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1. Introduction 

In continuum mechanics constitutive equations for elastic and hyperelastic 
(3-dim.) material points are important mathematical models with many appli- 
cations. In this paper we present constitutive equations for elastic and hyper- 
elastic (2-dim.) membrane points. As in the theory of (3-dim.) material points, 
the central topic for the theory of (2-dim.) membrane points are conditions of 
material frame-indifference, conditions of material symmetry, and representations 
for the response functions and for the stored energy functions. 

A number of peculiar features of the 2-dimensional models are pointed out and 
thoroughly discussed in this paper, and many examples are treated in detail. Among 
the many features which are present in the 2-dimensional models, but absent in 
the 3-dimensional models, we mention the following three: 

1) There is a non-trivial symmetry tranformation common to the symmetry 
groups of all response functions and the symmetry groups of all stored energy 
functions. 

2) There are examples of elastic and hyperelastic membrane points such that 
the symmetry groups of the response functions and/or the symmetry groups of 
the stored energy functions are not contained in the unimodular group. However, 
we prove that, in general, the intersection of the symmetry group of the response 
function and the symmetry group of the stored energy function of any hyperelastic 
membrane point is always contained in the unimodular group. Thus this peculiar 
feature is not inconsistent with the results of [1]. 

3) There are examples of groups (of automorphisms of a reference configura- 
tion) which cannot be the symmetry groups of any elastic membrane point, and 
there are types of elastic membrane points that include no hyperelastic membrane 
points at all. 

We formulate the constitutive equation and its basic restrictions for an elastic 
membrane point in general in Section 2. Examples of elastic membrane points 
with some interesting features are then treated in detail in Section 3. Constitutive 
equations for the stress tensor and for the stored energy density of a hyperelastic 
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membrane point in general are formulated, and their restrictions, as well as their 
internal relations, are discussed in detail in Section 4, where representations for 
the stored energy functions and for the response functions of two general classes 
of membrane points, having features not present in any type of (3-dim.) hyper- 
elastic material points, are derived. Finally, the general results presented in Sec- 
tion 4 are illustrated explicitly in Section 5 by examples of hyperelastic membrane 
points having many specific types of symmetries. 

2. The Response Function of an Elastic Membrane Point 

We assume that a membrane may be represented by a surface manifold .//r 
which is a 2-dimensional differentiable manifold that can be imbedded into the 
physical space d o by mappings Z: ~ - - +  do called configurations of de'. For a 
typical configuration Z the image Z(J/r of og is a smooth surface 6 p in do. Let p 
be a typical point in ./t'. Then in a configuration Z the image Z(P) o f p  is a point 
x i n  6 a. 

The induced linear map Z,v: J/t'p-+ ff'x is a linear isomorphism of the tan- 
gent plane ~r of dr at p with the tangent plane ~x  of 6 a at x. We call such a 
linear isomorphism a local configuration of p, and we denote a typical local 
configuration of p by v. Then 

, ,  : (2.1) 

where v(~'v) is a plane in 8. Every local configuration v may be identified as 
the local configuration Z,v  induced by a configuration Z such that v(.14v) = ~f,,. 
Of course, v does not determine Z uniquely. 

If  the stress tensor T at x in all Z having common X,v = v is uniquely 
determined by v, viz 

T = 1'(v) (2.2) 

in each local configuration v of p, then p is called an elastic membrane point, 

and 7' is called its response function. Notice that the value i'(v) of the response 

function 7" is necessarily a symmetric tensor acting on the tangent plane v(J/lv). 

When v varies, both v(d4v) and T(v) vary also, but always in such a way that 
~r(v) acts on v(Jt',), viz 

7"(v) : v(./dp) -~ v( .~p) V v .  (2.3) 

The response function i" is generally required to satisfy the following condi- 
tion of material frame-indifference: 

~i'(Qv) --  Q 7"(v) QT (2.4) 

for all rotations Q acting on the translation space ~ of 8. The condition (2.4) is 
consistent with the restriction (2.3) since both sides of (2.4) are tensors acting 
on the tangent plane Qv( .~p)  in #. 
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Clearly, only the restriction of Q to v(JCp) enters into the condition (2.4); 
the action of Q on a unit normal n of v(d/~,) in ~" need not be specified as far 
as the condition (2.4) is concerned. An important special case of (2.4) is furnished 
by a Q that corresponds to a rotation of  180 ~ about n. In this case the action 
of Q on v(~[v) is just the negation operator - - L  which commutes with all tensors 
over v(J/p). As a result (2.4) reduces to 

7"(-~') = 7"0'). (2.5) 

The constitutive equation (2.2) together with the restriction (2.4) arising 
from frame-indifference define the abstract mathematical model for an elastic 
membrane point p in general. To apply this model it is often more convenient to 
introduce a local reference configuration ~r for p. Then a local configuration v 
can be represented by a deformation gradient F of ./r such that 

v ~ F~r (2.6) 

Like the rotation 0 in (2.4), F enters the representation (2.6) only through its 
restriction to the tangent plane ~('//v); the action of F on a unit normal N of 
~r162 in ~ has no effect upon the composition F~r Hence we may regard 
F as a two-point tensor of the form 

v:  ~,(~p) -+ v (~p) .  (2.7) 

Then there is an one-to-one correspondence between v and F. 
Using the representation (2.6) in the sense (2.7), we can rewrite (2.2) as 

T = H,,(F) (2.8) 

and (2.4) as 

H~,(QF) = QH,,(F) QT, (2.9) 

where F acts on ~r while Q and H,,(F) act on F~t(/,lp). The condition (2.5) 
now takes the form 

H,~(--F) -= H,,(F), (2.10) 

which looks as if we had taken Q = - 1  in (2.9). In fact, - -F  is simply the 
(proper) deformation gradient of ~ whose restriction to ~r is the negation 
of that of F. There is no need to use any improper deformation gradient of 
in our formulation, since the actions of - -F  and F on N need not be specified 
as far as the equation (2.10) is concerned. 

The deformation gradient F has a polar decomposition 

F = R U ,  (2.11) 

where U is a positive-definite symmetric tensor over ~(Jt'p), 

U: ~e(Jt'p)-+ ~r (2.12) 

while R is a rotation of ~V" and so may be regarded as a two-point tensor like F, 
viz 

R : ~t(,~/gv) --> v ( , t l v ) .  (2.13) 
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Substituting (2.11) into (2.8) and then using (2.9), we obtain the representation 

H2(F) : RH~(U) R T, (2.14) 

where H2(U) acts on ~r As usual we define 

C = U 2 = FrF, (2.15) 

where C acts on ~r while F T is a two-point tensor of the form 

Fr :  v(~'p) ---> ~r (2.16) 

Using the tensor C, we can rewrite the representation (2.14) as 

H2(F) = FAx(C) r r, (2.17) 

where A2(C) acts on ~(,,#p) and is related to H~(U) by 

A,(U 2) = U-1H2(U) U -1. (2.18) 

So far, we have formulated the response function of an elastic membrane 
point p in general. Next we consider the material symmetry ofp.  Let P be a linear 
automorphism of ~r162162 Then the composition P~r is a local reference configura- 
tion having the same tangent plane as that of ~r viz 

P~cCCCp) : ~r (2.19) 

in the sense of set theory. We say that ~r and P~r are materially isomorphic if their 
corresponding response functions are identical, i.e., 

H2(F) = Hp2(F) V F. (2.20) 

Since in general 

H~(F) = T(F~r (2.21) 

for all local reference configurations ~e, the condition (2.20) is equivalent to 

H,(F) = H,,(FP) V F. (2.22) 

Using the representation (2.18), we can rewrite the condition (2.22) as 

A2(C) = PA, (pTcp)  pT V/ C. (2.23) 

The condition (2.23), though it looks more complicated, is actually simpler than 
the condition (2.22), because all tensors in (2.23) act on the same tangent plane 
~(Mp). 

The set of all linear automorphisms P of ~r satisfying the conditions (2.22) 
or (2.23) forms a group c~.. We call it the symmetry group of p relative to ~r 
Comparing (2.22) with (2.10), we see that the negation tensor --12 on ~r 
is always a member of &2 regardless of the elastic membrane point p. This fact 
may be seen from (2.23) also, since --12 commutes with all tensors over ~r 
Of course, the identity tensor 1~ on ~(J#p), being the identity element of the group 
of automorphisms of ~r is a member of all symmetry groups (q2 relative 
tO ~r 

Notice that ~r and --~r are both possible and distinctly different local reference 
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configurations for the membrane point p. The preceding remark implies that the 
response functions H~ and H_~ are always the same or, equivalently, that --1,  
is a non-trivial common symmetry belonging to all possible (r relative to ~e. This 
feature contrasts the response of an elastic membrane point with that of a (3- 
dim.) elastic material point, since the negation operator in " f  is an improper 
tensor on ~e" and, therefore, is not appropriate as a material symmetry with 
respect to mechanical response. 

It should be pointed out that the deformation gradient F of the form (2.7) 
is not assigned a determinant because the planes ~(,r and v(J/lp) are not oriented 
in 3r For tensors P satisfying (2.19), of course, we define 

d e t P = d e t  [P~a], (2.24) 

where P~a are the components of P relative to an orthonormal basis {e~} in~e(.#p), 
viz 

P~a = e~ . Pea, Pe  a = P~ae~. (2.25) 

As usual P is an automorphism of ~(,/t'p) if and only if 

det P =4= 0. (2.26) 

Then we call P proper or improper if det P > 0 or det P < 0, respectively. 
However unlike an improper tensor over "f ,  an improper tensor over ~(~'p) 
is appropriate as a deformation of ~r162162 For example, consider the improper 
reflection P1 with respect to e~ in ~e(,~'p) defined by 

P l e l  = - - e l ,  P ie2  = e2. (2.27) 

We can perform the deformation P~ in ~ e~ by simply regarding P1 as the proper 
tensor over ~r satisfying (2.27) and 

P S  = - s .  (2.28) 

By following essentially the same approach as in [2], we can derive a general 
representation for A~ subject to the restriction (2.23) for all P belonging to an 
unspecified symmetry group f#~. in general. For each given symmetry group fr 
an explicit general solution of the condition (2.23) is called a representation 

for the reduced response functions of the type of elastic membrane points having 
the common material symmetry described by the group ~ .  Of course, a represen- 
tation for A. gives rise to a representation for H~ by the general relation (2.17) 
which automatically satisfies the condition of material frame-indifference (2.9). 

