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1. Introduction

In a previous paper (SmiTH, SMITH & RIVLIN (1963)), irreducible integrity
bases for a symmetric three-dimensional tensor and absolute vector under the
transformation groups describing each of the 32 crystal symmetries have been
obtained and their minimality demonstrated. In the present paper, rather
similar methods are used to determine irreducible integrity bases for an arbitrary
number of absolute vectors under the transformation groups describing 31 of
the 32 crystal symmetries. The remaining crystal class, which is the gyroidal
class in the cubic system, has so far proven intractable for technical reasons
although the methods used for the four classes of the cubic system, for which
irreducible integrity bases have been found, are in principle applicable.

The fundamental theorems in invariant theory which are used in generating
the integrity bases are given in § 2. In the case of all the crystal classes, except
those of the cubic system, these theorems are used to generate integrity bases
which in most cases are highly-redundant. The redundant elements are then
eliminated and the irreducibility of the integrity basis so obtained is then proven.
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170 G. F. Smitr & R. S. RivLin:

In the case of the four classes of the cubic system considered, a different
procedure is used. The elements of lowest degree in an irreducible integrity
basis are first generated and then those of increasingly high degree, one of the
theorems in § 2 being used to show when this procedure may be safely terminated.

For groups which consist only of proper transformations, an irreducible
integrity basis for absolute vectors is also an irreducible integrity basis for polar
vectors. This is, however, not the case for groups which contain improper trans-
formations. In § 10, we discuss how the integrity basis for a number of absolute
vectors, under a transformation group which lacks a center of symmetry, can,
in certain cases, be used to obtain an integrity basis for a system of absolute
and polar vectors under the group formed by adjoining the central inversion
transformation to the original group of transformations.

The integrity basis under a group of transformations for an arbitrary number
of absolute vectors can be used to obtain an irreducible tensor basis for the
group of transformations. This is done in § 11 for each of the thirty—one groups
considered in this paper.

Finally, in § 12, we derive certain theorems which may be of use, in certain
cases, in generating invariants of tensors under a group of transformations which
is a subgroup of the orthogonal group.

2. Some theorems concerning integrity bases

In deriving the integrity bases for # vectors, the following theorems will
be used. Theorems 1, 2, 3 and 4 are the same as theorems1, 2,3 and 5 given
by Smuth, Smita & RIvLIN (1963}, but a different notation, more convenient
for the present paper, is used.

Theorem 1. An integrity basis jor polymomials P(X{, XP, XP, X@, ...,
X, X)) which arve invaviant under interchange of the subscripts 1 and 2 is
formed by the (") sets of quantities obtained by substituting X for x (i =1, ..., n),
the ( ) quantities obtained by substituting X% for x, XU for y (i,7=1, ..., n;

1<C9) in the quaniities
7 7 Xyt %y,  Fy %o
and (2.1)

) *1Ypt %Yy
respectively.

Theorem 2. An integrity basis for polynomials P(XP, X, X, X®, XP, X9,
L X XP, XM which are invariant under all permutations of the subscripts

1s formed by the (7;) sets of quantities obtained by substituting X ® for x (5 =1, ..., n),
the (Z) sets of quantities obtained by substituting X for x, XD for y (1,7=1,...,n
i<7), the (1;) quantities obtained by substituting X© jor x, X9 for y, X® for z
(6,7, h=1,...,n;, i<j<k) in

Xy Xyt g, Xy %+ X X3 b Xy Xy, Xy ¥p Xy

Xy Y1+ Xy Yot Ha Vs, %XVt He X Vit Hy %1 Ve, V1 VaFat Ve Vst YaVi¥a;  (2.2)
X1Y1%1 + X3 Y222+ X3 Y373

respectively.
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Theorem 3. An integrity basis for polynomials P(X{®, X, X, X®, xP, X9,
L XX XY which are invariant under cyclic permmtations of the subscripts
is formed by the (:L) sets of quantities obtained by substituting X9 for x (i =1, ..., n),
the (z) sets of quantities obtained by substituting X for x, XD for y (5,7 =1, ..., n;
1<j), the (’;) sets of quantities obtained by substituting X for x, XN for y, X®
for 2 (1,7, k=1, ..., n; i<j<k) in
Xyt %+ Xy, Xy %yt XXy S+ XXy, Xy Xp %,
%y %y (% — %) + % %3 (%2 — %) + X3 %1 (%5 — %3}
%191+ %o Yo+ %3 Vs, %1 (Ve— ¥s) + %2 (Vs — 1) + %3 (y1— ¥2)s
Xy Xa Y3+ Xp X3 Y1+ Xg X1 Ya, Y1V2¥z+ VaVa ¥+ Y3 V1%,

%3 %3 (Y1 — Ya) + % %g (Y2 — ¥3) + %3 %3 (Y5 — ¥1)s 23)
Y1 Y2 (%1 — %2) + Vo V3 (%2 — %5) + Vs Y1 (%5 — %1);
%1 Y121+ %2 Y22 + X3 Y34y,

%y Y1 (2 — 23) + %3 Vo (25 — 21) + %3 ¥ (21 — 2,)

respectively.
Theorem 4., An integrity basis for polynomials in the variables X, ..., X ,

I,,1,, ..., I, which are invariant under a group of transformations for which
I,,1,, ..., I, are invariants, is formed by adjoining to the quantities I,,1I,, ..., 1,

an integrity basis for polynomials in the variables X, ..., X, which are invariant
under the given group of transformations.

Theorem 5. If the total degree of the elements of the trreducible integrity basis
for polynomials in n vectors, under the group of transformations 4 of degree™ n is
at most N, then the degree of the elements of the irreducible integrity basis for poly-
nomials in m (> n) vectors, under the group 4, is also at most N.

Theorem 6. If det[x™, x®, ..., ®™], where D, 2™, ..., 2™ are n vectors,
is invariant under the group G of degree n and the degree of the elements of the
integrity basis for polynomials in n—1 vectors, under %, is at most N, then the
degree of the elements of the integrity basis for polynomials in m (>n—1) vectors,
under G, is also at most N.

Theorems 5 and 6 follow immediately from a more general result in the
theory of vector invariants (see WEYL (1946), pp. 39—44).

3. Notation

In accord with the notation employed in the previous section, we shall use
the following notation for an integrity basis for polynomials in # vectors
AW, A8 A

Li(x),...,L,(x);

M, (2y),....M(x.¥y);
M 61
Ny, ....2),.... Nz y,...,2).

* If in the matrix representation of the group ¥, the matrices transforming the
vectors are # X # matrices, the degree of the group is .

13*
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The quantities in the first line of (3.1) represent the (T) sets of quantities

obtained from these by substituting A" (i=1,2,...,#n) for x; these are, of
course, the elements of the integrity basis which involve only a single vector.

The quantities in the second line of (3.1) represent the (Z) sets of quantities

obtained from these by substituting A® for %, 4D for y (5,7 =1, ..., n; i<j);
these are, of course, the elements of the integrity basis which involve two vectors.
The remaining lines of (3.1) are interpreted in an analogous manner.

4, The transformation of vectors

We suppose that a three-dimensional vector has components 4; (¢ =1, 2, 3)
in a particular rectangular Cartesian coordinate system and components 4;
(¢ =1, 2, 3) in the coordinate system into which this is transformed by the trans-
formation (& = ;). In Table1 we give the relation between 4; and 4; for
each of the transformations which occur in the groups describing the crystal
classes. I is the identity transformation; C is the central inversion transfor-
mation; R,, BR,, R;, T, T,, T are reflection transformations and Dy, D,, D,,

Table 1

o 1 c R, R, R, D, D, D,

1‘_7_1 Al —4, -4y 4, Ay A4, —A4, —A4,
As 4, —4, 4, —4, A, —A4, 4, —A,
A 4, —4; Ay As —4, —A, —A, Ay
o T, CcT, RT | R, T, | RRT, | DT, | D, T, | D, T,
El Al —4, —4, 4, Al A1 —4, ""Al
/Tz 4, —A, Ay —As Ag —Ag Ay —4,
As Ay —4, 4, A, —4, —A4, —4, A,
o T, CcT, R, T, | R, T, | R,T, | D,T, | D, T, | D, T,
gl A, —4, —A; Ag Ag Aq — Ay —A,
Izz Az —4, A, —A, A, —4, A, —~A,
Ay A4, —4, 4, 4, —4, —4, —4,; 4,
« T, CT, RT, | R,T, | RRT, | DT, | D,T, | D, T,
A, A, —A4, —A4, A, A, A, —A, —4,
@2 Ay —Ay 4, —4, Ay —A, A4, —A4,
A, Ay — Ay Ay Ag — Ay — A, —A, A,
o M, cCM, | RM, | R,M, | RRM, | DM, | D,M, | D, M,
fil Az —Az "Az A4, Az Az “Az “‘Az
42 Aq —As A, — 4 As — A Ag “As
As 4, —4, 4, Ay -4 —A; —Ay Ay

o M, C M, R M, R, M, R, M, DM, D, M, D, M,
41 3 —d, —A, As Ay As —A, —4,

42 1 —Al A1 —4, A1 —Al A1 "'A1

Az 2 _‘Az Az Az _Az _Az _Az Az
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Table 1 (Continued)

« S, ¢s, | RS, | R,S, | RS, | DS, | DS, | Dss,
A, o —oy —oy oy oy oy —oy —oy
A, oty —ay oy —at, oy —ay oy —oy
4, Aq —4s Aq Aq —ds —4, —A, g
o S, cs, | RS, | R,S, | RS, | DS, | D,S, | D,S,
"zl ﬂl _131 P ﬂ1 ﬁ1 ﬁl A e
4. 132 _/32 ﬂz —,32 ﬂz _ﬂz ﬂz _ﬁz
4, Aq —Ad A g —4, —4s — A Ay

M,, M,, S,, S, are rotation transformations. Explicit expressions for the trans-
formation matrices are given by SmitH, SMITH & RIvLIN (1963). The notation

1
% = “EAF*‘gAz: pr= _%A1— g"lz»

1 1
g == ——V;Al_aAz, /327—@141_5142

is used in Table 1.

5. The triclinic, monoclinic, rhombic and tetragonal systems
(@) General description of procedure

For each of the classes of these systems, we determine integrity bases for
polynomials in # vectors AD (r =1, ..., n;i=1, 2, 3) under the transformations
describing the symmetry of the class. These transformations follow the name
of the class, in each case, in the list given below. In applying theorem 1, we
first obtain, from Table 1, the quantities 4" into which A{’ (=1, ..., n) are
changed by the first (non-identity) transformation. We note that invariants
must be symmetric with respect to the pairs A, 4. Using theorem 1, we
obtain a set of polynomials in terms of which any polynomial, invariant under
the transformation, must be expressible. We omit the redundant elements of
this set and find, again using Table 1, the manner in which the remaining poly-
nomials of the set are changed by the second transformation. We again apply
theorem 1 to obtain the limitations on the form of a polynomial invariant under
the first two (non-identity) transformations. Proceeding in this way for each
transformation of the class, we obtain an integrity basis for polynomials in the
vectors AL (r =1, ..., n).

These are listed below, using the notation of § 3. It is immediately obvious,
for the classes of the triclinic, monoclinic and rhombic systems, that the integrity
bases are irreducible. The irreducibility of the integrity bases for the classes
of the tetragonal system is demonstrated in §6.

(8) Triclinic system
Pedial class (I)
Pinacoidal class (I, C) o e A 5-4)
A2, X5, X3, Xy Ky, %y Ky, Xy Xy}
X1Y15 %2 Y2, X¥3Y3, ¥1Y2s %1 Y3, X2 V1, X2 V3, X315 X3)e-
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(¢) Monoclinic system
Domatic class (I, R,)

B, X, Xy
%1 Y1-
Sphenoidal class (I, D,)
xl,xﬁ,xg,x2x3; (5.4)
X2 Yas %2 V3, X3 Y2, X3 V3.
Prismatic class (I, C, R, D,)
A2, X3, X3, Xy Xy (5.5)
X1Y1s %2 Y2, X3 V3, X2 V3, X¥3Ys-
(d) Rhombic system
Rhombic-pyramidal class (I, R,, R;, D)
lexg: xzzi; (5.6)
%2Y2, X3 V3.
Rhombic-disphenoidal class (I, Dy, Dy, Dy)
X%, %3, X3, Xy %y %y}
X191, %2 Yo, %3 V3, X1 %2 V3, 2 X3 V1, ¥a %1 Y2, Y1 V2 %3, V2 V3 %1, ¥a V1 %es  (5.7)
X1Y2%3, %3 Y321, X3 Y1%2, #1373, X2 V123, X3 Y221 -
Rhombic-dipyramidal class (I, C, R,, R,, R;, D,, D,, D,)
2, X3, %3; (3.8)

*1Y1, %2Y2, %3 Y3
(e) Tetragonal system

Tetragonal-pyramidal class (I, Dy, R, Ty, R, T,).
AP, AD, ..., AP together with
R o, (o — ), 2t
%11+ o Vay X1 Ys — Ko V1, %y %o V1 Vs X1 K (Y — 3),
X3 % (%1 V2 + %2 V1), %1 %p (%1 Y1 — %2 ¥2), V1 Vo (%1 Y2 + %2 Y1),
V1Y (%191 — %2 ¥a) (5.9)
%y % (Y122 + Yo 21), %1% (V121 — Y2 2a), Y1 Y2 (%122 + %221),
V1Yo (%121 — X2 2a), 212(%1 Y+ % V1), Z1%2(%1 Y1 — X2 ¥2);
H1 Y1211+ Ko Yooy, Xy Y12 Mg — Hp Yo 2ty
Tetragonal-disphenoidal class (I, D,, D, T;, D, T,).
The quantities (5.9) together with
X3, %y Xg Xg, xa(x% - x;),
%3 Y3, %3(%1 Y1 — %3 ¥a), %3 (%1 Ve + %2 Y1), V1 V2 ¥s,
%3 (Y — 92), Va (%1 Y1 — %2 ¥2), Vs (1 V2 + %2 V1), %1 %2 Vs, ¥a(#1 — #3);  (5.10)
%5 (Y171 — Y2 2a), X3 (V122 + V221), V(%121 — %3 2a),
Ya (%122 + %521), 23(%1 Y1 — X2 ¥a), 23 (%1 + %2 ¥4).
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Tetragonal-dipyramidal class (I, C, Ry, Dy, R, Ts, R, Ty, D, T3, D, T,).
The quantities (5.9) together with

2.
s (5.11)
X33

Ditetragonal-pyramidal class (I, By, R,, Dy) - (I, T}).
AP, ..., AP together with
4+ 4, 00
%Y1 %2 Vas %1 X2 Y1 Vo, %1 % (%1 Yo + %2 V1), V1 Ve (%1 Y2 + %2 91) (5.12)
%y % (Y125 + Ya2a), Y1 Ve (%120 + %2 21), 2120 (%1 Yy + %2 91) 5
X1 Y1%1Uy = Xp Yo 2y Uy,
Tetragonal-scalenohedral class (I, Dy, Dy, Dy) - (I, T).
The quantities (5.12) together with

X3, %y Xy X3)
%3 Vg, Xy (%1 Yo+ %3 1), V3 (%1 ¥a + %2 91), %1 %2 V3, V1 Y2 %35 (5.13)
%3 (Y122 + V2 21), V3 (%122 + X2 21), 23 (%1 Yo -+ %2 94) -

Ditetragonal-dipyramidal class (I, C, R,, R,, R,, D,, D,, D) - (1, T,).

The quantities (5.12) together with

2,
s (5.14)
X3Y3-

Tetragonal-trapezohedral class (I, D,, D,, Dy, CTy, R, Ty, R, Ts, R, T,).
The quantities (5.12) together with

23, 2 %y %y (4] — 43) 5

X3 Y3, %y (%1 Y2 — %2 V1), %3 V1 Y2 (VI — ¥3), %3 %1 %, (Y1 — 93),

%3 %1 %3 (%1 Y1 — X2 ¥), X3 Y1 Y2 (%1 Y1 — %2 ¥s)

and the quantities obtained by interchanging % and y;

%3 (Y122 — Vg 21)s X321 % (9’% - yg): %3225 (Y121 — Y2 2a),
%3 Y1 Y2 (Y121 — YaZa), X3 %1 %a (V121 — VaZa), X221 2 (%191 — %2 92), (515)
X3 Y1 V2 (%12, — %32,)

and the quantities obtained by cyclic permutation of %, y, z;

%3 (%1 Y121 %y — X Y Zathy), X3 V1 Y (31 g — Zpthg),
%y 2y Zy (V1 Uy — Yalhg), Xy tha (Y121 — YaZy)

and the quantities obtained by cyclic permutation of x, y, z, u;

X3 (V1201 V — Yo 2y Ua¥y)

and the quantities obtained by cyclic permutation of x, v, z, u, v.
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6. Irreducibility of the integrity bases for the tetragonal system

The irreducibility of the integrity bases for # vectors, derived in § 3, for
the classes of the tetragonal system can be proven in a manner somewhat similar
to that employed by SmiTH, SMITH & RIVLIN {1963) to demonstrate the irredu-
cibility of the integrity bases for a single vector and symmetric tensor.

We note from §5 that the elements of the integrity bases for the various
classes of the tetragonal system are either independent of %, (i.e. of A5, ..., AP,
or are linear in these quantities, or have one of the forms #3, x, y;. For each
class it is apparent by inspection that the irreducibility of the set of elements
which is linear in x5 and the irreducibility of the set which is independent of
%3 may be considered separately. Furthermore, it is also apparent that in the
cases in which the integrity basis given in § 5 has #3 or x, y;, or both sets, as
elements, none of these elements are redundant.

Accordingly, we define a polynomial of degree 7,7, ... %, in the components
(%4, %), (¥1, Va)s .., (21, 25) of the n vectors @, g, ..., # as a polynomial of partial
degrees i, (=1, ..., n) in (%1, %), (Y1, ¥a)s -+, (21, %), Let B; ; be the number
of linearly independent invariants, which do not involve xg, v,, ..., 23, of degree
24y ...%,. Let y;, . be the number of invariants of degree é,7,...7, in an
irreducible integrity basis, which do not involve x,, 3, ..., 23. Let f;; .. be
the number of invariants of degree 4,1, ... ¢,, which do not involve x5, ¥,, ..., 2
in the integrity basis under consideration. Let [, J,, ..., J, be the elements
of an irreducible integrity basis of degree 0 or 1 in xg, s, ..., 25, of total degree
in (%, %), (Y1, ¥2)» ---» (%1, 23) less than 4,444 -+ 44,. Let 9;, , be the
number of terms of the form J J% ... J%, where the «’s are positive integers
or zero, which are of partial degrees 41,7, ...,%, In &, y, ..., 2, and do not in-
volve X3, ¥3, ..., %3.

