bounded, and { k } k = - ~  is a strictly 

stationary ~b-mixing process with v = ~ =  o ~bl/2(k) < oe. The parameter v is a kind 
of relaxation time. 

Then, (1.2) can be rewritten as 

{ (s x )2 ; 
AXk  = Xk+ 1 -- Xk = SkXk(1 -- Xk) 1 -- SkXk + 1 + SkXkJ 

= Xk(1 - Xk) {~17k -- (eak)2Xk + 8 2 ~  

-  312 17k + (17 + 1;. (5.3) 
1 + ~(17k + eS )XkA)  

Taking ag for s~ ") in (1.4), we get comparing (5.3) with (1.4): 

f ( x )  = x(1 - x), (5.4) 

{ (17+~)3x } (5.5) g(x ,  17, e ) = 5 - 1 7 2 x  + e - ( 2 # 1 7 + 5 2 ) +  1 +e(17+eS)x  " 

These functions are easily verified to satisfy conditions [III] and [IV] of Theorem 
4.1 by setting xl = 0, and x2 = 1. Therefore, if ev is sufficiently smaller than 1, the 
diffusion approximation is justified by Theorem 4.1 noting the condition [E]. 

In (4.1) the continuous time t is associated with the [t/e2,v,Jth generation of the 
original discrete model. However, in the diffusion approximation of population 
genetics it is natural and convenient to'take a generation as a unit of time. In order 
to obtain an appropriate infinitesimal generator of the approximative diffusion 
process in this time unit, we only have to multiply f# in (4.3) by e,2v,. Thus, from 
(4.3), (5.4) and (5.5) we obtain the diffusion and drift term of the generator 
corresponding to the case # # 0 as 

a(x) ~2 
~# - 2 c3x 2 + b(x)  ~ x  (5.6) 

a(x)  = V{x(1 - x)} 2, (5.7) 

and 

b(x)  = x ( 1 -  x )  g -  vx  + ~ ( l  - 2x)  , (5.8) 
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where 

= g2ff = E{so}, (5.9) 

v = e2E{~o~} = Var{s2}, (5.1o) 

V = e  2 ~ E{aoo'k}= k Cov{so, Se}. (5.11) 
k = - ~  k = - o o  

The case # = 0 can be regarded as an extreme case of/ ,  ~ 0 such that max(N, v) << V 
as a result of  a significant autocorrelation. Therefore, in the following we apply our 
theorem for # ~ 0. 

Remark. The cases p r 0 and # = 0 correspond to the "mildly autocorrelated" and 
the "moderately autocorrelated" cases of  Gillespie and Guess (1978). 

Next, let us consider the diploid model. Let Waa(k), WAo(k) and W,a(k) be the 
fitness of  genotypes AA, Aa, and aa in the kth generation. We give these fitnesses in 
the form 

WaA(k) = 1 + O~Sk, 

WAa(k) = 1 + flsk, (5.12) 

W,,,,(k) = 1 + VSk, 

where ~, fl, and 7 are constant parameters. Assuming random mating, we obtain the 
gene frequency change of A-allele as 

WAaX~ + WA,Xk(1 -- Xk) 
AXk= - x k  

w.,.,x~ + 2WA.Xk(1 -- X 0  + Woa(1 -- X 0  2 

- {1 + O ( 2 X k  - -  1)},  ( 5 . 1 3 )  
2 1 + skJ(Xk) 

where 

and 

J(x) = cox 2 + 2fix(1 - x) + 7(1 - x) 2, (5.14) 

c r  
0 - ( 5 . 1 5 )  

0~--y 

Here, we restrict ourselves to the case 

cr r y and [0l ~< 1, (5.16) 

in order that Theorem 4.1 can be used. 
When the selection is genic, we have 0 = 0 by definition, so that we may call the 

constant parameter  0 "non-genicity index". It  is related to the degree of dominance 
h of  A-allele as 

O=  1 - 2 h ,  (5.17) 
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where h is defined by 

W a a ( k ) -  Wa~(k) 
h = (5.18)  

Waa(k)- Woo(k)" 
In the same way as we have obtained (5.4) and (5.5) f rom (5.3), we get f rom 

