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1. I n t r o d u c t i o n  

In  a previous p a p e r  (SMITH, SMITH & RIVLIN (t963)), irreducible in tegr i ty  
bases for a symmetr ic  three-dimensional  tensor and  absolute vector  under  the 
t rans format ion  groups describing each of the 32 crystal  symmetr ies  have been 
ob ta ined  and  their  min ima l i t y  demonst ra ted .  In  the present  paper,  ra ther  
similar  methods  are used to determine irreducible in tegr i ty  bases for an a rb i t ra ry  
n u m b e r  of absolute vectors unde r  the t rans format ion  groups describing 31 of 
the 32 crystal  symmetries.  The remaining  crystal  class, which is the gyroidal  
class in the cubic system, has so far proven in t rac table  for technical  reasons 
a l though the methods  used for the four classes of the cubic system, for which 
irreducible in tegr i ty  bases have been found, are in principle applicable. 

The fundamen ta l  theorems in inva r i an t  theory  which are used in genera t ing  
the in tegr i ty  bases are given in w 2. I n  the case of all the crystal  classes, except 
those of the cubic system, these theorems are used to generate in tegr i ty  bases 
which in  most  cases are h igh ly- redundant .  The r e dunda n t  elements are then  
e l iminated  and  the i r reducibi l i ty  of the in tegr i ty  basis so ob ta ined  is then  proven.  
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In the case of the four classes of the cubic system considered, a different 
procedure is used. The elements of lowest degree in an irreducible integrity 
basis are first generated and then those of increasingly high degree, one of the 
theorems in w 2 being used to show when this procedure may be safely terminated. 

For groups which consist only of proper transformations, an irreducible 
integrity basis for absolute vectors is also an irreducible integrity basis for polar 
vectors. This is, however, not the case for groups which contain improper trans- 
formations. In w 10, we discuss how the integrity basis for a number of absolute 
vectors, under a transformation group which lacks a center of symmetry, can, 
in certain cases, be used to obtain an integrity basis for a system of absolute 
and polar vectors under the group formed by adjoining the central inversion 
transformation to the original group of transformations. 

The integrity basis under a group of transformations for an arbitrary number 
of absolute vectors can be used to obtain an irreducible tensor basis for the 
group of transformations. This is done in w t I for each of the thirty-one groups 
considered in this paper. 

Finally, in w t2, we derive certain theorems which may be of use, in certain 
cases, in generating invariants of tensors under a group of transformations which 
is a subgroup of the orthogonal group. 

2. Some theorems concerning integrity bases 

In deriving the integrity bases for n vectors, the following theorems will 
be used. Theorems l,  2, 3 and 4 are the same as theorems 1, 2, 3 and 5 given 
by  SMITI/, SI~ITI/ & RIVLIN (t963), but  a different notation, more convenient 
for the present paper, is used. 

Theorem 1. An integrity basis jor polynomials pIXIX) X Ill, X(i 21, X~ 2~, \ i, 2 "", 

X(1 ~), X~ n)) which are invariant under interchange of the subscripts I and 2 is 
]ormed by the (nt) sets o[ quantities obtained by substituting X (0 ]or x ( i=t  . . . . .  n), 

the (~) quantities obtained by substitutin~ X'" lot x, X"' lot y ( i , i : t  . . . . .  n; 

i<1') in the quantities 
Xl -~ %2, %1%2 

and (2. t ) 
Xi Y~ + x2 Yi 

respectively. 
Theorem 2. An integrity basis/or polynomials P(X~ xl, X~ il, X(311, X(~ ~1, X~ ~, X~ ~, 

.... X~ "1, X~ "1, XCa ~1) which are invariant under all permutations o/ the subscripts 

is /ormed by the (~) ,ets o/ q~antities obtained by substit.ti~g X~'~ /or ~ (i = i . . . . .  n), 

the (~) sets oS q~antities obtained by substituting X'"/or ~, X~" /or y (i, i = t . . . .  , n; 

i < i ) ,  the (3)quantities obtained by substituting X (0 ]or x, X (i' [or y, X r [or z 

( i , j , k= t  . . . . .  n ;  i < / < k )  in 

X 1"~ X 2 3  F %3, X l x g ~ -  Xg.X 3 JCX3Xi ,  XlX2%3; 

xiYi+x2y~+x~yb, xix2yb+x~xbyl+x3xly2, yiy2x~+y~ybxi+ybYiX~; (2.2) 

xi Yi zi + xz Y~ z2 + x3 Y3 z3 

respectively. 
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T h e o r e m  3. An integrity basis/orpolynomials P(X~ 1), X~ ~), X~ 1), X~ ~), Y(*) X (21 xJ'2 J 3 

. . . .  X ?  ), X(2 "), X~ ")) which are invariant under cyclic permutations o/the subscripts 

is/ormed by the (hi) sets o/quantities obtained by substituting X IO /or x (i = t . . . . .  n), 

the sets ol q ntities obtained by substituting XC"/or x, X"'/or y (i, . . . . .  n: 

i< / ' ) ,  the (3) sets o/ quantities obtained by substituting X IO /or x, X (i) /or y, X I~) 

/or z ( i , i , k : t  . . . .  , n ;  i < / ' < k )  in 

X" l + x2 + X3, X l x 2 +  X2 X 3"47x 3 X, 1, X l x 2x3,  

xl  x~ ( xl  - x~) + x~ x3 ( x2 - xs) + x3 x~ ( x3 - xl) ; 

Xl Yl + X2 Y2 27 Xa Y3, xl (Y2 - -  Y3) 27 x2 (Y3 - -  Yl) 27 x3 (Yl - -  Y2), 

xl x2 Y3 27 x2 x3 Yl 27 X3 xl Y2, Yl Y2 xa 27 Y2 Y3 xl + Y3 Yl X2, (2.3) 

x l  x~. (y~ - -  Y2) + x~ x~ (y2 - Ys) + x~ x l ( y a  - Yl), 

y l  y2 (xl - x,)  + y~ y3 (x2 - x~) + y~ y~ (x~ - xl);  

xl Yl zl + x2 Y2 z2 + x3 Ya z3, 
xl Yl (z2 - -  z3) + x2 Y2 (z3 - -  zl) + x3 Y3 (zl - -  z2) 

respectivdy. 
T h e o r e m  4. An integrity basis /or polynomials in the variables X 1 . . . . .  X v 

I1, 12 . . . . .  I ,  which are invariant under a group o/ trans/ormations /or which 
11, 12 . . . . .  I ,  are invariants, is [ormed by adfoining to the quantities 11, 1 2 . . . . .  I ,  
an integrity basis/or polynomials in the variables X 1 . . . . .  Xq which are invariant 
under the given group o/translormations. 

T h e o r e m  5. I / t h e  total degree o/the elements o/ the irreducible integrity basis 
for polynomials in n vectors, under the group o/trans/ormations ~ o/degree* n is 
at most N, then the degree o/the elements o/the irreducible integrity basis/or poly- 
nomials in m ( >  n) vectors, under the group ~, is also at most N. 

T h e o r e m  6. I /  det [~0), ~c(2) . . . .  , ~e(")], where x Ix), x 12) . . . . .  x t") are n vectors, 
is invariant under the group ~ o/ degree n and the degree o/ the  elements o/ the 
integrity basis/or polynomials in n - - 1  vectors, under ~, is at most N, then the 
degree o/the dements o/the integrity basis/or polynomials in m ( >  n -  1) vectors, 
under fr is also at most N.  

Theorems 5 and 6 follow immedia te ly  from a more general result in the 
theory  of vector  invariants  (see WEYL (t946), pp. 39--44) .  

3. Nota t ion  

In  accord with the no ta t ion  employed in the previous section, we shall use 
the following nota t ion  for an integri ty  basis for polynomials  in n vectors  
A(~), A(2), . . . ,  A ('0 : 

L1 (x) . . . . .  Lp (x); 
U l ( x ,  y) . . . . .  Uq(x, y) ;  (3.t) 

N 1 (x, y . . . . .  z), . . . ,  N, (00, y . . . .  , z).  

* If  in the matrix representation of the group ~, the matrices transforming the 
vectors are n • n matrices, the degree of the group is n. 

13" 
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The quantities in the first line of (3A) represent the (1 ) se t s  of quantities 

obtained from these by substituting A (il (i = 1, 2 . . . . .  n) for x;  these are, of 
course, the elements of the integrity basis which involve only a single vector. 

The quantities in the second line of (3.1)represent the (2)sets  of quantities 

obtained from these by substituting A (0 for x ,  A (i) for y (i, ] : t  . . . . .  n; i < j ) ;  
these are, of course, the elements of the integrity basis which involve two vectors. 
The remaining lines of (3.t) are interpreted in an analogous manner. 

4. The transformation of vectors 
We suppose that a three-dimensional vector has components Ai (i = t, 2, 3) 

in a particular rectangular Cartesian coordinate system and components-dl 
(i -----t, 2, 3) in the coordinate system into which this is transformed by the trans- 
formation (~t = He, ill). In Table t we give the relation between.gi and A, for 
each of the transformations which occur in the groups describing the crystal 
classes. I is the identity transformation; C is the central inversion transfor- 
mation; Ri ,  R2, Ra, Ti, T2, T 3 are reflection transformations and DI ,  D~, D3, 

Table I 

21 
2~ 

I 
Ax 
A~ 
A3 

C 
- -A  1 
- -A  s 
- -A  3 

P~ 
- - A  I 

A~ 
An 

R2 
A1 

- - A  s 
A3 

R3 

A1 
A2 

- - A  3 

D 1 
A1 

- - A  2 
- -A  3 

9 2 
- - A  i 

A2 
- - A  3 

- - A  1 
- -A 2 

A3 

e~ 

A2 
A1 
A3 
A 2 

c ~  
- - A  1 
- -A  a 
--As 

- - 1 1  
A3 
A~ 

R s T1 
A1 

- - A  a 
A2 

R~ T~ 
A1 
A3 

- -A 2 

D~ T~ 
A1 

- - A  3 

92 
- -A  1 

A3 
--A 2 

D ~  
- - A  1 
- - A  a 

A2 

31 
Z~ 
Z~ 

T 2 

A3 
A~ 
A 1 

C T2 
- -A 3 

- -A  1 

Ri T2 
- - A  s 

A2 
A1 

R 2 Tz 
A3 

- -A 2 
A1 

R3 T2 
Aa 
A~ 

- - A  i 

D 1 T 2 

A3 
- -A 2 
- - A  1 

D 2 T2 
- -A 3 

Aa 
- - A  1 

Da T2 
- -A  3 
- -A 2 

A1 

Zi 
2s 
2s 

% 
Az 
A1 
A3 

c %  
--A~ 
- -A  1 
- -A  a 

P~% 
- -A 2 

A1 
A3 

A2 
- - A  i 

A3 

A2 
A1 

- -A 3 

/)1% 
A2 

--A i 

- - A  a 

D2 % 
- -A 2 

Ai 
- - A  a 

D~% 

- -A  1 
A3 

Z~ 

M~ 
A2 
A3 
A1 

CM~ 

- -A  a 
- - A  1 

P~M~ 

A3 
A1 

R~ M~ 
A2 

- -A  3 
Ai 

R8 
A2 
A3 

D~ M~ 
A2 

- - A  3 
- - A  1 

D2 M~ 
- -A 2 

Aa 
- - A  i 

- - A  z 
- - A  a 

A1 

31 

-L 

M 2 
Aa 
11 
A2 

CM, 
- - A  a 
- - A  1 
- -A 2 

/ t  t M~ 
- -A 3 

At 
A2 

/t2 M~ 
Aa 

- -A  i 
A2 

R3 M2 
A3 
A1 

- -A 2 

9 1  ~J~2 
A3 

- - A  I 
- -A  2 

D~ M~ 
- -A 3 

A1 
- -A 2 

~M~ 
- -A 8 
- - A  i 

A~ 
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Qt 

& 

81  

0( 3 

A3 

C S t 

- -0(  2 
- - 2 / 3  

Table 1 (Continued) 

Ri Si 
--C( 1 

~2 
A3 

R 2 S t 
c( i 

A3 

R a  S1 

0~ 1 
0( 2 

- - i  3 

D 1 S I 

c( 1 

--o~ 2 

--I 3 

D2 s~ 
- -  OC I 

(x$ 

- - 1 3  

~s~ 
- -  OC I 

A3 

{x 

2i 
22 
Z3 

8 2 C S 2 

-2 
Ri $2 
- ~  

A3 

R 2 S 2 

--f12 
A3 

R a  $ 2  

2 
D i  S z  D 2 S 2 

--A a 

D a S~ 
- ~  
--f12 

A3 

M t, M 2, St ,  S 2 are rotation transformations. Explicit expressions for the trans- 
formation matrices are given by  SMITH, SMITI/ & RIVLIN (1963). The notation 

- - I A  - - ~ A  

c ~ 2 = - - ~ A 1 - -  t A I~A t A  2 2, ~ = ~  1 - 5  

is used in Table 1. 

5. The triclinic, monocl inie ,  rhombic and tetragonal systems 

(a) General description o/ procedure 
For each of the classes of these systems, we determine integrity bases for 

polynomials in n vectors A! ") (r = t . . . . .  n; i = t ,  2, 3) under the transformations 
describing the symmetry of the class. These transformations follow the name 
of the class, in each case, in the list given below. In applying theorem 1, we 
first obtain, from Table 1, the quantities A!') into which A$ ") (r = t , . . . ,  n) are 
changed by the first (non-identity) transformation. We note that  invariants 
must be symmetric with respect to the pairs A!'), A! '). Using theorem 1, we 
obtain a set of polynomials in terms of which any polynomial, invariant under 
the transformation, must be expressible. We omit the redundant elements of 
this set and find, again using Table 1, the manner in which the remaining poly- 
nomials of the set are changed by  the second transformation. We again apply 
theorem 1 to obtain the limitations on the form of a polynomial invariant under 
the first two (non-identity) transformations. Proceeding in this way for each 
transformation of the class, we obtain an integrity basis for polynomials in the 
vectors A(/') (r = 1 . . . . .  n). 

These are listed below, using the notation of w 3. I t  is immediately obvious, 
for the classes of the triclinic, monoclinic and rhombic systems, that  the integrity 
bases are irreducible. The irreducibility of the integrity bases for the classes 
of the tetragonal system is demonstrated in w 6. 

(b) Triclinic system 
Pedial class (I) 

xl, x2, x3. (5.1) 
Pinacoidal class (I, C) 

X 2 X 2 X 2 
1,  2 ,  3 ,  X l X 2 ,  X 2 X 3 ,  X3Xl~ ( ~ . 2 )  

Xl Yl, x2 Y2, x3 Y3, Xl Y2, Xl Y3, X2 Yl, X2 Y3, X3 Yl, X3 Y2" 
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(c) Monoclinic system 
Domatic class (I, R1) 

~ ,  xa, x~; (5.3) 
xl Yl. 

Sphenoidal class (I, D1) 

x 1, x L x~, x 2 x3; (5.4) 
xa Ya, x~ Y3, xa Ya, x3 Y3. 

Prismatic class (I, C, R 1, D1) 

X~,  X a a 3, x3,  x ~ x , ;  (5.5) 
xl Yx, Xa Ya, x~ Y3, xa Y3, x3 Ya. 

(d) Rhombic system 

Rhombic-,pyramidd class (I, R2, Rs,  D1) 

X 1 , X~ ,  X a " ~' (5.6) 
x2 Y2, x3 Y3. 

Rhombic-disphenoidal class (Jr, Dx, D2, D3) 

x~ , x aa , x~ , x l  xa x~ ; 

xly l ,  x~ya, x3y3, xtxaya, x2xayt, x3xlya, yly2x3, yay3xt,  y3yzx2; (5.7) 

xl Ya z3, xa Y3 zl, xa YlZa, xl Y3 za, xa Yt z3, x3 Y2 zl. 