Representations for the reduced response functions of many types of elastic 
membrane points, including surface tension points, elastic fluid membrane points, 
elastic subfluid membrane points, isotropic elastic membrane points, hemitropic 
elastic membrane points, and orthotropic membrane points, are derived in 
the next section. 
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3. Some Examples of Elastic Membrane Points 

The response of an elastic membrane differs essentially from that of a (3- 
dim.) elastic material in another way: for an elastic membrane it is not always 
appropriate to require that the symmetry group fg~ be contained in the unimodular 
group q/~ of ~(~//p). Indeed, if the membrane is a soap film or an interface between 
two substances, the surface stress tensor is 

T = H , , ( F ) =  cl, ,  (3.1) 

where c is the surface tension which is a constant independent of the deformation. 
Hence the conditions (2.22) or (2.23) are satisfied by all automorphisms P of 
;r In other words, the symmetry group ff~ is the general linear group .C,e~ 
of ~r in this case. 

The condition (q~. = &e. is actually necessary and sufficient for (3.1). Using 
UE f#~, we get 

H.(F)  = H~(R U) = H~(R) = RH~(I~) R r,  (3.2) 

where we have used (2.9). Now the value H~(I~) must take the form 

H~(L) = cL ,  (3.3) 

since from (2.2) and (2.9) 

H,,(Q) = H~(I~) = QH.(I~) QT (3.4) 

for all rotations Q of ~(dC,). Substituting (3.3) into (3.2), we then get (3.1). 
The reduced response function A,,(C) associated with the special response 

function given by (3.1) is 

A~(C) = cC -1 . (3.5) 

This special reduced response function clearly satisfies the condition (2.23) for all 
PE s 

Notice that the group s  has a subgroup .o~ '+ consisting in all proper linear 
automorphisms of ~r Since both l~ and -- l ,  are contained in ~ + ,  one might 
wonder whether .~+ could be a symmetry group. We claim that .L ~a+ cannot be 
a symmetry group of any elastic membrane point. Specifically, we prove that 

fg~ ) s + <=> fr = ~ .  (3.6) 

Indeed, if (2.22) holds for all P E ~ + ,  then 

for all PE ~ +  such that 

In particular, 

H,,(P) = H~(P) (3.7) 

det P = det P. (3.8) 

H~(P) = H ~ ( Q P )  (3 .9)  
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for all P E .~+ and for all rotations Q E ~ + .  But by virtue of (2.9) the right- 
hand side of (3.9) is equal to QH,(P) QT. As a result 

QH~(P) = H~(P) Q, (3.10) 

which implies that 

H~(P) = cl~ (3.11) 

for all P E Ae~ +, where c is a constant independent of P E ~ + .  It follows then 
that 

H~(U) = cl~ (3.12) 

for all positive-definite symmetric tensors U on ~r Substituting (3.12) into 
(2.14), we obtain (3.1), which has the symmetry group .s Thus (3.6) is proved. 

It is not too surprising that some subgroups of ff~, such as the subgroup ~ + ,  
cannot be the symmetry group of any elastic membrane point. Indeed, the trivial 
subgroup consisting of the identity tensor 1~ alone is also an example, since we 
have remarked that all symmetry groups of elastic membrane points relative to 
~r must contain both 1. and --L.. 

I f  f#. is the unimodular group q/~ of ~r consisting of all P E s  such 
that 

I det P 1 = 1, (3.13) 

the elastic membrane point p is called a fluid membrane point. The constitutive 
equation of a fluid membrane point is 

T ----- c(9 ) Iv, (3.14) 

where c is not a constant. The proof for the fact ff~ : q/,r (3.14) is similar 
to that for the fact f9" ---- L.e~r (3.1). Furthermore, we can show that the sub- 
group q/+ consisting in all P E q/~ such that 

det P : 1 (3.15) 

cannot be the symmetry group of  any elastic membrane point relative to x. 
More specifically, the result is 

f q , ) q / +  r fq ,~a/ / , .  (3.16) 

If ft,  contains the orthogonal group r of ~r we call p an isotropic elastic 
membrane point. It is well known that the condition ft. ~ d~, is not invariant 
under change of local reference configurations. Hence we distinguish those 
for which ft,  ) ~  as undistorted local reference configurations. Relative to 
such a reference configuration ~ the constitutive equation of p is (cf. [3], [4] 
where the tensor G : B -a is used) 

T = f o l ~  -{-fl B,  (3.17) 

where B is a positive-definite symmetric tensor acting on v(v/C'p), 

B -: FF r, (3.18) 
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and where fo and f~ are functions of the principal invariants 

IB = trB,  l iB=  detB (3.19) 

of the tensor B. The constitutive equation (3.17) may be expressed in terms of 
the reduced response function A s by 

A~,(C) --- AI,,  q- foC -~ , (3.20) 

where the invariants of B coincide with those of C. The representation (3.20) 
means that A,(C) is an isotropic function, i.e., A~ obeys the condition 

A,(QCQ r) = QA,(C) QT V Q E 0,,, (3.21) 

which is just the condition (2.23) when ft, : 0,. 
The group 0,  has a subgroup 0 + consisting of rotations of x(dt'p). Unlike 

the groups ~ +  and q/+, the group 0 + may be the symmetry group of an elastic 
membrane point p relative to x. We call p a hemitropic elastic membrane point 
if fr ~ 0 +. Of course, the condition (r ~ 0 + is not invariant under change 
of local reference configurations; we call those ~ for which fr ~ 0+ undistorted 
local reference configurations. 

Relative to an undistorted local reference configuration x the reduced response 
function A~ is a hemitropic function, i.e. A,  obeys the condition 

A,,(QCQ r) = Qa.(c)  QT V Q E 0+,~ (3.22) 

which may be interpreted as follows: Let the spectral forms of C and As(C ) 
be 

C = ciei | ei + c2e2 @ e2 (3.23) 

and 

A,(C) : t f f l  | f l  q- t2f2 (~)f2, (3.24) 

where we require the orthonormal principal bases (e~} and {f~} to have the same 
orientation in x(~t'p). Applying the conjugation of C by Q to (3.23), we obtain 

QCQ T~- clQel | Qel q- c2Qe2 | Qe2. (3.25) 

Then the condition (3.22) implies that such an operation on C gives rise to a similar 
operation on the value of As(C), i.e., 

A~(QCQ T) = QA,(C) QT = t lQf l  ~ Qll  -~ t2Qf2 | Qf2. (3.26) 

Since all tensors C having common eigenvalues cl and c2 are related by conju- 
gations of Q E 0 +, the condition (3.26) means that tl and t2 are determined by 
cl and e2. Hence if we define an intermediary function A.(C) by the spectral 
form 

A~(C) = tlel | ei + t2e2 ~ e2, (3.27) 
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where tl and t2 are the eigenvalues of A,,(C) as shown in (3.24), then ii~(c) is 

an isotropic function of C, i.e., A~(C) has the representation of the form (3.20) 

f~,(C) = f~l~ + fo C-~ , (3.28) 

where fa and fo are functions of I c and I I  c as before. 
Comparing (3.27) with (3.24), we see that A~.(C) and A~(C) are related by 

A~,(C) = SA,,(C) S ~, (3.29) 

where S denotes the rotation from (e~} to (f~}, viz 

Se~, : f~, c~ = 1, 2. (3.30) 

Since d~ + is an Abelian group, S is also the rotation from {Qe~} to {Qf~}, viz 

Of~, = QSe~, = SQe~,. (3.31) 

Hence from (3.25) and (3.26) we see that S depends only on the invariants of C. 
Substituting (3.28) into (3.29), we obtain the representation 

A, (C)  = f l  1,, + f o S C -  1ST, (3.32) 

wherefo, f~, and S E r + are functions of I c and I I  c. Clearly (3.32) is sufficient 
for (3.22), since according to (3.32) 

A~(QCQ v) : f~l~ + f o S Q C - 1 Q T S  T : f l l , ,  + f o Q S C - 1 S r Q  T (3.33) 

for all rotations Q E d ~+. 
Notice that, like the functions fo and f~, the tensor function S is not unique. 

Indeed, S is entirely arbitrary when ca : c2 and/or tl : tz, since the principal 
bases {e~) and/or {f~} are arbitrary in these cases. The former case corresponds to 

12 = 4IIc ,  (3.34) 

while the latter case corresponds to 

fo(Ic,  I lc)  = O. (3.35) 

Also, since C is positive-definite symmetric on ~e(~c'p), its invariants Ic and I Ic  
are any positive numbers satisfying the condition 

I~ --  4 I I  c ~ 0 (3.36) 

which defines the natural domain of the functions fo, f , ,  and S. 
For (3-dim.) elastic materials a subfluid is defined by the condition that the 

symmetry group contains a dilatation group, c f  [5]. We can define an elastic 
subfluid membrane point p by a similar condition. For example, let e be a parti- 
cular unit vector in ~e(~/p). We definer as the unit vector in v(~'p) in the direction 
of Fe, viz, 

f = Fe/[ I Fe I[. (3.37) 

Then we can model a film with a directional surface tension by the constitutive 
equation 

T : H,,(F) = cl~ + d f  O f ,  (3.38) 
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where c and d are constants independent of F. The surface tension in v(~//p) 
takes the constant value c § d in the direction of f and the constant value c 
in the direction perpendicular to f .  Of course, d 4: 0, for otherwise (3.38) reduces 
to (3.1). The maximum shear stress takes the constant value d/2 in the direction 
at 45 ~ relative to f .  