It then follows [see, for example, SMITH (1960)] that

Boin— Diinin="Virisin=PBiriain- (6.1)

If it is possible to establish #;; ;. independent syzygies of degree 4,7,...1%,
among the invariants J,, [,, ..., J,, the inequality (6.1) may be strengthened to

Borin Piiin T Migig iy = Viriain = Biyigorin- (6.2)

We now define B ;. ;.. %ii,...ins Ei,i,...i,, analogously to B,;, ., Virigowins Bivigonin
for the elements of the integrity basis which involve x5, v, ..., z; linearly. Thus,
for example, P; ; . is the number of linearly independent invariants of degree

414, ..., which are linear in A" (say). Let 5,-1,"__.,-" be the number of terms of

the form Ji& J§= ... J*, where the o’s are positive integers or zero, which are
of partial degrees ,, %5, ..., %, in (%, %), (¥1, ¥2), .-, (%1, 2;) and are linear in
A{) (say). Then, analogously to (6.1),

Birin= Disiyin =Pisinin = Bisiaenin: (6.3)

Again, if it is possible to establish 7, ;, ,, independent syzygies of degree 4,7, ... %,
and linear in A{" (say) among the invariants J;, [, ..., J,, the inequality (6.3)
may be strengthened to

B v it in F Miiain = Vivinoin = By (6.4)
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Let L, be the 2 x2 matrices formed by the elements of the first two rows
and columns of the matrices & of the three-dimensional matrix representation
of the group characterizing the crystal class considered. Let M, be the element
in the third row and third column of a. Then, B ; ; and E; . are given by

Y = % Str L tr LW .. tr LW,
o«

(6.5)

= %ZMa tr L te L ... tr L,
o

g in —

where N is the number of transformations in the group considered. L{" is the
symmetrized Kronecker ¢,-th power of L, and tr L{" is given by

G — S 1 (‘_SL)”‘ (_5_2>" - (iﬁ)"
trL; Z A AN AR 2 i, ) (6.6)
where
Si, =1r L;', (67)
and the summation is carried out over the set of all positive integers u,, s, ..., u;,
such that
pat2pe e 0, =1,
Thus,
11tr LY =S,

21tr LP = S2+ S,
31tr ¥ =S8 4-35,S,4-285,,
Altr L =St 46535, 4+8S,S;+35:4-65,, (6.8)
SItr LY = S5 +10S3S, + 2057 S; +15S; S2 +305, S, +20S, S, + 24 S;,
6!tr L = S$1-15 51 S, + 4053 Sy + 45 51 S34+- 9053 S, +

41205, S, S, +144S; S5 +1558 +90S. S, + 40 S% 4120 S;.
The values of M, and tr LY, tr L®, ..., tr L® are given in Tables 2 and 3

for each of the transformations of the groups describing the symmetry of the
classes in the tetragonal and hexa-

gonal systems. The values for the trans- Table 2
forrnéttlclmj1 gf jthe }i(lelxagonz.llll sgfstem Transformation & M,
are included since they will be re- (1 g R, D) (I T,, S, Sy i
quired later in § 8. (C, Ry, Dy, Dy) - (I, T3, Sy, S,) —1
Table 3
Transformations a tr LY | tr L@ | tr L®) | tr LY | tr LY | tr LY
IR, 2 3 4 5 6 7
C, D, —2 3 —4 5 —6 7
R, R, D, D, 0 1 0 1 0 1
T, CT,, R, T,, D, T, 0 1 0 1 0 1
R, T, R, T, D, T, D,T,| 0 | —1 0 1 0o | —1
S, R, S,, S,, R, S, —1 0 1| —1 0 1
CS,,D,8,,CS,, D, S, 1 o | =1 | —1 0 1
R,S,,R,S,, D, S, D,S, 0 1 0 1 0 1
R,S,,R,S,, D, S,, D,S, 0 1 0 1 0 1
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In order to prove that the integrity bases given in § 5 for the various classes
of the tetragonal system are irreducible, we first prove the irreducibility for the
tetragonal-pyramidal class.

For the tetragonal-pyramidal class, apart from the invariants of the type xg,
which are evidently not redundant, we are concerned only with invariants which
are independent of x, v, ... . We therefore do not need to calculate B ; .,
ﬁ,l,’ i ﬂm’ .in in this case. Also, it is evident by inspection that none of the
invariants in (5.9), which involve x,, %, only, is redundant. Accordingly, B, ;.. ;..

Biiyoins Diviy.in are calculated, for the various values of 7,1, ... 1, represented
in the integrity basis for the tetra-

Table 4 gonal-pyramidal class, except those
iy iy | 11 22 31 | 211 | 1111  corresponding to invariants of the
Piigin 2 5 4 6 3 type x; and to invariants which

iy g e in Y 4 2 | 6 12 involve x,, x, only. The values of
Tataein ; ; ; g —; Biisinr Biiysins Biriy.in are given
o o 1 o > ¢  inTable4. The corresponding values
4y By e in

of Bin ﬁiti,...i,. (= Qiiy..in) are
also given. In the last line of Table 4 we give the number of independent syzygies
Wi i,...i, Which must be demonstrated in order to make the upper and lower bounds
on ¥; ;.. in (6.2) equal.
These syzygies are
1y8g...2, =22!
(o3 ) (Y + 92) — (%191 + %2 ¥2)% — (%1 Y2 — % 91)2 =0.
y8g... 5, =211:
(%3 + 23) (V121 + Ya22) — (191 + %2 ¥) (B 21 + %p20) —
— (%192 — % ¥1) (%12, — %32) =0.
(%191 F %2 ¥s) (%122 — X 21) — (%12 + Xa2s) (%1 Y2 — %2 Y1) —
— (21 4 22) (y1%2 — Y22,) =0.
y8g...0, =1111:
(%191 + %2 ¥2) (219, + 23 %5) — (
— (g + X th) (V120 + Vo 2
(%191 %2 ¥2) (21001 + 25 t49) — (V125 — Yo 21) (1 thp — Xp 74y
— (Yr1y + Yat4g) (%121 + %32,

%1%y — X Zq) (Y1 thy — Yathy

H

H

) —
)
)—
)
(%191 + % t05) (V121 + V2 2o) + (21 tha — 22%1) (%1 V2 — %3 1) —
Y1ty + Yathe) (%121 + %9 25)
)
)
)—
%)
) —
)

H

(1981 -+ %o o) (Y122 — Va2y) — (X121 + %3 25) (V1thg — Vo thy

ll+

—

(
+ (%Y1 + % ¥a) (21 thy — 22ty
(%1 Y2 — %2 Y1) (2101 + Zathg) + (%121 + % %) (Y1 the — Y2t
— (%1t — X 141) (V171 + Va2 2s
(
(

I

0.

(%123 — %29) (V1 81 + Yatha) + (%1 Y1 + % Va) (2182 — 229
— (%00 — Zpty) (V1 2, VaZs

ll
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It is immediately evident that the integrity basis given in § 5 for the tetragonal-
dipyramidal class is irreducible, since it differs from that for the tetragonal-
pyramidal class only in the invariants involving x,, ¥, only and these are evident-
ly not redundant.

Again, since the integrity basis given in §5 for the ditetragonal-pyramidal
class is contained in that for the tetragonal-pyramidal class, it must be ir-
reducible.

The integrity basis for the tetragonal-scalenohedral class given in § 5 differs
from that for the ditetragonal-pyramidal class only in invariants which involve
%3, Vs OF Zy. By inspection it is seen that none of the invariants of this type
which are listed are redundant. It follows that the integrity basis for the
tetragonal-scalenohedral class is irreducible. By a similar argument, it is seen
that the integrity basis for the ditetragonal-dipyramidal class is irreducible.

The integrity basis given in § 5 for the tetragonal-trapezohedral class differs
from that for the tetragonal-scalenohedral class only in the elements which
nvolve %3, vg, ... linearly.

Since it has already beenshown Table 5

that the integrity basis for 4,4,...4, | 11 04 | 22 | 31 | 211 | 1111
the tetragonal-scalenohedral _13i1 igerin 1 1 2 2 3 4
class is irreducible, in order to ~ Piaw-in 0 0 1 1 3 6
prove the irreducibility of the [%‘;’"':" } : : : (1) _f
integrity basis for the tetra- 7' ™" 0 0 0 o 1 3

gonal-trapezohedral class, we

need only prove that none of the invariants (5.15) which is linear in x,, y,, ...
is redundant. Accordingly, we compute B, ;, ;.. 5,-1,-‘_,_,-”, Bii...in for the various
values of 4,7, ... ¢, which are valid for the terms in (5.15) which are linear in
%3, Ys, ... . Lhe values obtained are given in Table 5. The corresponding values
of @;l,-,___in (= El,-..__in—-é,-l,-,.__in) are also given. Also in the last line of Table 5,
we give the number of independent syzygies #); ;, . ;, which must be demonstrated

in order to make the upper and lower bounds on ¥, ; . ;. equal.
The syzygies are:

Iy0g... 0, =211:
X3 (Y122 — Y221) (xi -+ xg) + %3 (%, Yo — %o Y1) (%121 -+ X Z) —
— %3 (%25 — %y 21) (%1 Y1+ %, ¥2) =0.
iylg... 2, =1111:
% (Y122 — Yo 21) (%181 -+ Xatho) + %3 (%1 Yo — %2 V1) (2101 + 2205
— %3 (%125 — %p21) (Yo 14y + Yo thp

)._

) =0.
% (V1 thg — Yo th1) (%120 + %a2g) + X3 (%1 Yo — X Y1) (2101 + 22%5) —

)

) —

I

— X3 (%1 %g — X t4y) (Y121 + Yo 23) =0.
%3 (21 %a — 2a041) (% Y1 -+ %3 Vo) + g (%1 20 — % 21) (V103 + Yo t4y

— X3 (% g — Xathy) (Y121 Ya25) =0.

We note that the integrity basis for the tetragonal-disphenoidal class, derived
in § 5, consists of 42, elements which are independent of x,, v;, ... and elements
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which are linear in xg, ¥3, ... . The elements which are independent of x;, y,, ...
are the same as those in the integrity basis derived in § 5 for the tetragonal-
pyramidal class, which has been proven to be irreducible. The element 3 is
clearly not redundant and it is evident by inspection that none of the elements
linear in xg, ¥;, ... is redundant. It follows that the integrity basis for the
tetragonal-disphenoidal class is irreducible.

7. The hexagonal system

In this section the notation of §3 together with the following notation will
be used:

I, (=) :xi‘—}xlxg,
I,(#) =2 — 34,4,
Ji(%9)  =x31— %92 — 2y, Y, %, (7.4)
Jo (%, ) :xzyg—xzyi_zjﬁyzxp '
Ky (%,9,2) =%,9121 — %1 Y223 — Y1 %223 — 21 %3 Vs,
Ko(%,9,2) =% Y32 — %3 Y121 — Yo %12y — 23 %1 Yy -
Trigonal-pyramidal class (I, S, S,)
Any polynomial in A (» =1, 2, ..., ) is expressible as a polynomial in 4§’
and the quantities X\ (r =1, 2, ..., #) defined by
XP—4p,  xP=—3ap+ 40,
(7.2)

X =—gap -V ap.

If this polynomial is invariant under the transformations I, §,, S,, it must be
invariant under cyclic permutation of the subscripts on X{). Then, with theorems
3 and 4, we see that an integrity basis for the vectors A", for the trigonal-
pyramidal class, is formed by the quantities 4§ (» =1, 2, ..., #) together with

4+ 3, Iy (%), 1 (%);
%Y1+ %2 Vo, %1V — %Y1, Ji(%, ), Ja (%, 9), o (9, %), (v, %) (73)
Ky (%,9,2), Kz (% 3,2).
Trigonal-dipyramidal class (I, Rg) - (I, 8¢, S,)
It has been seen in the case of the trigonal-pyramidal class that if a polynomial
in 4¥) is invariant under the transformations I, S,, S,, it is expressible as a
polynomial in 4{) and the quantities (7.3). It is readily seen, with theorem 1,

that if this polynomial is invariant under the transformations Ry-(I, Sy, S,),
it is expressible as a polynomial in the quantities (7.3) together with

x:zi: X33, (74)
and this set of quantities therefore forms an integrity basis for the vectors A
for the trigonal-dipyramidal class.
Hexagonal-pyramidal class (I, Dg) - (I, 8y, S,)

It is seen in the case of the trigonal-pyramidal class that if a polynomial
in AY is invariant under the transformations I, 8;, S,, it is expressible as a
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polynomial in 4§} and the quantities (7.3). We note that 4§ is invariant under
the transformations Dy- (I, 8,, S,). We denote by N, (x =1, ..., u) those elements
of (7.3) which are invariant under these transformations and by Q, (« =1, ..., %)
the remaining elements. Thus, the quantities N, are

x5+ 43

Y1+ %2 Ve, X1V — %2 Y1;
and the quantities Q, are

Iy (%), Iy(%);

]l(x’ y)’ ]Z(xr y)’ ]l(yr x)r ]Z(y: x);
Kl(xt Y, z): Kz(x, Y, Z) .

From theorem 1, we see that an integrity basis for the vectors AY, for the
hexagonal-pyramidal class, is expressible as a polynomial in 4§’, N, and Q, O
(¢, =1, ...,v; «=p). This basis is highly redundant. We therefore proceed
in the following manner.

We consider first an integrity basis for the # vectors A under the group
of transformations (I, Dy, R, Ty, R, T;) - (I, S,, S,). We note that A, N,
(x=1,...,u) are invariant under the transformations (I, D;, R, T,, R, T))-
(I, 81, 8,). Since Q,Qs is of total degree 6, it is apparent that an integrity
basis for n vectors AY) (r=1, ..., n), under this group, is formed by 4, N,
(=1, ..., u) and quantities of total degree not less than 6. We now consider
the integrity basis derived in § 5 for the tetragonal-pyramidal class, for which
the appropriate transformation group is I, Dy, R, T}, R, T;. Then, we consider
the additional restrictions imposed on a polynomial in the elements of this
integrity basis by the further requirement that it be invariant under the trans-
formations (I, Dy, R, T;, R, T;) - (S,, S,). In this way it is easily seen that an
integrity basis, for the # vectors under the group (I, D3, R, T;, R, T,) - (I, S,, S,),
which contains no elements of total degree 6, can be constructed. It follows
that an integrity basis for # vectors under the group (I, D3, R, T, R, T;) - (I,S,,S,)
can be constructed, which consists of A{), N, (x =1, ..., ) and possibly addi-
tional invariants, independent of x5, of total degree greater than 6.

Using equations (6.5), ..., (6.8), we now calculate the number, P, ; ., of
linearly independent invariants under the group (I, Dy, R, Ty, R, T;) - (I, S,, S,)
of partial degrees 4y, 7, ..., 4, in the vectors A{") (r =1, ..., n) and total degree 6,
which are independent of AY). These values of F.;...i, are given in Table 6.
We note that these linearly independent invariants of degree 6 must be ex-
pressible as monomials in N, (x =1, ..., #) and represents the number of linearly
independent invariants of degree 4,1, ... %, for the group (I, D,) - (I, S,, S,) which
are derivable from invariants of lower order.

Again, using equations (6.5), ..., (6.8), we may calculate the number, B¥ .
(say), of linearly independent invariants under the group (I, Dy) - (I, Sy, S,) of
partial degrees 4y, 7y, ..., 7, in the vectors A (»=1, ..., u) and total degree 6,
which are independent of AJ). These values are also given in Table 6.

We note that for each choice of 4,4,...7,, P% . —P, . =2. It follows
that an integrity basis for the vectors A for the hexagonal-pyramidal class
will be formed by A§), N, (x=1, ..., u), together with two invariants of the
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Table 6
G0y ..ty 51 42 33 | 411 | 321 | 222 | 3111 ] 2211 | 21111 {11111
Pigyin 2 3 4 4 6 7 8 10 14 20
Pl iuin 4 5 6 6 8 9 | 10 12 16 22

form Q,Qp, for each value of 1, ... 4, represented in Table 6. The additional
invariants of the form Q, (s are chosen in such a way that they are independent
of each other. It is obvious that they cannot be expressed as linear combinations
of monomials in N, {x =1, ..., ), since N, is invariant under the transformations
R, T, and R, T,, while none of the invariants Q, Qs is invariant under these

transformations.
Thus an integrity basis for the vectors A" (r=1, ..., n) for the hexagonal-
pyramidal class is formed by 4 (r=1, ..., n) together with the quantities

21+ 43, 11 (%), (%) Lo (%);

%Y1+ %2 Vo, ¥1Y2— %2 Y1, 1o (%) J1 (¥, %),
I (%) Joy, %), Iu(y) Jo(% ), 1o(9) Ta (% 9),
I (%) Ju(%, 9), Io(#%) Jo (%, %), 1o () J1 (9, %),
I () Jo(y, %), I (%) 1y (9), (%) 1o (y);

I, (%) Ky (%, 3, 2), I (%) Ko (%, 9, 2), 11 (%) J1 (9, %),

I (%) 2 (y. 2), I () Ji(z %), 1.(#%) Ja (2, 9),

K%(x: ¥, 2 )’Kl(xt Y, ) (x Y, ) (75)

and the distinct invariants obtained from these by cyclic permutation of x, ¥
and z;

Iy (%) Ky (y, 2 w), I, (%) Ky (9, 2, )

Kl(x’ Y, Z) Kl(x’ Y, “)’ ](1(27, ¥s Z) K2(x) Vs %)

Ky (x,2,9) K (x,2,u4), K\(x,2,9) K;(, 2, u)

and the distinct invariants obtained from these by cyclic permutation of x, y, z

and %;
K, (%,9,2) Ky (%, u,v), K1 (%, ¥, 2) Ky (%, u, v)

and the invariants obtained by cyclic permutation of %, y, 2, # and v;
K, (%, 9,2 K, (u,v,w), Ki(%, 9, 2) Ky (4, v, ).