Rhombic-dipyramidal class (/, C, R I , / / ~ . , / / 3 ,  D1, Da, D,) 

x~, x~, x a. 
~' (5.8) 

xl Yl, xa Y~., xa Y3. 
(e) Tetragonal system 

Tetragonal-pyramidal class (I, Da, RITa ,  RaTa). 
A~ 1), A~ 2) . . . . .  A~ ") together  with 

~i + xl,  ~1 ~a (~,~ - ~) ,  ~a xaa', 

Xly l  + ~ ya, ~ ya - ~a y~, ,q ,q y~ y~, ~1 xa (y~ - y~), 
x t x~ (x 1 Ya + xa Yl), xt x~ (x 1 Yl - -  x2 Ya), Yl Y2 (xl Y2 + xa Yl), 

Yl Y$ (Xl Yt - -  xa Ya) ; (5.9) 

xt xa (Yt z~ + Y2 zt), xl x2 (Yt zl - -  Y2 z2), Yl Y~ (xt z~ + x a zt), 

Yt Y2 (xt zt - -  x~ z2), z 1 z a (x 1 Y2 + x2 Yl), zl za (x 1 Yl - -  x~ Y2) ; 

xl Yx zt ut + x a Ya za ua, xl Yt zl ua - -  x~ y~ z~ U 1 . 

Tetragonal-disphenoidal class (Jr, Da, Dt Ta, D a ~'~). 

The quanti t ies (5.9) together  with 

~g, ~ x~ x~, x~(~,~ - x~); 
x~ y~, x~ (x~ y~ - -  xa y,), x~ (x t y~ + x~ yl), yl y~ x~, 

X8 (Y~ - -  Y~), Y3 (Xl Yl - -  X2 Y2), Y8 (Xl Y2 + X2 Yl), Xl X~ YS, Y8 (X~I - -  Xl); (5.{0) 

x~ (yt zt - -  y~ z~), x~ (yt z~ + Ya zt), y~ (xt zt - -  x a z~), 

y~(xtz ~ + x~z~), z~(x~yx -- xaya) , Z~(Xly~. + x~yl). 
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Tetragonal-dipyramidal class (I, C, R a, D 3, l~i T 3, R , T  3, D 1 T  3, D2T3). 

The quantities (5.9) together with 

3. 
x3, (5.11) 
x3 Y3. 

Ditetragonal-pyramidal class (I, R1, R2,  /)3) " (I, T3). 
A~ 11 . . . . .  A~ *1 together with 

x l y l  + x2Y2, xlx2y~Y2,  x lx~(x ly2  + x,  yl), y~y2(x~y 2 + x2 y~) ; (5.t2) 
xi x2 (Yi z~ + Y2 Zl), Yi Y* (xi z2 + x~ zl), z lz 2 (Xl Y2 + x2 Yl) ; 

Xl Y121 ui + x2 Y2 z2 us. 

Tetragonal-scalenohedral class (I, D1, h2, D3) �9 (/, T3). 

The quantities (SA 2) together with 

x~, xl  x2x3; 

xa Ya, x3 (xl Y~ + x2 Yi), Y3 (xi Y2 + x~ Yi), xi x2 Y3, Yl Y2 x3; (5.t 3) 

x3 (Yl z2 + Y2 zl), Y3 (xi z2 + x2 Zl), z3 (Xl Y2 + x2 Yi). 

Ditetragonal-dipyramidal class (I, C, 1R l, R 2, R3, D 1, D 2, Da) �9 (1, T3). 
The quantities (5.t 2) together with 

(S.14) 
x~ Y3- 

Tetragonal-trapezohedral class (I, Di, D2, /)3, C T 3, R 1 T3, R2T3, IR3T3). 

The quantities (5.t2) together with 

~23, ~ ~2 ~3 (x,* - 4 ) "  
~ y2, ~3 ( ~  y2 - ~ ,  y~), x2 y l  y.. (y,~ - y~), x~ x~ ~ (y,* - y~), 

x2 x~ x ,  (x~ Yl - x2 Y2), x3 Yl Y2 (Xl y~ - x2 Y2) 

and the quantities obtained by interchanging x and y; 

x3 (Yl z2 -- Y~ zi), x3 Z122 (Y~ -- Y~), Xa zi z2 (Yi zl -- Y2 22), 
x3ylY2(YiZl  - -  Y2Z~), xa x i x ~ ( Y l Z i - -  y~z2), XaZlZ2(xiYi - -  x~y2), (~AS) 

x~ Yi Y2 ( xi zi - -  x2z2) 

and the quantities obtained by cyclic permutation of x, y, z; 

x~ (x i Yi zl u~ -- x~ y~ z~ Ul), x 3 Yi Y2 (zl ui -- z~ us), 

x~ zi za (yi u i - -  y~ %), X~*~lU~ (YlZl - -  y222) 

and the quantities obtained by cyclic permutation of x, y, z, u; 

x~ (Yi Zl Ui v 2 - -  y2 z2 u2 vl) 

and the quantities obtained by cyclic permutation of x, y, z, u, v. 
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6. I r reducibi l i ty  of the  in tegr i ty  bases for  the  t e t r agona l  sys tem 

The  irreducibil i ty of the in tegr i ty  bases for n vectors, derived in w 5, for 
the classes of the te t ragonal  system can be proven in a manner  somewhat  similar 
to tha t  employed by  SMITH, SMITH & RIVLIN (1963) to demons t ra te  the irredu- 
cibility of the integri ty  bases for a single vec tor  and symmetr ic  tensor. 

We note  from w 5 tha t  the elements of the integr i ty  bases for the various 
classes of the te t ragonal  sys tem are ei ther independent  of x3 (i.e. of A(81) . . . . .  A(~n)), 
or are linear in these quantit ies,  or have one of the forms x ~ 3, %Y3. For  each 
class it is apparent  by  inspection tha t  the irreducibil i ty of the set of elements 
which is linear in x~ and the irreducibil i ty of the set which is independent  of 
x 3 m a y  be considered separately.  Fur thermore ,  it  is also apparent  tha t  in the 
cases in which the integr i ty  basis given in w 5 has x~ or % Yz,  or bo th  sets, as 
elements, none of these elements are redundant .  

Accordingly, we define a polynomial  of degree i l i a . . ,  i n in the components  
(xl, x2), (Yl, Y~.) . . . . .  (z 1, %) of the n vectors x,  y . . . .  , z as a polynomial  of part ial  
degrees i~ (r ---- 1 . . . . .  n) in (x 1, x~), (Yl, Y2) . . . . .  (z 1, z~). Let  P~,i,...i~ be the number  
of l inearly independent  invariants,  which do not  involve %, Y3, - . . ,  %, of degree 
i l i 2 . . ,  i , .  Let  7i1~,...~, be the number  of invariants  of degree i l l 2 . . ,  i n in an 
irreducible in tegr i ty  basis, which do not  involve Xs, Y3 . . . . .  %. Let  fl~,~,...~ be 
the number  of invariants  of degree i l l  2 . . .  i~,  which do not  involve %, y~, . . . ,  % 
ill the integr i ty  basis under  consideration. Let  J1, Js . . . . .  Jr be the elements 
of an irreducible in tegr i ty  basis of degree 0 or t in %, y ,  . . . . .  %, of to ta l  degree 
in (xl, x~), (Yl, Y2) . . . . .  (zl, zs) less than  i 1 + i 2 +  . . .  + i ~ .  Let  ~9~,~,...~, be the 
number  of terms of the form J~' J ~ ' . . .  J,~L where the c~'s are positive integers 
or zero, which are of part ial  degrees i 1, i s . . . . .  i ,  in ~e, y . . . . .  z, and do not  in- 
volve %, Ys, �9 �9 �9 %. 

I t  then follows [see, for example,  SMITH (t960)] tha t  

Pi,i,... ~ - -  ~gi,~,...i~ ----< ?~,~,... ~ ----< fl~,~,...~. (6A) 

If  it is possible to establish ~Ti,i,...i, independent  syzygies of degree i l l  2 . . .  i,~ 
among the invariants  J1, J2 . . . . .  J~, the inequal i ty  (6.t) m a y  be s t rengthened to 

. . . . . .  < . .  �9 < . .  - .  (6.2) 

We now define ~ , , . . . ~ ,  ?-i1,~...,~, fl-i,,,...,~ analogously to Pi,,,...,~, 7,~,,...~, fl,,,,...~ 
for the elements of the integr i ty  basis which involve %,  y~, . . . ,  % linearly. Thus, 
for example,  P~,~,...~, is the number  of l inearly independent  invariants  of degree 
i l l  ~ . . .  i ,  which are linear in A(~ ~ (say). Let  v~,...~, be the number  of terms of 
the form J~' J ~ ' . . .  J,~L where the ~'s are positive integers or zero, which are 
of part ial  degrees i~, i s . . . . .  i~ in (x~, xz), (Yl, Y~) . . . .  , (z~, zz) and are linear in 
A(~ ~1 (say). Then, analogously to (6A), 

Again, if it  is possible to establish s independent  syzygies of degree i~i~ . . .  i~ 
and linear in A(~ 11 (say) among the invariants  J~, J~, . . . ,  Jr ,  the  inequal i ty  (6.3) 
m a y  be s t rengthened to 

... - . -  �9 < - . .  - - -<f l~ ,~ , . . .~ ,~ .  (6.4) 
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Let L s be the 2 • 2 matrices formed by the elements of the first two rows 
and columns of the matrices ~t of the three-dimensional matrix representation 
of the group characterizing the crystal class considered. Let  M~ be the element 
in the third row and third column of at. Then, Pi,~,...i~ and Pi, i,...i, are given by  

P~,i~...~ =N~- ~] tr  L{~ ql tr  L~q'... t r  L~ ~"), 

(6.5) 
t M L (~) tr L (q) . . .  " Pi,~, . . .~-=~-~,  s tr  s s trL(~ i~l, 

s 

where N is the number of transformations in the group considered. L(~ i') is the 
symmetrized Kronecker i,-th power of L s and tr  L(~ r is given by 

�9 t . ( S , , / , r  (6.6) trL(~,)= ~ /~xl/*2f:../~i, ! ( ~ ) v l ( ~ ) v , . .  \ ,, / 

where 
Sr = tr  L~,, (6.7) 

and the summation is carried out over the set of all positive integers/zx,/~2 . . . . .  /zr 
such that  

/~1 + 2/,2 + "" + i ,  #Jr = i , .  
Thus, 

1 ! tr L~ 1) = S~, 

2l  tr L~ 2) = S 2 + S 2, 

31 tr  L~ ) = S 3 + 3 $1 $2 + 2 $3, 

4! tr  L~ ) = S~ + 6 S1 ~ S 2 + 8 S~ S 3 + 3 $2 + 6 S 4, (6.8) 

51 tr L(~ 5) = S 5 + 10 S 3S 2 + 20 S~ S~ + 15 S~ S 2 + 30 Sx S 4 + 20 S 2 Sa + 24 $5, 

6 ! t r L ~ I = S e +  t S S ~ S ~ + 4 0 S ~ S 3 + 4 5  2 2 S1 S 2+ 90 S 2 $4 + 

+ / 20 S 1 S~ S 3 + t 44 S~ S 5 + t 5 $23 + 90 S,, Sa + 40 S~ + 120 Se. 

The values of M s and tr  L(~ 11, t r  L(~ 21 . . . .  , t r  L(~ e) are given in Tables 2 and 3 
for each of the transformations of the groups describing the symmetry of the 
classes ill the tetragonal and hexa- 
gonal systems. The values for the trans- Table 2 

formations of the hexagonal system Transformation ~ M s  

are included since they will be re- (1, I~ ,R2,  D~). (I, T~, 81, 82) 1 
quired later in w 8. (C, R 3, D1, D,~). (I, T3, S1, Sa) - - t  

T r a n s f o r m a t i o n s  
/ , R 3  
C , D  3 
JR 1 , R 2 , / ) 1 ,  D2 
%, C T~, ~ %, D~ T~ 

S 1, R 3 S 1, S ~ , / t  3 S 2 
C S1, D3 S 1, C S2, D3 S 2 
P~ Sl, a~ sl,  D1 sl ,  D~ Sl 
R 1 S  2, R ~ S  2, D 1 S  2, D 2 S  2 

t r L ~ )  
2 

- - 2  
0 
0 
0 

- - t  
t 
0 
0 

T a b l e  3 

t r  L(~ ~) 

3 
3 
t 
1 

- - 1  
o 
0 
1 
1 

4 
4 
0 
0 
0 
1 
1 
0 
0 

tr ~I 

1 
1 

1 
- I 

1 
1 
1 

t r  L(~ 5) 

6 
- - 6  

0 
0 
0 
0 
0 
0 
0 

trL~) 
7 
7 
I 

1 

--I 
1 

I 

I 

I 
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In  order to p rove  t ha t  the  in tegr i ty  bases given in w 5 for the var ious classes 
of the te t ragona l  sys tem are irreducible, we first p rove  the  i rreducibi l i ty  for the 
t e t r agona l -pyramida l  class. 

For  the t e t r agona l -pyramida l  class, apa r t  f rom the invar ian ts  of the type  xa, 
which are ev ident ly  not  redundant ,  we are concerned only wi th  invar ian ts  which 
are independent  of x s, Ya, - . . .  We therefore do not  need to calculate ~,i~...i,, 

~, i , . . .~ ,  fli~i,...~, in this case. Also, it is evident  b y  inspect ion t ha t  none of the 
invar ian ts  in (5.9), which involve x 1, x 2 only, is redundant .  Accordingly,  P/,4...i,, 
Oi,~,...i,, fli, i,...i, are calculated,  for the var ious values of i t i ~ . . ,  i ,  represented 

i~ i , . . .  i ,  

~ix i, ... i ,  

fli~ i~ ... i .  

Table 4 

11 22 31 
4 5 

0 4 2 
2 I 2 
2 2 2 
0 1 0 

2t l  
6 
6 
0 
2 
2 

1111 
8 

12 
- -4  

2 
6 

in the in tegr i ty  basis for the te t ra -  
gona l -pyramida l  class, except  those 
corresponding to invar ian ts  of the 
type  x s and  to invar ian ts  which 
involve xl,  x 2 only. The  values of 
Pi, i,.../,, v~i, i, ... /, , fl/,~,...i, are given 
in Table  4. The  corresponding values 

Of Pi t i , . . . in - -~ i t i , . . . in  (=QitG.../~) a r e  
also given. In  the last  line of Table  4 we give the n u m b e r  of independent  syzygies 
~Tij,...i, which mus t  be demons t r a t ed  in order  to make  the upper  and lower bounds  
on ?i,i,...~, in (6.2) equal. 

These syzygies are 

i l i s . . ,  i ,  = 22: 

(x~ + x~)(y~ + y~) - -  (xly~ + ,~ y ~ ) 2 -  (,q y~ _ x~ y~)S = 0 .  

i l  is . . . i~ - - -2 t l  : 

( d  + d )  (ylZl + y~z2) - ( x l y l  + x2y2) (XlZl + x2z~! - 
- (x~ y~ - xs yl) (x~ z~ - x2 zl) - -  0 .  

(xt Yl + x2 Ys) (xl z2 - -  xs zl) - -  (xl zl + x2 z~) (x I Y2 - -  x2 Yt) - -  
- (x,* + x ~ ) ( y l z s  - y~z~l = o .  

i ~ i 2 . . . i ~ = 1 t 1 1 :  

(x~ y~ + x2 y2) (zl u~ + zs .~) - (~1 z~ - x~ z~) (yl  .~  - y2 u~) - 

- -  ( x t u  1 + xau2) ( y t z l  + y~za) = 0 .  

(Xl Yl -]- X2 Y~) (Zx Ul -~- Z~ US) - -  (Yl Z2 - -  Y~ Zl) (Xl U2 - -  X2 Ul) - -  

- -  ( y l u l  + ysu2) (XlZ 1 + xsz2 ) = 0 .  

(x~ u~ + x~ u2) (yl Zl + y~ z2) + (z~ u~ - z~ u~) (x~ y~ - x ,  y~) - 

- (y lu l  + y2u2) (x~zl + x~z2) ~-o.  

(x~ . 1  + x~ u~) (y~ zs - Y2 z~) - (x~ zl + x~ z2) (yl u2 - y~ u~) + 

+ (x~ y~ + x~ Y2) (z~ us - zs u~) --- o .  

(xl Y2 --  xs Yt) (zl ul + zs us) + (xt Zl + x~ z2) (Yt us - -  Y2 ul) - -  

- -  ( x ~  u 2  - -  x2 ut) (y~ zl + Ys  z~)  = 0 .  