By using arguments similar to those presented in [5], we can show that (3.38) 
represents the response of an elastic membrae point p such that the symmetry 
group f~  consists in all tensors P E ~ preserving the line in ~(J#p) generated 
by the unit vector e, i.e., e is an eigenvector of P 

Pe = 2e, (3.39) 

where 2 ~= 0 since P is an automorphism of n(dlp). Since --1~ is necessarily 
a member of ~s, the eigenvalue 2 may be either positive or negative. Thus c~. 
preserves the line generated by e but does not preserve the direction of e. 

The reduced response function As(C) associated with (3.38) is 

d 
A,,(C) ~ cC -~ q- e--7-_-_-_-_--_~ee e | e .  (3.40) 

We can verify easily that this A s obeys the condition (2.23) for all P E L a  satis- 
fying (3.39). 

When the constitutive equation (3.38) is replaced by 

T =- H,,(F) : c(~) 1~ + d ( ~ ) f  |  (3.41) 

where c and d are not both constant and where d is not identically 0, the response 
is similar to a type of elastic (3-dim.) subfluids (cf. [5, Type 2]). It can be shown 
that (3.41) represents the response of an elastic membrane point p such that the 
symmetry group f9~ consists of all tensors P ~ q/. preserving the line in n(~'p) 
generated by the unit vector e. Hence, P satisfies the conditions (3.13) and (3.39). 
The reduced form of (3.41) is (3.40) with c and d given by the functions of p as 
shown in (3.41). 

Another type of elastic subfluid membrane points may be defined as follows: 
Let f~. be the group of all tensors P in ~ (or q/s) preserving two preferred lines 
in ~r As in [5, Type 9] we call ~r an undistorted reference if the preferred 
lines are orthogonal in ~r In such an undistorted reference configuration 
n, there is an orthonormal basis {e~} which generates the preferred lines. Then we 
define the normalized basis (f~} in v(J//p) by (3.37), viz, 

fo, = Fe~,/l[ Fe,,ll. (3.42) 

The normalized basis {]~} generally is not orthogonal. We define 

7 = f l  "f2.  (3.43) 

Using arguments similar to those presented in [5], we can show that the response 
function has the representation 

T = H,,(F) = af t  | f l  + b( f l  | f2  + f z  | f l )  -~-[cf2 @ f2,  (3.44) 
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where a and c are distinct even functions of y while b is an odd function of y. 
When ft.  C q/~, a, b, and c also depend on the density ~. 

Comparing (3.44) with (2.17), we see that the reduced response function A~. 
has the representation 

a b c 
A~,(C) = --~-t-~tel | el + (C1~C22)�89 | e2 + e2 | el) + C22 e2 | e2, 

(3.45) 

where the components C~a of C are taken relative to the orthonormal basis (e~}, 
and where the argument y of a, b, and c may be expressed in terms of  C by 

1 

y : C12/(C 11C22) 2 . ( 3 . 4 6 )  

The symmetry group fg. consists in all tensors P E Z~'~ (or q/~) such that 

Pel ~ 21el, Pc2 ~ 22132, (3.47) 

where ).~ and ~.2 a r e  arbitrary non zero numbers. We can verify easily that the 
representation (3.45) obeys the condition (2.23) for all such tensors P. 

When the two preferred lines in the preceding type of elastic subfluid membrane 
points are equivalent in the sense of [5, Type 8], the result becomes another type 
of  elastic subfluid membrane points. The response functions for this type of  
membrane points still take the form (3.44) and (3.45) but the functions a and c 
are now identical, so that the symmetry group f#~ contains not only those P E ~e. 
(or 0//~) satisfying (3.47), but also those P E .~,e. (or ~/~) such that 

Pc1 = tzle2, PC2 = fl2el, (3.48) 

whe re /~  and 1/~2 are arbitrary non-zero numbers. Again, we can verify that the 
representation (3.45) with a ~ c obeys the condition (2.23) for those additional 
tensors P satisfying (3.48) or (3.47). 

So far, we have defined the counterparts of (3-dim.) elastic subfluids in the 
context of elastic membrane points. It is important that we require the symmetry 
groups to consist in all tensors P belonging to .L~e. (or q/.) and satisfying a condi- 
tion of the forms (3.39), (3.47), or (3.48). If  we reduce the symmetry groups to 
the groups consisting in all tensors P belonging to ~c,e+ (or q/+) and satisfying 
appropriate conditions of the forms (3.39), (3.47), or (3.48), the resulting membrane 
points are much different from the subfluid membrane points which we have 
defined. In some sense, when the improper tensors are removed from the symmetry 
group f#~, the representation of  the response function suffers a change similar 
to that between (3.20) and (3.32). 

For example, consider the case in which ff~ is formed by all tensors P E Za+ 
such that (3.39) holds. Then for all such tensors P 

H~,(P) = K ,  (3.49) 

where K is a constant symmetric tensor over ~r which need not have e as 
its eigenvector. Now for any tensor W E L ,e+ in general we can define a rotation 
S E r  by the condition 

Se ---- We/ll Well. (3.50) 
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and 

s r w e  = II wet[ e, 

Hence from (3.49) 

H~(STW) = K.  

(3.51) 

(3.52) 

Using (2.9), we then have the representation 

H~.(W) = S(W)  K S ( W )  T (3.53) 

for all W E .~+, where we have regarded S as a function of W by the condition 
(3.50). 

Clearly the representation (3.53) is consistent with the condition (2.9) for all 
Q E 0 +. Indeed, (3.50) implies directly that 

S ( Q W )  = QS(W).  (3.54) 

Hence from (3.53) 

H~CQW) : SCQW) KSCQW) r : QS(W)  K(QS(W))  T : QS(W)  K s c w )  r Qr. 

(3.55) 

Therefore, if we use the restriction of (3.53) to positive-definite symmetric tensors 
UE Ae + and define the function H~ for all tensors F of the form (2.7) by (2.14), 

viz 

H~(F) = RS(U)  KS(U)  r R r, (3.56) 

then the representation (3.56) is consistent with (3.53). 
Now we show that the form (3.56) is not only necessary but also sufficient 

for the symmetry condition (2.22) for all P E Le+ satisfying (3.39). Since (3.56) 
is consistent with (2.9), it suffices to verify 

H~(UP) = H~(U). (3.57) 

Since (3.56) is consistent with (3.53), the left-hand side of (3.57) is 

H~(UP) = S ( U P )  KS( UP)T. (3.58) 

From (3.50) if the eigenvalue 2 in (3.39) is positive, then 

S(UP) = S(U).  (3.59) 

On the other hand, if 2 is negative, then 

S(UP) = - -S(U) .  (3.60) 

For both cases (3.59) and (3.60) the right-hand side of (3.58) reduces to 

S(UP) KS(UP)  r = S(U) KS(U)  7" = H.(U).  (3.61) 

Thus (3.57) holds. 
Notice that the representation (3.56) reduces to the representation (3.38) 

when the constant tensor K takes the special form 

K = H~(P) = cl~ + de | e, (3.62) 
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which is a symmetric tensor having e as an eigenvector. For an elastic subfluid 
membrane point considered before, ff~ contains improper tensors P which force 
the value H,(P) to take the special form (3.62). The representation formula (3.56) 
shows that, when those improper tensors are removed from the symmetry group 
c~,, the stress tensor H~(P) = K may differ from the special form (3.62) by an 
arbitrary rotation, in much the same way that (3.32) is related to (3.20). 

In the preceding examples, with the exception of the membrane points de- 
fined by the constitutive equations (3.32) and (3.56), all others, namely, those 
defined by (3.1), (3.14), (3.17), (3.38), (3.41), and (3.44) (with a, c distinct or equal) 
are orthotropic elastic membrane points, which may be defined in general as follows: 
We require that the symmetry group f#, contains the reflections with respect to 
certain basis vectors e~ in ~(J/lp), i.e., ~,, ~ P1, P2 defined as follows: 

Pie1 = - - e l ,  Pie2 = e2, P2e~ : el, P2e2 = - - e 2 .  (3.63) 

We call ~ an undistorted reference configuration if the basis {e~) is orthonormal 
in ~r 

Let ~ ,  denote the group 

(3.64) 

We call the basis {e~} which enters into the definition (3.63)for P~ a principal 
basis for ~ , .  Like a principal basis for a symmetric tensor, a principal basis for 
~ ,  is unique to within an arbitrary change of signs and indices. We call p an 
orthotropic elastic solid membrane point if fr = ~ . ;  for an orthotropic elastic 
membrane point in general we require only that ff, ) ~ , .  

Clearly ~ ,  is a group with the following multiplication table: 

7t 

Pj 

P2 

1~ PI P2 --1. 

1~ PI P2 --1~ 

PI 1~ -- 1~ P2 

P2 --1~ 1~ PI 

--1~ /'2 PI 1, 

(3.65) 

which shows that it is an Abelian group. Relative to a principal basis {e~} in an 
undistorted reference configuration ~r the members of ~ have the component 
matrices 

(3.66) 

which show that ~ Q  r and so 1~, - - I , E  0 + while PI, P2q {~+. 
From (2.22) and (2.9) the stress tensor H~(I~) in an undistorted local confi- 

guration o f p  must commute wilh all members of ~ , .  As a result H~(I~) and ~ .  
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share the same principal basis (e~}, i.e., Hs(1,) has the spectral form 

Hs(ls) ---- tlex | e~ + t2e 2 @ e 2 .  (3.67) 

From (2.17) the stress tensor H.(l~) is also the value of A~ at C = 1., viz 

As(l~) ~ tle~ | el Jr t2e2 | e2. (3.68) 

Furthermore, (2.23) implies that 

A~(P~CP~) = P~A~(C) P~, (3.69) 

where we have used the fact that the P~ are symmetric. 
The conditions (3.69) imply not only the spectral form (3.68) for A,(1,) but 

also some severe restrictions on the gradients of A. at C = Is. For (3-dim.) 
orthotropic elastic materials the restrictions on the gradients of the response 
functions are derived in [6], which shows also that they are important in the 
analysis of wave propagation. 