Hexagonal-dipyramidal class (I, C, Rg, Dg) - (I, S;, S,)

The restrictions imposed on a polynomial in A{Y (r =1, 2, ..., n) by invariance
under the transformations (I, D) - (I, S,, S,) have been determined in the case
of the hexagonal-pyramidal class. If the polynomial is further invariant under
the transformations (C, Ry) - (I, 8y, S,), it follows from theorem 1, that it is
expressible as a polynomial in the quantities (7.5) together with

xg; X33, (7.6)

Thus, (7.5) and (7.6) form an integrity basis for the # vectors A for the hexagonal-
dipyramidal class.
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Rhombohedral class (I, C)- (I, S;, S,)

It is seen from Table 1 that the effect of the transformations (I, C) - (I, 8y, S,)
on the vector components A{), A’ (r=1, ..., n) is the same as that of the
transformations (I, D,) - (I, S;, S,) associated with the hexagonal-pyramidal class.
Hence the elements of the integrity bases which do not involve AP r=1,...,n)
will be the same for the rhombohedral and hexagonal-pyramidal classes. We
therefore need only determine the elements of the integrity basis for the rhombo-
hedral class which involve AY).

We have seen that if a polynomial in A{" is invariant under the trans-
formations I, S;, S,, it is expressible as a polynomial in AY) and the quanti-
ties (7.3). If this polynomial is further invariant under the transformations
C.(I,S,,8S,), it follows from theorem 1 that the elements of an integrity basis
for the vectors Aﬁ'), for the rhombohedral class, which involve A4 are:

%3, %311 (%), %315(%);
%3Ys, %11 (¥), %3 15(y), %3 J1 (%, 9),
x3]2(x» y): x3]1(y: x): x3]2(y: x)

together with the invariants obtained from these by interchanging x and y;

%3 J1 (9, 2), 23 J2(y,2), %3 J1(% ¥), %3 J2(2, %),

7.7
%3 K1 (%,9,2), %3 K5 (%, 9, 2) (7.7)

together with the invariants obtained from these by cyclic permutation of x, y
and z;
x5 Ky (y, 2, u), %3 K5(Y, 2, u)

together with the invariants obtained from these by cyclic permutation of
x, 9,z and u.

Thus, an integrity basis for the vectors AY) for the rhombohedral class is
formed by the quantities listed above together with the quantities (7.5).
Ditrigonal-pyramidal class (I, Ry) - (I, S;, S,)

Any polynomial in the vectors 4{" (r =1, ..., ) is expressible as a polynomial
in the quantities Ay’ (r =1, ..., n) and the quantities X" defined by

Xp—ap,  Xp=—jap-40, xp-—pap+Bap. g3

If this polynomial is invariant under the transformations (I, R;) - (I, S;, S,),
it must be invariant under all permutations of the subscripts on X" (r =1, ..., u).
Then, it follows from theorems 2 and 4, together with equations (7.8), that an
integrity basis for the vectors A{", for the ditrigonal-pyramidal class, is formed by

X3, xi —Jf" xg: Iz(‘x)’
Y1+ %Y, L%, 9), (¥, %) (7.9)
K,y (x,9,2).

Ditrigonal-dipyramidal class (I, Ry, Ry, D) - (I, S,, S,)

It has already been shown, in the case of the ditrigonal-pyramidal class,
that if a polynomial in 4{"is invariant under the transformations (I, Ry)- (I,8,, S,)
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it must be expressible as a polynomial in the quantities (7.9). If this polynomial
is further invariant under the transformations (R;, D,) - (I, Sy, S,), it follows,
from theorem 1, that it must be expressible as a polynomial in

xg) x% + xgr 12(x);
X3 V3, %1 Y1+ %2 Ve, Jo (%, ¥), o (¥, %); (7.10)
K,y(x,9,2).

These quantities therefore form an integrity basis for the vectors AY), for the
ditrigonal-dipyramidal class.
Trigonal-trapezohedral class (I, Dy) - (1, 8,1, S,)

It has been shown, in the case of the trigonal-pyramidal class, that if a
polynomial is invariant under the transformations I, §,, S,, it must be ex-
pressible as a polynomial in the quantities

%3, I (%);

%1 Y2 — %2 Y1, Jo (%, 9), 2 (9, %);
KZ(x: y: Z),

which change sign under the transformations D,, D, S;, D, S,, and the quantities

%+ 3, I (%);
%1 Y1+ %2 Ve, J1 (%, 9), Ji (¥, %);
Kl(x’ y’ Z):

which remain invariant under the transformations D,, D, §,, D, S,. It follows,
from theorem 1, that an integrity basis for the vectors 4" (r=1,...,n), for
the trigonal-trapezohedral class, is formed by

x5, 4+ 5, I (%), % 15(%);
X3 V3, %1 Y1+ %2 Yo, J1 (% ¥), Ju (¥, %), %3(%192 — %291),
%3 J2 (%, ¥)s %3 Jo (¥, %), %315 (y)

together with the distinct invariants obtained from these by interchanging x
and y;

K (%,9,2), 23J5(9,2), %3 J2(2, ), %3 Ky (%, ¥, 2), %3(V122 — ¥221) (7.11)

together with the distinct invariants obtained from these by cyclic permutation
of %, y and z;
23K, (y, 2, u)

together with the invariants from this by cyclic permutation of #, y, 2 and «.

It is noted that there are no basis elements of degree higher than three in
%1, X3, V1, V2, - --» %, 3 alone. This follows immediately from theorem 2 and the
fact that any polynomial in %;, %5, ¥,, ¥z, ---, %1, %5 iS expressible as a polynomial
in the quantities XM, ..., X! defined by (7.2) which is invariant under all
permutations of the subscripts on X™, ..., X,
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Dihexagonal-pyramidal class (I, Ry, Ry, D,)- (I, S,, S,)

It has been shown, in the case of the ditrigonal-pyramidal class, that if a
polynomial in A" (r =1, ..., u) is invariant under the transformations (I, R;)-
(I, S, 8,), it must be expressible as a polynomial in the quantities (7.9). If,
further, this polynomial is invariant under the transformations (R,, D) - (I, 84, S,),
it follows from theorem 1 that it must be expressible as a polynomial in a set
of invariants which contain only elements of degrees 1, 2 and 6.

Again, it has been shown, in the case of the hexagonal-pyramidal class, that
if a polynomial in A" (r=1,...,#) is invariant under the transformations
(I, D,) - (I, S,, S;), it must be expressible as a polynomial in 4J (r=1, ..., %)
and the quantities (7.5). If, further, this polynomial is invariant under the
transformations (R, R,) - (I, §;, S,) it follows, from theorem 1 and the fact
that it must be expressible as a polynomial in invariants of degrees 1, 2 and 6
only, that it must be expressible as a polynomial in A{? (r =1, ..., n) together
with

%+ 45, Ii(x);

x] Y1+ %2 Ve, Lu(%) Ju (9, %), 1a(%) Ju (%, ),
5L (y) Ji (%, 9), Li(y) 1 (v, %), (%) I, (9)

1y (%) Ky (%, y, 2), 11(%) o (y, 2), 1u(%) Ja(2, 9),

Ki(%,y,2)

and the distinct invariants obtained from these by cyclic permutation of x, y
and z;

I, (%) Ky (y, 2,u), Ki(x,9,2) K, (%, v,u), K, (%, 2, y) K, (%, 2, u) (7.12)
and the distinct invariants obtained from these by cyclic permutation of %, y, 2
and u;
K (%, 9,2) K,(x, u,v)
and the invariants obtained from this by cyclic permutation of x, ¥, z,  and v;

K (%, 9,2 K(u,v, w).

Thus AY (r=1, ..., ) and the quantities (7.12) form an integrity basis for
the vectors A" (r=1, ..., n), for the dihexagonal-pyramidal class.
Dihexagonal-dipyramidal class (I, C, R,, Ry, Ry, D;, Dy, D) - (I, 84, S,)

It has been shown, in the case of the dihexagonal-pyramidal class, that if
a polynomial in A{) (r=1,2,...,%) is invariant under the transformations
(I, R,,R,, Dy) - (I, S,, S,), it must be expressible as a polynomial in A’ (r=
1,2,...,n) and the quantities (7.12). If further this polynomial is invariant
under the transformations (C, R;, D,, D,) - (I, Sl, S,), it follows from theorem 1
that it must be expressible as a polynomial in the quantities (7.12) together
with

%5 and x;Y;. (7.13)
Hexagonal-scalenohedral class (I, C, Ry, D)) -(I, S,, S,)

We note that the components A{", AY of the vectors A’ (r =1, ..., n) trans-
form, under the transformations characterizing the hexagonal-scalenohedral class,
Arch, Rational Mech. Anal,, Vol. 1§ 14



186 G. F. Smitu & R. S. RivLIn:

in precisely the same way as they do under the transformations (I, R,, R,, D,) -
(I, S,, S,) which characterize the dihexagonal-pyramidal class. Thus, the ele-
ments of the integrity bases for the vectors 4{", which do not involve AY’, will
be the same for the dihexagonal-pyramidal and hexagonal-scalenohedral classes
and are given by (7.12). It remains therefore to determine the elements of the
integrity basis for the hexagonal-scalenohedral class which involve 4§’ (» =1,
e 1),

It has been shown, in the case of the ditrigonal-pyramidal class, that if a
polynomial is invariant under the transformations (I, R,) - (I, S;, S,), it must
be expressible as a polynomial in the quantities (7.9). If, further, this polynomial
is invariant under the transformations (C,D,)- (I, 8;,S,) it follows from
theorem 1 that it must be expressible as a polynomial in the invariants (7.12)
together with

43, %31, (%);

%3 Y3, %3 J2 (%, V), %3 J2 (¥, %), %315 (y)

and the invariants obtained from these by interchanging x and y;

%3 Jo (¥, 2), %3 ]2 (2, ¥), %3 K, (%, 9, 2) (7.14)

and the invariants obtained from these by cyclic permutation of %, y and z;
23K, (y, 2, u)

and the invariants obtained from this by cyclic permutation of x, ¥, z and «.
Thus, an integrity basis for the vectors AY) (=1, ..., n) for the hexagonal-
scalenohedral class is formed by the invariants (7.12) and (7.14).

Hexagonal-trapezohedral class (I, Dy, D,, D;) - (I, 84, S,)

We note that the components 4{, A{") of the vectors A" (» =1, ..., n) trans-
form, under the transformations characterizing the hexagonal-trapezohedral class,
in precisely the same way as they do under the transformations (I, R, R,, Dy) -
(I, 8, S,) which characterize the dihexagonal-pyramidal class. Thus, the elements
of the integrity bases for the vectors A¢), which do not involve 4{’, will be the
same for the dihexagonal-pyramidal and hexagonal-trapezohedral classes and
are given by (7.12). It remains therefore to determine the elements of the
integrity basis for the hexagonal-trapezohedral class whichinvolve AY (r=1,...,%).

It has been shown, in the case of the hexagonal-pyramidal class, that if a
polynomial is invariant under the transformations (I, D;) - (I, 84, S,), it must
be expressible as a polynomial in the quantities (7.5) and A4, If further this
polynomial is invariant under the transformations (Dy, D,) - (I, 81, S,), it follows,
from theorem 1, that it must be expressible as a polynomial in the quantities
(7.12), together with the following invariants:

x5, %51y (%) Iy (%);

X3 V3, X3(%1Y2 — %2 01),

%31y (%) o (%, ), %311 (%) T2 (9, %),
%31y (¥) Jo (%, 9), %311 () o (¥, %),
w31y (%) 1o (), %511 (¥) L2 (v)
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and the invariants obtained from these by interchanging x and y;

%3(Y122 — ¥a221), %311 (¥) L(¥,2),
Ii(y) Ja(z ¥), 311 (2) (v, 2)
I, (2) Jo(2, %), 231, (v) 12 (2),
%311 (%) Ky (%, 9, 2), %31, () Ks (9, 2, %),
%311 (2) Ky(z, %, %), %31, (%) Jo(y,2),
xsf (%) (= ¥), %311 (y) L%, 2),
I (y) Lz %), 2311(2) Jo(%, %),
I, (2) L(y, %), %K1 (%, 9, 2) Kp (%, 9, 2)
and the distinct invariants obtained from these by cyclic permutation of x, y
and & %Ly (0) Ka(9, 5, ), 53 (2) Koy, 7, ),
%31y (u) Ky (v, 2, u), xs 1(¥) Loz, 4),
xsll(y>]2(”:z) %311 (2) Loy, u),
I, (z) Jo(w,9), 231y (u) Jo(y, 2),
() Ja (2 ¥), %31, (%) Ky (v, 2, %),
I (y) Ky (%, 2, 1), %311 (2) Ky (%, v, %),
x3I1( w) Ky (%,9,2), 2K, (%, 9, 2) Ko (%, 9, 1),
%3 K1 (%, 2, y) Ky (%, 2, u), %3 Ky (%, u, y) Ky (%, 4,2),
%3 K1 (y, 2, %) Ky (y, 2, u), 23 K1 (y, , %) Ky (y, 4, 2),
%3 K (2,4, x) Ky (2,1, 9), 23K, (y, 2, u) Ky (y, 2, 4)

and the distinct invariants obtained from these by cyclic permutation of #, y, 2
and u;

x3I1

(7.45)

%31y () Ko (2, 4, v), %314 (2) Ko (y, w,v),
x3I () Ky (y, 2, v), %311 (v) Ky (¥, 2, %),

Ky (y, 2, u) Ky (y, 2, 0), %3 K1 (y, 4, 2) Ky (y, 4, v),
x3K1(3’ , 2) Ko (9, v, u), %3 Ky (2, u, y) Ky (2, w,v),
Ki(z, v, v)Ka(z, v, u), 25 Ky (1,0, ) Ky (%,v, 2),
x3K1(x ¥, ) (x u, v),x (y’ z:“)Kz(yr )’
K (2, u, 0) Ky(z, x,9), 2K, (4,0, %) Ky(u, ¥, 2),

x3K1(v, %, 9) Ky (v, 2, )

and the distinct invariants obtained from these by cyclic permutation of x, y, 2,

# and v;
Ki(y,2,u) Ko(y, v, @), %3 K, (2, u,v) Ky(2,w,9),

%3 Ky (u, 0, w) Ky (4, 9, 2), %K, (v, 0, y) Ky (v, 2,4),
%3 Ky (w, ¥, 2) Ky (w0, ,0), 3K, (%, y, 2) Ky (u, v, w)

and the distinct invariants obtained from these by cyclic permutation of %, v,

z,u,v and w; %3 Ky (v, 2, u) K, (v, , £)

and the invariants obtained from this by cyclic permutation of %, y, ..., £

Thus, an integrity basis for the vectors 41" (r =1, ..., n) for the hexagonal-
trapezohedral class is formed by the invariants (7.12) and (7.15).
14%
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8. Irreducibility of the integrity bases for the hexagonal system

We first consider the integrity bases derived in § 7 for the trigonal-pyramidal
class. We note that the elements 4 are not redundant and that the remaining
elements involve (%, %), (Y1, Ya), ---, (21, 22} only. We accordingly employ the
notation of §6 and calculate P, ; ; for the values of 4,4, ..., represented in
(7.3). We also calculate &;,;, ., Bi,,...;, 20d Qis, i (= B, i —iyi,...00)- These
values are given in Table 7, together with the numbers %, ; ., of independent
syzygies of degree 4,7, ... %, which must be demonstrated in order to prove the
irreducibility of the integrity basis. Since for each of the values of 4,4,... 7,
represented in (7.3), 9;,;,..;,=0, we do not have to demonstrate any syzygies,
and the integrity basis given in § 7 for the trigonal-pyramidal class is irreducible.

Table 7
Gyig.eip | 11 24 | 111
Piyiyein 2 2 2
i18g.in 0 0 0
i1 ta0es in 2 2 2
Bists.nin 2 2 2
Wiy by in 0 0 0

The integrity basis given in § 7 for the trigonal-dipyramidal class differs from
that for the trigonal-pyramidal class only in the elements involving x5, ¥, only.
These are evidently not redundant. Consequently, the integrity basis given for
the trigonal-dipyramidal class is irreducible.

It is evident from the manner in which it is derived that the integrity basis
obtained in § 7 for the hexagonal-pyramidal class is irreducible.

The integrity basis obtained in § 7 for the hexagonal-dipyramidal class differs
from that for the hexagonal-pyramidal class only in the elements which involve
%3, ¥ only. Since these are evidently not redundant, it follows that the integrity
basis for the hexagonal-dipyramidal class is irreducible,

The integrity basis derived in § 7 for the rhombohedral class differs from
that for the hexagonal-pyramidal class only in the elements involving %3, y;, ... .
Consequently, since it has already been shown that the integrity basis for the
hexagonal-pyramidal class is irreducible, it follows that none of the elements
which do not involve %, ¥, ..., in the integrity basis for the rhombohedral
class is redundant. It is also evident that none of the elements of the type 3
and x, y, are redundant. We need therefore examine only the remaining ele-
ments in (7.7) which are linear in x;. We note that these are of the form x; P,
where P is an element, independent of x5, y3, ..., of the irreducible integrity
basis for the trigonal-pyramidal class. Since x, is not an invariant for the rhombo-
hedral class, it is apparent that none of the elements (7.7) is redundant and
consequently the integrity basis for the rhombohedral class is irreducible.

Since the integrity basis (7.9) for the ditrigonal-pyramidal class is contained
in the irreducible integrity basis for the trigonal-pyramidal class, it is irreducible.
Similarly, since the integrity basis (7.10) for the ditrigonal-dipyramidal class is
contained in the irreducible integrity basis for the trigonal-dipyramidal class,
it is irreducible.
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The elements of the integrity basis (7.11) for the trigonal-trapezohedral class,
which are independent of %, ¥,, ..., are contained in the irreducible integrity
basis for the trigonal-pyramidal class and consequently none of these elements
is redundant. The elements which involve x5, y,, ... only are of second degree
and are, by inspection, not redundant. The remaining elements, which are of
first degree in x,;, are of the form x, P, where P is an element, independent
of %3, v, ..., of the irreducible integrity basis for the trigonal-pyramidal class.
Since x, is not an invariant for the trigonal-trapezohedral class, it is apparent
that none of the elements in (7.11) which are linear in x4 is redundant. It follows
that the integrity basis (7.11) for the trigonal-trapezohedral class is irreducible.

Since the integrity basis derived in § 7 for the dihexagonal-pyramidal class
is contained in the irreducible integrity basis for the hexagonal-pyramidal class,
it is irreducible. Similarly, since the integrity basis derived in § 7 for the di-
hexagonal-dipyramidal class is contained in the irreducible integrity basis for
the hexagonal-dipyramidal class, it is irreducible.