(x 1 z~ - -  x 2 zx) (Yl Ul + Y~ u~) + (xt yt  + x~ Ys) (zt uz - -  z~ r - -  
- -  (xtu~ - -  x~ut) (ytz~ + y~z~) = 0 .  
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I t  is immediately evident that  the integrity basis given in w 5 for the tetragonal- 
dipyramidal class is irreducible, since it differs from that  for the tetragonal- 
pyramidal class only in the invariants involving x~, Y3 only and these are evident- 
ly not redundant. 

Again, since the integrity basis given in w 5 for the ditetragonal-pyramidal 
class is contained in that  for the tetragonal-pyramidal class, it must be ir- 
reducible. 

The integrity basis for the tetragonal-scalenohedral class given in w 5 differs 
from that  for the ditetragonal-pyramidal class only in invariants which involve 
xa, Ya or z 3. By inspection it is seen that  none of the invariants of this type 
which are listed are redundant.  I t  follows that  the integrity basis for the 
tetragonal-scalenohedral class is irreducible. By a similar argument, it is seen 
that  the integrity basis for the ditetragonal-dipyramidal class is irreducible. 

The integrity basis given in w 5 for the tetragonal-trapezohedral class differs 
from that  for the tetragonal-scalenohedral class only in the elements which 
involve x~, y~ . . . .  linearly. Table 5 
Since it has already been shown 
that  the integrity basis for ~ i 2 . . . i ,  t t  04 22 31 21t 1 t t l  
the tetragonal-scalenohedral P~I~,...~ l 1 2 2 3 4 
class is irreducible, in order to ~1~,...~ 0 0 t 1 3 
prove the irreducibility of the -Q~'~'"'~ t t 1 t 0 - 

fli~ ~ . . .~  1 1 1 1 1 
integrity basis for the tetra- ~ , . . . ~  o o o o t 

gonal-trapezohedral class, we 
need only prove that  none of the invariants (5.t5) which is linear in x3, ys . . . .  
is redundant.  Accordingly, we compute ~,~,...~,, z~,~,...~,, ~,~,...~, for the various 
values of i l l  2 . . .  i ,  which are valid for the terms in (5.t5) which are linear in 
x3, Ys, ... �9 The values obtained are given in Table 5. The corresponding values 
of ~ , . . . ~  ( =  ~,~,...~ --~,~,...~) are also given. Also in the last line of Table 5, 
we give the number of independent syzygies ~,i,...~ which must be demonstrated 
in order to make the upper and lower bounds on ~,~,...~, equal. 

The syzygies are: 

i l i 2 . . . i ~ = 2 t t :  

x3 (Yl z~ - y~ zl) (x~ + x**) + x~ (xl Y2 - x~ y~) (xl zl + x~ z~) - 

- x3 (x~ z 2 -  x~ zl) (xl y l  + x~ y~) - - o .  
i l i 2 . . ,  i~ = 1111 : 

- x~ (xx z ~ -  x~ z~) (Yl u l  + y~ u~) = o .  

xa (Yl uz - -  Y* ul)  (x l  z~ + x ,  z~) + xa (x 1 y~ - -  x~ Yl) (zl  u~ + z~ u~) - -  

- -  x ~ ( x l u  , - -  x~u~) (y~z 1 + y~z~) -~ O. 

x,  (21 u~ - z~ ul) (x lY~ + x~ y2) + xa (xl z~ - x~ z~) (y~ ul  + y~ u~) - 

We note that  the integrity basis for the tetragonal-disphenoidal class, derived 
in w 5, consists of ~ ,  elements which are independent of x~, Ya . . . .  and elements 
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which are l inear in x 3, Ya . . . . .  The elements  which are independent  of x 3, Y3 . . . .  
are the same as those in the in tegr i ty  basis der ived in w 5 for the  te t ragonal -  
py ramida l  class, which has been proven  to be  irreducible. The  e lement  xa ~ is 
clearly not  r edundan t  and it is evident  b y  inspect ion t ha t  none of the e lements  
l inear in x 3, ya . . . .  is redundant .  I t  follows tha t  the in tegr i ty  basis for the 
te t ragonal -d isphenoidal  class is irreducible. 

7. The  h e x a g o n a l  s y s t e m  

In  this section the no ta t ion  of w 3 toge ther  wi th  the following no ta t ion  will 
be used: 

12 (x) = x~ - -  3 x2 x~, 

L (x, y) = Xly l  ~ - xl  y ~ -  2 yl  y ,  x~, 
(7.1) 

L (x, y) = x~ y~ - x~ y~ - 2 yl  y2 ,q ,  

K 1 (x, y, z) = x I YlZl - -  xl Y2 z2 - -  Yl x2 z2 - -  zl x~ Y2, 

K 2 (x, y, z) = x 2 y~ z 2 - -  x~ Yl zl - -  Y2 xl zl - -  z2 xl Yl" 

Trigonal-pyramidal class (I, $1, S~) 

A n y  polynomia l  in A! ') (r = 1, 2 . . . . .  n) is expressible as a po lynomia l  in A(a ') 
and  the quant i t ies  X~ ') (r = t ,  2 . . . . .  n) defined by  

x i  ') = Ai  '), x~'~ = 1 a~,l - 1~ ~ , )  
- - ~ 1  t - 2 - ~ 2  , 

(7.2) 
x?> = - �89 Ai  ") - - ~  A~'). 

I f  this po lynomia l  is invar ian t  under  the t r ans fo rmat ions  L Sa, S~, it  mus t  be  
invar ian t  under  cyclic pe rmu ta t i on  of the  subscr ipts  on X! '). Then,  wi th  theorems 
3 and 4, we see t ha t  an in tegr i ty  basis for the vectors  A! '), for the tr igonal-  
py ramida l  class, is formed b y  the quant i t ies  A~ ") (r = 1, 2 . . . .  , n) toge ther  wi th  

x~ + x~, 11 (x), Is (x); 

x l y l  + x~y2, x x y ~ - x ~ y i ,  J l ( X , y ) , f 2 ( x ,  y ) , J l ( y , x ) , J 2 ( y , x ) ;  (7.3) 

K 1 (x, y, z), 1; 2 (x, y, Z). 

Trigonal-dipyramidal class (I, 113) �9 (I, $1, $2) 

I t  has been seen in the case of the t r igona l -pyramida l  class t ha t  if a po lynomia l  
in A! ') is invar ian t  under  the t r ans format ions  / ,  $1, $2, it is expressible as a 
po lynomia l  in A(a ') and the quant i t ies  (7.3). I t  is readi ly  seen, wi th  theorem a, 
t ha t  if this po lynomia l  is invar ian t  under  the t r ans format ions  118. (L $1, $2), 
it is expressible as a po lynomia l  in the quant i t ies  (7.3) together  wi th  

x~; x3y z, (7.4) 

and this set of quant i t ies  therefore forms an in tegr i ty  basis for the vectors  A! ') 
for the t r igona l -d ipyramida l  class. 

Hexagonal-pyramidal class (L Da) �9 (L $1, $2) 

I t  is seen in the case of the  t r igona l -pyramida l  class t h a t  if a po lynomia l  
in A! "l is invar ian t  under  the  t rans format ions  I ,  S 1, S 2, it is expressible as a 
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polynomial  in A([ I and the quanti t ies  (7.3). We note  tha t  A~[ ~ is invar iant  under  
the t ransformat ions  D 3. (I, S1, $2). We denote  by  N~ (~ = t . . . . .  ~u) those elements 
of (7.3) which are invar iant  under  these t ransformat ions  and by  Q~ (~ = t . . . .  , v) 
the remaining elements. Thus,  the quanti t ies  N~ are 

xl Yl + x~ y~, x 1 y~ --  x 2 Yl; 
and the quanti t ies  Q~ are 

I1 (x), 
]l(x, y), Is(x, y), Jl(y, x), Is(y, x); 
K 1 (x,  y ,  z),  K s (x, y ,  z ) .  

F r o m  theorem t ,  we see tha t  an integr i ty  basis for the vectors A! '~, for the 
hexagonal -pyramidal  class, is expressible as a polynomial  in A(3 '), N~ and Q~ Qa 
( ~ , f l : l  . . . . .  v; ~ / 5 ) .  This basis is highly redundant .  We therefore proceed 
in the following manner�9 

We consider first an integr i ty  basis for the n vectors  A! ~1 under  the group 
of t ransformat ions  (I, D3, R 1 T3, R~ T3) �9 (/, S 1, Ss). We note  tha t  A([ I, N~ 
(~ : 1, . . . ,  #) are invar iant  under  the t ransformat ions (/, D3, R 1 T3, R 2 Tz). 
(/, S 1, S~). Since Q~ Qa is of to ta l  degree 6, it is apparent  tha t  an in tegr i ty  
basis for n vectors A! "~ (r : 1 . . . . .  n), under  this group, is formed by  A~ "~, N~ 
(~ : 1 . . . .  , #) and quanti t ies  of to ta l  degree not  less than  6. We now consider 
the in tegr i ty  basis derived in w 5 for the te t ragonal -pyramidal  class, for which 
the appropr ia te  t ransformat ion group i s / ,  Da, R 1 Ta, R 2 T 3. Then, we consider 
the addit ional  restrictions imposed on a polynomial  in the elements of this 
in tegr i ty  basis by  the fur ther  requirement  tha t  it be invar iant  under  the trans- 
formations (/, D3, R 1 T3, R~ T3) �9 ($1, $2). In  this way it is easily seen tha t  an 
in tegr i ty  basis, for the n vectors under  the group (/, D3, R 1 Ta, R~ Ta) �9 (/, $1, $2), 
which contains no elements of to ta l  degree 6, can be constructed�9 I t  follows 
tha t  an in tegr i ty  basis for n vectors under  the group (I, D3, R 1 Ts, R s T3). (/, S 1,$2) 
can be constructed,  which consists of A~ "1, N~ (~ : 1 . . . . .  /~) and possibly addi- 
t ional  invariants,  independent  of x 3, of total  degree greater  than  6. 

Using equat ions (6.5), . . . ,  (6.8), we now calculate the number ,  Pi,~,...i~, of 
l inearly independent  invariants  under  the group (/, D3, R 1 T3, R~ Tz) �9 (/, S 1, $2) 
of part ial  degrees i l ,  i s . . . . .  i~ in the vectors A! ' / ( r  : 1 . . . .  , n) and to ta l  degree 6, 
which are independent  of A(3 '). These values of P~,~...~, are given in Table  6. 
We note  tha t  these l inearly independent  invariants  of degree 6 must  be ex- 
pressible as monomials  in N~ (x : t . . . . .  /z) and represents the number  of l inearly 
independent  invariants  of degree i l i  ~ . . .  i ,  for the group (/, Da) �9 (/, $1, Se) which 
are derivable from invariants  of lower order�9 

Again, using equat ions (6.5), (6.8), we may  calculate the number,  P..* 
(say), of l inearly independent  invariants  under  the group (/, Ds) �9 (/, $1, Ss) of 
par t ia l  degrees i l ,  i 2 . . . .  , i ,  in the vectors A!') (r = t . . . . .  n) and to ta l  degree 6, 
which are independent  of A(s '). These values are also given in Table 6. 

We note  tha t  for each choice of i~i  s .. i~,  * �9 Pi,~...~ --Pi, i , . . i , ,=2.  I t  follows 
tha t  an integr i ty  basis for the  vectors A! "1 for the hexagonal-pyramidal  class 
will be formed by  A([ I, ]V e (c~=t ,  . . . , /z) ,  together  with two invariants  of the 
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Table 6 

i 1 i 2 . . .  in  

P i t  i2 ... in p.*. . 

5t 
2 

4 
? 
5 

33 411 
4 4 
6 6 

32t 222 

9 10 

221t  
t 0  
t 2  t6 

11111t 
20 
22 

form Q~ Qa, for each value of i 1 i 2 ... i~ represented in Table 6. The additional 
invariants of the form Q~ Q~ are chosen in such a way that  they are independent 
of each other. I t  is obvious that  they cannot be expressed as linear combinations 
of monomials in N~ (c~ = ~, . . . ,  #), since N~ is invariant under the transformations 
R 1 T a and R 2 if'a, while none of the invariants Q~ Q~ is invariant under these 
transformations. 

Thus an integrity basis for the vectors A~ '1 ( r - - t  . . . . .  n) for the hexagonal- 
pyramidal class is formed by A~ ') (r ~-t . . . . .  n) together with the quantities 

x21 + x2o, 121 (x), Ix (x) 12 (x) "~ 

xl Yl + x2 Y2, xl Y2 - x2 Yl, 11 (x) J1 (Y, x ) ,  

I i (x)  J2(Y, x), I i ( y  ) ] l (x ,  y), I i ( y  ) J2(x, y), 
I1 (x) ]l(X, y), zl (x) ]2 (x, y), h (y) J1 (y, x), 
xl (y) L (y, ~), zl (x) I1 (y), I1 (x) I2 (y); 
I~(~) K1(x, y, z), Ii(x) n2(x, y, z), xl(~) Jl(y, z), 

1 1 (x) 12 (Y, z), 1 1 (x) J1 (z, y), 1 1 (x) J2 (z, y), 
K~ (x, y, z), K 1 (x, y, z) K 2 (x, y, z) (7.5) 

and the distinct invariants obtained from these by cyclic permutation of x, y 
and z; 

1 1 (x) K 1 (y, z, u), 11 (x) K2 (y, z, u) 
K~ ( x, y, ~) K~ ( x, y, ~), t ~  ( x, y, z) K2 ( x, y, u) 
I q  (x, z, y) 1~1 (x, z, u), t q  (x, z, y) K 2 (x, z, u) 

invariants obtained from these by cyclic permutation of x, y, z and the distinct 
and u; 

K1 ( x, y, z) K1 (x, u, v), Kx ( x, y, z) I(2 ( x, u, v) 

and the invariants obtained by  cyclic permutation of x, y, z, u and v; 

n l  (x, y, z) gl(~, v, w), Kl(x, y, z) K2 (u, v, w). 

Hexagonal-dipyramidal class (I, C, R3, /)3) " (/, $1, $2) 
The restrictions imposed on a polynomial in A!') (r ~- t ,  2 . . . . .  n) by invariance 

under the transformations (/, D3) �9 (/, S 1, $2) have been determined in the case 
of the hexagonal-pyramidal class. If the polynomial is further invariant under 
the transformations (C, R3)" (I, $1, $2), it follows from theorem t,  that  it is 
expressible as a polynomial in the quantities (7.5) together with 

x~; xaY3, (7.6) 

Thus, (7.5) and (7.6) form an integrity basis for the n vectors A~'I for the hexagonal- 
dipyramidal class. 
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Rhombohedral class (I, C) �9 (I, S 1, Sz) 

I t  is seen from Table t that  the effect of the transformations (I, C) �9 (I, S 1, Ss) 
on the vector components A~ "), A~ ") (r = t  . . . . .  n) is the same as that  of the 
transformations (/, D3) �9 (/, S 1, $2) associated with the hexagonal-pyramidal class. 
Hence the elements of the integrity bases which do not involve A~ ') (r ----1 . . . . .  n) 
will be the same for the rhombohedral and hexagonal-pyramidal classes. We 
therefore need only determine the elements of the integrity basis for the rhombo- 
hedral class which involve A(~ "). 

We have seen that  if a polynomial in A! ') is invariant under the trans- 
formations I, S 1, S 2, it is expressible as a polynomial in A(3 ") and the quanti- 
ties (7.3). If this polynomial is further invariant under the transformations 
C �9 (I, S 1, $2), it follows from theorem t that  the elements of an integrity basis 
for the vectors A! "), for the rhombohedral class, which involve A~ ') are: 

x~, x3 I1 (x), ~3 Is (x) ; 
x~y3, XJl(y), xJ2(y), xJ l ( x ,  y), 
x~L(x, y), ~J l (y ,  x), x3J2(y, x) 

together with the invariants obtained from these by interchanging x and y; 

x3Jl(y,  z), x3J2(y, z), x3Jl(z, y), x3Js(z, y), 
X3Kl(X, y, z), x3Ks(x,  y, z) (7.7) 

together with the invariants obtained from these by  cyclic permutation of x, y 
and z; 

X3Kl (y, z, u), x3K2(y, z, u) 

together with the invariants obtained from these by  cyclic permutation of 
x , y , z  and u. 