4. The Response Function of a Hyperelastic Membrane Point 

In continuum mechanics an elastic material is called hyperelastic if the response 
function is derivable from a stored energy function which gives the value of the 
stored energy density e in any configuration. Like the stress tensor T, the stored 
energy density e is assumed to be uniquely determined by v in all configurations 
Z having common induced local configurations Z,p = v, viz 

e = ~(v), (4.1) 

where ~ is the stored energy function. Like 7", ~ is generally required to satisfy the 
following condition of material frame-indifference: 

~(Qv) = ~(v) (4.2) 

for all rotations Q on ~ .  
Using a local reference configuration ;r for p as before, we can express (4.1) 

by 

e = ~s(F) (4.3) 

and (4.2) by 

~ s ( o e )  = ~s (r ) .  

From (2.11) and (4.4) trs has the reduced form 

as(F) = (~.(U) 

or, equivalently, 

where C is defined by (2.15). 

trs(F ) ~ qb.(C), 

(4.4) 

(4.5) 

(4.6) 
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For a hyperelastic membrane point p the response function Hn may be derived 
from the stored energy function an by (cf. [7]) 

Hn(F) = ~F , (4.7) 

where ~ denotes the density of  p in the deformed configuration v = F~. Since 
the deformation gradient F is a two-point tensor as shown in (2.7), the gradient 
of the stored energy function o" n is taken on a 6-dimensional differentiable manifold 
consisting in all such tensors. The representation (4.7) may be expressed in com- 
ponent form as follows: 

Let (e~, or = 1, 2} be an orthonormal basis for the tangent plane ~(~gp) in q/-. 
We extend {e~} into an orthonormal basis {eg, i = 1, 2, 3} for $/'. Then the two- 
point tensor F may be characterized by the component form 

F = Fi~,ei | e~, (4.8) 

where Fi~, are the components of  the image vector Fe~, viz 

Fe~, = Floe  i @ ea(e~,) = Ell ~ ~e,#ei : Fi~e i.  (4.9) 

We use the components Fi~, of F as coordinates on the domain of the stored 
energy function a~. Then the component form of (4.7) reads 

~a(Fka) (4.10) H,j(Fka) = QFi~, aFj.'-'---f-' 

where the action of Hij(Fka ) is restricted to the tangent plane v(.A/p) spanned by 
{Fe~, or = 1, 2}. Specifically, from (2.17), Ho(Fkr ) may be expressed by (cf. [7]) 

Ho( Fta ) = F,~,A 4 (  C~,~) Fja . (4.11) 

Hence the tensor Ho(Fka ) e i | ej may be represented by 

Hij(F,a) e i | ej = A~a(C:,e) (Feo,) | (FEB), (4.12) 

where the tensor on the right-hand side acts on the tangent plane v(./gp). 
Using the argument presented in [8], we can rewrite the representation (4.10) 

in terms of the reduced response function An and the reduced stored energy 
function 4~n by 

A~o(C~,e) = e ~" ~ q- ~ ] ,  (4.13) 

where 4~n is extended arbitrarily to all tensors over ~r After the partial deri- 
vatives in (4.13) are taken, they are evaluated on the set 9 of positive-definite 
symmetric matrices [C~o], where A, and (kn are naturally defined. The combination 
O/OC~,a -k O/~Cp~, may be viewed as a tangential gradient on the set 9 .  Indeed, 
the value of the right-hand side of (4.13) on 9 depends only on the values of the 
function ~b, on 9 .  

The representation (4.13) is simpler than the representation (4.10) since (4.13) 
involves tensors over the fixed tangent plane ~r only. Also, the density 
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may be expressed easily as a function of [Cry], viz 

(det [C.~]) �89 (4.14) 

where ~ denotes the density of p in the local reference configuration ~r In terms 
of the components Fka of F, however, the expression (4.14) for ~ takes the compli- 
cated form 

= ~. (4.15) 
[ (F~IF3~ - -  F a ~ F ~ )  ~ + ( F ~ , F ~  - -  F H F ~ 2 )  2 + (F~IF2~ - -  F~ ,F ,~ )2 ]  ~" 

It can be shown that the response function H~ defined by (4.7) obeys the con- 
dition of material frame-indifference (2.9) if, and only if, the stored energy func- 
tion tr~ obeys the conditions of material frame-indifference (4.4); cfi [9]. For 
the condition of material symmetry, however, the situation is a lot more compli- 
cated. By the same idea as (2.22) we define the symmetry group p~ for the stored 
energy function (r~ relative to ~r by the condition that a tensor P E Sa~ is a member 
of p~ if and only if 

a~(FP) = a~(F) V F. (4.16) 

Using the reduced stored energy function ff~ defined by (4.6), we can express the 
preceding condition also by 

qb~(PrCP) = qb~(C) V C. (4.17) 

From (4.4) with the special choice Q = - L ,  we see that 

(r,(-- lvF) = (r~(F(-- 1~)) ---- (r~(F) V F. (4.18) 

Hence ~7~, like f#~, must always contain the common elements 1~ and --Ix. We 
can see this fact also from (4.17) since --1~ commutes with all positive-definite 
symmetric tensors C on ~r 

Substituting the representations (4.13) and (4.14) into the condition of material 
symmetry (2.23), we obtain 

1 P ~  [~cb(ParCa~en~) + &b(ea~cz~Pn~)] 8~b(Cy~) ~ff(C~) (4.19) 
l det [PT0]l \' 8C~a ~ ] Pea - aC~,-------~ + aCr 

which is the criterion for P E @. expressed in component form in terms of  
the reduced stored energy function $~. We can rewrite the condition (4.19) as 

+ ~ [det [er~]l r -- 4'(Cvo) = O. (4.20) 

Hence as remarked in [8] the condition of material symmetry (2.23) means that 
P E f#. if and only if 

1 1 
Pi~b"(PrCP)I = qb~(C) -~- lUCt rl~'i'hZT'-~n~dP*(PrP) - -  qb,(1,) V C. (4.21) [det 



Symmetries of Elastic Membranes 371 

This condition differs from TRUESDELL'S condition [9, eq. (85.4)] in that it has 
the extra factor 1/Idet P[ because fg~ need not be contained in qg~ for an elastic 
membrane point. 

We define 

p* = ~ A ~ .  (4.22) 

Then we claim that, as in the theory of (3-dim.) hyperelastic materials e f  [8], 

r ( ~ (4.23) 

provided that p is not vacuous with 

try(F) ----- constant, H~(F) = 0 V F,  (4.24) 

in which case both ~. and ff~ are .L.q'.. To prove (4.23), let P obey both (4.17) and 
(4.21), so that PE~* .  Then by substituting C = 1, in (4.17) we obtain 

cb,(PrP) = ft.(1,). (4.25) 

Using (4.17) and (4.25), we can rewrite (4.21) as 

1 det P I 1 (4,~(C) -- ~'~(L)) = 0 V C. (4.26) 

But by hypothesis p is not vacuous, and so 4~ is not constant. Hence (4.26) im- 
plies 

] det P I = 1. (4.27) 

Thus (4.23) is proved. 
Next we claim that, with the exception of the vacuous case (4.24), 

P* = e ,  A ~//,. (4.28) 

In other words, if P satisfies both (4.17) and (4.27), then it also satisfies (4.21). 
This fact is more or less obvious, since when (4.27) holds (4.21) reduces to TRUES- 
DELL'S condition : 

cb~(prcp) = ebb(C) q- ck~(PrP) - -  ~b~(l~) V C. (4.29) 

But P clearly satisfies (4.29) since by virtue of (4.17) 

Thus (4.28) is proved. 
It follows directly from (4.28) and (4.22) that 

We define 

Then from (4.22) and (4.28) we have 

(4.30) 

(4.31) 

(4.32) 

(4.33) 
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It should be noted that ~* and (~* are both groups since they are defined as inter- 
sections of groups. 

We claim that ~* is a normal subgroup of ~ ,  i.e., 

P ~ P  ~* V PE (~. (4.34) 

Let P* be an arbitrary element of ~*. Then we must show that 

p p . p - 1  E ~* V P E f#~, (4.35) 

i.e., both (4.17) and (4.21) must hold when we replace the tensor P in them by 
the tensor p p . p - 1 .  

Using the fact that P-1 E (9~, we obtain from (4.21) 

I det PI ~b,(P-lrP*rPTCPP*P-1) 
(4.36) 

= rb~(P*rPrCPP*) + I det PI dO,(P-ITP-I) -- 4~ (1~) V C. 

Next, using the fact that P*E ~,, we obtain from (4.17) 

dp~(P*rprcpP*) = qS~(PrCP) V C. (4.37) 

Finally, using the fact that P E f#~, we obtain from (4.21) 

4~(pTcp) = I det P] ~b~(C) + ~b~(PrP) - [det P I 4~(1~) V C. (4.38) 

Substituting (4.38) and (4.37) into (4.36), we get 

I det P1 rb~(P-lrP*rPrCPP*P-1) (4.39) 

= I det P[ ck~(C) + ff~(prp) + i det PI ~b~(P-lrP-1) --(I  det PI + 1)*~(1~). 

But from the fact that PP-~ = 1~ and the fact that P-~ E f#., we obtain from 
(4.21) 

]det P[ 4~(1~) = [det PI rk~(P-1rPrPP-~) 
(4.40) 

= 4~(PrP) + I det PI qb~(P-lrP-1) -- qS~(l~). 

Hence (4.39) reduces to 

rk~(P-~rP*rPrCPP*P -1) = ~(C)  V C, (4.41) 

which shows that PP*P-~ E p*. But since P* E ~* C q/~ and since 

I det PP*P-11 = l det P*I = 1, (4.42) 

we see that PP*P-~ E ~7" by virtue of (4.28). Thus (4.35) is proved and hence 
(4.34). 