The elements of the integrity basis for the hexagonal-scalenohedral class,
derived in § 7, which do not involve x,, s, ..., are the same as those in the
irreducible integrity basis for the dihexagonal-pyramidal class, and consequently
none of these elements are redundant. The elements which involve #g, y;, ...
only are evidently not redundant, by inspection, and are of second degree. The
remaining elements are linear in x; and are of the form x; P, where P is an
element, independent of x, v5, ..., of the irreducible integrity basis for the
trigonal-pyramidal class. Since x4 is not an invariant for the hexagonal-scaleno-
hedral class, it follows that none of these elements linear in x4 is redundant.
Consequently, the integrity basis given in § 7 for the hexagonal-scalenohedral
class is irreducible.

The irreducibility of the integrity basis for the hexagonal-trapezohedral class,
derived in § 7, follows from an argument analogous to that employed for the
hexagonal-scalenohedral class. The elements independent of x,, ¥,, ... are the
same as those in the irreducible integrity basis for the dihexagonal-pyramidal
class; the non-redundancy of the elements involving x5, vg, ... only is evident
by inspection; the remaining elements are of the form x; P where P is an element
independent of xg, y5, ... of the irreducible integrity basis for the hexagonal-
pyramidal class.

9. The cubic system
(@) General description of procedure

The procedure which we adopt for finding irreducible integrity bases for
the classes of the cubic system is different from that used for the crystal classes
previously discussed. Instead of generating highly-redundant integrity bases,
then eliminating the redundant elements and finally proving the irreducibility
of the integrity bases so obtained, we instead generate irreducible integrity bases
by an iterative process in which the elements of lowest degree are first generated
and then those of successively higher degrees, the theorems of § 2 being used
to indicate the total degree at which it is safe to terminate this synthesis.

A polynomial of partial degrees 4;, %,, ..., %, in the # vectors &, y, ..., 2 will
be said to have degree ¢,4,...4, in ®,¥,...,2. Let P, be the number of

$143.0. 50

linearly independent invariants of degree 4%, ...4,. Let J;, Jo, ..., J, be the
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elements of an irreducible integrity basis, for the vectors @, g, ..., # under the
transformation group considered, which are of total degree in @, y, ..., # less
than 4, +4,+ --- 4-7,. Let &;; , be the number of distinct invariants of the
form J§ J§ ... J3» where the o’s are positive integers or zero, which are of degree
Nis..-%,in®, Y, ..., 2 B, , isgiven by

N
B = % S tr T tr T tr T,
a=1

where T, (e =1, ..., N) are the transformations of the three-dimensional matrix
representation of the group describing the crystal symmetry considered. tr T
is given by equations similar to (6.7) and (6.8), in which L, is replaced by T,.
For the various transformations T, occurring in the groups describing the sym-
metry of the classes of the cubic system, the values of tr T, tr T®), ..., tr T
are given in Table 8.

Table &

Transformation T, tr TQ | tr TE | e TO | &0 TO | tr TP
I 3 6 10 15 21
C —3 6 —10 15 —21
R, R, R, T, T, 1 2 2 3 3
T, D, T, D, T, D, T, 1 2 2 3 3
D, D, D, CT, R, T, —1 2 —2 3 -3
CT, R, T, CT,, R, T, —1 2 —2 3 -3
R,T, R, T, R, T, 1 0 0 1 1
R, T, R, T, R, T, 1 0 0 1 1
D, T, D, T, D, T, —1 0 0 1 —1
D, T, D, T, D, T, —1 0 0 1 —1
M, D, M, D, M,, D, M, 0 0 1 0 0
CM,, R, M, R,M,, R, M, 0 0 —1 0 0
M,, D, M,, D, M,, D, M, 0 0 1 0 0
CM,, R, M,, R, M,, R, M, 0 0 —1 0 0

The integrity bases for the classes of the cubic system may then be generated
by the following procedure.

B, ..., the number of linearly independent invariants of degree 4,7,...1,
in ®y,...,% is first computed. The 4, , invariants of degree #;7,...1,
obtained from the elements of an irreducible integrity basis of lower total degree
than 4, +4,+4 --- -1, are listed. Let us denote them by 4,, 4,, ..., 4. These
invariants are then expressed as linear combinations of a set of B ; ,; linearly

independent invariants, B;, B,, ..., Bg, say, thus:
Piigin
Ay :MZI“LM By (L=1,2,...,0Q). (91)

The rank R;; . of the matrix |o | is equal to the number of linearly inde-
pendent invariants in the set of invariants 4,, 4,, ..., 45. We choose from
the invariants By, B,, ..., By, by inspection, P, ; , —R;; _; invariants which,
together with the invariants Ap form a linearly independent set. These may
be taken as the elements of degree ¢;7,...%, of an irreducible integrity basis
and, together with the elements corresponding to all permutations of 4,7, ... 7,,
will be denoted {C;; ..}.



Integrity Bases for Vectors 191

The theorems of § 2 can be used to limit the values of 7, +-7,+ .-+ 47, which
can apply to the elements of an irreducible integrity basis. Suppose these are
41,9z, .., Where ;< g,<<-.-. We determine {C;} successively for 7,=¢,, ¢,, ...;
7.e. we determine the elements of an irreducible integrity basis which involve
only one vector. Next, we determine {C; ; } for all 4,4, such that ¢, +-4,=g¢y, ¢, ...,
i.e. the elements which involve two vectors. We repeat this process for the
elements of the irreducible integrity basis which involve three, four, ... vectors,
until we reach a number of vectors equal to the maximum gq.

In carrying out these calculations for the various classes of the cubic system,
it is convenient to use the notation Y’ to indicate the sum of the three quantities
obtained by cyclic permutation of the subscripts on the summand, thus:

Zx1=2xz=2xs=x1+x2+x3,
VY2 =D oYy =), ¥a V1= %1 Yo+ %o V3 Ha 1
(b) Hexoctahedral class (I, C,R,, Ry, R;, D, D,, D;)- I, M,, M,, T,,T,, T))

It has been shown in the case of the rhombic-dipyramidal class, that if a
polynomial in the vectors A" (r =1, ..., n) is invariant under the transformations
(I, C,R,, R,, R;, D,, D,, D,), it must be expressible as a polynomial in 23, 2, 3,
%1Y1, X5¥9, ¥3¥3. The further requirement that this polynomial be invariant
under the transformations (I, C,R,,R,, R;, D,, D,, D;)- (I, M;,, M,, T,, T,, T;)
implies that it must be invariant under all permutations on the subscripts. It
then follows immediately from theorem 2 that an integrity basis for the » vectors
A" (r =1, ..., n), for the hexoctahedral class, may be constructed with elements
of total degrees two, four and six only.

The elements of this integrity basis involving only one vector are clearly,

from theorem 2, z 22, z £ a2 and 2 a2 a2
and it is evident that none of these elements is redundant.

In Table 9 are given the values of P, for all possible values of 7,4, ...%,,
such that ¢, +4,4 --- +4¢,=2,4, or 6 (apart from the cases when all except
one of the ¢’s is zero). We note that when ¢, ... ¢,=11, B ; ; =1. Also, §;;=0,
since there are no invariants of total degree 1. Thus, in order to obtain the
elements {C;;} of an irreducible integrity basis of degree 11, we must choose
one invariant of degree 11. From theorem 2, it is seen that {C;} may be taken

Ligenin

as ), %191 Table 9

Tylg.eety [11]22031]33|42]51]211 411|321 | 222| 1111 | 2241 | 3111 |24111 ] 111111
Piiyin | 1]3]2|6]6]4] 3 709 |12 4 15 12 21 31
vigenin | 0| 211505131 21 6| 8|11 3 14 11 20 30
iigendn | O] 211 5]5]3] 2 6 8 | 11 3 14 11 20 30

We now note that B,=3. The &,, monomial invariants of degree 22 which
can be formed from the elements of the irreducible integrity basis of lower
degree are () x,y,)2=4, (say) and ) x} ) yi=4, (say). Thus 9y =2. These
can be shown to be linearly independent. For, it is easily seen that

A, 1, 1, 0 B,
a,)=\o, 1, 2\ B )
1, » F) B2
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where

B, =Zx§y§,

Bzzlexzylyzx

G. F. Smite & R. S. RivLin:

B; = Z xi(yg + yg)

and we note that B,, B,, B, are linearly independent invariants, and the matrix

(110
012

degree 22 in the irreducible integrity basis. Thus we may take {C,,} =

) has rank Ry,=2. It follows that there are B, —R,,=1 elements of

Z X1%2Y1¥2,

since it is easily shown that this is linearly independent of A4, 4,.

Proceeding in this way for the various values of 7,7,
we obtain the following results. For 4,7, ...

Ay =(1,1) (Bl),

... 1, given in Table 9,
1,=31:

B,

where Al—ZxIleyl, Bl_leyl, B,=Y 5 (%,y,+ %3%;), and we may
take {Cy}= . #1(% 2+ %3Y3), ), ¥i(%2¥2+ #3¥s).

For 4y4y...4,=33:
A, 1,
4,
4
A3
A, — A4, +4,— 34,

where A1:Z xiz y%leyh
43=3% %1% Y192, %1 Y15
A :Z y%(xzyz‘i‘ xs)’s)z xf,
31=foy¥,
Ba=2x?y1(y§+y§),
Bszz xiﬁ’zys(xsyz‘*‘xzya):

and we may take {Cas}=%; %, %3V, ¥ ¥s-

For ¢,7,...1,=42:
A, 1, 1, 2,
A3 ) O;
4, | = 1,
A4,
As

where

A=Y 2 4) 3,
A4—fo x2y2+x3y3)2x1y1,
Bl_leyl x2+x§):
BB_leyl:

Bs—zxﬂﬁ Xy Ye -+ X3s),

Ay = (¥ %1)°

1, 1, 1, 1, 0 B,
, , 1, 0, O B,
1, 1, 1, © B,
1, 0, 3 B, |’
"_1r_3 Bs
Bsg
2=(Zx1y1

42275% (%2 Yo 1 %3V3) Zyp

|

32—-—2561)/1 Xy Yo+ ¥3¥3),
B, Z’ﬁ %y Ve + %5 %3),
By =%, %, %312 ¥3>

H

2, 0, 0 B,

1, 2, 2 B,

1, 0, © B,
1, 1, 2 B, |’

1, 1 By

By

Z i, A= (Z xlyl)zz 5,
A; :lexzyﬂ’zz o,
B, '—'Z xgxgyf,
By=Y x3(v:+v3),
Bs:xlxzxsz X1Y2Ys,

and we may take {Cn}:’ﬁ"zxazxﬂ’zys: %3’29’32 KXo X3 ¥1-
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For 4,4,...1,=51:
4, 1, 1, 2, 2\ /Bs
4, ) 1, 1, 2|[B;
4;] 1, 1/\B, |
B,
where
A1=Zx§(xzy2+x3y3)2xf, A2:Zx1y1(2x§)2,
AazleyIngxg,
B1:in("2yz+x33’3): 32=Zx§y1(x§—i—x§),
B3=foy1, B4=x1x2xszx2x3y1,
and we may take {C51}=x1x2x32x1x2y3, y1y23’3z Y1Ys %3.
For 4,4,...4,=211:
A4, 1, 1, 0 B,
Al = '1, '1 Bl N
By
where
A1=fo2y1zp Az=2x1y12x1z1,
Bl=zxf3’1zp 32:Zx13’1("222+ X3Z3),
33=fo(y222+y3z3),
and we may take {Cp} =) 4 (Vo2 + ¥a), 2. Y1 (23 %3 + 2 %),
sz(xﬁ’z‘{'xsya)-
For i,4,...7,=411:
A, 1, 2, 0, 0, 1, 2, 0 B,
4, 1, 0, 0, 0, 1, O B,
44 _ 1, 0, 0 1, 1 Bs
4, 1, 0, 1, 1 B, |,
A—A4, —1,—1, 0 B,
Ag—As3— A+ 45— 4, 2, —1/ B,
B,
where

A1=Zx§x§§: Y121,

Aa:in(xzh‘*‘xs}’a)leZl»

A5=fo(y2z2+y323)2xf,

Bl:zxfylzl(xg‘i”xg)r

Bazthﬁzh

By=} 2121 (%5 Y2 + %3 ¥s),

By =%, %3 %3 ), %, (Y2 %3 + Y3%2),
and we may take {Cy} =% %% %1 (Va2 -+ ¥3%2), Y12 Y3, %1 (Y223 + Y32),

z1z2232x1(y223+y3z2)'

A= (3 )Y y12,

A=Y 25 (%y 29 + X373) Y %1 ¥y,
dg=) m01), #1210, %4,

B, ’:Z X3 X3 Y171,

By=Y A (922 + Ya7),

B, :_—_Z P y1 (%25 + %523),



For 4,4,...4,=321
Ay 1,
Aq
A4,
A,
Ayg—Ag+ 4, — 4, -
A4,
A —Ag—A,— A+ Ay
Ag
where
Alzz %yzzz‘i‘ysza)le%:
Aszz % (%325 + %323) ny,
Aszz 1y1x2yzzx1z1:
A7=(Zx1y1 lezl,

B, leyl (V222 + ¥a23),
B, leygys(x223+x322),
By=} A4 (v 4 95),
B7:iny1zl(x2y2+x3y3),
Bslexzxszyzyszp
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P
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—_r o000 =0

l

=2 NO N =O

-

212 xiz 3’%:
(xz Y22y + X%33%),
yl (%52 + %3 23),

(xz YaZy + %3 ¥3%),
yiz,

0 B,
0 B,
2 By
0 B,
2 B, |,
0 B,
0 B,
1 B,
By

%(22 X +Z3x3)z xf,
i(xzyz + xaﬁ’a)z V121,

13’12 ylzlz xi,

and we may write {Capi} = %1% %3, Y2 Vs 21, V123, %% %1, Z1%2% ), X2 X3 V1,
x1x2x32y1z223, Y1¥2 V3D, %1 %2 %3, 21223 ) $1Y2 Vs
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4, :Z xi(yzzz + yszs)z Y141,
Ay :sz(xz Ve + xay:s)z *1¥1,
As= (Z %1 yl)zz Zf:
A, = (Z x121)22 i
Ay= (Z Y1 21)22 3,
An :zxﬂﬁz x1z1z Y121,
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4, :z y%(xzzz + x323)z X131,
A4:Z x1x23’1y22 Zf,
Ag :Z x1x221222 yf»
Asg :Z Y1 y221222 4,

10—2 xlz ylzzlx
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B,=), 2912 (Yo% + YaZa) s
B:a:z X1 Y2 VaZg%as
By=Y A4 (ys+93),

B; =3, X1 Y17 (%2 Y3 + %3 ¥s) s
By=Y 4% %37, Y3,

By =Y, %1 Y1222 (%2 Y3 +%3%3),

and we may take {Cyp} =3 35322,

For 4,4, ...4,=1111:

where

4,
Ay
Ay

AI:‘Z Xy ylzzﬂh,
B1=Z X1 Y121 U1,
B3=z %121 (Yo tha -+ Yath3),

:

- O

By :z xf(ygzg + y?ﬂE) ,
By, :z xﬁyiﬁ,

and we may take {Ciyy 3= %, y,2 4.

For 2,4,...2,=2211:

A14
A
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M
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44 =2 *1 %4“12 %1¥1,

A :z 3’%(5‘72“2 + xs“s)z X121,
As :2 x%(yzuz + ya""a)z Y141,
4, =Z yg(zzuz*’r‘zs’”s)z xi,
Ag= (Z 1 yl)zzzﬂh,
An:Z%%ZﬁZ%%
Alazz xlhz xlle Y1¥%1,

~

-~ 000 ~2

Am:Z x1”1z xlzlz yi,

B, :Z xi(ygzﬁ + y%zg) )

B, =Z x1yiz1(x222 + %323),
B, ZZ y% Xg X325 %3,
By=Y x1yi(s+45),
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A, ZZ x1”12 Y121,

P ™
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Ag :Z x§(22“2+23”3)2 3’3,
As—_—z X1 % 3’13’2221“1:

Ay, -_-221“12 xfz yf,
A14:Z xlylz xl”hz Y121,
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By =Y Ayinu, By =3 % 912t (%3 Y, + %5 9s),
33=Zx1yfu1(x2z2+x3z3), B4=Zx§zlu1(y§+y§),

By ZZ Xy Xy Y3 (% Ug + 23145) , Bg ZZ %y VR 21 (% %0 + X3 hs),
B,=3, 2910 (V22 + Va2a), By=3} %1 (V3 2a Uy + Y32y ) s
B, ZZ XY, Va (za 043 + 2304,) By, :Z x4 Y121 (Vathy + Y3tta),
B ’:2 A yf (21 + 23243) , B, :Z xf(ygzaua + Vizaty),
Big=) %2 %3 ¥z Y321 %41, By =} %y 23 Y101 (Y275 + Ya 7o),

By :Z Xy %3 V121 (Yaths + V3ts),
and we may take {Cpoyi} =Y. 2595200, Y. X523y 001, 3, X308 Y124,

2 2 2 2 2 2
2%219‘1“1: 23’1”195121, 221%1"13’1-
For #,4,...2,=3111:

Ay 1 (1,0, 0, 0, 4, 1, 1, 0, 0, 0, 0, 1) By
Ag 1, 0, 0, 0, 0, 41, 1, 0, 0, 1, 1| |B;
4, 1, 0, 0, 1, 0, 0, 1, 0, 4, 1| [Bs
A 1, 1, 0, 0, 0, 0, 1, 1, 1] |B;
A, 1, 0o, 0, 0, 0, 1, 1, O} |By
Aq = 1, 0, 0, 1, 0, 1, 0] |By
A, 1, 1, 0, 0, 1, Of|B, |’
A, A,—Ag 1, 0, 0, 1,—1| |B,
Ag+Ag— A4, 1, o, 1,—1| |B,
Agt+A;— Ay, 1, 1,—1] | B,
L 1, 1) |B,
| B1
where
A1=Zx1y121“127‘f: A2=2xf(y2z2+y3z3)2x1u1,

A, =Z xi(yzuz + %”3)2 %7, A, =Z xf(zzuz‘f‘zaﬁs)z *1Y1,
Ay 32 x%(xz Yo+ %3 3’3)2%“1: Ag =Z % (%525 + x3z3)z Vi,
A=Y 23 (Hotty+ x5%3) Y 171,  Ag=2 % Y1) 2%, 0 %5,
A9=2x1z12y1u12xf, Alozleulzhﬁzxf,