Thus, an integrity basis for the vectors A! 0 for the rhombohedral class is 
formed by  the quantities listed above together with the quantities (7.5). 

Di/rigonal-pyramidal class (I, R1) . (I, S1, Ss) 

Any polynomial in the vectors A! ') (r = t,  . . . ,  n) is expressible as a polynomial 
in the quantities A~ '1 (r ~-t . . . . .  n) and the quantities X! ') defined by  

X[,) = A[,), X[,) 1~(,) V3 A~,), X[,) 1 a(,) ~ V3 A(,) : - - ~ - ~ s  -- : - - ~ " 2  T ~  1 �9 (7.8) 

If this polynomial is invariant under the transformations (I, R1). (/, S 1, $2), 
it must be invariant under all permutations of the subscripts on X (0 (r ----- t . . . . .  n). 
Then, it follows from theorems 2 and 4, together with equations (7.8), that  an 
integrity basis for the vectors A! 0, for the ditrigonal-pyramidal class, is formed by 

x~, ~ + ~2 S, 12 (X), 
xl yl + x2 y2, J~ (x, y), I2 (y, x); (7.9) 
Ks (x, y, z). 

Ditrigonal-dipyramidal class (I, R1, R a, D2) �9 (I, $1, $2) 
I t  has already been shown, in the case of the ditrigonal-pyramidal class, 

that  if a polynomial in A! '1 is invariant under the transformations (I, R1)- (/, S 1, $2) 
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it must  be expressible as a polynomial in the quantities (7.9). I f  this polynomial 
is further invariant  under the transformations (Ra, D2) �9 (I, $1, $2), it follows, 
from theorem t,  tha t  it must  be expressible as a polynomial in 

x~ + x ~ x3, 3,12 (x) ; 
x3 y3, xl Yl + x2 y2, J2 (x, y), j~ (y, x); (2.1o) 
K2 (x, y, z). 

These quantities therefore form an integrity basis for the vectors A! '), for the 
ditrigonal-dipyramidal class. 

Trigonal-trapezohedral class (I, D1) �9 (I, $1,  $2) 

I t  has been shown, in the case of the tr igonal-pyramidal class, tha t  if a 
polynomial is invariant  under the transformations / ,  $1, $2, it must  be ex- 
pressible as a polynomial in the quantities 

x3, 12 (x) ; 
xl y~ - x2 Yl, s (x, y), ar~ (y, x); 
K2 (x, y, z), 

which change sign under the transformations D 1, D 1 $1, D1 S~, and the quantities 

x~ yl + x~ y~, J1 (x, y), f, (y, x); 
K l(x, y, z), 

which remain invariant  under the transformations D 1, D~ S 1, D 1 S 2. I t  follows, 
from theorem l,  tha t  an integrity basis for the vectors A! ') (r = t  . . . . .  n), for 
the trigonal-trapezohedral class, is formed by  

x~, x~ + x~, 11 (x), x 3 I2 (x) ; 

x3 y~, x~ yl + x~ y2, Jl(x,  y), f i  (y, x), x~ (xl y~ - x~ y~), 
xJ2(x,  y), xJ~(y,  x), xJ2(y)  

together with the distinct invariants obtained from these by  interchanging x 
and  y; 

Kl(x, y, z), ~I2(y ,  z), x~A(z, y), x~K2(x, y, ~), x3(y~z~ - y~zl) (7.11) 

together with the distinct invariants obtained from these by  cyclic permutat ion 
-of x, y and z; 

x a K  2 (y, z, u) 

together with the invariants from this by  cyclic permutat ion of x, y, z and u. 

I t  is noted that  there are no basis elements of degree higher than three in 
xl ,  x2, Yl,  Y2 . . . . .  z~, z 2 alone. This follows immediately from theorem 2 and the 
fact tha t  any polynomial in x 1, x 2, yl,  Y2 . . . .  , zx, z 2 is expressible as a polynomial 
in the quantities X! ~) . . . . .  X! ~) defined by  (7.2) which is invariant  under all 
permuta t ions  of the subscripts on XI1), . . . ,  X I~). 
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Dihexagonal-pyramidal class (I, R1, R2, D3). (/, St ,  S~) 

I t  has been shown, in the case of the ditrigonal-pyramidal class, that  if a 
polynomial in A! ') (r = t . . . . .  n) is invariant under the transformations (I, RI) .  
(/, $1, $2), it must be expressible as a polynomial in the quantities (7.9). If, 
further, this polynomial is invariant under the transformations (R2, D3). (~ S1, S2) , 
it follows from theorem I that  it must be expressible as a polynomial in a set 
of invariants which contain only elements of degrees t, 2 and 6. 

Again, it has been shown, in the case of the hexagonal-pyramidal class, that  
if a polynomial in A! ') (r = t  . . . .  , n) is invariant under the transformations 
(I, D3) �9 (I, S 1, $2), it must be expressible as a polynomial in A([ ) (r = t . . . . .  n) 
and the quantities (7.5). If, further, this polynomial is invariant under the 
transformations (Rt, R2). (I, S1, $2) it follows, from theorem t and the fact 
that  it must be expressible as a polynomial in invariants of degrees t ,  2 and 6 
only, that  it must be expressible as a polynomial in A~') (r = t  . . . . .  n) together 
with 

x*, + x~, I~ (x); 
x, Yl + x~ y2, I i  ( x) l l  (y, x), I i  ( x) l l  ( x, y), 

11(y) ]l(X, y), xl (y) J1 (y, x), xl (x) I1 (y); 
11 (x) K 1 (x, y, z), 11 (x) J1 (y, z), 11 (x) J1 (z, y), 
K,* (x, y, z) 

and the distinct invariants obtained from these by  cyclic permutation of x, y 
and z; 

I i ( x ) K l ( y , z , u ) , K l ( x , y , z ) K l ( x , y , u ) , K l ( X , z , y ) K l ( x , z , u )  (7.t2) 

and the distinct invariants obtained from these by cyclic permutation of x, y, z 
and u; 

Kl(x, y, z) Kl(X, u, v) 

and the invariants obtained from this by cyclic permutation of x, y, z, u and v; 

K1 (x, y, z) K1 (u, v, w). 

Thus A~ ') ( r = l  . . . . .  n) and the quantities (7.t2) form an integrity basis for 
the vectors A! ') (r = ]  . . . . .  n), for the dihexagonal-pyramidal class. 

Dihexagonal-dipyramidal class (I, C, R 1, R 2, R3, D t, D2, D3) �9 (I, S l ,  S~) 
I t  has been shown, in the case of the dihexagonal-pyramidal class, that  if 

a polynomial in A!') (r = t ,  2 . . . .  , n) is invariant under the transformations 
( I , / t  1, IR 2, D3). (I, St ,  S~), it must be expressible as a polynomial in A(a ') ( r=  
t,  2 . . . . .  n) and the quantities (7.t2). If further this polynomial is invariant 
under the transformations (C, IR 3, D 1, D~) �9 (/, $1, $2), it follows from theorem t 
that  it must be expressible as a polynomial in the quantities (7.t2) together 
with 

x~ and xay 3. (7.13) 

Hexagonal-scalenohedral class (I, C, R1, Dr) �9 (/, St ,  $2) 

We note that  the components A[ '), A[') of the vectors A! ') (r : t . . . . .  n) trans- 
form, under the transformations characterizing the hexagonal-scalenohedral class, 
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in precisely the same way as they do under the transformations (L R1, R2,/)3)" 
(I, $1, $2) which characterize the dihexagonal-pyramidal class. Thus, the ele- 
ments of the integrity bases for the vectors A! '1, which do not involve A~ '1, will 
be the same for the dihexagonal-pyramidal and hexagonal-scalenohedral classes 
and are given by  (7.12). I t  remains therefore to determine the elements of the 
integrity basis for the hexagonal-scalenohedral class which involve A~ '1 (r = t, 

I t  has been shown, in the case of the ditrigonal-pyramidal class, that  if a 
polynomial is invariant under the transformations (L R1) �9 (/, $1, $2), it must 
be expressible as a polynomial in the quantities (7.9). If, further, this polynomial 
is invariant under the transformations (C, D1). (1, S1, $2) it follows from 
theorem t that  it must be expressible as a polynomial in the invariants (7.t2) 
together with 

x3y~, x~J~(x, y), x3I~(y, x), ~J~(y) 
and the invariants obtained from these by interchanging x and y, 

x3J2 (y, z), x3J~ (z, y), x3K~ (x, y, z) (7.t4) 

and the invariants obtained from these by cyclic permutation of x, y and z; 

x3K ~ (y, z, u) 

and the invariants obtained from this by cyclic permutation of x, y, z and u. 
Thus, an integrity basis for the vectors A! '1 (r = t  . . . . .  n) for the hexagonal- 
scalenohedral class is formed by the invariants (7.12) and (7.14). 

Hexagonal-trapezohedral class (I, D1, D2, D3) �9 (/, $1, $2) 

We note that the components A~ '1, A~ '1 of the vectors A! "1 (r = t, . . . ,  n) trans- 
form, under the transformations characterizing the hexagonal-trapezohedral class, 
in precisely the same way as they do under the transformations (I, R 1, R 2, D3) �9 
(L S1, $2) which characterize the dihexagonal-pyramidal class. Thus, the elements 
of the integrity bases for the vectors A! '~, which do not involve A~ rl, will be the 
same for the dihexagonal-pyramidal and hexagonal-trapezohedral classes and 
are given by (7.t2). I t  remains therefore to determine the elements of the 
integrity basis for the hexagonal-trapezohedral class which involve A~'~ (r = 1 . . . . .  n). 

It  has been shown, in the case of the hexagonal-pyramidal class, that  if a 
polynomial is invariant under the transformations (/, D3). (/, $1, $2), it must 
be expressible as a polynomial in the quantities (7.5) and A~ '1. If further this 
polynomial is invariant under the transformations (D~, D2) �9 (I, $1, $2), it follows, 
from theorem t, that  it must be expressible as a polynomial in the quantities 
(7.t 2), together with the following invariants: 

2 x3, x~I1 (x) 12 (x) ; 

x3 Y3, x3 (xl Y2 -- x2 Yl), 
x~I~(~)J2(~, y), x~I~(~)&(y, x), 
x~I~ (y) J~(x, y), x ~  (y) J~(y, x), 
::~I1 (~) I~ (y), :r (y) I~ (y) 
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and the invariants obtained from these by  interchanging x and y; 

x~ (ylz2 - y2 Zl), x3 I1 (y) A (y, z), 
x3• A(z, y), x~Ii(z)A(y, ~), 
x3I 1 (z) J2 (z, y), x~I  1 (y) 12 (z), 

x 311 (x) K~ (x, y, z), x z I 1 (y) K 2 (y, z, x),  

x 311 (z) K 2 (z, x, y), x~ 11 (x) J2 (y, z), 

X3II(X ) J2(Z, y), X3Ii(y ) J2(X, Z), 
x3Ii(y) A(z, x), x~I1(~) A(x, y), 
xaIl(z) f2(Y, x), x3Kl (x ,  y, z )K2(x,  y, z) 

and the distinct invariants obtained from these by  cyclic permutation of x, y 

and z; x311 (y) K~ (y, z, u), x311 (z) K 2 (y, z, u), 

x~I1 (~) K~ (y, z, ~), x~ I1 (y) A (~, u), 
X3fl(y  ) f2(t~, Z), X311(Z ) f2(Y' U), 
XsIl(Z) A(u, y), x3Ii(u) A(y, z), 
x3I i (u  ) ]2(z, y), x3Ix(x) K2(y,  z, u), (7.t5) 
x311 (y) K 2 (x, z, u), x811 (z) K s (x, y, u),  

x3Ii(u)  K2(x,  y, z), x z K l ( x ,  y, z) K~(x, y, u),  

x z K  1 (x, z, y) K s (x, z, u), x3K 1 (x, u, y) K 2 (x, u, z) , 

x~Kl  (y, z, x )K2(y ,  z, u), x3Kl  (y, u, x)K~(y ,  u, z), 

x 3 K 1 (z, u, x) K 2 (z, u, y), x 3 K 1 (y, z, u) K 2 (y, z, u) 

and the distinct invariants obtained from these by cyclic permutation of x, y, z 

and u; x~I 1 (y) K 2 (z, u, v), x3I  1 (z) K 2 (y, u, v), 

x3I  1 (u) K s (y, z, v), XsI 1 (v) K s (y, z, u) , 

xaK 1 (y, z, ~A) K 2 (y, z, v), x z K  1 (y, u, z) K 2 (y, ~A, v), 
x~ K 1 (y, v, z) K 2 (y, v, u), x 3 K 1 (z, u, y) K~ (z, u, v), 

x ,  K 1 (z, v, y) K s (z, v, u), x 3 K 1 (u, v, y) K~ (u, v, z), 

x 3 K 1 (x, y, z) K 2 (x, u, v), x 3 K 1 (y, z, u) Kz (y, v, x), 

x~ K 1 (z, u, v) K~ (z, x, y), x~ K 1 (u, v, x) K 2 (u, y, z),  

x 3 K 1 (v, x, y) K 2 (v, z, u) 

and the distinct invariants obtained from these by cyclic permutation of x, y, z, 
u and v; 

XaKl(y,  z, u) Ks(y ,  v, w), X3Kl(Z, u, v) K2(z, w, y),  

x 3 K 1 (u, v, w) K s (u, y, z), x 3 K 1 (v, w, y) K~ (v, z, u), 

x~Kl (w, y, ~) Ks(w, ~, v), x~Kl (x, y, z)K~(~, v, ~) 

and the distinct invariants obtained from these by  cyclic permutation of x, y, 
z , u , v  and w; 

x, K l ( y ,  z, u)K2(v, w, t) 

and the invariants obtained from this by  cyclic permutation of x, y . . . . .  t. 

Thus, an integrity basis for the vectors A!') (r : t . . . . .  n) for the hexagonal- 
trapezohedral class is formed by  the invariants (7.12) and (7A5). 

t4" 
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8. Irreducibility of the integrity bases for the hexagonal  system 

We first consider the integrity bases derived in w 7 for the trigonal-pyramidal 
class. We note that  the elements A~') are not redundant and that  the remaining 
dements  involve (xl, x2), (Yl, Y~) . . . . .  (zl, z2) only. We accordingly employ the 
notation of w 6 and calculate P~,i,...~, for the values of ili~ ... i ,  represented in 
(7.3). We also calculate 0i~r fli,~,.../~ and Qq~,...~ ( =  Pq~,...~,--#i,~,...~,)- These 
values are given in Table 7, together with the numbers ~7~,...~ of independent 
syzygies of degree ixi2 . . .  i ,  which must be demonstrated in order to prove the 
irreducibility of the integrity basis. Since for each of the values of i ~ i 2 . . ,  i,, 
represented in (7.3), ~/ili,...~,=0, we do not have to demonstrate any syzygies, 
and the integrity basis given in w 7 for the trigonal-pyramidal class is irreducible. 

Table 7 

~i l  is ... in 

~ i t  i t  ... in 

o 
2 
2 
o 

2t 
2 
0 
2 
2 
0 

t l t  
2 
0 
2 
2 
0 

The integrity basis given in w 7 for the trigonal-dipyramidal class differs from 
that  for the trigonal-pyramidal class only in the elements involving x z, Y3 only. 
These are evidently not redundant. Consequently, the integrity basis given for 
the trigonal-dipyramidal class is irreducible. 

I t  is evident from the manner in which it is derived that  the integrity basis 
obtained in w 7 for the hexagonal-pyramidal class is irreducible. 

The integrity basis obtained in w 7 for the hexagonal-dipyramidal class differs 
from that  for the hexagonal-pyramidal class only in the elements which involve 
x3, Y3 only. Since these are evidently not  redundant, it follows that  the integrity 
basis for the hexagonal-dipyramidal class is irreducible. 