Since fg* is a subgroup of f#~ containing * p~, p* is then a normal subgroup of 
f#* also. We claim that f#* is a normal subgroup of fg. and that p* is a normal 
subgroup of p~, i.e., 

pf#.p-~ = c~. V P E f#,, (4.43) 

and 

�9 -1 (4.44) P ~  P = ~7" V P E ~ .  
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These two conditions are direct consequences of the property of  the determinant 
function; cf. (4.42). Hence all inclusions among the groups p~, ~*, f~, and ~*, 
viz 

~* C ~ ,  ~* ( c~, ( ff~, (4.45) 

are normal. As a result there are quotient groups 

~,,1~*~, ~ . 1 ~ * ,  * * f~./e~, ~ / e *  �9 (4.46) 

We can show that the first three quotient groups in (4.46) are Abelian; we 
do not know whether the fourth one is Abelian or not in general. The proof 
that the first two are Abelian is obvious, since it amounts to verifying 

pQp-1Q-1 E ~7" V P, Q E r (4.47) 

and 
PQP-IQ-~ E fg* u P, Q E cS~. (4.48) 

These conditions, like the previous conditions (4.43) and (4.44), reflect properties 
of the determinant function. The proof that the third quotient groups in (4.46) 
is Abelian is essentially the same as that of a similar result presented in [10] for 
(3-dim.) hyperelastic material points. Indeed, the proof amounts to verifying 

p Qp-1 Q- 1 E e~ V P, Q E ~*. (4.49) 

By virtue of (4.32), the preceding condition concerns only TRUESDELL'S condition 
(4.29). Although the proof presented in reference [10] addresses only the stored 
energy function ~r., not the reduced stored energy function ~b~, it can be applied 
to (4.29)without any difficult, as we shall see in the following analysis for the 
fourth quotient group in (4.46). 

To determine whether that quotient group be Abelian or not, we need to 
know whether 

PQP-1Q-I E y* u P, Q E ~ ?  (4.50) 

By virtue of (4.28) and the obvious fact that 

ldet pQp-1Q-~[ : 1, (4.51) 

the question (4.50) is equivalent to whether 

PQP-~Q-I E ~ V P, Q E ~ 7  (4.52) 

Hence we need to find out whether V P, Q E (r 

~b(Q-ITP-1TQrPrCPQP-IQ-1) -- ~b~(C) : 0 u C? (4.53) 

We can calculate the difference on the left-hand side of (4.53) in the following 
way: 

Using the fact that Q E ft., we obtain from (4.21) 

] det Q I ~bu(Q -IrP-IrQTPTCPQP-IQ-I) 
(4.54) 

= r -1) -}- I det Q lcb~(Q-~rQ -1) - ~b~.(l~) V C. 
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Next, using the fact that p-1 E f~., we obtain 

dp~(p-1TQrprCpQp-1) 

1 
-- [det P[ ckx(QrprCpQ) + ~b*(p-1Tp-1) 

Next, using the fact that Q E f~., we obtain 

1 

I det P I ~b~(l~) 

(4 .55 )  

u  

1 
- -  r 
I det P I 

1 [det Q [ q~t r b r ) ' g  nT,-,n, + dp~(QTQ) 
- -  I det P------/ 

Finally, using the fact that P E ~ ,  we obtain 

[det Q[ 4~(1~) 
Idet PI 

(4.56) 

u  

I det Q 1 4, (prcp)  = [ det Q[ 4~,(C) + I det Q___.___~ ~b,(prp) _ I det Q I ~b~(1,) u C. 
]det P] I det P} 

(4.57) 

Substituting (4.55)-(4.57) into (4.54), we obtain 

I det Q I (rb.(Q-lrp-1TQrpTCpQP-1Q-I) -- do,(C)) 

I det QI 
I det P I 

1 
- -  dP,(PTP) + qS~(P-lrP) + ~ qb,(QTQ) + I det Q I ~b,(Q-ITQ -I) 

1 Idet Q[ ) 
- 1 +ldetP---- ~ ~ [detP--------Z-[- IdetQI ~.(1~) u  (4.58) 

Hence whether the answer to (4.53) is yes or no depends on whether the right- 
hand side of (4.58), which depends only on P and Q, vanishes or not. 

From the fact that pp-a ~ 1~ we have the condition (4.40). Similarly, from 
the fact that QQ-1 = 1~ we have 

[det QI 4 , . ( 1 . ) :  Idet QI dP~(Q-lrQrQQ-I), 

= qb~(QrQ) -[- Idet QI qbx(Q-lrQ -1) - 4~(L). 
(4.59) 

Using (4.40) and (4.59), we can rewrite (4.58) as 

l det Q[ (dP~(Q-ITp-ITQTpTCpQp-IQ-1) -- qb~(C)) 

_ 1 1) ~b~(QrQ)+(1 = / I d e t  Q[ 1) ff.(prp) + (ide t 
\ Ide t  PI PJ 

[ det Q I) 
i det ~ ff,(l~) 

(4.60) 

VC.  

Clearly the right-hand side of (4.60) vanishes when 

[det P[ = [det QI = 1. (4.61) 
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This special case gives rise to precisely the previous result (4.49), which means 
that the third quotient group in (4.46) is an Abelian group, as we have remarked 
before. 

Although the right-hand side of (4.60) seems not to vanish in general, we do 
not have any example of 4~ for which the fourth quotient group is not Abelian 
either. In the next section we shall consider a number of examples of hyperelastic 
membrane points whose response functions possess symmetries considered in 
the preceding section. As we shall see, the examples belong to the following 
three classes only: 

Class 1. This class contains all ordinary hyperelastic membrane points for 
which the symmetry groups ~. and f#, are both contained in q/~. Then (4.21) 
reduces to (4.29) and, therefore, as TRU~SDELL remarked, y ,  is contained in 
fg,. Hence in this case 

p,  = p* C (9" - fr C q/~. (4.62) 

As a result the first two quotient groups in (4.46) reduce to the trivial group, 
while the last two quotient groups coincide. This class of hyperelastic membrane 
points may be analyzed by following essentially the same approach as in [10], 
which treats (3-dim.) hyperelastic material points. 

Class 2. The symmetry groups y ,  and ff~. are assumed to satisfy the following 
condition: 

e* ~-- ~ = if* C q/x, (4.63) 

where the last inclusion becomes the equality sign for the surface tension points. 
Under the assumption (4.63) the first and the third quotient groups in (4.46) 
reduce to the trivial group, while the second and the fourth quotient groups coin- 
cide. 

Class 3. The symmetry groups p.  and f#~ are assumed to satisfy the following 
condition : 

~,~ =~ ~* C fr = f#~ C q/~. (4.64) 

Under this assumption the second quotient group in (4.46) reduces to the trivial 
group while the third and the fourth quotient groups coincide. 

Classes 2 and 3 are not covered by [10]; we now analyze them. 
The condition (4.63) implies that the restriction of the function ~b~ to the 

set 

~(~,, ~_ {prp, p E ~.} (4.65) 

reduces to a function of the form 

4~,(PrP) = f ( ] d e t  PI) V PE fr (4.66) 

To see this fact let Q be another tensor in fr such that 

]det el  = [det q l .  (4.67) 
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Then the composition Q - i p  is contained in (#* since from (4.67) 

ldet Q-1P I = 1. (4.68) 

By virtue of (4.63) we then have Q-1PE ~*. Consequently, from (4.17) 

dd~(pTQ-ITCQ 1p) _~ ~b~(C) V C. (4.69) 

Choosing C = QTQ in (4.69), we obtain 

~b~(PrP) = ~b~(QTQ). (4.70) 

Thus (4.66) is proved. 
The function f defined by (4.66) must obey the following condition: Let 

P and Q be arbitrary members of ff~. We put 

x = ]det P1, y = Idet Q[. (4.71) 

Then by virtue of (4.66) the condition 

1 1 
~ c b ~ ( Q r P r P Q )  -~ dp.(PTP) - 1 - ~  ~b~(QrQ)- ~(1~) (4.72) 
]det QJ Idet QI 

may be rewritten as 

1 1 
y f ( X y )  = f (x )  -b y f ( s  -- f(1). (4.73) 

This is the functional equation governing f on the quotient group (#~/f~*, i.e., 
each positive number x in the domain o f f  represents the quotient class {P} in 
(r satisfying (4.71)1. 

For the examples that we shall consider in the next section, the Abelian 
quotient group fg~/ff* is represented by the multiplicative group of all positive 
numbers. In that case we can differentiate (4.73) with respect to x, obtaining 

f ' ( xy )  = f ' ( x )  u x, y E ~+, (4.74) 

which means that the derivative f '  is a constant independent of x. Consequently 
f has the representation 

f ( x )  = cx q- d, (4.75) 

where c and d are constants. We can verify easily that the solution (4.75) indeed 
obeys the functional equation (4.73). 

The solution of (4.73) is also given by (4.75) when the quotient group (~/ff* 
is represented by the discrete group of the form 

(x = o~ n, n = 0, •  . . . .  ), (4.76) 

where 0 < o~ q= 1. In this case we define c and d by 

f(1) = e q- d, f(~) = c~ q- d. (4.77) 

Then from (4.73) with x ~ y ~ ~ we obtain 

f(o~ 2) = ~f(o 0 + f ( o  0 -- o~f(1) = c0~ 2 + d. (4.78) 
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By induction if f(~n) = c~n q_ d, then using (4.73) we get 

f(0~ ~+1) = o~f(0~ ~) + f(oc) -- o~f(1) = c0~ ~+l + d. (4.79) 

Hence the solution (4,75) is valid for all o~ ~ with n ~ 0. From (4.73) f(o~ -1) 
is related to .f(o 0 by 

f(o~ -1) ---- -- -~-f(~) -[- + 1 f(1) = c~ -1 + d. (4.80) 

Then by induction again we can show that 

1 1 1 
f(or -n) = ~- f (~- (n -  )) q-.f(~-') -- -~--f(l) = co~ -~ + d. (4.81) 

for all n ~ 0. Thus (4.75) is still the general solution for (4.73) when f~,/~* is 
represented by (4.76). 