(5.13): 

f(x) = x(1 - x){1 - 0(1 - 2x)}, (5.19) 
2 

hs(x) = x(1 - x){1 - 0(1 - 2x)}{ff - E[a2o]J(x)}. (5.20) 
2 

Therefore,  by Theorem 4.1 the appropria te  infinitesimal generator  for the above 
diploid model  has the diffusion and drift term given by 

a(x) = V {x(l - x)[1 - 0(1 - 2x)]} 2, (5.21) 

x(1 - x){1 - 0(1 - 2x)} I g  - vJ(x) 7 
b(x) = 2 

~-Y2 ~V-v ) } + [(1 - 2 x  - 0(1 - 6x + 6x2)] , (5.22) 

where g, v and V are given by (5.9), (5.10) and (5.11). 
Not ing  in (5.12) that  wi thout  loss o f  generality we can put  

- 1, (5.23) 
2 

we can write instead o f  (5.18) and (5.19) as 

a(x) = V{x(1 - x)[1 - 0(1 - 2 x ) ] }  2, (5.24) 

b(x) = x(1 - x){1 - 0(1 - 2x)} {g - vJ(x) 

V - v  } 
+ ~ [(1 - 2x) - 0(1 - 6x + 6x2)3 . (5.25) 

When the stochastic variables have no autocorrelat ion,  we have by (5.10) and 
(5.11) V = v. For  V = v, the drift term may  give a delicate effect dependent on the 
detail o f  the selection scheme. Indeed, even for the case o f  genic selection, 0 = 0, 
where we have 

b(x) = x(1 - x){g + v(1 - 2x - fi)}, (5.26) 

this drift term acts either centrifugally or centripetally to gene frequency x 
according to the value o f  ft. 

On the other hand, when the autocorrelat ion is significant to the extent 
max(Ig[, v) << V, and the non-genicity index 0 is close to zero, then the diffusion and 
drift term a(x) and b(x) are invariably approximated by 
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ao(x )  = V{x(1 -- x)} 2, (5.27) 

bo(X) = 2 x ' ( 1  - x ) 0  - 2x) .  ( 5 . 2 s )  

Using the diffusion model  for stochastic selection essentially based on the 
diffusion and  drift term given by (5.27) and (5.28), Mat suda  and Gojobor i  (1979) 
analyzed the data  of protein  polymorphism.  

When the effect of  mu ta t i on  is included, 9 ( x , s , e )  in (1.4) canno t  satisfy 
condi t ion  [-IV], s incef(x)  ~ 0 as x ~ 0 or x ~ 1, w h i l e f ( x ) g ( x ,  s, ~) does not  vanish 
there in the presence of muta t ion .  In this sense, there still remains  a logical gap in the 
mathemat ica l  founda t ion  of the diffusion approx imat ion  of stochastic selection 
models. Apar t  such drawbacks  our  result shows that  the diffusion approx imat ion  is 
indeed valid even in the presence of autocorre la t ion so long as we have ev << 1, that  
is so long as the gene frequency change dur ing  the time span of the relaxat ion time 
of the mixing process is very small compared  to 1. It also gives the correct 
infinitesimal generator  of  the approximat ing  diffusion process to be used. 

Acknowledgements. We are grateful to Professor H. Watanabe, Professor H. Kunita, and Dr. T. 
Yamada for their advice from mathematical points of view. We are indebted to Dr. K. Ishii for his 
interest and comments. 

Appendix 

We prove several lemmas that are necessary for the estimate in {}3 and w Without loss of generality, we 
can assume that all the bounded functions appearing in these sections have common bound M (M < oe). 
All the quantities that are not defined in this section are defined in these sections. First, we estimate the 
cummula t ive  sum A mZ~ n) = ZI~)+., - Z(k n). 

Lemma A.1. For each positive (5, 

P(IAmZ~ ")1 > fi)/mea~v. <~ {cS/(6 - Mme2.)}4me~v. (1 ~< m < 6/Me 2, k ~> 0) (A. 1) 

where c is a positive constant. 