Ay :Z *1 y1z xlzlz X %y,

By =3 1914, By =3 %1 (% VaZathy + %3 V3 23%3) ,
By=3, X%y (YaZa + YaZa), By=} X3 (%3 a2y Uy -+ % Vo Zg ) »
By=}, 2121 (Vo thy + Vatha), By =Z X (%65 Vg 25 g + %y Vg 2 1hg) ,
B, =Y 23y (2 Uy -+ 23 %) s By=} X1 (¥ V3 2y Uy + %3 VaZys),

B, :Z xfzf“l(xz Yo -+ %3 Y3), Bio =Z xfylul(x2z2+ %g23),
By =Z %17 (%2 %y + x3043), Bp=x xzxaz y1(2a 95 + 23u,),

3 3 3 3
and we may take {Cy } = A3 y121%1, 3. ViXeZyty, 3.2 % Yithy, 2 UL% Y12,
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For 4,4,...7,=21111:
AZO ) (

L

-

1,0,
1

3

~
~.
-

~o9
~ooQ
~ooo@
=R ==]
~ooro0Q

-
~

~o0000Q0~

~
-

where

4, =inz V1% 7y,

A3=Z %1 }’1‘717’12 X1y,

A=) %12 101) % Y1,

A4, :Z 23 (g +23“3)Z Y1Y1,

Ay ZZ xi(zz'uz +237}3)z Y141,
An :2 x%(yzvz'*’ Yals) ), 21ty
A13:Z xgzzﬂhz Y1¥y,

Ay :Z *1 3’129‘1212“1”1:
Ay =3 %121, %18, Y101,
A=), %121 ), %01, Y1,

B, =) 112,001,

By=Y %1912t (%303 + %373),
By :Z % Y1 9% 01 (¥ 22 + X323),
B, =Y 30, v1(y2 %+ Ya2s),
By=3, 219101 (2 4y + 23043),
By 32 23 Y12, (U Uy + 3 3),

0,0,00,00,0,1,0,0,1,0, 1]
0,0,1,0,0,0,0,01,0,1,0, 1
1,0,0,0,0,0,0,0,0,1,1,0, 1
0,1,0,0,0,0,00,1,1,0,0, 1
0,0,0,0,00,0,1,0,1,0,0, 1
0,0,00,1,0,0,1,1,0,0,0, 1
0,1,0,0,0,1,0,0,00,01, 1
0,0,1,1,0,0,0,0,0,0,0,1, 1
1,0,0,0,1,0,1,0,0,0,0,1, 1
1,0,0,0,1,0,0,0,0,0,1, 0
1,1,0,0,0,0,0,0,0,1, 0
1,0,0,0,0,0,0,0,1, —1
1,0,1,0,0,0,0,1, 0
1,0,0,0,0,0, 1, —1
1,0,0,0,0,1, —1
1,0,0,0,0, 14

1,0,0,0, 1

1,0,0, 1

1,0, 1

1, 1

A, :Z xl)’ﬂl“lZ X171,
Ag=) %y U0y, %2,
dg=Y, 2 (yazp + YaZs) ), th Uy,
dg=Y, 3 (ug 0, + #303) ), V171,
Asg ZZ x%(yzuz + ysus)zzlvlr
A=Y, x?zulvlz Y141,

A Zz x?zzlulz Y171,

Aig :z xlylz xl""'lzzlvl»
A=Y, Xty ), Xy, V14,
Azo=z xl%Z xﬂhzzﬂh:

B, =2 xf(ﬁ’zzzuzvz'{‘ Y323 U373),
B, :Z %1 Y121 V1 (% b + X3 045)
By =Y %y 2,0, (%395 + %3 3),
By=}’ X3 (Yo 21305 + YaZatyVs),
By=}, %1 (V2 23 U Uy + Y32y s Vg),

Big == %,0; (% Y3235 + X592y th3),
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SR EEEEEEEEEEEEEEE
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20y (V2 ¥y + Y3 73),

2
1

Y x

By =z %y 0y (Xp Yo 23t + %3 Y325 04) ,

16 —

2
By, :Z 41 (Va 2315 V5 + V323 Us¥s),
By = z %1 Y1 {Xa 23Uy Vg + X325 U Up),

B
2 2 2
le Y12, %171, Zyl X124y Yy, zzl X1 Y1%1 %,

G. F. Smite & R. S. RivLin:
2 2
2“1%3’121”1: Zlelylzlul'

B, :Z P4 Y1t (22 V5 + 2373),

Bys :Z xgzﬂh(yz”z + Y3tts),

By, ZZ %,y (%p Y3 25 U + X3 V2 23Us),

Byy= Z Xy ¥y (% 23 Ug Vg -+ X3 2395 V),

By :Z %1%y (%p Vg Up U + X3 Y5 g V3),
and we may take {Cyyy}

For iy7,...4,=111111:
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N at e W W v T w wew W W e W W W we T T T e v v e T v wow e
S e ST T TISTSITSTSISTTISTS ~
S S S S-S TIITSTSTS I~
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S-S TSI S SIS T TTTTTSTSS =
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B =R el sl ol o leNeNoN ol oo« Na el o

SO -0 dd -0 dTdTITI—
S0 -l =TI SI
STl oIS T ST

T 0TS TTTIT T ==

ST STSSSSSIT =
SO STSTITSSI ~
oo sSTSSTSS
ST TSTITSITITS ~

S oIS IS~

ST ITITSSS =
SSSsocSSS =
SSSSTSS
SIS

ST

SoTS—

SS IS -

A, :Z #y y121v12u1w1,

4, :Z Xy Y % V1) 4 W,
Ag :Z *1 3’1v1w1z 2%y,
Aszz xlzlulwlz Y11,
AIOZZ xl%”l”ﬁz Y121,
Alzzz 5’121""11”12 X171,
Ay :Z y1“1°"1w12 X121,
AIBZZ x13’1221“1zv1w1»
Aig :Z xlylzzlwlzulvll

lezlulvlz Y1%1,
4, :lezlvlwlz Y1ty
A11:Zy1z1“1”12 X1 W,

23’121”1"’12 X1 %1,

leylz 217’12“1”/1,

A15=ZZ1”1U1W1Z %1 Y1,

7=

13—

17 =

Alzleylzlulzvlwh
A:,::Z x13’121w12”1v1»
A5:Zx1y1“1w1z %371,

A
A
4

where
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f

19

x1“1z 3’1”1221101»

)
levlz %”1231”’1»
)
)

I

21

x1212”1w12 Y191,

x1%12”1w12 Y12y

27 Z %212”1”)12 *1%1,

29 :Z 3’17"12217’12 X1 Wy,

B, :z X1 Y121 % V1 W,

By =7 %, y12, 9 (10 + 143205) ,

By =) %, Y1001 (2,5 + 233),

B, :Z %y Y1010 (22U + 23%3),

By =Y} %120, (Y303 + Y323),
1= Bty VW (Yo 2y + Ya2a),

13 —_—z Y121 U110y (%Y + X373),

15 :Z Y1 010y (%925 + X325),

17 :Z %1 Y1 (22 o V3 W3 + 23U Uy W5)

18 :Z %1 Y1 (20 U3 V3w, + 23Uy U, W5)

21 :Z %1% (Y223 V3w, + Y32, 05 03),

23 ZZ %121 (Yo Us Vg Wy + Y3 Up Vs Ws),

25 = D X121 (Y thy V3 Wy + Y3 s U, 105)

27 :Z%zl(xz“svswz + X3y 05 W3),

By :Z Y1 Wy (¥ 2330y + X325 UpVg),

By, ZZ Y101 (g 23U Wy + X 2p g W3),

23

25

I

AN N N NN

Wk

A=Y 201} Y101 2171,
A22=Zx1212u1v12y1w1,
A24:Zx1212v1wlzh”p
A26:Zy1212“1”1zx1w1'

Agg Zylwlzzlullevl:

Asp 23’11’1221“125\71”’1,
B2:Zx1ylzlu1(v2w2+v3w3),
B4=Zx1y1z1w1(u2v2+u3v3),
Be =Y %1y, 1,1, (2V5 + 2375),
By=Y %21, 01 (Y505 + ¥303),
Blo:Zx121v1w1(y2”2+y3“3),
Bl2:2y121u1v1(x2w2+xaws)y
By, :Z V12101 W@y (%o %y + X325),
Big=) 2,10, W; (%2 Y3 + %3¥3),
Blszleyl(zzus'”zws+Z3“27}3w2),
320=Zx1u1(y223v2w3+y322v3w2),
322:Zx1v1(3’2z3%2w3+3’322“31@2):
324=Zx121(y2%3'02w3+y3u2v3w2),
Bzezzxl“l(y222”3w3+3’323v2w2):
stzzylzl(x2”392w3+xsuzv3wz),
B3O=Zy1u1(x2z3v3w2+x322v2w3),

I

and we may take {Cyjyyq}=2 % ¥;2 % 0,0;.

Summarizing the conclusions reached above, we see that an irreducible in-
tegrity basis for the u vectors A” (r =1, ..., n) for the hexoctahedral class is

Yok, Y AR ad, xd xd a3
leyp Z’ﬁxzyﬂ’z: in(x2y2+x3y3), Zyi(xzyz"‘xa%):
Xy %3 %3 Y1 VeV, ¥1¥aXa ) ¥1%aVs, XyXp¥3 ), Y1Va¥a,
3’13’23’329519‘23’3: 3’13’23’323’19’2753?
> % (Y222 + Yaza), Xy %% ), %y (Va2a T VaZa),

2,22
x1x2x32y1y223, xlx2x32z1z2y3, zx13’121

formed by

together with the distinct invariants obtained from these by cyclic permutation

of x, yand z;

2 X1Y1%21 Uy,
zxiu?.ylzl:
ZZ%M% xlyl»
222"419‘1 Y1,

2
Z X1Y12%1 %

2,2

Z X1 Y121%,
2.2

23’121"1“1,
3

Zx13’121“1,

3 .
2“1 %1 Y1415

2.2

2%213’1“1,
2,2

23’1%1’5121:

3
Z Y1 21%1 %1,
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together with the invariants obtained from this by cyclic permutation of x, v,
z, % and v;

Z X1 Y1214 V1 W

{¢) Diploidal class (I, C,R,, R,, R,, D,, D,, D,) - (I, M,, M,)

As in the case of the hexoctahedral class, we see that since any polynomial
invariant for the vectors A" (r =1, ..., n) for the diploidal class must be in-
variant under the transformations I, C, R,, R,, R,, D,, D,, D,, it must be ex-
pressible as a polynomial in 22, 2, 43; x,9y, %393, %3¥3. The further require-
ment that this polynomial be invariant under the transformations (I, C, R,, R,,
R,, D,, D,, D,) - (M,, M,) implies that it must be invariant under cyclic per-
mutation of the subscripts. It follows from theorem 3 that an integrity basis
for the n vectors A" (r =1, ..., n), for the diploidal class, may be constructed
with elements of total degree two, four and six only. It is also clear from
theorem 3 that the elements of the integrity basis which involve only one

vector are
2t YAy, afagay and Y ad AR (s — ).

In constructing an irreducible integrity basis for the diploidal class, we note
that all of the elements of the irreducible integrity basis derived for the hexocta-
hedral class are also invariants for the diploidal class. We therefore construct
additional invariants for the diploidal class, which are not invariants for the
hexoctahedral class, but which together with the irreducible integrity basis for
the hexoctahedral class form an irreducible integrity basis for the diploidal class.
We denote the sets of elements of total degrees two, four and six in the irreducible
integrity basis for the hexoctahedral class by {H(2)}, {H(4)} and {H(6)} respec-
tively. Also, we denote the additional elements of total degrees two, four and
six, which must be added in order to form an integrity basis for the diploidal
class, by {D(2)}, {D(4)}, {D{6)} respectively.

The possibility exists that one or more of the elements in {H(2)}, {H(4)}
and {H(6)} may be expressed as a polynomial in other of these elements together
with elements from {D(2)}, {D(4)} and {D(6)}. This is, however, not the case.
For, it is easily seen from theorem 3 that there are no elements in the set {D (2)}.
Therefore, we cannot eliminate any of the elements {H(4 } Furthermore, if
an element of {H(6)} is to be expressible as a polynomial in the elements of
{H(2)}, {H(4)} and {D(4)}, it would involve the elements of {D(4)} linearly.
It could not then be invariant under all the transformations of the hexocta-
hedral class. It follows, therefore, that we may take the elements of the hexocta-
hedral class derived in §9(b) as elements of an irreducible integrity basis for
the diploidal class.

We define B, ; as the number of linearly independent invariants of degree
%1%, ... %, for the diploidal class, which are not invariants for the hexoctahedral
class. We note that BY .. BSZ 5 — P9 ., where I-:f,l i, is the total number
of linearly independent invariants of degree ¢,%,...¢, for the diploidal class
and P, is the number of linearly independent 1nvar1ants of degree 7,4y ... 1,
for the hexoctahedral class. B% , are therefore the quantities B,; glven
in Table 9. The values of B¥ for all possible values of #,7, ... ¢,, such that

1400 0n
Byd3.0iin
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41+ 1%+ - +4,=2,4 or 6 and at least two of the ¢’s are non-zero, are given
in Table 10.

We define 9, ;. as the number of monomial invariants of degree ¢;4, ... 1,
for the diploidal class, which are not invariants for the hexoctahedral class,
that can be formed from the elements of an irreducible integrity basis for the
diploidal class of lower degree than 47, ...%,. In constructing relations of the
type (9.1), the A’s and B’s will, of course, refer to invariants which are invariant
under the diploidal transformations, but not under all the hexoctahedral trans-

formations. R}Y; , is then the rank of the matrix relating A’s and B’s of degree

41 boaen Yy
438y ... 7,. Also {C},; .} will denote the elements of the irreducible integrity
basis for the diploidal class of degrees 4,4, ... 7, and all permutations of 4,7, ... 7,
which are not also elements of the hexoctahedral integrity basis. Bearing this
in mind, we proceed in the manner described in §9(a) and obtain the follow-

ing results.

Table 10
Gity... iy | 31122 51]42]33] 211 | 411 | 321 | 222 | 1411 | 3111 | 2211 |21111 | 111111
M in (1112134 2] 5] 7| 8| 3 11 13 | 20 30
fin (O] O 1] 23] 0] 4| 7|9 0 12 | 16 | 27 45
Finin | O] 01 1]2]3] 01 4 6 7 0 10 12 19 29

Foriyis...1,==31: P&=1, 93, =0, hence {C3;} may be taken as )" 2%(%, 9, — %3 ¥),
Z 3’% (%2Yg— %3¥3)-
For 4,4, ...1,=22: Bt =1, 933=0, hence {C%} may be taken as Y x}(y3—3)-

For iyiy ... i,=51: A =1, —1) (gl),
2

where

Al:zxizxi(xzyz_ %3Y3),
31=Zx$(xzyz—xaya), Bz=2x§x§(x1y1—x2y2),

and {C}} may be taken as ) 43 23 (x; ¥, — %2%5), Y 92 ¥ (%1 — %3 ¥a)-

For 4,4,...¢,=42:
(Al _ (1, 0, —1\ (B
4, 1, —1/| B3,

B2
where
A1:Z"§in(y§_y§): Az‘—"lehzxi(xﬂ’z—xa)’s)x
By=Y % (%;— %), By=Y xi#3 (51 —93),

B:,:Zx:fyl(x2y2 — %3¥3),

and {Cf;} may be taken as Y x7x3(y3 —y3), D 53 (+f — #3).
For ¢,4,...7,=33:

A, 1, —1, 1,

4, = —1,—1,

A3+A1_A2 3,
3

Arch, Rational Mech. Anal,, Vol. 15 18
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B
B
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where
A1=Z"§(5’§—y§)zx1y:, A2=in(xzyz_xsys)zy§»
A3=ny(x2y2— x3y3)2x§,
Blzzx:;yl(yg_yg)x 3222%3’?(";_"5):

By=Y) 51 y1(%25: — %3 ¥3), By=Y) %1 y:(23 93— %373),
and {C3} may be taken as Y 22 y2(x,y, — %3 y3).
For i1i2 .1, =211: Pm_z P311=0, hence {Cm} may be taken as ) 43 xl VoZp—VaZ)s
Y. Vi(%aza— %32y), 2 A(%aYa— %3Ys), Y %1 Y1 (Feza— %3Zs), D, V1% (%e¥e— ¥3¥3),
Y %171 (Ya2e — Ya2a)-
For 4,4,...3,=411:

4, 1, 0,—1, 1, 0\ ,B;
A, _ 1, —1,—1, 0\{ B,
A, - —1, 0, 1| Bs],
4+A 3: 0 B5
where B,

xzzz—xaza leylr
1 (%22, — %323) le,
1(%2 25 — %323),

3’2 Zy — Y323),

A1=Zx§ (%2 Y2 — %3 ¥s) lezl’ 4 Z
A3=Z 23 (Ya 2y — Y3 2s) le: Ag=Y
Bl“——zxg% (%22 — %3¥3), Bz=2
Ba—zxﬂ’ﬁﬁ xz“xs): B Z
B5=xlx2x32x1(y223~—y3z2),

and we may take {CJa} =3 x}(¥a2, — ¥s2s), 3. V(%22 — %323),

22‘3‘.("2 Yo — %3¥3)-
For 4,4,...14,=3%21:

4, 1, 0,—1,—1, 0, 0, 0 B,

Ag -1, 0, 0, 0,—1, 1 B,

A, _ 1,—1, 1, 0, 0 B,

A4, - -1, 0, 1, 1 B,

A, 1, 0,—1 B,

Ag+Ag— Ay —3 0 By

and B,

As=24,—24,+ A, +34,+ A, — 4,

where . . .
A1=Z 21 (% Yo — xsya)zyﬂl: 4, :Z %1 (%220 — x3z3)z Yi,
A, :2 x%(yzzz - yszs)z *1Y1, Ay :Z X1 Y1 (%22 — xazs)z *%1Y1,

A :Z Y1 (%22 — xszza)z 3, Aq :Z Y121 (%3 ¥y — xs)’s)z 3,
4, =Z xi(y“; - yg)z, X123,

BI=Zx§y1zI(x2y2—x3y3), BZ=Zx1y§zl(x§——x§),
Bs=Zx§y2y3(x2z3——x322), B4=Zx§yf(x2z2—x323),
35=fo(xzy§zz—x3ygza), Bezzxi%(yzzz_%zs)»

B, =Y x4 (:— ),
and we may take {C3} = Z X3 Y12 (%2 Y2 — %3 ¥3), Z %1 Y321 (Y2 % — Ya2a)
2 % V175 (%o 2y — %3 23), 2 X3 Y12 (%a2y — %a23), ) X1 YVi7 (%2 Y2 — %3 ¥s),
Z %1174 (Ya2s — Vo) -
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For 4,4,...1,=222:

A, 1, 0, 1, 0, 0, 0, 0, O B,

A, 1,—1, 0, 0, 0, 1, 0 B,

Aq 1,—1, 0, 0, 1, 0O B,

A, = , 4, 0, 0, 0 B,

A, 1, 1, 0,—1 B,

A9+ A8+A7 3: 0: 0 B'l
Ay—A;— 4, 3 O By

and B,

Ay =B, +B,=—A,+ 245+ A, + Ag— A, + 4,,
Ag=B,— By+By=—3A4;+ 345+ A, — Ay + 24, — A, +24,,

Aq ZZ 23 (Vo2 — yaza)Z Y141, A2=ny(x2z2 - xaza)lezl,
A3=Zz§(x2y2——x3y3)2x1y1, A4=in(z§—z§)2yf,

A=Y Ay XA, Ag=) il —2) L4,

4, =2y1z1(x2y2 - x33’a)2x121, A9=lezl(y222 - 3’333)2 *1 Y1,
A9=2x1y1(x222 - xszs)z Y121,

where

Bl—zx1y1z1(3’222—y333) B2=Zx1y§zl(x2z2—~xszs),
Bs'—leyl (%32 — %3¥3), B4=Zx§(y§z§-y§z§),
Bs—Z%(xzzz %375) B6=Zz§(x§y§*x§y§),
B7=Zx2x3y1z1(y223—yszz), BS=Zx§(y§z§—y§z§).