When the quotient group f#,/f~* is represented by a more complicated discrete 
group such as 

{x  = cr m, n, m ---- 0, 4-1, 4-2 . . . .  }, (4.82) 

which is not reducible to the previous form (4.76), there are solutions of (4.73) 
other than the ones given by (4.75). We are not interested in those other solutions 
since they generally lead to discontinuous functions ~b,, which are not appropriate 
as stored energy functions. 

T Having determined the explicit form for the restriction of ~b, to the set rS, ff~, 
we can use the condition (4.21) directly to define a representation for ~,, viz 

~b~(PrCP) ~ ]det P[ (~b~.(C) -- d) + d. (4.83) 

As usual we define an equivalence relation on the domain ~ of ff~ by 

C ~ ff, (=~ 3 P E fg~ : C ~- P r C P .  (4.84) 

If C is equivalent to C by (4.84), then the condition (4.83) implies that the value 

~b~(C) must be related to the value ~b~(C) by 

4~,(C) = [det PI (+,(C) -- d) + d. (4.85) 

On the other hand, if C'is not equivalent to C, then the condition (4.83) does not 
restrict the values ~b,(C) and ~b,(C) in any way at all. 

For each equivalence class in ~ we select a representative element, say Co, 
and we assign an arbitrary value ~b,(Co). Then for any C equivalent to Co, say 
by 

C = P~CoPo, Po E f ~ ,  (4.86) 
we define 

~(C)  = I det Po I (~(Co) -- d) q- d. (4.87) 

The value 4~,(C) is well defined by (4.87) since if C is related to Co also by 

C = P~CoPl,  PI C (9~, (4.88) 
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then by taking the determinant of (4.86) and (4.88), we see that 

]det Po ] = ]det P1 ]. (4.89) 

Hence the right-hand side of (4.87) does not depend on the choice of Po satis- 
fying (4.86). As a result, ~ is defined on ~ by piecing together its definition (4.87) 
on each equivalence class in ~ .  

Having obtained the representation (4.87) for the reduced stored energy func- 
tions 4~ for hyperelastic membrane points belonging to Class 2, we now turn our 
attention to Class 3. For this class the symmetry group ~, of the stored energy 
function is not contained in the symmetry group (r of the response function; 
this condition sets the assumption (4.64) apart from the assumption (4.62). 

Assumption (4.64) makes all tensors P belonging to ff~ unimodular, so that 
the condition (4.21) reduces to TRUESDELL'S condition (4.29). This fact, however, 
does not preclude the latter from having solutions P which are not unimodular 
and, therefore, do not belong to (r Indeed, all non-unimodular members P 
in ~ (i.e. all P belonging to the complement of r in y,) obey (4.29) since from 
(4.17) they clearly satisfy (4.30) and, therefore, (4.29) because it reduces to (4.17). 
This argument is essentially the same as TRUESDELL'S proof that ~ is a subgroup 
of (r when both are assumed to be contained in qg~. We must be careful not to 
interpret TRUESOELL'S result erroneously as the assertion that if ff~ is contained 
in qg~, then ~, is contained in ft,. The correct generalization of TRUESDELL'S result 

is this statement: Define the group (~, as the group of all tensors P, unimodular 
or otherwise, which satisfy TRUESDELL'S condition (4.29). Then 

~ C ~ .  (4.90) 

Since all unimodular tensors P satisfying (4.29) ipso facto also satisfy (4.21), 
in general we always have 

qr = ~ A q/~. (4.91) 

Under the assumption (4.64), we then have 

r~ = ~ ,q 0//~. (4.92) 

Beyond its parts ~. and ff~ the group f#~ does not really have any physical signi- 
ficance, since TRUESDELL'S condition (4.29) is not the symmetry condition for the 
response function when P is not a unimodular tensor. It is important to introduce 

the group ~ for the Class 3, however, since in this case the condition (4.29) is 
the overall restriction on the reduced stored energy function 4~,. Indeed, both 
(4.17) and (4.21) are now special cases of (4.29) for this particular class of hyper- 
elastic membrane points. 

Although r and ~ ,  are not contained in q/x, their relations with respect to 
TRUESDELL'S condition (4.29) are exactly the same as those for r and ff~ in [10], 
so that we still have the following results: 

i) ~, is a normal subgroup of ~,. 
ii) The quotient group ~ , /~ ,  is Abelian. 
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N 

iii) The restriction of 4~, to the set ffrff~ is an Abelian function with respect to 
the Abelian group f#~/p,. 

Indeed, result i) means that 

p ~ p - 1  = ~ V P E c~,  (4.93) 

which may be proved by following exactly the same steps (4.36)-(4.41) in the proof 
of  (4.34), except that we now replace the factors [det P[ in (4.36)-(4.40) all by 1. 
Next, result ii) means that 

PQP-1Q-1Ee,, u P, QE c~, (4.94) 

which may be proved by following exactly the same steps (4.54)-(4.60) in the 
proof  of (4.49) except that we now replace the factors ] det P] and I det Q ] in 
(4.54)-(4.60) all by 1, as shown in (4.61). Finally, result iii) means that 

iii)a If  P, QEf~ , ,  belong to the same quotient in f#~/r i.e., P - 1 Q E g , , ,  
then 

qb~(PrP) = cb,,(QrQ), (4.95) 

and so the restriction of ff~ to ~ [ ~ .  may be viewed as a function on the quotient 
group f~J]~. 

iii)b For all P, Q E c~ 

cb~,(prQrQP) - -  ~(1~) = (qb~(PTP) -- qS~(l~.)) -~ (rb,,(QrQ) - qb~(l~)). (4.96) 

The proofs of both (4.95) and (4.96) are obvious, since when P - I Q  E ~ the con- 
dition (4.17) implies directly 

cb~(P rP) = c b ~ ( Q r P - l r P r P P - 1 Q )  =- ep~(QrQ), (4.97) 

while (4.96) is just another way of writing (4.29) with C = QrQ.  
For the example that we shall consider in the next section, theAbelian quotient 

group 2g~/r is represented by the group of all positive numbers with respect to 
multiplication. Let the quotient class of P in f~/r be represented by the number x 
and that of Q the number y. Then the condition (4.96) may be rewritten as the 
functional equation 

f ( x y )  - -  f(1) = ( f ( x )  - -  f(1)) + (J(y)  - f(1)). (4.98) 

It is well known that the general solution of (4.98) is 

f ( x )  = c log x + d, (4.99) 

where c and d are constants, provided t h a t f i s  a continuous function. It is easily 
verified that the general solution of (4.98) is given by (4.99) when f#~/p~ is re- 
presented by the discrete group (4.76). 

Z Having determined the restriction of 4)~ to the set f~f#~, we can now use the 
condition (4.29) directly to define a representation for ~., viz, 

cb,~(PrCP) = c log x + 4~(C), (4.100) 
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where x represents the quotient of P in f ~ / ~ .  As before, we define an equivalence 
relation on the domain 9 of (b~ by 

C ~ C  (:=> "q P E f ~ :  C = P r C P .  (4.101) 

If  C is equivalent to C by (4.101), then (4.100) implies that the values 4'~(C) and 
(b~(C) are related by 

4~.(C) = c log x -+- (b~(C). (4.102) 

On the other hand, if C is not equivalent to C, then the condition (4.100) does not 

restrict the values 4)~(C) and ebb(C) in any way. 
For each equivalence class in ~ we select a representative element, say Co, 

and we assign an arbitrary value (b~(Co). Then for any C equivalent to Co, say 
by 

C = prCoPo, PoE f~,  (4.103) 

we define 

(b,(C) ---- c log Xo + (k,(Co), (4.104) 

where Xo represents the quotient of Po in c~/p,. The fact that #),(C) is well defined 
by (4.104) may be proved as follows: N 

When the conslant c is zero, the restriction of 4), to c~rf#, is a constant d, cf. 
(4.99). In that case (4.29) reduces to (4.17), so that 

e~ = fg-- (4.105) 

Then the only restriction on ~b, is (4.17), which means that (k, takes on a constant 
value on each equivalence class in 9 ,  i.e., (4.104) reduces to 

~b~(C) = ~b~(Co); (4.106) 

evidently, 4),(C) is well defined. Next, when the constant c is not zero, we claim 
that if 

prCoP -~ Co (4.107) 

for any PE f~,, then P must be contained in p~. Indeed, substituting (4.107) 
into (4.100), we obtain 

(b~(Co) ---- c log x q- (b~(Co). (4.108) 

Thus 

x = 1, (4.109) 

which means precisely that P belongs to ~,  since 1 represents ~,  in the quotient 

f~,/r By virtue of the preceding result, if C is related to Co by both (4.103) and 

C = pTCoP ,, P, E d~, (4.110) 

then Po and P1 must belong to the same quotient in f#,/p~. As a result, Po and P~ 
are represented by the same number xo. Consequently the right-hand side of 
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(4.104) does not depend on the choice of Po satisfying the condition (4.103). 
Thus qS,(C) is well defined by (4.104). 

It should be pointed out that there is a basic difference between representations 
for Classes 1, 2, or 3. For Class 1 a representation gives the general solution for 
the conditions (4.29) for a given symmetry group fix under the assumption that 
the symmetry group r is a subgroup of fix. Such a representation can be derived 
by following essentially the same approach as in [10]. In this approach the sym- 
metry group ~, is not assigned a priori ,  but is determined by the form of the re- 
presentation. For Class 2, however, r is determined at the outset by the assump- 
tion (4.63). Then the representation (4.87) is derived under the assumption (4.63). 
As a result, if the stored energy function of a given hyperelastic membrane point 
fails to satisfy the assumption (4.63), then the representation (4.87) cannot be 
applied. Since we do not know a pr ior i  whether a hyperelastic membrane point 
with symmetry group fix actually has a stored energy function with symmetry 
group g ,  given by (4.63), the representation (4.87) gives us not all possible stored 
energy functions, but only those whose symmetry group ~ satisfies (4.63). For 
Class 3, the situation is even more complex than for Class 2, since neither Cx 

nor a)x is determined by fix. We can apply the representation (4.104) only in the 
following sense. 