Proof. For each positive integer m (m < 6/MeZ,), we have 

<~ {cS/(a - Mme2,)}~m2e4,v,. (A.2) 

Here, we used Lemma 2.8 for the estimate of the last inequality, 

Lemma A.2. For each integer k (k >~ 0), 

E{lU[(AmZ~~ - me~, V,I} 

20S2e.2(v. - 1) 2 + 2cSMm3/2~3v~/Z + M2m2e4 (m >~ 0). (A.3) 

Proof. For each integer m (m ~> 1) and k (k ~> 0), we have 

IE{ ( A,,Z~"))2[~ ")- 1} - me,Z V, I 

{(m--1 )2 } m V n ~ _  f . ~ l  1 -~o - 2 3 (hi ~ ( n )  2 2 4 <~ e.2 E s ~")k+) ~l.)k_l M m e . E  sk+j ~ k - a  + M m e. 
j "' j:O , , 3 
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( I (  ~ 7 II '~ <~ 20S2e2.(v. - 1) a + 2Mme3. E ~ s~)+j . ~ ) _ ,  + M ~.. (A.4} 
\ - - ' j = 0  " ' ~ "  

We applied Lemma 2.7 for the last inequality. Here, by Lemma 20.4 of Billingsley (1968), 

f f f . , -  l "~41k1/4 
= t E  ~ t j =  0~ s~)+j )~)  <~ cS(mv,) 112. (A.5) 

We have the conclusion from (A.4) and (A.5). 

Lemma A.3. For each positive 6, 

(n) z( ,n)  2 (nJ 2 2 E{IE[x~(a.,Zk )(Am k ) I~k-~]  - me. V.I}lme.v. 

~< 20S2(v. - 1)21my. + 2cSM(me2.1v.) 1/z + MZmeZ.lv. 

+ (S  + Me.)2{cS/(6 - Mme2.)}4m%4.v. (1 ~< m < 6~Me 2, k >1 0). (A.6) 

Proof. For each integer m (m >/1), we have 

ES,, t A 7(n'~gA 7(ni~2l~-(n) % 2 V 
k,l~6~, m ~ k  J \ ~ m ~ k  I l U k - J . j  - - m e r ~  n[ 

- me. V.i + (Sine. + Mme2.)2E{l - z~to,." ra Zt.)~l~(.~k X,~k-iJ '  ~" (A.7) 

By Lemma A.1, 

E{E[1 - z~(AmZ~"))I<~) 1]} = P(IAmZ~ ")1 > 6) <~ {cS/(6 - Mme2.)}m2e4.v2.. (A.g) 

We have the conclusion from Lemma A.2 and (A.8). 

Lemma A.4. For each inteoer k (k >1 0), 

E{IEEAmZ~k"Jl ~ ) -  x] - meZ.Hs(Z~"))l} 

<~ 2Se.(v. - I) + 2LMZeZ.(v. - 1) + cSMm312e3.vx./2 + MZm2e4. + R(e.)me2. (m >1 0}, (A.9) 

where L is the number o f  terms o f  linear combination in H(z, s). 

Proof. For simplicity, we consider the case of L = 1. We can write 

H(z, s) = f(z)o(s),  (A. 10) 

where f ( z )  and 9(s) are uniformly bounded functions on R and [ -  S, S] respectively. 
For each integer m (m i> 1) and k (k/> 0), let' 

�9 l~m"Ik = ESAt mZ! "lk ~ ~ - me2H~(Z~"l)l. (A.t 1) 

We expand H(Z~)+~, s~)+j) as follows. 

H(TI.) s(.) ~ = ~i'tT~.) s (") "~ OH (n) /~Ir',']A Z (") S (") "~A.Z~, ") (A.12) ~k+.i' k+ix "'~-k , k+j* + ~ z ( Z k  + ~ *  i k , k+jJ ~ k , 

where 0 ~< 0(e0) ~< 1. Substituting (A.12) into (A.11), we have 

m - - i  

e 2 EFHEZ~.") s (.) ~ .@~"~ ~ _ H~(ZI~"~)I } + k(~.)me~. >.71~ <~ Z {e.l~[s~>+~i-~Lx]l + . ~ , ~+~, ~+~, ~ - , ~  
j=O 

z 2 E z ( n l  S(nt %l ,~ ln l  <-..2Se. ~ . ( j ) + e .  I [H( k ,  ~+~., ~-x]-H,(Z~"~)I 
j = I  j = l  

I . ]7. 
+ i~L~-z(~>+ o(~)Asz~"',s<F+~)~sz~ "> ~ - x j j  - 
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m I 
<~ 2Sc,(v, - 1) + e2 ~ ~IErHtZ~") s I") ~l~I,) 1 - H~(Z~'O)I 11 t- \ k I k + j l l ~ k - l d  

j=0 
+ ME[IAJZ~"III~ '~ 1]} +/~(c,)m~. 2. (A.13) 