Hence {szz} may be taken as Y ¥ v, 2, (Vo 2, — V32a)-

For 4,4, ... 1,=1111: Bjj; =3, 91151, =0, hence {C};,;} may be taken as
Z % Y1 (22 % — 23U3), 2 %121 (Yo thg — Yathy), Z %y Uy (Vo 2a — Y3 23) -

For 4,4,...4,=3111:

A, 1,—1, 0, 0, 0, 0, 1, 0, 0, 0, O] (B, )
A, , 0, 0, 0, O 14, 0, O, 0,—1 B,
A, i,—1, O, O, O, 1, 0, 0, O B,
Aq 1, 0, 0, 0, 1, 0, 0,—1 B,
A, = 1,—14, 0, 0, 1, 0, O B,
Ay 1, 0, 0, 1, 0,—1 B,
A,—A,—A, -3, 0, 0, 0, O B,
Ag—A,—A, —3, 0, 0, O B,
Ag—A,—A4, -3, 0, 0 B,
Ayg—Ap+4y, 3 0 By
and Bio

34, =24,—24,— 44, — A+ A5+ 24— Ay + Ag+244—3 4y,
3Ap=—A+ A4, +24;+24,— 245 — 44— A; + Ag+24,+34,,
where
A1=Zx1y1(22u2 ‘zaua)z 23, 4, =fo(zzu2—z3u3)z %1¥1,
A3=Z xf(xz Y2 — x3y3)221u1, A4=Z %121 (Vo thy — 3’3“3)2 %,
As :2 xf (Yathp — 3’3“3)2 %121, ABZZ xf(xzzz - xazs)z Y1y,

4, Zz %y 04y (Vg 22 — yaza)Z A3, Aq 32 X3 (Vo2 — ysza)z Xy %y,
15*
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A9=Z (xzuz_x:;“s)zylzlr Am:Znyl(xzzz—-x3z3)2x1u1,
An:Z 1}’1("’2“2_9‘3”3)27‘131: A12=Zx1z1(x2142*x3u3)2x1yl,
B1=Z 23 Y1 (2149 — 23143) Bz=foz1u1(x2y2—x3y3),
Bs=Z X3 (%3 Vg 23 Uy — X3 V3 23 Ug), B4=in’z1(y2u2—y3u3),

B;= foylul(xzz2 ¥323), Be=fo(xzz2y3u3—x3z3y2u2),
B7—Zx1u1 YaZe — ¥323), BB=fo:vlzl(x2M2—x3M3).

B, :Z xi (%292 Y325 — ¥3%3 V2 2), Bio ZZ x1y131”1(x§ - xg)»
By = %, % %3 ), Y1 (23 g — 23 3) .

Hence {C},,;} may be taken as Y x, v,z (¥3 — 23), Y. %3 Y1 21% (Vs — V),

For 4y ...1,=2211: Yyt (5 —25), Y Xy Yyt (U5 — ).
Ay 1 00—1 0 0 0 00 0 1 0 OBy
A, 010 0 0— 0 10 0 0 0 o0|lBy
A 010 0 0 0— 01 0 0 0 o0lB
A, o 0 01 0 O O O O 0-—1 0 1]} B,
Ay -1 10 0 0 0 0—1 0 0 0 0 ollB,
A —1 1 0 0 0 0 01 0 0 0 O|B,
4, 1 1 0 0 0 O O O O 1 0| | Bq
A, 1 1 0 0 00 0 0—1 0]|By
Ay = 1—1 0 0 0—1 0 0 O0f|Byl’
A, 1—1 0 0—1 0 0 O||B,
A, -1 00 0 0 0 1||B,

Ag+-A,—Ay 3 0 0 0 0 oflB,

Ag— Ay +Ayg 3 0 0 0 oflB,

Ag—A,—4;5 3 0 0 O

Ayot+A1—4, 3 0 0

114, 3 0

where

A1=Z 23 (Y32 — Vg %) Z}ﬁ”p Ay= fo(y2u2—y3u3)zylzlr
A3=Z X7 (2 Uy — 23 Ug) Zyl» A= leyl(xzzz—xazs)Zylul,
Aszz %y Y1 (% %0y — X3 3) Z%Zp Ag= lezl(xawz—%us)ny,
A7:Zy x2z2 X3 23) Z’ﬁ”p Ag= Zx13’1(y2”2_3’3”3 Zxﬂp
As=2y (yaus — 3“3)2"%» Ayo= Zx1(3’2 v3) 221”1»
Au:ZY(xz""z xa”s)lezp A= 23’1 Fy Uy — Z3 ) pr
A13:Z T Y1 (V222 — yszs)zxﬂ'ﬁ’ A14—Zx1y1 227"2—33”3)27‘13’1,
A15=Z %y 2y (Yathp — ya”s)Z’ﬁyb A16=Zx1u1(y222—y3z3)Zx1yl,
B1:Z Xy Y111 (Vo2 — Y3Za) s 32=nyzlu1(x§—x§),
B3=Z X3 Vo Va (2 thy — 23045) , B4=foylzl(y2u2—y3u3),
3532% V3 (22000 — 23 005), BG=fo(y§z3u3—y§zzu2),
37323’1"1”1(7‘222_"323): B8=Zx1y1z1u1(x2y2—x3y3),
Bg=2x1z1y2y3(x2u3——x3u2), Blo:Zylzlxzxs(%“s—ya""z)»
Bllzzy%xﬂl(xz""z‘xx“s): Bm:nyxzx;;(zzus—z:,uz),

By= Z xfzf”l(yg“ yg) .



The 16 X 13 matrix above is clearly of at least rank 12. It is not of rank 13
since we obtain a column of zeros upon addition of columns 1,

Integrity Bases for Vectors

Thus, the matrix is of rank 12 and we see that {C;"m} may be taken as

Z xf V3 (2t — Z3tg)

2 xfzf(yzuz — Y3 uy),

fo'”'f(yzzz — Y373),

, 7 and 13.

OO0 COQLOOO=- =2, 200000000 0CO0CCOCCQ

Y VA (gt — Haths), zyf“f(xzzz—xsza), DA (%Y, — % Y3)-
For 4;¢,...2,=21111:
Ay, —1 0000010000 O0GO0~ 0020200
Ay, —1 01 000000O0O0O0O0O0O0O 0—1 0
Ay o—1 1 0 0 000 00 0 OO O0O0OO0OO0O 01
Ag o o0 o041 0 0 0 01 00 O0O0O0OO0O—-1 0 0 0O
4, 0—1 0 0 0 01t 0 0O0 0 001t O0O0OO0O0OTO0
Ag -1 06 0 0O 0 0001 00 O0OO0OO0OT1TO0OO0OO0
A, 0o—-1 00 0 001 00 O0O0OO0OO0OO0OT1T OO O00
Ag o o0 0o—-t 01 0 0 O0OOO0OO0OO0OO0OO0OO0OI1T O0O0
A, -t 0 0 01 00 0 O0O0OO0O0OO0O0OO0OO0OTUO0OTI1T0O0
A, -1 0 0 0 0 00O 0O1 0 00 0 0 0O0O01
Ay 1—1 0 0 0 0 0 0 00O OO O0— 00
Ay -1 0 0 01 0 0O 0000 01 0 O0 O
Ag -t 0 01 00 01 0 0 0 0 0 0 O
Ay = ~1 1 000001000000
Aoy 1 0 0 0O 0 01 0 0 0O 0 0 0—
Ay 1 00 0-1 000000 0—
A 1 010000000 0—
Ay 1—=1 0 0 0 0 0 0 0 0—
Agy— A g+ Ay 300000000
Ayg— Ayt Ay 30000000
Agg— Ayt Ags 300000 0
Ay—Ady—Ayy 300000
A—Adg—A, 300 00
Ay—Ay—Ags 3 000
Ay—Ag—Ay, 300
Ay—d—Ayy 30
Ay— 40— 4y, 3
where

A1~Zx1y1 zz“z*zs“s)z:xl”lx
A3:Zx1u1(y222 yazs)levl:
A5:Z %12 (Yo — 3)2"1“1,
A7——Zx1y1 “2”2‘“3”3)2’5121:
Ag =), 212y (%athy ~— Ztty) 23’11’1:
All:lezl(x2v2_x3v3)zy1%1:
A13=Zx1v1(y2u2—y3u3)2x1z1,
A15=Zx1%1(z2v2~zgv3)2xlyl,
A=Y %Y1 (%2 — %325) ) 4y 75,

A19=Z xf(yzwz - ys“s)zzlvl,
An =Z xf (Zzuz—zsus)z Y171,
A23=Zx§(22v2 _337’3)23’1”1:

A, :z %y 21 (Yo g — Y3 tts) Z %171,
A4:Z % Y1230, — 23”3)2 Xy Uy,
Ag :Z %191 (Vo2 — Y323) Z X Y,
ABZZ Xyt (Yo Vg — ya'”s)z X121,
A=Y, %y ¥1(%2 05 — % Vy) 221%1,
Ay, :Z %y Uy (%p Vg — X3 73) 2 Y121,
Ay =Y %321 (s 0y — Uy 03) 3 %y Yy,
A= z %1V (29 % — 233) Z %11,
Ayg ZZ %y Y1 (% sy — X3 ) 221”1:

A20=Z x5 (Va2 — 3’323)27"1”1,
A22=2 23 (¥ vy — ya”:a)zzl“h
A24:Z xf (030 — “3”3)2 Y1%1,
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Ayy—AgtAs,
A,-,—A“—-A“
Ayy—AytAy
Ay —Ap—Ay,
A, —dyt A,
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zszz Y121 (16205 — %3 05) va A%:Z y1”1(zz7’2—23”3)2x§»

2722 Y101 (22 %5 — 2343 Z’ﬁ: BI:foylvl(zzuz—zsus),
zlezlulvl(x2y2 %3Y3), Ba=zx1x223”"s(7’1y2“‘v2y1)»
B4=Zx121v1 Yalha — YgUs), 35=Z %1 V1%, V1 (Xa 2y — X325},
Bszlexzyaus(vlzz_vzz1)» B7=fo“101(yzzz‘—yszs)»
Bs=2x1ylzlvl(x2u2—-x3u3), Bazlexzhza(%“z“vz“ﬂ’
Bio =), %1 Y1t (2202 — 2373), By =Y, %1 %3 2303 (U Y3 — %2 Y1)
Bm:z,x?%“l(yz”z—yavs)» Blszzxlx2y3v3(%1z2—u221),
B14=Z %y Y12 %y (%2 V2 — FgV3), BI5=foy1z1(u2v2—u3v3),
Bm=§:x1x2%svs(yzzl—ylzz), B17=fo(y232“37)3—3’323“27’2)»

=fo(y2”2237/3 — Y3z 2y7y), Bm:Z %3 (Yo U Zg g — Y3VUg Zgths) ,
Bzozz 3’131“17’1(752 —x35).

The 27 X 20 matrix above is clearly of at least rank 19. It is not of rank 20
since we obtain a column of zeros upon addition of columns 1, ..., 10 and 20.
Thus, the matrix is of rank 19 and we see that {Cpj;,;} may be taken as

Z Y1414, 01 (xg - x§) , Z 1 7'1'”1"’1(5’ Y:;) Z %1Y1¥%1 % (Zg - zg) ’
leylzlvl(ug““:g)» Zx1y131”1(v2—v§)'
For #;7,...5,=111111:
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01
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where

4, =Z %y Y1 (22 Uy — z3u3)Zv1w1,
Az =Y, 2 (Vw05 — v3104) ), % V1,
A5 =73 %2 (V05 — v33) ) V1%,
Aq =Z Xy thy (Yo 2g — 3’323)2")1”’1»
As-_—z Y171 (va @, —v3w3)z X1%y,s
Ay =Z Xy Wy (Y2 Vs — %%)Zﬁ“p
A :2 %y Wy (Y222 — Y323) 2”1711,
Ay :Z Y121 (Ug Vg — “3”3)2 Xy 101,
Ag ZZ Xy % (Vg Yo — 7)33’3)231”’1:
A19=Z X101(Y2 % — 3’37‘3)2“11"/1,

(
21 =Z Y121 (%10, _uswa)z %171,

4

Apy =, 2,01 (29 — 2303) ), Y1941,
Aps =) %001 (Y20 — Y3103) 3, 2171,
Ay 22 Y191 (2203 —zsvs)z X141,
Agy :Z %1 Y1(%2 W, —uswa)zzxvp

Ag ZZ %1 Y1 (22 W, —‘sta)z%vl,
Agy =Zzlw1(%vz _“3"73)2 X1 Y1,
A35=Z %y %y (149 Wy — ”3”’3)2 Y1V1,
Asgy =Z %121 (Yo o — yaws)zul"’h
Agy =Z Y1 Wy (405 — “3"’3)2 X121,
Ay =73 %91 (2w — 2305) ), Y1941,
Agy :Z %103 (Yo Wy — yaws)z'ﬁuh
Ags =2 Y19y (2p 4y — 23s) Z %171,
By=) 21,0, (%3 Y2 — %3Y3),
B, ZZ X1 Y1 (22 Uy V3 W5 — 23305 Wy)
By =Z Y1ty V3 Wy (¥g 2y — X323),
BB:Z % 303 W1 (Y2 2y — Y323),
By =Y %1% (Y2 2303 W3 — Y3230, 105),
By, —_—23’131“17)1(’521”2 — X310g),
By, =, %1 Y1211 (Va thy — Vathy),
Byg =2 % V1% 0y (3 Wy — 23W3),
Bis :Z Y121 U Wy (%p ¥y — X373),
Bzo:Z ¥y Y121 01 (Uy Wy — %3 W5),
By, :Z Xy Wy (Yo Ug 2303 — YathgZaVy) ,
B, :Z Xy Uy (Y2 Wa Z3Vg — V3 W3ZaVy),
By :Z % Y1 (2o Wy 3 Vg — 23 W5 15 V) ,

By ZZ X121 (Y2 Wo Us Vg — Y3 WaUgTy),

By = %191 (Y2 Wy 233 — Y3 Wa 2 t45) .

207

Ay =7}, %Y1 (Vawy — U3 w3) ), 21 %y,
4, =Zx1z1(y2u2 - ya“s)Z%wp
A6=Z y1“1(v2w2—vsws)zx121r
Ag =Zx1u1(v2w2 —v3w3)z Y121,
A=Y, %10y (22, —23%3)23’1711,
Ays =Zzlu1(v2y2— ”3)’3)2 %1%y,
A14=Zx1w1(v2u2 —”3“3)23’121;
Alﬁ:z %y t1 (222, —sts)z Y171,
A18=221w1 (”23’2_”33’3)2 %14y,
20 =, %191 (o Wy — UsW3) ) V121,
2222 X1 Wy (Vo thy — Q’:;""'s)zzlvh
24 ZZ Y1ty (2205 — 23'”3)2 X Wy,
26 :‘2 Xy %y (250, "zavs)z Y1%1,

28 :Z *1 y1(22”2_23”3)2“1w1,

30 =), 2101 (U Wy — 3 W3) ) %y ¥y,
32 :Z %1 Y1 (%3 0y _”3”3)221”11,
Asy 22 %12y (Yavp — 3’37/3)2“11”1,
Asg :Z %”1(’”2"”2—”3”’3)2 X121
Agg =Y %12 (9, — u35) ) Y10y,
A4o:Z %10y (Yo thy — ya“s)zzlwp
Ay ZZ V1% (22 W5 —23”’3)29517)1,
Ay :Z %11 (23 %, —33“3)2 Y191,
B, ’—‘Z %1 Y1010y (220 — 23Us)

By =Y %121, (02105 — v305),
By=Y %129, (Yo Uhy — Y3 thg),

B, 22 %121 (Yo Uy U3 W5 — Y3Ug Uy W),
B, :Z Y1210, W@y (% 1p — Xg3),
By =Y %1219, (V395 — 03 Y3),

B, :Z Xy Wy (Vo Up 23Uy — Y3 Vs ZaUs),
Bis =Z %30y (Y3 2a U Vg — Y5 23Uy Vs),
By, :Z Xy Uy (Y Vp 235 — Y332, W3),
By :Z %y 0y (Yo 2 Ug Wy — Y323y Ws),
By, :Z Xy Y1 % W1 (20 — 2303),

Bos =Y, %1211 03 (Y2105 — Y303),

B, ZZ X1 Y1 (2 Vg Ug Wy — 23V3 Uy Wy) ,
By, 22 %121 (Yo Vp U Wy — Y3 Uty Wp),
By 22 %10y (Yo thp 235 — Y3Ug 2y 03),

'

[ NN N« N N N
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The 45 xX30 matrix above is clearly of at least rank 29. It is not of rank 30
since we obtain a column of zeros upon addition of columns 1, ..., 14 and 30.
Thus, the matrix is of rank 29 and it is clear that {Cf,;,} may be taken as

z X1 Y129 (Vy Wy — Uy Ws).