Let ft ,  be given as a subgroup of ~ Then we follow the procedure developed 
in [10] to find a representation for the stored energy functions when the correspond- 
ing response functions have symmetry groups containing fix. Most of these stored 
energy functions have symmetry groups Cx contained in fix; they define hyperelastic 
membrane points of Class 1. The representation may prescribe, however, also 
some special stored energy functions whose symmetry groups ~ are not contained 
in fix. These special stored energy functions then define hyperelastic membrane 
points of Class 3. Since in this case the form of the stored energy functions is al- 

ready known, we can determine the groups r and fg~ explicitly. Then we can identify 
the stored energy functions as the ones given by (4.104). Hence (4.104) merely 
summarizes the common form of the stored energy functions for hyperelastic 
membrane points of Class 3. We cannot actually use (4.104), as we can use (4.87), 
to determine the stored energy functions. 

5. Some Examples of Hyperelastic Membrane Points 

From the representation (4.13) it is explained in [8] that the reduced response 
function A x must obey the compatibility condition: 

for all positive-definite symmetric matrices [C~e]. Of course, the function ~ in 
(5.1) is given by (4.14). 

In Section 3 we have defined the reduced response function Ax for a surface 
tension point by (3.5). We claim that such a function obeys (5.1). Indeed, in 
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component form (3.5) implies 

1 c 
--~ A4(C~,,O = -~ (det [C~,,d)~C~(C~,,~). 

Hence we can calculate directly 

(5.2) 

-}- A~xfl(Cyo) = 7 ( C ~ I C ~ 1  --  c~lc~fl 1 -  c ~ l c ~  l) (Cy~), 

(5.3) 

where we have used the symmetry of Cg ~ on the domain N consisting of positive- 
definite symmetric matrices [C~]. Clearly the right-hand side of (5.3) is symmetric 
in (0~fl), (~ ) ,  so that the condition (5.1) are satisfied. As a result, a surface tension 
point is hyperelastic. 

Substituting (3.5) into (4.13) and using the formula for the derivative of the 
determinant function, we get 

+ r -- = 0 (5.4) 

for all [Cry] E ~ .  As a result, ff~ is given by 

C C 1 
~.(C) = - -  q- d = - -  (det C)~ -F d, (5.5) 

where c and d are constants. Of course, c =t= 0; otherwise, p is vacuous, i.e., 

ff~(C) = constant, A,,(C) = 0 u C,  (5.6) 

which is equivalent to (4.24). It is customary to set the constant d to 0. Then (5.5) 
means that 

9e = c, (5.7) 

so that c is just the stored energy per unit area associated with the surface ten- 
sion. 

Substituting (5.5) into (4.17), we see clearly that PE  ~ if and only if it is 
unimodular. Hence in this case 

e~ = e ~ =  ou.. (5.8) 

Also, since fg~ is .5~'~, from (4.32) 

(5.9) 

Thus the condition (4.63) is satisfied: a surface tension point is of  Class 2. 
There is only one equivalence class on ~ as defined by (4.84) with respect to 

f~, = .La, since every C E ~ may be represented by 

c = v q . u  = v ~, (5.10) 
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so that C ~., 1~. Hence the representation (5.5) amounts to choosing 

Hence ~. is given by 

C 
~ ( 1 . )  = - -  + d (5.11) 

in (4.83), viz 

4,~(C) = 4,,(Url~U) = det U c + d -- d + d = ~-(det  C) ~ + d. (5.12) 

Next, we claim that an elastic fluid membrane point with constitutive equation 
(3.14) is also hyperelastic. The reduced response function A~ is given by (3.5) 
with c = c(~), so that (5.3) is replaced by 

Q 

where [C~e] E 9 .  Clearly the right-hand side of (5.13) is still symmetric in 
( ~ ) ,  (~) .  As a result an elastic fluid membrane point is hyperelastic. 

Substituting (3.5) with c = c(~) into (4.13) and using the formula for the 
derivative of the determinant function as before, we get 

+ 4)(Cv~) -}-j -~--ao) = o. (5.14) 

= _ . f  de ,  (5 .15)  

where p is regarded as a function of C by (4.14). From (5.15) we see that ~7~ is 
q/~. Thus the condition (4.62) is satisfied: a hyperelastic fluid membrane point is 
of Class 1. The representation (5.15) for the stored energy function of an elastic 
fluid membrane point has the same form as that of a (3-dim.) elastic fluid; cf. 
[9]. 

Next we consider the case fg~ ~ ~ .  When P E fg, is contained in q/~, the 
condition (4.21) reduces to TRUESD~LL'S condition (4.29). As TRUrSDrr.L pointed 
out, r  must contain all orthogonal tensors in fg~. Hence from (4.17) ~, is an iso- 
tropic function, viz, 

dA,(QrCO) = dA,(C) u Q E (P,,. (5.16) 

The equivalence relation (4.84) becomes 

C , . ~ C  r  " q Q E d g , , : C = Q r C Q ,  (5.17) 

and it is well known that 

c , ~ , ~  ~ I c = I c ,  IIc = I  I e ,  (5.18) 
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where 

I c ~ t r C ,  I I c = d e t C .  

Hence ft, has the representation 

4~(C) = f(Ic,  tic). 

Since the invariants obey the conditions 

tr C = tr C ~, det C = det C T 

for all C over ~r the representation (4.13) reduces to 

A~,(C~o) = 29 0C~----~' 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

as we have explained in [8]. Substituting (5.20) into (5.22), and comparing the 
result with (3.20), we obtain 

af 
]'1 = 2Q f'~fIc' fo ---- 2e ~ IIc. (5.23) 

Hence the compatibility condition is 

aIIc -~- = OIc \9IIc]" (5.24) 

For the case ft,  ) t~ + TRUESDELL'S remark implies again that p~ ) 0 +, so 
that (4.84) becomes 

C ~ C, ~ -4 Q E tp+ . C =  QTCQ. (5.25) 

However, it is well known that this equivalence relation can be characterized 
by exactly the same conditions as (5.18), viz 

C~.~C <=> I c =  I~, I I c =  II  ~. (5.26) 

Consequently the group 0+ itself cannot be the symmetry group of any stored 
energy function. In other words, we have the result 

y , ) t P  + r p~){P. ,  (5.27) 

which is similar to the previous result (3.16). 
There is an interesting type of isotropic elastic membrane points whose 

symmetry group ft, relative to an undistorted reference configuration ~e is such 
that 

~ ~ {qQ, q 4= 0, Q E d),}. (5.28) 

Since (r clearly contains 0,, the reduced response functions A. for this type of 
elastic membrane points are special cases of the representation (3.20). Indeed, 
using P = qQ, we see that the form A~ given by (3.20) obeys the condition (2.23) 
if and only if the functions fo and ]'1 satisfy 

fo(Ic, IIc) -~ fo(q2Ic, q4IIc), ft(Ic, IIc) -~ q2fl(q2Ic, q4IIc) (5.29) 
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for all Ic, I Ic  in the domain characterized by (3.36) and for all nonzero num- 
bers q. By virtue of (5.29) the reduced response functions for this type of isotro- 
pic elastic membrane points take the form 

1 
A~,(C) : ~ h~l~, + ho C-1 , (5.30) 

where ho and h~ are functions of the single variable 

> 1 (5.3~) 
O = i,~c = " ~ '  

where we have used the condition (3.36). 
Substituting (5.30) into the compatibility condition (5.24), we obtain the con- 

dition 

�89 Ohm(O) + ho(O) = 0 V 0 > �89 (5.32) 

which is necessary and sufficient for the elastic membrane point to be hyperelastic. 
Integrating the system (5.23) with f l  and fo given by (5.30), we obtain 

1 
cb,,(C) = f ( I c ,  I I c ) =  ~ h ( O )  + d, (5.33) 

~J 

where 0 is defined by (5.31) and where d is a constant. Substituting the represen- 
tation (5.33) into (5.23), we obtain 

h~(O) :2h ' (O) ,  h o ( O ) = h ( O ) - -  Oh'(O). (5.34) 

Clearly the functions ho and hi defined by (5.34) for any function h obey the 
compatibility condition (5.32). The system (5.34) is the special case of the system 
(5.23) when the symmetry group f#, satisfies the condition (5.28). 

Notice that the representation (5.33) reduces to (5.5) when the function h is 
a constant c. For this case (5.30) reduces to (3.5) since from (5.34) h~ vanishes 
while ho reduces to the constant c. Then c~ = L~'~ and k'~ = q/~ as we have 
remarked before. We claim that when h is arbitrary, ~ .  coincides with the group 
on the right-hand side of (5.28), viz 

while 

~, = {qO, q :+ o, O ~ ~,} (5.35) 

Indeed, when h is arbitrary, a tensor P E s preserves (5.33) in the sense of 
(4.17) if and only if P preserves both 0 and ~ in the same sense. By using component 
forms we can verify that 

pTcp [C 

(zI~,~.c~,)~ -(IIc)�89 
v c ~ ~ (5.37) 

p.  ---- 0, .  (5.36) 
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if and only if P belongs to the group ~ given by (5.35). Specifically, when we use 
a principal basis for C, the equation (5.37) takes the component form 

(p121 -[- p22) r -]- (p21 -]- p22) c2 = (PnPEz -- P,zPz,) (ca + c2), (5.38) 

where cl and c2 are the eigenvalues of C. Since c~ and c2 are arbitrary, (5.38) 
implies 

pI21 -t- p122 = p221 -~- P22 = Pl lP22 - -  P12P21 = qe, (5.39) 

where we have denoted the common value by q2. Then 

0 : P21 Jr- P22 -Jr- p221 -}- P22 - -  2P,,Pzz + 2P,zP2,, 

(PII - -  P22) 2 -~- (PI2 -~ P21) 2. 