The integrity basis derived in w 7 for the rhombohedral class differs from 
that  for the hexagonal-pyramidal class only in the elements involving x 8, Y3 . . . . .  
Consequently, since it has already been shown that  the integrity basis for the 
hexagonal-pyramidal class is irreducible, it follows that  none of the elements 
which do not involve xa, Y3,.-.,  in the integrity basis for the rhombohedral 
class is redundant. I t  is also evident that  none of the elements of the type x~ 
and x 3 y~ are redundant. We need therefore examine only the remaining ele- 
ments in (7.7) which are linear in x s. We note that  these are of the form x 3 P, 
where P is an element, independent of x3, Y3 . . . . .  of the irreducible integrity 
basis for the trigonal-pyramidal class. Since x 3 is not an invariant for the rhombo- 
hedral class, it is apparent that  none of the elements (7.7) is redundant and 
consequently the integrity basis for the rhombohedral class is irreducible. 

Since the integrity basis (7.9) for the ditrigonal-pyramidal class is contained 
in the irreducible integrity basis for the trigonal-pyramidal class, it is irreducible. 
Similarly, since the integrity basis (7.10) for the ditrigonal-dipyramidal class is 
contained in the irreducible integrity basis for the trigonal-dipyramidal class, 
it is irreducible. 
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The elements of the integrity basis (7.11) for the trigonal-trapezohedral class, 
which are independent of x 3, Y3 . . . . .  are contained in the irreducible integrity 
basis for the tr igonal-pyramidal class and consequently none of these elements 
is redundant.  The elements which involve x3, Ya . . . .  only are of second degree 
and are, by  inspection, not redundant.  The remaining elements, which are of 
first degree in x 3, are of the form x 3 P, where P is an element, independent 
of x3, Ya . . . . .  of the irreducible integrity basis for the tr igonal-pyramidal class. 
Since x 3 is not an invariant  for the trigonal-trapezohedral class, it is apparent  
tha t  none of the elements in (7.11) which are linear in x 3 is redundant.  I t  follows 
tha t  the integrity basis (7.1t) for the trigonal-trapezohedral class is irreducible. 

Since the integrity basis derived in w 7 for the dihexagonal-pyramidal class 
is contained in the irreducible integrity basis for the hexagonal-pyramidal class, 
it is irreducible. Similarly, since the integrity basis derived in w 7 for the di- 
hexagonal-dipyramidal class is contained in the irreducible integrity basis for 
the hexagonal-dipyramidal class, it is irreducible. 

The elements of the integrity basis for the hexagonal-scalenohedral class, 
derived in w 7, which do not involve x3, Y3 . . . .  , are the same as those in the 
irreducible integrity basis for the dihexagonal-pyramidal class, and consequently 
none of these elements are redundant.  The elements which involve x 3, Y3 . . . .  
only are evidently not  redundant,  by  inspection, and are of second degree. The 
remaining elements are linear in x 3 and are of the form x a P, where P is an 
element, independent of x 3, Ya . . . . .  of the irreducible integrity basis for the 
tr igonal-pyramidal class. Since x 3 is not an invariant for the hexagonal-scaleno- 
hedral class, it follows tha t  none of these elements linear in x 3 is redundant.  
Consequently, the integrity basis given in w 7 for the hexagonal-scalenohedral 
class is irreducible. 

The irreducibility of the integrity basis for the hexagonal-trapezohedral class, 
derived in w 7, follows from an argument analogous to tha t  employed for the 
hexagonal-scalenohedral class. The elements independent of x 3, Y3 . . . .  are the 
same as those in the irreducible integrity basis for the dihexagonal-pyramidal 
class; the non-redundancy of the elements involving x3, Y3, -.- only is evident 
by  inspection; the remaining elements are of the form x 3 P where P is an element 
independent of x 3, Y3 . . . .  of the irreducible integrity basis for the hexagonal- 
pyramidal  class. 

9. The cubic sys tem 

(a) General description o[ procedure 

The procedure which we adopt  for finding irreducible integrity bases for 
the classes of the cubic system is different from tha t  used for the crystal classes 
previously discussed. Instead of generating highly-redundant integrity bases, 
then eliminating the redundant  elements and finally proving the irreducibility 
of the integrity bases so obtained, we instead generate irreducible integrity bases 
by  an iterative process in which the elements of lowest degree are first generated 
and then those of successively higher degrees, the theorems of w 2 being used 
to indicate the total  degree at which it is safe to terminate this synthesis. 

A polynomial of partial  degrees il ,  i 2 . . . . .  i ,  in the n vectors ~e, y . . . . .  z will 
be said to have degree i l l  2 . . .  i~ in ~e, y . . . . .  z. Let P~,~,...~, be the number  of 
linearly independent invariants of degree i l i2 . . .  i~. Let J1, J2 . . . . .  J~ be the 
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elements of an irreducible integri ty  basis, for the vectors  x ,  y . . . .  , z under  the 
t ransformat ion group considered, which are of tota l  degree in x,  y . . . .  , z less 
than  i 1 + i 2 +  . . .  + i , .  Let  Vqili,...i ~ be the number  of distinct invariants  of the 
form J~l J~' . . .  J ~  where the ~'s are positive integers or zero, which are of degree 
i l i  2 . . .  i v in x, y . . . . .  z. P~,i,...i, is given by  

N 
P ~ h . . . i , - -  N ~ = l t r T f ' ) t r T ~ ( i ' ) . . .  t r T ~  (i"), 

where T~ (e = 1 . . . .  , N) are the t ransformat ions  of the three-dimensional mat r ix  
representat ion of the group describing the crystal  s y m m e t r y  considered, t r  T(~ i') 
is given by  equat ions similar to (6.7) and (6.8), in which L~ is replaced by  T~. 
For  the various t ransformat ions  T~ occurring in the groups describing the sym- 
m e t r y  of the classes of the cubic system, the values of t r  T~ 1), t r  T (2) . . . . .  t r  T~ 5) 
are given in Table 8. 

Transformation T~ 
I 

C 
R1, R 2, R , ,  TI, T 2 

DI, D2, D3, C T1, R1T1 
C T2, R 2 T2, C T3, R 3 T 3 
R 2 T1, R 3 T 1, R 1 T 2 
R3 T2, R 1 T 3, R 2 T 3 
92  T1, D3 T1, Ol T2 
D3 Tz, DI T3, D2 T3 
M~, D~ M~, D~ M~, D~ M~ 
C M~, RI MI, R~ MI, R3 MI 
M2, D~ M~, D2 M2, D3 M2 
C M2, R 1 M2, R$ m2, R 3 M 2 

Table 

tr T(~ 1) 
3 

--3 
1 

1 

--1 
- - I  

1 

1 

--1 
--1 

0 
0 
0 
0 

tr T(~ 2) 
6 
6 
2 
2 
2 
2 
0 
0 
0 
0 
0 
0 
0 
0 

tr (3) 
3 

- 

2 
2 
2 
2 
3 
3 
0 
3 
1 
l 

l 

l 

tr  T(~ 4) 
t5 
15 

3 
3 
3 
3 
1 
t 
1 

1 

0 
0 
o 
0 

tr T(~ a) 
21 

--21 
3 
3 

--3 
--3 

1 

1 

--1 
--1 

0 
0 
0 
0 

The integri ty  bases for the classes of the cubic sys tem m a y  then be generated 
by  the following procedure. 

P/li~...i,, the number  of l inearly independent  invariants  of degree i l i 2 . . ,  i v 
in x, y . . . . .  a, is first computed.  The t9ili2 ... i, invariants  of degree i l i  2 . . .  i v 
obtained from the elements of an irreducible integri ty  basis of lower tota l  degree 
than  i 1 + i 2 +  . . .  4 - i~  are listed. Let  us denote them by  A~, A 2 . . . .  , AQ. These 
invariants  are then expressed as linear combinat ions  of a set of Pi11,...~, l inearly 
independent  invariants,  B 1, B 2 . . . . .  B R, say, thus :  

Pi~ i, ... 1,~ 
AL = s  ~LM BM (L = t ,  2 , . . . ,  Q) .  (9.1) 

M ~ I  

The rank R,1i,. . .~ of the mat r ix  ][~LMI[ is equal to the number  of linearly inde- 
pendent  invariants  in the set of invariants  A1, A 2 . . . . .  A o. We choose from 
the invariants  B1,  B2 ,  . . . ,  BR ,  by  inspection, Pi~i,...i, - -  Ri~i,.. .i ,  invariants  which, 
together  with the invariants  A e form a linearly independent  set. These m a y  
be taken as the elements of degree i ~ i 2 . . ,  i v of an irreducible integri ty  basis 
and, together  with the elements corresponding to all permuta t ions  of ili= . . .  i v,  

will be denoted {Ci~i,.... ~ .  
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The theorems of w 2 can be used to limit the values of i 1 -t- i8 -t- "'" -t- in which 
can apply to the elements of an irreducible integrity basis. Suppose these are 
ql, qe . . . . .  where q~< q e < ' " -  We determine {Ci~} successively for i l = q l ,  q2 . . . .  ; 
i.e. we determine the elements of an irreducible integrity basis which involve 
only one vector. Next,  we determine {Cili, ) for all i l i  2 such that  i 1 + i 2 = ql, q2 . . . . .  
i.e. the elements which involve two vectors. We repeat this process for the 
elements of the irreducible integrity basis which involve three, four, ... vectors, 
until we reach a number  of vectors equal to the max imum q. 

In carrying out these calculations for the various classes of the cubic system, 
it is convenient to use the notation ~ to indicate the sum of the three quantities 
obtained by  cyclic permutat ion of the subscripts on the summand, thus: 

x l  = x2 = x3 = x i  + "2 + 

E xlY= = E X 2 Y a = E  x a y l = x ' y 2 +  x2Ya+ xaYl" 

(b) Hexoctahedral class (I, C, R1, R2, R3, D1, D2, D3). (I, M1, 3//2, T1, T2, T3) 

I t  has been shown in the case of the rhombic-dipyramidal class, tha t  if a 
polynomial in the vectors A ('1 (r = t . . . . .  n) is invariant  under the transformations 
(I, C, R 1, R 2, R 3, D 1, D 2, D3), it must  be expressible as a polynomial in x~, x~, x~, 
xly~, x2y 2, xay 3. The further requirement that  this polynomial be invariant  
under the transformations (/, C, R 1, R2, R a, 9 1 ,  D2, D3) �9 (/, M1, 3//2, T1, T2, Ta) 
implies tha t  it must  be invariant  under all permutat ions on the subscripts. I t  
then follows immediately from theorem 2 that  an integrity basis for the n vectors 
A (') (r = 1 . . . . .  n), for the hexoctahedral class, may  be constructed with elements 
of total  degrees two, four and six only. 

The elements of this integrity basis involving only one vector are clearly, 
from theorem 2, Z x 2 ,  ~ x ~ x  2 and x~x22x2a 

and it is evident that  none of these elements is redundant.  

In  Table 9 are given the values of Pi, i,..i~ for all possible values of i l i  2 ... i , ,  
such tha t  i 1 + i  2 + . . .  + i , = 2 ,  4, or 6 (apart from the cases when all except 
one of the i ' s  is zero). We note tha t  when i 1 ... i , = t i ,  P/,i~...i~= 1. Also, v~11=0, 
since there are no invariants of total  degree t. Thus, in order to obtain the 
elements {Cn} of an irreducible integrity basis of degree 1t, we must  choose 
one invariant  of degree 11. From theorem 2, it is seen that  {Cn} may  be taken 
as ~ x l y  1. 

i l i2  . . .  in t 
Pi,  i , . . . i , ~ : 3  2 

0 2 '9i~ G... in 0 2 
R i, is... in 

31 33 42 

' i i  1 
t 

511211 
4 / !  
3 
3 

Table 9 

411 321 222 

6 11 
6 8 11 

t111 
4 
3 
3 

2211 
15 
14 
t4 

311t 2121:t 111111 
12 31 

t l  30 

We now note that  P22 = 3- The t9~2 monomial  invariants of degree 22 which 
can be formed from the elements of the irreducible integrity basis of lower 
degree are (~  x l y l )2=A  1 (say) and ~ x 2 ~  y~=A 2 (say). Thus t922=2. These 
can be shown to be linearly independent. For, it is easily seen that  

A1 O, 1, B~ 
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where 
B1 = E 112 y12, B2 = E 11 XS Yl YS, B3 = E I12 (Y 22 + y2) 

and we note that  B1, B2, B s are linearly independent invariants, and the matrix 

( i t  o ) h a s  rank R2s----2. I t  follows that  there are P~s--R22=--t elements of 
t 

degree 22 in the irreducible integrity basis. Thus we may take {C~s } ---- ~ x I xs Yi Y~, 
since it is easily shown that  this is linearly independent of A 1, A s . 

Proceeding in this way for the various vahes  of i l l  ~ ... i ,  given in Table 9, 
we obtain the following results. For i l l  ~ ... i ~ = 3 t :  

A I =  (t' t) B2 

where A~= ~ x ~  x ly l ,  B I =  2 x~yl, B s =  ~ x~(x s y s +  xays), and we may 
take {C~1} = ~ x~ (x~ Ys + xa Y3), 2 Y~ (x~ Ys + xs Ys). 

For il i2 . . . i , =  3 3 : 

A 4 1, t ,  t ,  0, B 4 
A s = 1, t ,  t, B 5 
A s 1, 0, | B s ~ '  

A s - - A I + A 4 - - 3 A  s - - t , - - 3  / \ s 
Bs 

where A I = E x~ Z Y~ Z xl Yt, 

As = ~  x l x s y l Y 2 Z  x i y l ,  

Bs = E d yl(y~ + y~), 
~ = X x~ y~ ys(h ys + -3 ys), 

and we may take {Cs3 } = x I x s x s Yl Ys Y3. 

For i t i s . . .  i ,  = 42 : 

As t, O, 
A 1 = t, 
A4 
As 

where 

B2 ~-E 2 2 11 Yl (xs Ys + xa Ya), 
Ba = E xs 'x  a 1 ( s y ~ + x n y ~ ) ,  
B e = x 1 x s xa Yl Y~ Ya, 

1, 2, B s 
t ,  0, B~ 
t,  t, B t ' 

t ,  t / B 5 

B6 

AI=EX~x~Ey21 ,  A2=(Ex~)2Ey~l ,  A s - - - ( 2 x l y i ) ~ Z x ~ ,  
A4=~ x~(x2ys+ xaya)~ xlyl, As=X xl'~syly, X x~, 
B1 F~ x~ ~ " x ~ S Yl, = y l  t ~ + x~), Bs  = Z ':~ x'  ' 

B ~ = Z  x~yl ( - ,ys+  xsys), ~3. = x l ~ s X - l y s y s .  

and we may take {C,2 } = xl x2 xa E xI Y2 Ya, Y, Y2 Ya E h x3 Yr. 
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For  i ti2.,.i~=5t: 

where 

(1, t, 2, 
At  = 1, 1, 
A 3 t ,  

At =2"~("s Ys + x~y~)E d ,  
A a = E  x ty tE  x~x~, 

Bt = E ~;("~ yo. + ,,3 y~), 

B~ = F~ '4 y~, 

Bs ' 
B~ 

As = E xl Yt (2 x~) 2, 

2~ Bs = E ~ Yt (d + ~3,, 

B4 = Xl Xs x3 E xs x3 YI, 

and we m a y  take  {Csx}=xtx~x32 xixzya, yty2y3Zyiysx3. 