Summarizing the conclusions reached above, we see that an irreducible in-
tegrity basis for the n vectors A" (» =1, ..., n) for the diploidal class is formed
by the invariants (9.2), together with

D 1 %y (2 — 43);

Z’ﬁ Vs — Y3 foyf xzyz x3y3),

fo(xzyz“x:’,%)» lexz v — Zx%xg(xlyl—xzyz),
ny(xﬁ’z_xsys)x Z%yz xf——xz) nyyg(xﬂﬁ_xzh)?

2% (Yeze — V323) s X 51 (%a 2y — %3 23), (9:3)

Z %3121 (%Y — %393) » Z X5 Y12 (%g 2 — %a2g), Z %3 (Y225 — Vs 43)

and the invariants obtained from these by cyclic permutation of x, y, z;

Z X517 (Vo 2y — VaZa);

Y F1 Yy (2 thy — 233), Y %121 (Yo thy — Y3 ths), Z’ﬁ%(yzzz_yaz:;):
Z % Y12 %, (%3 — 43), Z %1 Y120 (Y3 — ¥3), Z %1 Y12t (2 — 73)
Z %y Y12 Uy (5 — 013), Z X3 Y3 (2185 — 23003) , Z X325 (yathy — Yatha),
foug(yzzz-yszs): nyZf(xz%—xsus), nyuf(xzzz—xazs):

z Uy (%Yo — %3 Vs);

Z Xy Y12 % (V3 — 03)
and the invariants obtained from this by cyclic permutation of x, ¥, 2, # and v;

Y. #1 Y12, Uy (Vg Wy — a203)
(d) Hextetrahedral class (I, Dy, Dy, Dg) - (I, My, M,, T}, T,,, T;)

We first generate an integrity basis for three vectors @, y, 2z and for this
purpose it is convenient to hold in abeyance the convention described in § 3.
We see, from the discussion of the rhombic-disphenoidal class in § 35, that if

a polynomial in the vectors @, ¥, 2 is invariant under the transformations
I1,D,, D,, D,, it must be expressible as a polynomial in the quantities

X1X3 %3, Y1YalV3, 213243, X1Yald3, XaV3Z, X3V1%a,

9-4)
X1Y32a, X2V1%3, X3¥2%
and the quantities X (i =1, 2, 3; =1, 2, ..., 12) defined by
X0 =22, XP =42, XP =2,
9.5
X£4)=yizi) X(s =2 %, Xss):xzyt ( )
and
XY):xzxsyp X{s):%yaxp---: X{m):zzzsyp
X = 232,93, XP =y3 91 %, ..., X =232, 9, (9.6)

XO=m%y;, XP=y1y%, ... X{¥=z2z5.
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We note that the product of any two quantities selected from (9.4) and (9.6),
including the square of a single quantity, may be expressed as a monomial in
the quantities (9.5). It follows that any polynomial in the quantities (9.4), (9.5)
and (9.6) may be expressed as a polynomial in these quantities, of degree unity
in (9.4) and (9.6). We note further that the quantities x;%,%5, ¥1¥3¥3, 21%:%
are invariant under (I, D,, D,, D,) - (I, M,, M,, T\, T,, T;) and that any linear
function of %, V.25, %,Y321, ¥3V122, %1 Va2, ¥aV1%5, %32 With coefficients which
are polynomials in the quantities (9.5) is expressible in terms of (i) linear func-
tions of %952, ..., #3¥s2, With coefficients which are polynomials in ) %,
Y %3, > 4 and (ii) linear functions of the quantities (9.6) with coefficients which
are polynomials in the quantities (9.5). This follows immediately from identities
of the form

.2 a2
X1Yo23- X1 Y1 = %1 V1 Y243, X1Ye%3 " ¥g V2 = Yy~ ¥4 X323,
. 2 __
X1YaR3 X3Y3 =Yg X3 X1 Vs, X1Y2Z3- Xg= X3}y X1 X523,

2
X1 Yol23- X3 = X323 X3 X1 Yy
and

2 __ 2 2 2
x1y2z3-xl—x1y2z3-2x1—x1y223- Xg — %1 Ya%3- X3.-

It follows immediately from theorem 4 and the further requirement of invariance
under (I, D,, D,, D) - (M,, M,, T,, T,, T,) that an integrity basis for polynomials
of type (i) is formed by Y 43, > 9%, Y 23, D %, (Va2 + ¥s2,). The further require-
ment of invariance under these transformations implies that the polynomials in
the quantities (9.5) and (9.6) must be invariant under all permutations of the
subscripts on the X’s. Consequently, from theorem 2 and bearing in mind the
linearity of the polynomial in (9.4) and (9.6), it must be expressible as a poly-
nomial in invariants of degree not greater than 7 in the vectors.

If we examine the invariants of total degree seven in the vectors @, y and z
generated by the application of theorem 2, we find in each case that they can
be expressed as polynomials in invariants of lower total degree. We conclude,
therefore, that the elements of an irreducible integrity basis for the vectors «, y
and z for the hextetrahedral class are of total degree not greater than six.

The elements of the integrity basis which involve one vector only are, from
(9.4), (9.5) and theorem 2, Y 4%, > 2242 and x, x, %5, together with the invariants
obtained by substituting y and z for x. We shall determine, following the pro-
cedure described in § 9(a), elements of an irreducible integrity basis involving
two and three vectors. It will be seen that the invariants in the irreducible
integrity basis for three vectors so obtained are of degree not greater than four.
It then follows from theorem 5 that the elements of an irreducible integrity
basis for an arbitrary number of vectors have degree not greater than four.

Accordingly, we calculate P, ; for all non-zero values of ¢, and 7, such that
i, +1,=6 and I} ;,; for all non-zero values of 4, 4, and 7, such that ¢, -4, 4 4356
and, in addition, we calculate F,;;. These values are given in Table 11. Pro-
ceeding in the manner described in § 9(a) we obtain the following results, using
again the notation of §3.
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Table 11
iliz...i” 112113112241 32)51[42|33 111 | 211 | 311 | 221 {411 | 321 [ 222 | 1111
B iyin 1012132134 |6{6| 1| 3| 4| 5]|7]9]|12] 4
i igoin olo|1/2]2/3|4]7(7]| 0 2| 4 S | 8 111 | 15 3
iriaenin o|o|1]|2{2|3|4]6]/6| 0| 2|4 51719112 3

For iy4y...5,=11: By=1, 9;,=0, hence {C,;} may be taken as } x,7,.
For 4y4,...9,=21: By=1, §5,=0, hence {C,} may be taken as ) x,%,%,,

Z Y1Ya%3-
For ¢,4,...1,=31:
A=, 1) (Bl
5
where
A= Z 2 Z ¥1Y1,
Bl:zx: Y1, Bzzzxg(xﬂ/z“f‘xa%)»

and hence {C;;} may be taken as ) 23(x,y,+ %3¥3), 3. V5 (%272 -+ %3¥s).

For 4,4, ...4,=22:
4\ _ (1.1, 0 B,
A, 0,1, 2 B,

B,
where

4,= (z %1 Y1)% A2:Zx§2 y12»
Bl=2x§yf, Bzzzxixzyﬂ’zr B3=in(y§+y§),

and hence {C,,} may be taken as ) x,%,9,%,.

A\ (1 1\ (B,
4,) " \o, 1) \BY)’
A1=zx2x3ylzx%, A2=x1x2x32x1y1,

Bl:xlxzxaleyll Bz=2x?(xzya+xayz).

and hence we see that {C,;} contains no elements.

For 4,4y ...4,=41:

where

For iyd, ... 4,=32:

A, 1, 1, 0\ /B
A, = 1, 1 B,
A, 1 B,
where
A1=Zx§2x1y2y3, Azzleyllexzyax A3=x1x2x32y%:
B1=Zx§y2y3, 32=Zx§y1(x2y3—{—x3y2), B3=x1x2x32yf,

and hence we see that {Cj,} contains no elements.
For 4,4, ...1,=111: By =1, ¥#1;,=0, hence {Cy;;} may be taken as

Z %1 (Y223 + Va25)-
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A, 1, 0, 1\ /Bs
= (%) (=),
where B,y
Alzzxizyﬂh Az=2x1y12x121,
B1=Z 23912, stz %1 Y1 (%25 -+ %323) B:,=Zx§(y222+y3zs),
and we may take {Cp;} = #3v12,, 3 Y3z, D 2%y,
For 4,75 ...4,=3%11:

For 4;4,...4,=211:

4, 1, 1, 1, O\ /B,
4, _ 1, o, 1) [ B,
A 1, 1 By |
A, 1/ \B,

where
4, =inz %1 (V223 + ¥Y32),
As =Zx1y12 X9 X321,
B1=Z 23 (Yo 23+ V322),
By=) 5391 (%s% + %325) ,

Ay 22 x1z12 X9 X3 Y1,
Ay=2y%, xaz Y121,

B, =Z 252 (%3 Y3+ %3 ¥2)
By =%, %, xaz Y11,

and hence we see that {C,;,} contains no elements.

For 4,4,...4,=221:

Ag—A;+ A— As+24,
where

4, =Z %y (Ya2s -+ 3’322)2 X1¥1,
A3=lex23’32y1z1» A,

B, =Zx§y1(y223—l— Y3%s),

33=Zx1y1z1(x2y3+ ¥3Y2),

I

=2 AY %o a2,

1, 1, 0, 1, ©
1.1, 0, 0
1, 1, 0 ,
1, 1
3

A2=Z *1Y2 S’u‘: X121,

Ay =Z xizyz Y3521,
B, =Z %y 93 (g2 + %3 2,)

B4=Z x1ysys2, By =Z Vi %2 ¥ 2y,

and hence we see that {C,,} contains no elements.

For 44, ... ¢, =1111:

A, 1, 0, 0
1, o,
1

where
Ay :2 Xy Y1), 20y,
Aszz XLty ), Y32,
By=3 %19 (225 + 23%),
By=Y 2,1 (¥22 + y32,)

>

B2
Ba
, 1/ \B,
B

1

Azzz xlzlz Vi,
B1=Z ¥1Y1251%,,
B3=lezl(y2u2 + yats),

and we may take {Cyy;,} as Y x;, ¥, 2, 4.
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For 4,4, ...4,=51, 42, 33, 411, 321, 222, we have seen in the case of the
hexoctahedral class that there are 4, 6, 6, 7, 9, 12 linearly independent invariants
respectively which may be generated by the elements of the integrity basis for
the vectors ®, y and z for the hexoctahedral class. From (9.2), (9.7) and the
identity

Y Ve Vs ki) Btz Xy F2Y BVim Y Viz -+ Y Vi ma Y X s+
+Zz§x1y12x1y1 —Z xizy1y2zlz2—zx1yllezlz V1% =32x3yfﬁ:

it is readily seen that each of these basis elements for the hexoctahedral class is
expressible in terms of basis elements of total degrees 2, 3 and 4 for the hextetra-
hedral class. Thus, R;; . for 4;i,...7,=51, 42, 33, 411, 321, 222 must be
at least equal to 4, 6, 6, 7, 9, 12 respectively for the hextetrahedral class. Since,
from Table 11, these coincide with B ; ,; for iy4,...4,=51,42,..., 222, it is
clear that {Cy}, {Cpa}, {Css}, {Canr}, {Caas} and {Cypp} contain no elements.
Summarizing the conclusions reached above, we see that an irreducible in-
tegrity basis for the # vectors A" (r =1, ..., n) for the hextetrahedral class is

formed by

YA, YA, w
leyll lexzypn 23’13’2953: Zx1x2y13’2:

Z xf(xz Yo+ %3¥3), Z V3 (%Yo + %3 s); 9.7)
le(yzz3+y3z2), fo%zlx nyxlzp Zzixlyl;
ERE Y

(e) Tetartoidal class (I, D,, Dy, D) - (I, M, M,)

We shall first generate an integrity basis for the two vectors # and y and
for this purpose it is convenient to hold in abeyance the convention described
in §3. As in our discussion of the hextetrahedral class, we see that if a poly-
nomial in & and ¥ is invariant under the transformations I, D,, D,, Dy, it must

be expressible asa polynomialin x, %, %3, ; ¥, ¥sand the quantities X{!, X, ..., X
(=1, 2, 3) defined by

X =4, XP =y, XP =x9; (9-8)
and

X =a2551, X =329, X =1x,%7s, (9.9)

XP =y, y3%, XP =y %,  XP =v9,%.

We note that the product of any two quantities selected from (9.9), including
the square of a single quantity, may be expressed as a monomial in the quantities
(9.8). It follows that any polynomial in the quantities (9.8) and (9.9) may be
expressed as a polynomial of degree unity in (9.9). If further this polynomial is
invariant under the transformations (I, D, D,, D) - (M,, M,)}, it follows from
Table 1 that it is invariant under cyclic permutation of the subscripts on the
X’s. Consequently, from theorem 3 and the linearity of the polynomial in (9.9),
it follows that the elements of an irreducible integrity basis for the vectors @, y,
for the tetartoidal class, are of total degree not greater than seven.

If we examine the invariants of total degree seven in the vectors & and ¥
generated by the application of theorem 3, we find in each case that they can
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be expressed as polynomials in invariants of lower total degree. We conclude,
therefore, that the elements of an irreducible integrity basis for the vectors
x, y for the tetartoidal class are of total degree not greater than six.

The elements of the integrity basis which involve one vector only are, from
theorem 3, 3" x3, ) 2% 23, %, %,%3, Y 4% #3(x} — #3), together with the invariants
obtained by substituting y for x.

We shall determine, following the procedure described in § 9(a), elements
of an irreducible integrity basis involving two vectors. It will be seen that
the invariants in the irreducible integrity basis for two vectors so obtained are
of degree not greater than six. It then follows from theorem 6 that the elements
of an irreducible integrity basis for an arbitrary number of vectors have degree
not greater than six and therefore none of the elements can involve more than
six vectors. In reaching this conclusion, we note that det[®, y, 2], where @, y, 2
are three vectors, is invariant under the transformations of the tetartoidal class.

In constructing an irreducible integrity basis for an arbitrary number of
vectors for the tetartoidal class, we note that any invariant of even total degree
is an invariant for the diploidal class and can therefore be expressed as a poly-
nomial in the elements of the integrity basis for that class. This integrity basis
consists of the irreducible integrity basis for the hexoctahedral class (9.2) to-
gether with the invariants (9.3). We also note that any invariant for the hexocta-
hedral class is also an invariant for the hextetrahedral class and can therefore
be expressed as a polynomial in the elements (9.7) of the irreducible integrity
basis for that class. Consequently, any invariant of even total degree for the
tetartoidal class can be expressed as a polynomial in the elements of (9.3) and
(9.7). We note that all of the elements in (9.3) and (9.7) are invariants for the
tetartoidal class. It is apparent, by inspection, that none of the elements in
(9.3) and (9.7) is redundant in the sense that it can be expressed as a polynomial
in the remaining elements.

Therefore, in order to construct an irreducible integrity basis for the tetartoidal
class, we must construct those elements of odd total degree which together with
(9.3) and (9.7) form such a basis. It is apparent from theorem 3 that there are
no such additional invariants of degree 3, which involve two vectors only.

Analogously to the case of the diploidal class, we define P, _; as the number
of linearly independent invariants of odd total degree 7,7, ... 7, for the tetartoidal
class which are not invariants for the hextetrahedral class. 9 ... R¥; ..
{C¥.....} are defined in a corresponding manner. Again, in constructing relations
of the type (9.1), the A’s and B’s will, of course, refer only to invariants which
are invariant for the tetartoidal class, but not for the hextetrahedral class. In

Table 12
fydg.e.ty | 41| 32 | 111 { 311 | 221 | 2111 | 11111
Bl in 11 1 3 3 6 | 10
O} iy 0] 0 0 1 1 4 10
Ginenin o| o 0 1 1 3 6

Table 12 are given the values of B . for ¢;4i,+ --- +14,=5 where at least
two of the ¢’s are non-zero and also for 4,7, ... 7,=111. We then proceed in the
manner described in § 9(a) and obtain the following results.
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Foriyiy...1,=41: By =1, 9§ =0, hence
{Cﬁ} may be taken as Z xﬁ(xz Y3 — X3¥s), Z V3 (%295 — %3 93).
For 4,4, ...4,=3%2: Ps=1, #%=0, hence
{C#%} may be taken as ) 43y, (%¥s— %3¥s), 2, ¥1%1(%2¥s— %3¥s).
For 4,4, ...4,=111: B =1, 9§;=0, hence
{Clu} = Z %1 (Y923 — y3 %) =det[@, y, 2].
For 4,4,...1,=311:

A,=(1,1, —1) /B
B, ],
By
where
A=Y x1(¥ats = ¥s2) - LA, By =Y 23 (¥22— ¥322),
By =) %12 (%sy5— %3 %a), By =Y x3y1 (%23 — %32),

and {C},} may be taken as
Zﬁzl(xzys—xsyz), Zyixl(yzzs—y3z2), Zzih(xzzs_xazz)»
zxih(xzzs_‘xszz): Zﬁ%(xzys_xsyz)» szxl(yzzs“yazz)-
For 4,7, ...4,=221:

B, 1,
By
where
Ay =Z %y (Yo% — Va2g) Z 51, Bi=) %1y121(%2 Y5 — %3%2),
B2 ZZ x%yl(ygza_yazz)’ B3=Zy2x1(x2z3'—x322)

and {C#} may be taken as
X 491 (Ya23— Ysa), 2 Vi (%ats — %32), LA %1 (%2 Y5 — %3 Ys),
Zy%’ﬁ(xzza—‘xazz): Zz%yl(xzys_xsyz): Zx:zlzl(yzza"‘yszz)~
For 2,4, ...4,=2111:

Ay 1, —, 1, 0, 0, 0 B,
A, _ 1, 0, 0, 1,—1 B,
A, 1, 1, 0,—1 B,
A, —Ay+A4,—A 0, 0, 0 B, |’
BS
B

5
where
A1:Zx1(3’223_3’332)‘2x1”b A2=zx1 Yathy — Yalhy) lezl’
Ay =Y, %, (245 — 234,) DA Ag=Y 1 (22185 — 23%,) DI
By=Y #u;(¥2 25— Ya2), By =) #1y10, (%225 — %32s),
Bszz %12 % (%2 Y3 — %3 ¥) B4‘Z xizl (yathg ~— Yaths) ,
By =Y %, Y17 (¥ath3 — ¥3ts), Bg=3 2%y1(z,05 — 23105),
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and {Cfiu} may be taken as ) % y,4; (%325 — %3Zs), 3, %1210 (%2Y3— %3Y5),
Y. #3912, (%43 — %3%,) and the invariants obtained from these by cyclic per-
mutation of x, ¥, z and «.