Hence 

and, therefore, 

(5.40) 

Pl l  = PE2, P12  = --P21 (5.41) 

PllP12 -~" P22P21 = O. (5.42) 

It follows from (5.39) and (5.42) that if we write the tensor P as 

P = qQ, (5.43) 

then Q is orthogonal, i.e., Q C dg,,. Now since P must also preserve ~ in the sense 
of (4.17) with o given by (4.14), (5.36) is proved. The condition (5.35) may be 
verified similarly by substituting (5.30) into (2.23). 

From (5.36) and (5.35) we see that for this type of hyperelastic membrane 
points 

~* = ~ = ~* = ~ C ~ .  (5.44) 

Hence the condition (4.63) is satisfied: the points are of Class 2. The relation 
between the representation (5.33) and the general representation (4.87) may be 
explained as follows. 

As before we define an equivalence relation on the domain N of ~ by (4.84) 
with f#~ given by (5.35), viz 

C ~-~ C r (5.45) 

We claim that 

C : q 2 Q T C Q ,  q=~=0, Q E t ~ .  

This fact is more or less obvious, since from (5.45) C and r a r e  equivalent if and 
only if their eigenvalues have the same ratio, i.e., 

cl ?1 el ?2 
or (5.47) 

C2 C'2 C2 C'l 

c ~ E  ~ O -  Ie Ic 
(iie)�89189 O. (5.46) 
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Indeed, the ratio cl/c2 and its reciprocal c2/c~ are the roots of the equation 

x 2 -/- (2 -- 02) x + 1 = 0. (5.48) 

Hence the parameter 0 characterizes the equivalence classes with respect to (5.45). 
Now for the equivalence class in ~ corresponding to the parameter 0o we 

choose a particular representative element C O such that 

det C O ----- 1. (5.49) 

Then we assign the value 

4~(Co) = ! h(Oo) + d, (5.50) 

where h is an arbitrary function of 0o. For a tensor C equivalent to C o (5.46) 
implies 

Ic 
( i i c ) ~ -  0 o (5.51) 

and (5.45) implies 

C = P~CoP o (5.52) 

for some Po E ff~. Taking the determinant of (5.52) and using (5.49), we see 
that 

[det Pol = II~c �9 (5.53) 

According to the general representation formula (4.87) the value 4~,(C) is then given 
by 

r = l i  b h(Oo) + d = --h(Oo) + d, (5.54) 

which is just the representation formula (5.33) by virtue of (5.51). 
An interesting special case in this type of isotropic hyperelastic membrane 

points can be defined by choosing 

h(O) = cO, (5.55) 

where c is a constant. When h takes this special form, (5.34) reduces to 

hi(O) = 2c, ho(O) = 0, (5.56) 

so that (5.30) reduces to 

2c 2c 
A,,(C) = ~ 1, = -~- ~1,. (5.57) 

From (2.17) the response function H~ is then given by 

2c 
H~(r) - - - - .  On, (5.58) 
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where B is given by (3.18). Substituting (5.55) into (5.33) and using the definition 
(5.31) for 0, we see that the reduced stored energy function ~b, for this special ease 
is given by 

C 
~,(C) ---- - -  tr C + d, (5.59) 

where we have used (3.19)~. 
Having considered isotropic hyperelastic membrane points, we now turn our 

attention to some anisotropic hyperelastic membrane points. First, we claim that 
a directional surface tension point defined by the constitutive equation (3.38) is 
not hyperelastic. Indeed, using an orthonormal basis (e~}, where et coincides 
with the unit vector e in the preferred line, we can express the representation for- 
mula (3.40) for A. in component form by 

d 
= + (5.60) 

We have verified that the leading term on the right-hand side of (5.55) obeys the 
compatibiity condition (5.1), cf. (5.3). The last term of (5.60), however, does not 
satisfy (5.1). When we divide (5.60) by r and use (4.14), i.e. 

d (det C)�89 
1 c (det C) �89 C~I(C:,~) + - -  6o,16#1, (5.61) 

we see clearly that the last term depends on C22. But since that term fails to vanish 
only if o ~ = f l :  1, it cannot possibly satisfy (5.1)with o ~ : f l :  1 and 

= ~7 : 2. Hence the reduced response function given by (3.40), like that given 
by (3.32), cannot be obtained from any function 4~, through the representation 
(4.13). 

By the same token, if the response function is given by (3.41), where c and d 
are functions of the density ~, then the leading term on the right-hand side of  
(5.60) again satisfies the compatibility conditions (5.1); cf. (5.13). The last term of 
(5.60), however, will satisfy the compatibility conditions if and only if 

. . . . . .  b, (5.62) 

where b is a constant. A similar result is known for (3-dim.) hyperelastic subfluids 
having a single preferred line; c f  [5]. Substituting (5.62) into (5.60), we see that 
the reduced response functions A, for this type of  hyperelastic subfluid membrane 
points take the form 

bp 
A~,(C) = c(e ) C -1 + e--7-.--.--.--.--_~e | e (5.63) 

and the corresponding response functions H~(F) take the form 

H~(F) = c(e ) Iv + be f | f ,  (5.64) 
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where jr is defined by (3.37). Substituting (5.62) into (5.60) and then integrating the 
representation (4.13), we get 

1 r c ( e )  , 
qb~(C) = -~-b log (e. Ce) - J - - ~ - a e .  (5.65) 

Representation formulas similar to (5.64) and (5.65) are known for (3-dim.) 
hyperelastic subfluids; cf. [5, Type 2]. The proofs of (5.64) and (5.65) here are 
much simpler than the ones in [5], however, since we work with the frame-in- 
different reduced response function A, and the reduced stored energy function 
q~, rather than the response function H~ and the stored energy function o',. In 
our analysis here we do not have to worry about the conditions of material frame- 
indifference (2.9) and (4.4), since they are automatically satisfied by the reduced 
forms (2.17) and (4.6). 

The representation (5.65) reduces to (5.15) when the constant b vanishes. 
In that case the subfluid membrane point reduces to a surface tension point when 
c(Q) is a non-zero constant c or to a fluid membrane point when c(~) is not a con- 
stant. When the constant b is not zero, a tensor P E - ~  preserves the leading 
term on the right-hand side of (5.65) in the sense of (4.17) if and only if 

Pe : -be .  (5.66) 

The last term of (5.65) is a function ofp (including the special case c(~) : c 44= 0) 
and, therefore, it is preserved by P if and only if P is unimodular. The only ex- 
ception to this assertion is when c(~) vanishes for all Q. Then the last term in 
(5.65) should really be replaced by a constant d, viz 

1 
qb~(C) : -~-b log (e- Ce) 4- d.  (5.67) 

We did not bother to include the constant d in (5.65) because it could be absorbed 
into the indefinite integral in the general case when c(Q):# 0. 

In view of (5.63), (5.65), and (5.67) we see that when b :4= 0 there are two 
possibilities: 

First, when c(o) 4= 0 (including, but not limited to the special case c(o) -~ 
c 4 0) the symmetry groups p~ and ~ .  are given by 

~ : {P : I det  P I ---- 1, Pe -~ -b e), 
(5.68) 

~ : {P : I det P I : 1, Pe : ;re, 121 > o}. 

Evidently this case belongs to Class 1, i.e., ~ ,  and ft, obey (4.62). 
Second, when c(Q) : 0 V Q, the symmetry groups ~, and f~, are given by 

g ,  : {P : [ de t  P I > 0, Pe ~- s e) ,  
(5.69) 

fq, : {P : I de t  P[ = 1, Pe = 2e, 14I > 0}. 

This case belongs to Class 3, i.e., g,, and f#, obey (4.64). 
In the preecding section we did not bother to analyze the reduced stored energy 

functions of Class 1 because the results are essentially the same as those derived 
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in [10]. We now explain how to visualize the representation formula (5.67) as a 
special case of the general representation formula (4.104) for reduced stored energy 
functions of Class 3. 

First, from (5.67) it is easily verified that the group f~  based on TRUESDELL'S 
condition (4.29) is given by 

f#~ = (P: Idet P[ > 0, Pe -=-- ).e, 12[ > 0}. (5.70) 

Next, it can be verified that the quotient class of any P E ~ is represented 
by the positive number 

x = IlPel[ .  (5 .71 )  

Finally, there is only one equivalence class and it is the whole domain t~, i.e., 
every positive-definite symmetric tensor C may be represented by 

C = e q ~ t '  ---- e~e  (5.72) 

for some (maybe more than one) P E ~ .  
We pick the identity tensor Ix as the representative element of the equivalence 

class 9 ,  and we assign an arbitrary value 

~(1~) = d. (5.73) 

Then the constant b in (5.67) is just the constant c in (4.104), since from (5.71) 
(5.72), (5.73), and (4.104) 

(b.(C) ---- c log II Pe II zr d = c log (e .  Ce) �89 + d -~ �89 c log (e .  Ce) -~ d, (5.74) 

where we have used (2.15) and 

II Pe II = ( e e .  ee)�89 = (e .  PTt'e)�89 = (e" Ce)�89 (5.75) 

Representations for reduced stored energy functions of the two types of hyper- 
elastic subfluid membrane points with reduced response functions of the form 
(3.45) may be derived by following essentially the same approach as in [5]. Since 
there is an extra state variable ~ defined by (3.46) in the arguments of the functions 
a, b, and c, the relation between qS, and A~ is much more complicated than the 
simple relation between (5.65) and (5.63) for the type of hyperelastic subfluid 
membrane points which we just analyzed. Hence, we omit the treatment of those 
two types of hyperelastic subfluid membrane points from this paper. 
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