For  iris.., i n = 2 1 t  : 

A t = 1, BI , 
B8 

where 

Al--~2x~2ylzl ,  Ag.=2xly12xtz1,  
Bt = E d y ~ .  & = E  -,yt(~s~s + x~h), 

and we m a y  take  {Cm} = Z  x~(YsZs + Y3Z3) , Y'. Y~(Z2Xs + zaxa), 

For  i t i s . . .  i , - -  411 : 

) (12  o o t 2 I;)IB4t A t 1, 0, 0, 0, t ,  0 B s 
A3 = t, O, O, 1, B5 
A4 t, O, t, B e , 
As--A2 --1, --1, B 8 
A6--A~--A4+A6--As --2, -- B t 

B7 
where 

2 2 At = 2  xt xsZ YlZt, 

A3 = 2  x~(xsY2 + x3Y3) 2 xtzt, 

A5 = 2 x~( y2zs + yaz3) ~ x~, 

Bt = 2 ~,~ Yt~t (~I + ~), 
B3 = Z X~. Yt Zl' 

B5 = 2 d ~t (~ Ys + x3 y~), 
B7 = xt xs 28~  xt (YsZ8 + Y3Zs), 

As = (E  x~) s E Yt zl, 

A4 = E  x~(xszs + x~z3) 2 xlYt, 

Ae= 2 x t y t 2  xlz12 x~, 
Bs---E x~x~ytzt, 

84 = 2 x~ (Ys zs + Y~ z3), 

Be = Y~ ~ Yt (xszs + ~ z~), 

and we m a y  take {Cm} = x 1 x s x3E x 1 (ysz 3 + y3zs), Yl Ys Ya~. xl (YsZa + YaZs), 

Zl zs z~ F, xt (ys z~ + y3 zs). 
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For  i~i~.., i~=321"  l t to oooit(/ / A6 t,  1, 0, 0, t ,  1, 1, 0 B t 
A7 1, t ,  0, 0, 0, 2, B s 
A~ t ,  1, t ,  0, 0, B4 
A~--A8+AT--A~  = --t,  --2, O, 2, B 6 , 

A~ t, t, t, | B ~  
A~--A 6 - A ~ - A  2 + A  s - - t , - -2 ,  B z 
A~ 1, t ~ B 7 

B9 
where 

At- -Ex~(y2z~+ y3z3)Zxlyl ,  A2=Zy~(z2x2+z3xs)Ex~,  
A~ =X x~(,~ ~ + x~) Z y~, A~ =X x~(x~y~ + x~y~) Y~ y ~ ,  
A s = E x l y l x ~ y ~ x l z l ,  A 6 = 2 X l Y l Z Y l Z l Z X ~ ,  
17=(ZXlY1)22"lZ1'  A 8 = Z  XlZ1Z N~ZYl2' 
Bx= X x~y~(y2z2 + y.z3), B2= X x~(x2y~z2 + xay~z3), 
B~=yx~y~y.(~z~+x.~),  B~= E ~ ,  Xl Yl (X2 Z2 + X8 Za), 

�9 -, x ~ z  , 2 - l t x 2 y ~ z ~  + x 3 y ~ z 3 )  B5=2.~ 1 l(Y2~- y2), B6 = 2  x2" 2 , 
Bv=~x~ylz l (xzy~4-xay~) ,  B 8 = ~  ~ Xl Yl Z1, 
B~ = x 1 x 2 x a ~ Y2 Ya zl, 

and  we m a y  write {C321)=x1x2x3~y2Y321, ylY2Y3222Z3Xl, 21z223~ x2x3Yl, 
xI x2 x3 ~ Yl z2 zz, Yl Y2 Y3 Z Zl X2 Xa, Zl Z2 z3 Z Xl Y2 Y3. 

For  i 1 i~ . . .  i ,  = 222: 

1111 \ 
10 
5 

A7 
A6 
A2-- A7 + A 6 = 
A4 
A3-- A5 + A4 

A g - - A 1 - - A  s 

1 , 0 ,  0, 
t ,  t ,  

where 

\ 

A7 = (Z -%1 z1)2Z Y 12, 

A n = ~ x l y l Z x l z l E y l z l ,  

O, t, O, 
1, O, O, 
0 , 0 , 0 ,  
t ,  2 , 2 ,  

1, t ,  
t ,  

1, O, O, t, o, 1 \  
O, o, t, O, O, 
2, 2, O, O, o, 
O, O, o, O, O, 1 
o, o, O, o, o, 0 
o, 0, 0, 0, 0 , - - I  
t ,  1, 0, 0, 0, 0 

t ,  o, o, 0 , - -1  
t ,  1, 2, o ~  o/ 1, I,  

Bll\ 
BlO~ 
B8 
B5 
B4 
BG 
B7 
B9 
B2 
B1 

B12 

1~ = X  y,~ (x2 z~ + x~z31 X x1~1, 
14=X xlx2y~y~X~, 
A6 = Y~ xl x~lz~Y~ y~,, 
As=Zyly~z2Zx~, ,  

11o = Z x~ E y~ E ~, 
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B a = ~ x~ Yz Ya ze z3, 
X222,  2 - -  B~ = 2., ~ ~ ~Y~ ~- Y~), 

B~ = ~, xt yx z~ ( x~ y2 + x~ y~) , 

B9 = E z21 X2 X3 Y2 Y3, 

Bll = E Xl Yl Z2 Za (X2 Ya + X3 Y'~)' 
and we may take {C2m } = E x~ ~ ~ Yl Zl" 

For i~i 2 . . . i ~ = t t t l  : 

where 

B2 E x~" ~z ~ - i z 2" = (Y2 2 ~- Y3 3), 

B~ = E X'I ygl Z 1 (X 2 g 2 + X 3 Zs) ,  

B6 = ~, y~ x2 x~ z 2 z 3, 

B8 =- E X~yl[ ~'z2~ ~-- z]), 
�9 ~ $ Z '~ Blo = ~ Xl (Y~ 3 -l- ~ Z 2' Y8 31, 

Yl zl, 

(A1) (,, O, O, 
A~ = 1, O, 1 B a 
A a t,  1 B 4 ' 

B1 

A2 = E xl zt ~ yl ut, 

B2 = ~ xl Yl (22 u2 + ZaU3), 

B,  = ~ Xl U 1 (Y2Ze + y3za), 

A 1 = ~ '  XlY12 ZlUl, 
BI = ~ xt Yl Zl ul, 

Ba = ~ xl zl (Y2 u2 + Y3 u3), 

and we m a y  take {Cllll } = 2 Xl Yl Zl •i. 

For il i~... i , =  2211 : 

A14 
A13 
An  
As 
A4-- A n  + A5 
A~o 
As 
A3-- Alo+ A~ 
A ~  
A~ 
A6-- A12+ A~ 
A9 
As 
A~ j 

t ,  0, 1, 0, 0, 
t ,  0, t ,  0, 

1, 1, t ,  
1, t, 

1, 

t ,  O~ 

0, 1, 
0, 0, 
0, 0, 
0, 0, 
I, 1, 

t, 

A a =  ~ xl u l ~  ylzl ,  

where 

A1 = E  xl ylzlr XlYl '  

A8 = E  Y21( x2~2 + X3~/~8)E X l Z x '  

A,  = X Y~ (ze u2 + za %) X x~, 

A9 = (2  X l Y l ) ~  ZlUl, 

All ~--= ~-'~ yl Ul E x ~ E y l z  1 , 

AI = E Xly E XlZlE 

O, O, O, O, O, O, l ,  t 
O, O, O, O, O, O, t,  1 
O, t ,  O, O, O, O, O, t 
O, t, O, O, O, O, O, 0 
0, t, 0, 0, 0, 0, 0,--1 
t, 0, t ,  0, 0, 0, 0, 1 
1, O, 1, O, O, O, O, 0 
1, 0, t, 0, 0, 0, 0 , - - t  

t, t, I, t ,  0, 0, l 
t ,  t ,  1, 0, 0, 0 

t, t ,  O, 0,--1 
t ,  2, 2, t 

t ,  1, 0 
t ,  1 

As=- ~ xx x 2 y t y 2 ~  zlul ,  

=E x: E yl, 

�9 B15 
B1r 
B7 
Blo 
B9 
B6 
B~ 
B5 
B8 
B4 

Bll 
B~3 
B2 

B1 
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B3 = ~ Xl Y~ "1 (.,~2 22 + X3 g3)' 

B~ = X ~ ~ y~ (~e ~ + ~3"3), 

~ ,  = X x; y~ y3 (~,-3 + ~3-,), 

B13 = Z X~ X 3 Y3 Y3 zl uI,  

BI~ -----~, x2 x3 YlZl (y2 "3 + Y3 u2), 

and we m a y  take {C~m } = ~ ~ ~ Xl Yl Zl " I ,  

F, 2~ Yl zl Xl "1, 
For i li~.. ,  i. = 311 t : 

A n  
As 
As 
2tlo 
A7 
A6 
A~ 
A ~ + A ~ - - A s  
Aa + As-- A~ 
A3+ AT-- A~, 
At 

'1, 

where 

0, 0, 0, t ,  t ,  
1, 0, 0, 0, 0, 

t ,  0, 0, t ,  
t ,  1, 0, 

1, 0, 
t ,  

A~=E ~1 ylZ:'lX d, 

A 5 = Z x l  2(x 2 y g + x  3y3) 2 z l # 1 ,  

A,= E XlZl2YlUlE x21, 

An=XXly lXx tZ lXXl~l ,  

B~ = ~ X~l y~ z~ .~, 

B. = Z ,~ ,,~ (y2 z, + y3 z.), 

B~ = E d z~ (ye ~3 + y3 ~s), 

B, = Y, d Yl (z3-2 + z~ -3), 

B o = ~ x~ z 1 u 1 (x2 Ya + x3 Y3), 

and we m a y  take (C3m } = Z x~ Yl Zl ul,  

Be = ~ Xl Yl zl ut (xe Y2 + x3 Y3), 

B. = Z x~ y~ z~ (xe u2 + x3 u3), 

Bs = X d (y~' ~ .e + y~ z~.~). 

B~o = X x~ y~ ~1 (y~,,~ + y3~,~), 

Bla = E X~ X 3 Yl "1 (Yz Z3 + Yz Z~), 

2 2 X xl~yl-1, E d-,~y:l, 
Ey~u~X~Zl, Edu~x~yl. 

t ,  0, 0, 0, 0, 1 
1, 1, O, 0, t ,  1 
0, 0, t,  0, t ,  l 
0, 0, 0, t ,  1, 1 
0, 0, 0, 1, 1, 0 
0, 0, 1, 0, t ,  0 
t ,  t ,  0, 0, 1, 0 

1, 0, 0, 1, - - t  
t ,  0, 1, --1 

1, 1, --1 
t ,  t 

A2 = ~  

A4 = ~  

As = ~  

As ----~ 

Alo = ~  

x~ (x2z 3 @ x3z3) ~ yl Ctl, 

x l y l E  zlu~E x~, 

~l"lX yl~iZ x,', 

B7 
, Bs 

B~ 
B n  
Blo 
B9 
Bs 
B6 
B4 
B~. 

B 1  

B2 = Y~ x~ (x2 Y2 z~ u2 + x3 Y3 z3 us), 

B4 = Y~ x~ (x3 y~ z2 u8 + xe Y3 z~ ue), 

B6 = ~ x~ (x3 Ye z~ ue + xe Y8 z~ u3), 

Bs = E x, ~ (x3 y~ z~.~ + x~ Y3 23 ~ ) ,  

B12 = Xl xe x8 F, Yl (z~ u3 + zs ue), 

Ey~X~ZlU~, Xz~xly~ul, Eu~xly~Zl. 
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Fori l i2 . . . i ,~21i i l :  

A2o l.O.O,O.O,O,i,O,O,O,O, 
A19 
A18 
A17 
A16 
A15 
Ala 
Ala 
A12 
All 
Alo 
Ag+Aio--Ala 
As 
AT+All--A14 
A6+As--Ai2 
A5 
A4 
A3 
A2 
A1 

O,O,O,O,i,O,O,i,O, i 
l.O,O.O.O,O,O.O,O,i,O,O,O,O,O,i,O.i,O, i 

i ,O,O,O,O,O, i ,O,O,O.O,O,O,O.O, i . i ,O, i  
i,O.O,O,O.O, 1,0. O,O,O,O,O,i,i,O,O, i 

i,O,O,i,O,O,O,O,O,O,O,i,O, 1,0,0, i 
i ,O,O,O,O,O,O.i,O,O,i, i,O,O,O, i 

i .O ,O , i ,O .O ,O, i ,O ,O ,O,O,O, i , i  
i , O , O , i . i , O , O . O . O , O , O , O , i , i  

i ,O,O,O,i,O, 1,0, O,O,O,i, i 
i,O,O,O,i,O,O,O,O,O,i, 0 

i, l .O.O,O,O,O,O,O,i, 0 
i,O,O.O,O,O,O.O,i.-- i  

i ,O, l ,O,O,O,O.i ,  0 
i ,O,O,O,O,O,i , -- i  

i ,O,O.O.O, i , - - i  
i,O,O,O,O, i 

i , O , O , O , i  
i , O . O , i  

1,0, I 
i , i  

where 

Bls 
BiT 

Bsi 
B2o 
Bi9 
B9 
Bia 
B7 
Bi6 
Bi5 
Bia 
Bii 
Bio 
Bs 
B6 
B5 
B4 
Ba 
B~ 
.Bi 

X 2 A1----~. 1E YlZlUl. I , 

A3 =~, X 1 Y l Z l V l E  X l# I .  

A 5 : ~ .  X l Z l U l , l E  Xlyl .  

A T : ~,, xi(zsu5 + zau3)~ ylvl, 

A, = E xi(z~v5 + zava) Z yltbr 

A 1, = X x~ (Y2 v, + Y3 v3) X zl ul, 

Ala--Z x12 E ZlVl E yl'/A~l, 
Al~=Ex, y~ExlzlEUlvl, 
A1T=Exlz~E~I~IEylvl. 
A I , = E  Xl~lE ~ I , , E  y1,,1. 

B1 = F~ x~ Yl zl ui "1, 

B3 = Z xt Yt ZlUl(X5 v2 + x a va), 

B5 = ~ Xl Yl ut vt (x~ z 2 + x a za) , 

B7 = E x2 '~1.1 (Y2 Z2 -[- Y8 Z3), 

B. = E ~ Y1.1 (z~,,5 + ~'*~), 
B .  = F. x, ~ Ylzl  (u~ v~ + u~ v3), 

A 2 

A4 

A6 

As 

Alo 

AI4 

Als 

A~8 

muo 

B2 

B4 

B6 

B3 

Blo 

B12 

= Z ~1 y~,,~,,1Z ~ z l ,  

= Z x,~ (u2.5 + u~ v3) Z yl Zl, 

2 --X XlE,,1.1X yl~, 
= Z  x,~ E zl~,lX y1.1, 

=)-, 2 xt (Y2Z~U~v~ + YaZaUava), 

= Z xi yl Zl Vl (XSu2 + x3u3), 

= F xl zl ul vl (x3 y2 + x~ y3), 

= E x~ (y2 ~,,~ ~ + y~ ~ ~,~ ~) ,  

= Z xl vl (x5 Y3 z~ u2 + x3 y2 z5 u3), 
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ela = E x~ yl H1 (z2 v 2 @ z a v3), 

B17 = ~ xl v~ (xe ys z~ u a + x a yz z~ U~), 

BI~ = ~ xl Yl (x~ z~ u~ v3 + x~ z~ U~ V~), 

B~t = ~ 21Zl (X2 Y3 H2 V3 + X3 Y~ % vz), 

B18 = ~ x 1 v 1 (x~ y~ z~ Ha + X~ yaz~ U~), 

B~o = ~ x~ y~ ( x~ z~ U~ V~ + X3 Z~ U~ V~) , 

and w e  may  take {C21111} = 2 X~ Y121 H1Vl' 2 y12 Xl Zl HI~)I" 2 z12 Xl Yl #1~)1: 

For i l l  2 . . . i . = t t t t t i :  

Aao 
A 29 
A~8! 
A27 
A 26 
A2~ 
A24 
A23 
A22 
A21 
A~o! 
Alol 
Als 
A17 
Als 
A15 = 
A14 
A13 
A12 
All 
Alo 
A9 
As 
A7 
A6 
A5 
A4 
A~ 
A~ 
~J1 �9 

2 Hll- Xl Yl gl Vl, ~ v2 Xl Yl Zl HI" 

1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,  
1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,  

t , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,  
1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,  

t , 0 , 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,  
1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,  

t , 0 , 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,  
t , 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,  

1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,  
1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,  

t , 0 ,0 ,0 ,0 ,0 ,0 ,  
1,0,0,0,0,0,  

1,0,0,1,0,  
1,0, t ,0,  

1,1,0, 
t ,0,  

1, 

0 ,0 ,1 ,0 ,0 ,1 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,1  
0,0, t , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1  
0 ,1 ,0 ,0 ,0 ,0 ,  t , 1 ,0 ,0 ,0 ,0 ,0 ,1  
0 ,1 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,  t ,0 ,1  
0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1  
1 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,  t, 1 
0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,1  
0,0,0,0,0,  t , 0 , 0 ,0 ,0 ,0 ,1 ,0 ,1  
0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,1 ,0 ,0 ,1  
0 ,1 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,  t ,0 ,0 ,0 ,1  
1 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ,0 ,0 ,0 ,1  
1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1  
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ,  t 
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,1 ,0 ,1  
0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,  t , I  
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1  
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1  
1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1  

1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1  
1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1  

1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1  
t , 0 , 0 ,0 ,0 ,0 ,0 ,0 ,0 ,1  

t , 0 , 0 ,0 ,0 ,0 ,0 ,0 ,1  
1 ,0 ,0 ,0 ,0 ,0 ,0 ,1  

1 ,0 ,0 ,0 ,0 ,0 ,1  
1 ,0 ,0 ,0 ,0 ,1  

1,0,0,0, t 
1,0,0,1 

1,0,1 
1,1 

where 

A1 = ~ xl Yl zl H1 ~ vl wl, 

A3 = ~ xl yl zl wl ~ Hl vl, 

A5 ~ ~ xl Yl Ul wl ~ zl vl, 

A7 ~ E X1ZlUlVlE y l w i ,  

Ao ---- Y xl h vl wl Y y~ Hi, 

A 11 = E yl zl H1 Vl E Xl wl, 

AI3 = Y yl h vl wi F xl H1, 

AI~ = Y zl Hi vl wl F x~ Yl, 

A . = E  x l y l E  zl~IEH~Wl, 

A2 =E Xl YlZlViE ~lwl, 
Z~14 = E  XlYlthClVlE Zlwl' 

A6 = E Xl Yl Vl Wl E Zl ul ' 

A 8 =  E XlZl~lWlE ylVl, 
Alo = Y, xl ul vl wl Y yl zl, 
A 13 = Y. Y121 ul wl y. xl vl, 

A14 = E yl Ul Vl Wl E Xl Zl, 
Alo=ExlylE IH1Evlwl, 
AI.=E-lylE~I~IEHI~. 