For 4,4,...4,=11111:

( A, ) 1, 0, 0, 0, 0, 0,—1, 1, 0, 0] (B,
4, 1, 0, 0, 0, 0,—1, 0, 1, of |B,
Ag 1, 0, 0, 0, 0,—1, 1, o| [B,
4, 1, o, 0,—1, 0, o0, 1| |B,
Aq = 1, 0, 0,—1, 0, 1| |Bs

As 1, 0, 0,—1, 1| |Bs |’
Ag—Ag+Ag—Aq o, 0, 0, o| |B,
A;—A+A,— A 0o, o, ol |Bs
Ag—A,+A,—Aq 0o, ol {B,
40— A4, +A4,—A4g) 0) By

where
A1=Z %y (22 V3 — 237) 'Zh“p A2=2 %y (4 V3 — g Vy) '23’131,
A:s:Z V1 (2 %3 — 23%5) ‘Zxﬁ’p A4=Zy1(zzv3—z3v2) ‘le'“n
A5=Zx1(3’2z3_3’332) '2”17)1: A6=z %y (Yo ths — Y3ths) '2217’1,
A,:Z %1 (Yo Vs — V3 ¥s) '221“1» As=z %y (29 %63 — 23%,) 'Zyl'”l,
Ag=7) 1 (thgvg —Ugty) - Y. Hy21, Asg=1 2 (v — 4y 0p) DALY

By=) %912 (03 — 430,), By =) %, 1t (2305 — 230,),
By =Y #1911 (25 — 2304,), By=Y %1210, (Y293 — Y30s)
By “—"z %121 V1 (Yo Ug — Y3Us), By ZZ %y 4y V3 (Yo 23 — Y3 2a)
By =)yt (%305 — %30y), By=7Y y12,01 (%3 %43 — %3 thy),
By '—“Z Y1ty V1 (%223 — %32,), Bi, =231""1"”1(’52 Y3 — %3¥s)

and {Cfj1y} may be taken as ) y 2% (%05 — %30,), 3, 12,0y (%p%g — Xgthy),
2 V190 (%323 — Xa2a), Y, 21ty Vy (% Y3 — X3 ¥).

Thus, an integrity basis is formed by the quantities (9.3), (9.7) and the
{CE.....} given above. It remains to show that none of these quantities is re-
dundant.

It is apparent, by inspection, that none of the elements of (9.3) and (9.7)
can be expressed as a polynomial in the remaining elements of (9.3) and (9.7).
It is also clear from the manner of derivation that none of the {Ck....i} is
redundant. It is necessary however to verify that the products of elements
of degree three from (9.7) and the {C¥; .} may not be used to eliminate elements

of degree six from (9.3). We are assured of this by identities of the form

X1, Y1, %1 (%1, V1, Wy Z’ﬁ”p Z)’l%l, 221%1
Xa, Voo Za| |, Vg, Wo| =1 XV, D yivy, D zvy
X3, Y3, 23| |3, Uz, W3 lewl» Zy1w1x Zz1w1
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and

32 %y (Ya2a— Vaza) - D, thy (03105 + V3 W) = Y 2y 0y (Vo0 — Y3 ¥3) - 3, 210y
— Y %y 0ty (2 Wy — 23%05) 'Zy17)1 — ) 2@y (Vg Yy — V3 Ys) - ) Xy Uy —
— D Xy W0y (2 10y — 23 0h3) 'Zy] 51 +Z %1 Wy (Y2 — Ya¥s) '221”1 -
— 2. 211 (V3 Y2 — 3 ¥3) -lewl—l—lewl(yzuz— Yathy) - D 20y —
— 2 %) (205 — 2375) z Yrthy - D ¥y 94y (22 ¥z — 2373) 'lewl =+
+Zx1”1(3’2w2_3’3w3) 'Zz1v1_2x1%1(22v2_23v3) 'Zy1w1 +
+ D y1w@; (2502 — 2373) 'Zx1”1+zx1v1(3’2%2—3’3“3) Yz —
—levl(zzwz—z3w3) ~Zy1u1-{—2y1u1(z2w2—zaw3) : Z %+
+Zx17}1(3’2w2_3’3w3)'221”1_2"17)1(22“2_33“3)'Zy1w1+
—{-Zy1w1(22u2—23%3)-2x1711.

Thus, the invariants of the form Y x;(Vy23— ¥a2) « 3, #; (v, +v3w,) and
Y %y (Vo253 — Vazs) - 3. 4 (Va5 —v3w,) are seen to be expressible as products of
invariants of degrees two and four from the sets (9.3) and (9.7) and hence may
not be used to eliminate invariants of degree six from (9.3).

Summarizing the conclusions reached above, we see that an irreducible in-

tegrity basis for the vectors A® (r =1, ..., n) for the tetartoidal class is formed
by the invariants (9.3), (9.7) and
2 X3 (Fa Y3 — %3 ¥a) s 2 Y1 (% Y3 — %3 ¥s)
Vi % (%2 Y5 — %3 ¥a) 2 Vi (%2 Y3 — %3 9s);
2 %1 (Vas — Ya2) =det[x, y,2]; (9-10)
2 A%z — %y 2), 2 %z (% Y5 — %3Ys),
241 (Va2 — Vs ), 2 V1 %1 (%y25 — %32,)

together with the invariants obtained from these latter invariants by cyclic
permutation of %, ¥ and z;

Zx1y131(x2“3’“x3“2), Z %y Y1 U (X223 — %32), Zx121“1(x23’3_ X3 Ya)

together with the invariants obtained from these by cyclic permutation of x, ¥,
z and u;
2 Y12ty (%05 — %37y), 2 V12105 (%o thy — X3 tha),
zyl’”lvl(xzzs—xszz): 221”1"71(9523’3_"33’2)-

10. Integrity bases for absolute and polar vectors

For a proper orthogonal transformation, the transformation law for absolute
and polar vectors are the same and consequently for the non-centrosymmetric
groups considered (subgroups of the proper orthogonal group) the irreducible
integrity bases obtained for absolute vectors are also irreducible integrity bases
if some or all of the vectors are polar vectors.

Consider a centrosymmetric group {%,}, the transformations of which con-
sist of those of some non-centrosymmetric group {%,}, together with the central
inversion transformation and its products with the transformations of {#,}.
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Let 4, (r=1,2,...,n) and B, (s=1, 2, ..., m) be absolute and polar vectors
respectively. Suppose that I}, I,,..., Iy and ], J,, ..., Ju are the elements of
an irreducible integrity basis for these vectors under the group {%,} of even
and odd degrees respectively in the absolute vectors. Then J, J,, ..., Ji change
sign under the central inversion transformation, while I, I,, ..., Iy are invariant
under the central inversion transformation. Applying theorems 1 and 4, we see
that an integrity basis for the vectors A4, (r =1, 2, ..., n) and B, (s =1, 2, ..., m)
under the group {%,} is formed by Iy, I, ..., Iy and Felo (P, Q=1,2,...,M;
P=< Q). From this integrity basis, an irreducible integrity basis can be derived
by eliminating redundant elements by methods generally similar to those used
in deriving irreducible integrity bases for absolute vectors. Also, the irreducibility
of the integrity bases can be demonstrated by methods similar to those used
earlier in this paper.

11. The anisotropic tensors

We define an anisotropic tensor with respect to a group {%} as a tensor
the components of which are unaltered by each transformation of the group.
It has been seen in a previous paper (SMITH & RIVLIN (1957)) that for any
given group {%}, there exists a finite number of anisotropic tensors in terms
of which any anisotropic tensor may be expressed as a sum of outer products
with scalar coefficients. This set of anisotropic tensors may be called a fensor
basis for the group. If any element of the tensor basis may be expressed as a
sum of outer products of other elements with scalar coefficients, it may be
omitted from the basis and a tensor basis which is such that no element is
expressible in this way, in terms of the remaining elements, is called an srreducible
tensor basts.

It has been shown in the previous paper how a tensor basis for any group
may be obtained if the integrity basis for an arbitrary number of vectors is
known for that group. Let I,, I,, ..., I;; be the elements of the integrity basis
for the N vectors 4% (R=1, 2, ..., N) under the group {%}, which are multi-
linear in their argument vectors. Then, a tensor basis is formed by the tensors

orlp
oA AR oA (RW

where Iy, is multilinear in the yx vectors A{), AR .. AR If the set of in-
variants Iy, I,, ..., Iy, is such that none of them is expressible as a polynomial
in terms of the remainder, it is easily seen that the tensor basis generated is an
irreducible one. For, suppose the tensor &*Ix/0A4F) 24{R) ... 9AF# is expressible
as a sum of outer products of other elements of the tensor basis, with scalar
coefficients. Then, it is apparent that
orIp
8AR 04 [%a) . a4 RW

AR AR ARD =,

is expressible as a polynomial in invariants other than I, of the set I, I, ..., Ij.

The procedure described above has been used to obtain an irreducible tensor
basis for each of the 31 transformation groups for which irreducible integrity
bases for IV vectors have been obtained. The tensor bases obtained are listed
below.

Arch. Rational Mech. Anal., Vol. 15 16
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Triclinic system
Pedial: 0y (@=1,2,3),
Pinacoidal: 4,;d;; (¢,f=1,2, 3).

Monoclinic system

Domatic: 0161, G2 Oy,
Sphenoidal:  &;;, 6,;0; (x.$=2,3),
Prismatic: 0,1:01;, 04305, (0f=2,3).

Rhombic system

Rhombic-pyramidal: 015, 02055, 03;05;,

Rhombic-disphenoidal:  8,;0,;, 04303;0,, (28,7 =1,2,3; a=+=p=+Fy=+a),
Rhombic-dipyramidal: d,;0,; (¢=1,2,3).

Tetragonal system

Tetragonal-pyramidal:  63;, 6;;0:;+ d5;0,;,
611‘62;_521‘617’: 61i61i51k6ll+62i627‘52k52li
01401014 01— 0302051 011,

Tetragonal-disphenoidal: 6;3;0;;, 01;6;;+ 85;0,,
61i62j"52i51j’ 611'61]'61k61l+62£62i62k6211
0150170150 — 0202054 611, 054(0y; 015 — 025 024),
03 (014014 — 025 024), 031 (01:01;— 025 055),
03;(01; 021+ 037 014),  03;(014 025+ 022 011),

034 (01502, 02, 015),

Tetragonal-dipyramidal: &5;d5;, 0y;6;;+ 65;02;,
0105, — 03015, 01,0101, 01+ 03,0504 051,
8101015 091 — 02,057 055 01y,

Ditetragonal-pyramidal: &5;, 01,0, -+ 02,0,
04 617' O1p 011+ 0, 621‘ 035 021,

Tetragonal-scalenohedral: dg;d3;, 01;01;+ 02,0,
81401, 01011+ 0202705405,  03,(01; 05+ 02, 011),
03;(012 02s+ 022 012), 034 (014 05+ 65, 01),
Ditetragonal-dipyramidal: 3,03, 61;0;;+ 05;9;;,
611' 617 61k 611 + 621' 627 62}2 621’
Tetragonal-trapezohedral: d3,0;;, 01;01; 1 05;0;;,
611? (51] 61k 611 _,_ 621} 627' 621@ 621’ 631(617 62/6 - 627 61]2)
and tensors obtained by cyclic permutation of 4,7, &,
03:(017 014 011 2 — 027 034 03, 61,)
and tensors obtained by cyclic permutation of 4,7, &, /, m.
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Hexagonal system

Trigonal-pyramidal: d3;, 6;;0;;+ 02;0,;, 01;0;— 05,0,
01501701, — 0105055 — 81055055 — 61405025,
02:05; 025 — 03,0101, — 05,015 015 — 021,01, 64,

Trigonal-dipyramidal: 8;;0;;, 0y;0;;+ 02;0,;,
61i62f— 621:61]" 611: 61i61k - 611'627'6212 - 6lj62k 621:- 61k 621'62/"
62i62i62k - 62i61j61k— 627'6112 61i_ 62k61i61]"

Hexagonal-pyramidal: &3;, 6;;0:;-+685;0z;, 0;;05;— 02,0,
(010101, —01,05;0p, — 6105, 05, — 01502, 05;) X

X (011 01m 015 — 01100 Oy, — O1n 02y 021 — 814, 031 02} s
(0101015 — 01,03, 095 — 61025 Og; — 015 0, 0;) X

X (027 Ogm Og — 01 Oy O1s — O 1, 817 — 034 017 01,)

Hexagonal-dipyramidal: 8;;0;;, &;;0;;+ 0y;05;, 61;02;— 05;6y;,
(0146101, — 01405055 — 0105 0y ; — 613 05, 65) X
(611611”61” 611627}162% 61m62n62l 6171621627»)’
(611517 1% 511527 2k——61762k621—‘61k621627)
(621621”627: 62161m61n 62m61n611 627&61161?")’

Rhombohedral: The tensors given for the hexagonal-dipyramidal class,
03(01; 014 17— 0170z 0gy — 014 021 05 — 011 05 054)
and  83(0y; 054 03y — Oa; 015 01y — Oap 01461, — 025 6,501
and tensors obtained from these by cyclic permutation of 7, 7, £ and /.

Ditrigonal-pyramidal: &3;, 0;;0;;-+ 65,055,
62i62j62k—62i61f61k—62i61k61i—62k61561]"

Ditrigonal-dipyramidal: 0;,85;, 0;;0;;+ 03;0,;,
521627 2k 621,617 1k 627'61k61i—62k61i61j’

Trigonal—trapezohedral . 631' 53 s 61 i 61] =+ 62 i (52 I
01301014 — 01057055 — 01025 05;— 014,62, 05;, 05:(81;05,—82;01,)
and the tensors obtained from this by cyclic permutation of 7,7, &,
631‘(627‘6% 0g; — 627‘ 51k 8y — 024 0y, 517‘ — 0y, 617'61k)
and the tensors obtained from this by cyclic permutation of 7,7, &, I.

Dihexagonal-pyramidal: &3;, 6,;6,;+ 65;0,;,
(8101015 — 01405, 055 — 61025 0 — 014 055 09) X
X((Sllélméln—all 62m62n—61m62n621_61n62152m)’

Dihexagonal-dipyramidal: 83;05;, 0,;0,;- 85;6,,
(61i51i51k*51i62752k“51762k52i—51k52£621’)X
X (017 61ps 01, — 017 09, 02, — 01 O3y Og1 — 81, 021 85y)
16*
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Hexagonal-scalenohedral: The tensors given for the dihexagonal-dipyramidal
class together with

631‘(527' 02y 0y — 627‘ 01 Oy — Oz Oy 617' — dyy 517‘ 014)
and tensors obtained from this by cyclic permutation of 4,4, &, /.

Hexagonal-trapezohedral: The tensors given for the dihexagonal-dipyramidal
class together with

631‘(617' 62/2 - 62j 6113)’ 63i(61i 6lk 611 - 611' 621: 621 - 6113 621 52i -

— 081185 024) (Oam O2n Oap — G2 014 01p — 020615 011 — B2p 610 811)
and tensors obtained from these by cyclic permutation of 7, 7, 2 and
1,7, k, 1, m, n, p respectively.

Cubic system
Hexoctahedral class: 8,;, Y 01;0,;01,0:;, Y 01;61;61501;0:,01,,
Diploidal class: &;;, 3 6,;0;;61,01;, 2. 061;0;;01501;015061,,
2611517 (Oaz 01 — 034 83)), 261'611; 52;521—537531)
2611611 62;62k 637 63k 261161761k 611(62»»62% 63»1 637»)’
Hextetrahedral: 61;7', 261,-(5”51,251,, 261,' 62i63k+63i 2k)’
Tetartoidal: (5,-7-, 25”5”6” 611, 261,'611'(6212621_63;‘631),
2 81i014(05; 02— 05 03)), . 01:011(02; 055 — 03 04)
Zalialfalk 611(62»;527; ésm Sn 2611 6276312 62& 637‘))
Z(slialkall(aziasm 63i62m)> Zéufslk 1m(621631_63i621)r
Zalj‘sllalm(aziéak“63i52k)» Z(Slkall61m(62£637'—'631'62i)r
2.01i(8:; 05 + 83 65) -

12, The use of the tensor bases in the generation of integrity bases

Let 8, S;, ..., Sy be an irreducible tensor basis for the group {#} which is
the orthogonal group {0} or a subgroup of it. We shall prove that if I is a poly-
nomial invariant of the tensors A,, 4,,..., 4 and 8,, S,, ..., Sy under the
orthogonal group {8}, it is an invariant of 4,, 4,, ..., A, under the group {%}.

Let G Dbe a generic transformation of the group {9} Let A}, A,, ..., A
be transformed into Al,Az, . (say) by the transformation &. Since
S1, 8., ..., Sy are anisotropic tensors with respect to the transformation @G,
they are unchanged by the transformation. Since & is a transformation of
the group {0}, it follows from the fact that I is a polynomial invariant of
A, A4, ...,z and 8,, S,, ..., Sy under the orthogonal group, that

I(Ay, Ay, ..., Ag; S, Sy, ..., Sy) =I(A;, Ay, ..., Ag; 81,8,, ..., Sy).

Thus, [ is a polynomial invariant of 4y, 4,, ..., A; under the transformation &
and hence under the group {#}.

We shall now prove the converse theorem: if I is a polynomial invariant
of A,, A,, ..., Ag under the group {#}, it is a polynomial invariant of 4,, 4,,...,4g
and 8,, S,, ..., Sy under the group {¢}.
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If I is a polynomial invariant of A4,, 4,, ..., A; under the group {%}, it
must be expressible as the sum of a number of terms of the form

Y %iiy.ip Bisia...ips

where f; ;. ., is an outer product formed from the tensors 4,, 4,, ..., A, and
®ii,..ip 15 an outer product formed from the tensors §;, S,,..., Sy and y is a
constant. It is easy to see that each such term and hence I is a polynomial
invariant of A, A,, ..., Az and S,, S,, ..., Sy under the group {@}. Let

@ iyncip = tirfy bisis. Lipip Bafs.rtp
ﬂiﬂ'nmiP = til I t’.l Freus tiPiP lgfl fa-IP

where |¢,;] is a generic transformation of the group {@}. Then, since ¢;,t;, =

Wiy nrip Bivigip = %iriynip Bisiyip -
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