Since Z~" is ,N~_~ l-measurable, we have 

IE{g(z~"),s~k'~j)t~ ~"' '  HAZ~"~)I . ~,) ~) ~ , ) ~  . �9 ~ - ~ s  - <~J(Z~ )E{g(s~+)l ~ - ~ s  -J ( z~" ) )E{y(S~o" ' ) } l  

M Et(tts I") ~ ~ln) In) <~ ~ ,  k+;, ~-~} <~ + - E{9(sk+)x I 2M24, ( j  1). (A.14) 

We used Lemma 2.2 for the estimate of  the last inequality. On the other hand, by Lemma 20.4 of 
Billingsley (1968), we have 

{ j~l } ( {(J----~i )4}) 1]4 
[n) I s ( n )  " 2 E{IA#Z~ tx <~ e,E k+, + Mje, <~ e, E s~'~ + Mje~ 

i=0 i 
<~ e, cS(jv,) 1/2 + MjeZ,,. (A.15) 

By (A.13), (A.14) and (A.15), we have 

E~J(") t <~ 2Se,(v, 1) + 2M2e2(vn 1) + c Mm 3/2 3 1/2 2 2 4- M m e, /~(e,)me, 2. (A.16) t ..,kJ - -  - -  S e~v~ + + 

For the case of L >~ 2, the proof is analogous to the case of  L = 1. 

The following lemma is easily proved as the same way to the proof of  Lemma A.3. 

Lemma A.5. For each positive 6, 

E{IEEz~(,~mZ~") AmZ~")l ~)-1 ] m z u  tZ , . ) ,~  / m e 2  - -  ~n I J s \  k ) f /  n Y n  

~< 2S(v, - 1)/me, v,, + 2LM2(v, - 1)/mv, + cSM(me2,/v,) 1/2 + M2m~/v ,  + R(e,)/v, 

+ (S + Me,,){cS/(~ - Mme2,)}4m%Jv, (1 ~< m < 6~Me2,, k >/0), (A.17) 

where L is given in Lemma A.4. 

The next lemma is necessary for proving the tightness condition. 

Lemma A.6. For each positive e, 

P max (IA;/~")[)/> e ~< e, ,/t~ \ I <~j<~m / 

where K is' a constant. 

Proof We apply Lemma 2.10. For each positive integer m (m < e/Me2), we have 

J 
P(\, -~J-~-,max (,AZ~")I)>Ie)<...P(~,\ ,.~j.<mmax ( i~=1 s ~ i  ) + M m e 2 " ) e )  

c c  ~ ) ) = P max ~ (n) Sk+ ~ >~ (8 -- Mme~)/~n 
\ l  ~ j < ~ m  \ [ i = l  

<~ Km2e2v~/(e - MmeZ,) 4. (A. 19) 

Finally, we prove the following lemma that is necessary for the estimate in w 

Lemma A.7. For Q(x,s,e) given by (4.10), 

sup IQ(x, s, e)l/e 3 < or. (A.20) 
x , s , e  

Proof We can write Q(x, s, e) as follows. 

d3F 
Q(x, s, ~) = ~x 3 (x + 0 Ax)(Ax)3/6, (A.21) 
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where 0 (0 ~< 0 ~< 1) is a constant. Substituting 

(~x) 3 = f3(x)  {es + e2g(x, s, ~)} 3, (A.22) 

~x 3d3F (x) = [.~2(df J 2 _ f ( x )  dfix2(X)}/fdzf 3 (x), (A.23) 

into (A.21), we have 

Q(x,s,e) = e3{s + eg(x,s,e)} 3 2 (y) - f ( y )  dfix2(y ) {f(x)/f(y)}3/6, (A.24) 

where we put y = x + OAx. On the other hand, we can write 

where we put z = x + 010 Ax, 0x (0 ~< 0x <~ 1) is a constant. (A.24) and (A.25) give the following estimate 
for sufficiently small e. 

[Q(x, s, e)l ~< e3M2(s + M~) 3, (A.26) 

since the right-hand side of (A.25) is larger than f (x)/2 for sufficiently small e. (A.26) gives the 
conclusion. 
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