931 
Bao 
B29 
B28 
B27 
B26 
B25 
B24 
B23 
B22 
B21 
B2o 
B19 
Bls 
B17 
B16 , 
B15 
B14 
BI3 
B12 
Bll 
Blo 
B9 
Bs 
B~ 
B8 
B5 
B4 
B3 
B2 
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A ~ o : E x ,  u ~ E y l V l E Z l W ~ ,  

A~I:E XlVlEytulEZlW~, 
As3=ExlzlEulwlEy~v~, 

A2.= E ylu1E zlT)iE xlw~, 
B1 = ~ xl Yl zi ~1 vt wl , 

B3 = ~ x 1 yt z 1 v 1 (u s w s + u 3 w3) , 

B~ = ~ Xl y~ u 1 Vl (z 2 w s + z 3 wz) , 

B 7 = ~ x~ yl v~ w I (z 2 u 2 + z 3 us), 

B9 = E Xl Z1 Ul Wl (Y~ v2 + Y3 v3), 

B ~  = ~ x 1 ul  v~ w 1 (Y2 z3 + Y~ z3), 

B13 = ~ Yl z~ u lw 1 (x 2 v 2 + x~ v3), 

B15 = ~ Yl ~1 vl Wl (x2 zs 

B17 = ~ Xl Yl (z2 u2 7)3 w3 

B ~  = ~ xt Yl (z3 u3 v~ w~ 

B2~ = ~ x~ Ul (Y2 23 v~ w~ 

B23 = E Xl Zl (y2 ~A3 7)3 w2 

B25 = E xl Zx (y2 u2 733 7233 
B2~ = Y~ y~ zl (x2 u3 v3 ws 

B~ = y, y~ wl (x2 z~ u3 v~ 

B3t = ~, ylV~ (x s z 3 u 3 w s 

+ x3z3), 
+ zau3v2w2), 
+ za u2 vs wa), 

+ Y3 z2 v2 w3), 

+ Y3 u2 vs w3), 

+ y3u3v~w2), 
+ x 3 u 2 v~ w3) , 

+ x3 z2 u2 v3), 

-~ X 3 Z s qA s W3), 

Aso 
As2 
A2~ 

As6 

A28 

A3o 
Bs 

=E xlu E ytw1E z17) , 
:Exlz EulVlEylw , 
: E x~z~E T)~WlE ylul, 

=Ey~wlEZtUlEXlV~, 
= E Y l V l E Z I ~ I E X l W l ,  
: E XI Yl Z1 ~1 (V2 WS "J- 7)3 WS), 

B4 = ~  

B6 : E  

Blo : E 

B12 = ~, 

B14 : E 

B16 ~-- E 

Xl Yl Z1 Wl (US 7)2 ~- U3 7)3)' 

Xl Yl Ul Wl (Z2 7)S ~- Z37)3)' 

Xl Zi Ul Vl (Y2 W2 + Y3 W3)' 

Xl Zl Vl Wi (Y3 US + Y3U3)' 

Yl Zl Ul Vt (Xs WS + X3 W3)' 

ylZlT)lWl(X2Us + X3U3), 

Zl Ul Vt Wl (X3 Y3 + X3 Y3)' 

B18 : E xl yl (z2 u3 v2 w3 + z3 u2 7)3 w2), 

Bso : ~ xl ul (Y2 z3 7)3 w~ + Y3 z2 v~ ws), 

B22 : E x17)1 (y2 z3 r w8 ~- y8 z2 u8 zos), 

B24 : ~ xl zl (Y2 u3 v2 w3 q- Y3 u2 v3 w2), 
B26 : E Xl ~A1 (y2 22 7)3 w3 Ai- y8 z3 7)2 7A)2) , 

Bs3 : Y, y~zl (x~ u3 7)3 w~ + x3u2 v3 w3), 

B30 = ~ Yl ul (x2 z~ v3 w2 + x3 z2 7)~ w3), 

and we m a y  t a k e  (Cl11111) : ~ x 1 Yl zl ul 7)1W1" 

Summariz ing the conclusions reached above, we see t h a t  an irreducible in- 
tegr i ty  basis for the n vectors  A/') (r : t . . . . .  n) for the hexoctahedral  class is 
formed b y  

2. X E xL 
xlYt ,  ~ xtx2ylY2,  ~ x~(x2Y2+ xaYs), ~ Y~(x2Y2+ x3Y3), 

xl x2 x3 YI Ys Y3, Xl X2 X3 E Xl X2 Y3, Xl X2 X3 ~,, Yl YS X3, 

Yl Y2 Y3 ~, XlX2 Y3, Yt Y2 Y3 ~ Yl Y2 X3 ; 

ylys 3, xl s 3Ezt sy3, xiyi4 

together  with the distinct invariants  obtained from these by  cyclic pe rmuta t ion  
of x, y a n d z ;  

2 2 E X1 t~l Y121, E 2 2 Yl 21 Xl ~i, 
2 2 

E 21 Ul X1 Yl, E X~ Yl Zl t/~l, 

E x, ~ yl ~ ~ 7)1 

y~ Xl ~ z~ yl ul,  

E Y~ z~ ~ Xl, 

(9.2) 
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together with the invariants obtained from this by cyclic permutation of x, y, 
z, u and v; 

~ xiYlZl*tlVlWl. 

(c) Diploidal class (I, C, R i ,  R~, R3, Di ,  D2, D~) . (I, M i ,  312) 

As in the case of the hexoctahedral class, we see that  since any polynomial 
invariant for the vectors A (') (r = 1 . . . . .  n) for the diploidal class must be in- 
variant under the transformations I, C, R 1, R~, R 3, D 1, D z, D 3, it must be ex- 
pressible as a polynomial in x~, x~, x~a; x l y  1, x2y 2, xzya. The further require- 
ment that  this polynomial be invariant under the transformations (I, C, R 1, R 2, 
R 3, D x, D 2, D~). (M 1, Ms) implies that  it must be invariant under cyclic per- 
mutation of the subscripts. I t  follows from theorem 3 that  an integrity basis 
for the n vectors A(') (r = t . . . . .  n), for the diploidal class, may be constructed 
with elements of total  degree two, four and six only. I t  is also clear from 
theorem 3 that  the elements of the integrity basis which involve only one 
vector are 

Xx~,  ~ x ~ x ~ ,  x ~  and ~x~x~(x~--x~) .  

In constructing an irreducible integrity basis for the diploidal class, we note 
that  all of the elements of the irreducible integrity basis derived for the hexocta- 
hedral class are also invariants for the diploidal class. We therefore construct 
additional invariants for the diploidal class, which are not invariants for the 
hexoctahedral class, but which together with the irreducible integrity basis for 
the hexoctahedral class form an irreducible integrity basis for the diploidal class. 
We denote the sets of elements of total degrees two, four and six in the irreducible 
integrity basis for the hexoctahedral class by {H(2)), {/-/(4)} and {H(6)} respec- 
tively. Also, we denote the additional elements of total degrees two, four and 
six, which must be added in order to form an integrity basis for the diploidal 
class, by  {D (2)), {D (4)), {/)(6)) respectively. 

The possibility exists that  one or more of the elements in {H(2)), {//(4)) 
and {H(6)} may be expressed as a polynomial in other of these elements together 
with elements from (D (2)), {D (4)) and {D (6)). This is, however, not the case. 
For, it is easily seen from theorem 3 that  there are no elements in the set {D (2)). 
Therefore, we cannot eliminate any of the elements {H(4)). Furthermore, if 
an element of {H(6)) is to be expressible as a polynomial in the elements of 
{H(2)}, {H(4)} and {D(4)), it would involve the elements of (D(4)) linearly. 
I t  could not then be invariant under all the transformations of the hexocta- 
hedral class. I t  follows, therefore, that  we may take the elements of the hexocta- 
hedral class derived in w 9 (b) as elements of an irreducible integrity basis for 
the diploidal class. 

We define P..* ,li,...,, as the number of linearly independent invariants of degree 
ili~ ... i ,  for the diploidal class, which are not invariants for the hexoctahedral 
class. We note that P*  _p(1) _p(2) where p(1) �9 is the total number 

~ $1iz--- in --- ~i $~ .-. ~ -$i$~---~ ~ $15. . - -~  

of linearly independent invariants of degree i l i2 . . ,  i ,  for the diploidal class 
and P~. . . i ,  is the number of linearly independent invariants of degree i l i 2 . . ,  i ,  
for the hexoctahedral class. Pif~...,, are therefore the quantities Pi~,,...~, given 
in Table 9. The values of P..* �9 for all possible values of i l i  2 . i , ,  such that  �9 1.2 ".. $n ' ' 
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ix + i2 + ... + i,----2, 4 or 6 and at least two of the i 's  are non-zero, are given 
in Table t 0. 

We define #*i,...~, as the number of monomial invariants of degree i l i  2 ...  i ,  
for the diploidal class, which are not invariants for the hexoctahedral class, 
tha t  can be formed from the elements of an irreducible integrity basis for the 
diploidal class of lower degree than i t i  2 ... i , .  In constructing relations of the 
type (9A), the A's and B's will, of comse, refer to invariants which are invariant 
under the diploidal transformations, but  not under all the hexoctahedral trans- 
formations. R*i,...i, is then the rank of the matrix relating A's and B's of degree 

�9 C *  i~i~.. ,  i~ Also { i~i,...i,} will denote the elements of the irreducible integrity 
basis for the diploidal class of degrees i t i  2 ... i ,  and all permutations of i l i  2 ... i ,  
which are not also elements of the hexoctahedral integrity basis. Bearing this 
in mind, we proceed in the manner described in w 9 (a) and obtain the follow- 
ing results. 

Table t0 

i l i 2"" in  31 22 51 42 33 211 4 1 1 / 1  3 4 32t 222 t ? 1  3 t t l  22tt 21111 111111 

* 45 19 
PilG...in 2 2 7 8 11 t3 20 30 
O**,,,...| - 0 0 1 2 3 0 7 9 0 12 16 27 45 
R* - - 0 0 t 2 3 0 4 7 0 t0 t2 29 il*a ...*n 

For i t i 2 . . ,  i~ ~ 31 : P3I = 1, ~9al = 0, hence {Cat ) may be taken as ~ xa ~ (x 2 Y2 --  x2 Ya), 

For i t i  2 ... i , = 2 2 :  P*  = 1 ,  0 " = 0 ,  hence {C*} may be taken as X xt2 (Ya ~ -  Y3)-2 

For it  i 2 ... i , = 5 1  : 

where 

A t  = X  x~E  x~(x2Y2 -- xaY3), 

B1 = X x, - 

(B1) A t = ( t , - - t )  Be , 

F 2  = E X~ X~ (X 1 Yl - -  X2 Ye) ,  

and (C~t) may be taken as Z x~ x~(xty  t -  x2Ya), E Y~ Y~(x tY t - -  x2Y2)" 

For i t i2. . .  i .  = 42 : (A:)=(, 
where 

A t = E  2 2 _  xt (Y~ Y~), 
B t  = X - , 

B.  = E X~ Yt (X2 Y~ -- X2 Y2), 

and {C'2} may be taken as 2 x~ x~ (y~ --  y~), ~ y~ y~ (x~ --  x~). 

\B2/ 

For i l i2 . . ,  i~=33" 

( At ) ( 1 ' - - I '  t '  ! ) ( B t )  
A 2 = - - t ,  --1, B 2 

A 3 +  A t - - A 2  3, B ,  ' 
B3 

Arch. Rational Mech. Anal .  Vol. 15 15 
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where 

A~ = E Y,~ (~s ys - ~ y~)E ~,*, 
B~ = E  ~ y~(y~ - y~), Bs = X  xiy~,(x~ - ~), 
B3=Ex~y~(xsy  _x3Y3) ' B , = E  2 2 

and {C'3} may be taken as E x~Y2~(x2 Ys--x3Y3)" 
For i~i2.., i, = 2 1 ! :  P~*----2, 0*n---- 0, hence {C'ix) may be taken as ~ x~ (yuz s -  Y3Z3), 
X Yi(XaZ2-- x3z~), E z~(xsY2-- xay3), E xxY~ (x2zs-- x3za), E YtZt(xsy2-- x3Y3), 
E XlZt (Y2Z2 -- Y3Z3)" 

For i t i2 . . .  i n = 411 : 

A 4 +  
where 

A2 = 
A3 

A1 - - A  s 

A3 = E  x~(YsZs -- Y3Z3) Z x~, 
B1 = X X~Zl(XS ys - x.y~), 

B5 = xt x2 x3 ~ xt (Y2 Z 3  - -  Y3 Z2), 

1, o l  i 
I, - - t ,  - - ! ,  B s 

- - 1 ,  0 ,  B a , 

3, B,~ 
Bt 

As = E x~(x~s - x~z3) E 'q y~, 

Bs = X x~, Y~ ( x~ ** - x~ z~) , 

B~ = E ~{(Y~zs -- y3~),  

and we may take (C'n} = E x~(ysZ s --  yaza), Z Y~(XsZ2 -- x3z3), 
X ~ (x~ ys - ~ y~). 

For iti2.., i,-----32t : 

I A T ) (  = 

As+A e --A x 
and 

where 

0, --1, --1, 
--1, 0, 0, 

t, --1, 
--J,, 

A5 ---- 2At - -  2A2 J- A3 + 3 A4 + A6 -- A~, 

A t = E x ~ t ( x s y s - x 3 Y 3 ) E y t z t ,  A2---- E 
A s = E  x~(y2zs-Y3Z3) E x ty t .  A ~ = E  
As=Ey2,(X2Zs-X3Z3)Xx2, ,  A6---- x 

A~ = X X'l(A - y~) E Xl~l, 
B1 = 2  Xli YtZt ( x2y2 - -  X3 Y3) ' B2 = ~  

2 

B~ = X ' ~ l  (y~ - y~), 

and we may take {C's, } = E x ~ y t z l ( x s y s - - x 3 y 3 ) ,  

X ~t Y~d (xszs -- ~3z3), E x, ~ Yt*~(x~2 -- x3,~), 

O' O' i) 0 0, - - t ,  t B e 
t ,  0, B e 
0, t, B 2 
t,  0 , - -  B 4 

--3, B~ 
B1 

x,*(x~z~ - x ~ )  E yi, 
x~ yl (x~ z2 - x~ 2~) F~ x~ yl, 

d y,* (x~ ~ - x3~3), 
x3 Yl (Y2 Z2 - -  Y3 Z3), 

E Xl Y 12 Zl (Y2 Z2 - -  Y3 Z3)' 
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For  ixi2.., i~=222:  

A~+ As + A~ 
A i - - A a - - A  

and 

where 

0, 1, 0, 
t ,  - - t ,  0, 

1, - - t ,  
t ,  

Os O, 
O, O, 
O, O, 
t ,  O, 

3, 

t ,  00 Bl  
t ,  Bs 
0, B~ 
0 , - -  Ba 
0, B 7 

--3, 0 - -  Bs 
Bt 

At = BI + B~ = -- A2 + 2Aa + Ai  + A6--  A~ + As, 

A s =  B t - -  B2 + B~= -- 3As + 3Aa + A~-- A~ + 2A6--  A~ + 2A~, 

A t =Y'  x~ (y2z2 -- yaza) Z YlZl , 
A a = ~. z~ (x 2 Y2 --  xa Ya) E xt Yl, 

A~ = E ~ (y~ - y~) X ~1 ~, 
A7 = X Yt zt (x, Y2 -- xa Ya) Z xt z~, 

A~ = E -1 yt (-2 ~2 - h h)  X Yl ~1, 
Bt = E x~ yt~t (y,~2 - y s ~ ) ,  
Ba = ~. xt Yt~ (x2 Y~ --  x~ Ya), 

= (X~ 2' 2 - -  X 2 Z 2~ a 31~ 

A2 = Y .  

A6 = E  

As = ~  

y; (x2z2 - x~z~) ~ xt zt, 
2 

,~ (~ - ~) E y'~, 

Xl 2'1 (Y'~ Z2 - -  Y3 2'8) E Xl Yl '  

B 2 = ~ xl Y~ zt (x2 z2 -- x a z2), 
B a = ~  ~. 2 2 2 2 

- -  Y8 zi) xt (y~ z~ 

xs Ys), 
B s = ~  ~ 2 2 2 2 xt (y~ z3 - Ys z2)- 

Hence {C'22 ) may be taken as • x~ytzt(y2z 2 -- YaZa). 

For i l l2. . ,  i , = t t i l  : Pml - -  3, 0*lit--0,  hence {C'm} may be taken as 

For i l i~ . . ,  i~ = 3 t 11 : 

A1 
A3 
A4 
As 
A7 
A9 

A2--At - -A  a 
As--A~--A s 
As--AT--A 9 

Ato--Alt+At2 

Xl zt (Y2 u~ - Y3 us), 

1, --1, 
1, 

O, O, O, O, 
O, O, O, O, 
1, - - t ,  O, O, 

t ,  O, O, 
1, --1, 

t ,  

and 

Xx u~ (y~ z~ - -  Y3 zs). 

t ,  0, 0, 0, 0' 
t ,  0, 0, 0, - - t  
0, t ,  0, 0, 0 
0, t ,  0, 0, - - t  
0, 0, 1, 0, 0 
O, O, 1, O, - -1  

- 3 ,  o, o, o, o 
- 3 ,  o, o, o 

--3, 0, 0 
3, 0 

Bt 
B~ 
B4 
B~ 
B~ 
Bs 
B3 
B6 
B9 
B l l  

. Blo 

where 
A~= E Xl y~(z~u~ -- zsu.~) E x~, A2 = Z x~(z~u2-- zsus) E xiy~, 

A4 = ~. XlZx(y~uz -- YaUa) E x~, 

t5" 

3 All ---- 2A1 -- 2A2 -- 4Aa --  A,  + A 6 + 2A s -- A~ + A s + 2A 9 -- 3 AlO, 

3 AI~ = -- At + A2 + 2As + 2A4 -- 2A~ -- 4A s -- A 7 + A 8 + 2A9 + 3 A~o, 
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A ~= X 4 (x~u2 -XaUa)Xy t z~ ,  

A 11 = E Xl Yl (X2 ~2 - -  X3 'M'3)E Xl ZI' 

B 1 ---- ~ x~ yx (ze u2 - -  za ua), 

Bo = ~ x~ (x~ u~ Ya za - -  x~ u a Y2 za), 

Bl l  = Xl X2 XaE Yl (Z2 Ua - -  Za U2)" 

Alo = E  

A12 : E  

B~ -=--~ 

B~ ---=~ 

B8 = ~  

Blo = E 

Xl Yl (X2 Z2 - -  xa za) E Xl Ul' 

Xl Z1 (X2 q~2 --  X3 Ua) E Xl Yl' 

X~ Z 1 gi  (X2 Y2 - -  X3 Y3)' 

Xl a Zl (Y2 U2 - -  Ya Ua), 

x~ (x2 z2 Ya u3 - -  xa za y~ u2), 

x~ yi Zl (x2~2 - xa ~a), 

Hence { C ' n }  m a y  be taken as E xlYlZtUl(Xl- x~), E x, YxZlui(y~--Y~), 

For  it i ~ 
AlO 
As 
As 
Aa 

AIr 
A16 
At  
A2 
A15 
A4 
A14 

A6+A~--An 
As--Ala+At6 
Aa--A4--AI s 

Ato+A12--Aa 
AI+A2--A2 

where 

. . . i . ~ 2 2 1 t :  

t 
0 
0 
0 

--1 

2 2 E Xl YlZt Ul (Z2 -- Za), 

0 0 - - t  
1 0 0 
1 0 0 
0 0 - - 1  
1 0 0 

- - I  t 0 
1 - - I  

--1 

A~ = X  4 (y~za -- Ya~a)X Y~I,  

A~ = X ~ Y~ (~2"~ -- ~ ~a) E Yl ~1, 
A7 = X  Y~(X2Z2 -- xaza) X xlul , 

19 : E Yl Zl (Y2 "a - -  YaUa) ~ Xl ~, 

A 13 = 2 )~1 Yl (Y2 z2 - -  Y8 23) ~ Xl fill, 

A15 - - -E  XlZ1 ( y2 qd'2 - -  Y3'//~3)E Xl Yl, 

B~ = E x~ y1~1 (y2 z~ --  y2 z2), 

B9 = E •1 Z1 Y2 Y2 (x2 us - -  xa u2), 

8 t  a = ~  2 ~ 2 xl zt ul  (Y2-- Ya)" 

0 0 0 0 
0 - - I  0 1 
0 0 - - 1  0 
0 0 0 0 
0 0 0 - - 1  
0 0 0 0 
0 0 0 0 
t 0 0 0 
I - - 1  0 0 

1 - - t  0 
- - t  0 

3 

E Xl YlZI~I (~2 - -  ~i)" 

0 0 t 0 0 
0 0 0 0 0 
I 0 0 0 0 
0 0 - - 1  0 1 
0 0 0 0 0 
t 0 0 0 0 
0 0 0 t 0 
0 0 0 - - 1  0 
0 - - 1  0 0 0 
0 - - t  0 0 0 
0 0 0 0 t 
0 0 0 0 0 
3 o o o o 

3 o o o 
3 o o 

3 o 

1 2 =  
A 4 =  

A 6 =  

A 8 =  

Alo = 
AI~ = 

A14 = 

2 X~(y2U2 -- Y3 eta) E Yl z l '  

E Xl Yl (X2Z2 - -  X2Z3)E YlUl ' 

E x~ y~ (~2 ~2 - ~-~) E "1 y~, 
A 16 = 2 Xl '/~1 (Y2 Z2 - -  Y3 Z3) 2 Xl Yl' 

2 2 
B2 : E Yl Zl ~1 (X2 - -  X~a), 

B~ = E 4 Y ~ ( Y ~ 2  -- Y.~.), 
8 6 : ~ x~ (y] z a u a - -  y] z 2 u2), 

B8 = ~ xl Yl zl ul (x2 Y2 - -  x3 Y3), 

BlO = E Yl zt xa x3 (Y2 ua - -  Y3 u~), 

' Bla I 
BII ] 

g:l 
B4 8,1 
88 [ 
N12 
B l o ] '  

B6 
Ba 

�9 Bs 
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The 16•  ma t r i x  above is clearly of a t  least  r ank  t2. I t  is not  of rank  13 
since we ob ta in  a column of zeros upon addi t ion  of columns 1 . . . . .  7 and  t3.  
Thus,  the ma t r i x  is of rank  12 and we see t ha t  {C'11} m a y  be taken  as 

Z y~2~(x~u~- 23u3), Y~ y~u~(2~- x323), Ez~u~(x~y~- 23y31. 
F o r  ilia.., i ~ = 2 1 t l l  : 

A 1~ 
Azl 
Alo 
A~ 
A7 
A5 
A4 
A~ 
Az 
A1 
AIa 

AIS 

A~5 

A ~4 
A~a 
A2a 

Am--A~l+A~7 
A19--A23+A26 
A~o--A~ + A~s 
A7--Al~--A17 
A~--As--A9 
A~--A~s--A~s 
Aa--A6--A~ 
A~--A11--A13 
A~--A~o--A~ 

- - |  0 0 0 0 0 t 0 0 0 0 0 0 - - t  0 0 0 0 0 0 
- - t  0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - t  0 0 

0 - - t  t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 1  0 
0 0 0 - - 1  0 0 0 0 1 0 0 0 0 0 - - 1  0 0 0 0 0 
0 - - 1  0 0 0 0 t 0 0 0 0 0 0 1 0 0 0 0 0 0 

- - t  0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 
0 - - 1  0 0 0 0 0 t 0 0 0 0 0 0 0 | 0 0 0 0 
0 0 0 - - t  0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

--1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 t 0 0 
- - t  0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 

t - - 1  0 0 0 0 0 0 0 0 0 0 0 0 - - 1  0 0 0 
- - t  0 0 0 t 0 0 0 0 0 0 0 - - 1  0 0 0 0 

- - t  0 0 t 0 0 0 t 0 0 0 0 0 0 0 0 
--1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 - - 1  0 0 0 0 0 0 - - 1  
t 0 0 0 - - 1  0 0 0 0 0 0 0 - - t  

1 0 1 0 0 0 0 0 0 0 0 - - 1  
1 - - I  0 0 0 0 0 0 0 0 - - 1  

3 0 O 0 0 O O 0 O 0  
3 0 0 0 0 0 0 0 0  

3 0 0 0 0 0 0 0  
3 0 0 0 0 0 0  

3 0 0 O O 0  
3 0 O O 0  

3 0 0 0  
3 0 0  

3 0  

B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 

where 

A1 = X xl Yl (25-5 -- 23 ~3/E xl 731, As = X 21 21 (y~ ~ -- Y3~3/X 21Vl, 

A3 -~- E Xl Ul (y2 22 - y3 Zg) E 21731, ALl = E 213/1 (22 732 - 23 733) E 21 ~t~1, 

15 : E 2121 (y2v2 - y3733)2 21r A6 = E 21731 ( y222 - y 3 h ) E  21qA1, 

A7 = E  xl yl(Ur 732 - q~8 Vs) E 2121, A8 = E  XlqAl(y2 v2 - ysvs) 2 "121, 
Ao = ~_, 2121( 22 u2 - x3u3)2 yl  vl, Alo = 2  21 y1( x~ 732 --  x8 v3) ~., Zl Ul, 

Al l=EXlZl (X2  v 2 -  23733) Ey1~1,  A 1 2 = E x 1 N 1 ( x 2 7 3 2 - h  733) 2 y  1Z1, 

A 13 = E 21 Vl (3]2 ~2 - y3 N3) E x121, A14 = E Xl zl ( qA2 v2 - q~3 7)8) E Xl yl, 

A ~5 = 2 21 Ul (22 v2 - z 3 v3) ~. x 1 3,'1, A16 = 2 21 v1(22 u2 --  23 u3) 2 xi YI, 

A 17 = E 21 ~1 (22 22 - -  h h) E r Ax3 = 2 x~ Yt (x~ u~ --  x 3 ua) 2 21 vl, 

A l o =  S X~ (y2u,2 --  y3%) X z1731, A,~o= X x~ (y2z~ - yaz3) X u, l Vl, 

A~l=2 x~(z~u~--z3u3) yy~v~, A~2=2 x~(y~vz--yav3)~ZlUl, 
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Al:5 = 2  YlZl (  '~2 v'~ - -  ~'3 ' 0 3 ) 2  X12' 

A~, = E Yx vt (za u~ - -  z a %) E x~, 

B~ = ~ x~ z~ u~ h (x~ y~ - -  x~ ya), 

B~ = ~ x~ y~ z~ v~ (x~ u~ - -  % u~). 

BlO = E x l  ~ Yl ~1 (Z9 'U 9 - -  Z a 'V~), 

B u = ~ x~ yl z~ ul (x~ v~ --  xa va), 

B~, = ~.  x~ x~ u~ v~ (y~ z~ - y~ z~). 

B~s = ~ ~ (y~ u,  z a v a - -  Ya ua z~ v~), 

B 1 = ~ X~ Yl  Vl (.,Z,~ ~ - -  7"8 ~3), 

B~ = ~ x~ x~ z~ % (vl y~ --  v~ yx) , 

B~ = ~  xtylu~V~(X~Zu --  %z~) ,  

B n = ~ xl x~ z~ v~ (u~ y~ 

B ~  = ~ x) y~ z l (u~ vz - -  
= - 

- -  % Yl), 

-- ~2 Zl), 

~8 VS), 

Y3 Z3 U~ v2) , 

Y3 v3 z~ u2) , 

The 27 •  matr ix  above  is clearly of  at least  rank t9.  It  is 
since we  obtain a co lumn of  zeros  upon  addit ion of co lumns  l ,  
Thus,  the matr ix  is of  rank t9  and we see that  {C*nn } m a y  be taken  as 

E Yl ZlqAI'/}I (X~ - -  4 ) ,  E Xl zl~b~lvl (Y~ - -  Yl) ,  E Xl Yl adl 7)1 (Z~ - -  Zl) ,  

- , ) ,  X ~, Xl Yl Zl Vl ('U~ U* 

For  i x f i . . . i . = t l t l t l  : 

A .  0 0 0--1 0 0 0 0 0 0 0 0 t 0--t 0 0 0 0 0 0 0 0 0 
A,a 
Act 
A,to 
As8 
As~, 
Ass 
As4 
Aaz 
AsI 
A** 
Ato 
Art, 
Au 
Ale 
Aas 
Az? 
Au 
Ato 
A,.D 
Ale 
Au 
An 
Au 
As 
A, 
A5 
A~ 
Aj. 
Am 

A,z--A.+A,5 
Aio--Ait + A .  
A,7--Au+A,, 
A~,--A~+Aae 
Atx--An+Aaa 
Ats--Atg+Ato 
At$--Ate+At~ 
Atl--Ats+Aar 
A1,--Ato+Ait 
AxT--Aas--Ats 
Au--Att+Au 
Au--Alo--Au 
A,--At+Ao 
A,--A6+A, 
At--Ai+A, 

not  of  rank 20 
. . . .  l O and 20. 

0 0 0 0 0 0 '  
l O 0 - - 1 0 0 0 0 0 0 0 0 0 0 i O 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
O 0 0 - - l i O 0 0 0 0 0 0 0 0 0 - - l O 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 - - I 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0  i 0000--i 00000--i 0 0 0 0 0 0 0 0 0 0 0 0 0  
i 0 0 0 0 0 0 0 0 0 - - i  0 0 0 0 0  i 0 0 0 0 0 0 0 0 0 0 0 0 0  
O O l O 0 0 0 0 0 0 - - 1 0 0 0 0 0 0 - - l O 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 - - I  0 0 0 0 0 0  l 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 0 - - i  0000--i 0 0 0 0 0 0 0 0 0 0 0  
O 0 0 0 i O 0 0 0 0 0 0 0 - - l O 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
00 i 0 0 0 0 0 0 0 0 0 0 - - i  00000--I 0 0 0 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0 0 0 0 0 0 - - 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
0 1 0 0 0 0 - - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 1 0 0 0 0 0 0 0 0  
000000--i 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 - - i  0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - i  0 0 0 0 0 0  
0 0 0 0 0  l 000--i 0 0 0 0 0 0 0 0 0 0 0 0 0 0  i 0 0 0 0 0  

--I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
I 000000--I 0 0 0 0 0 0 0 0 0 0 0 - - i  0 0 0 0 0 0 0 0 0  

l--i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - i  0 0 0 0 0 0 0  
--I 0 0 0 0 0  I 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  

--i 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - I  0 0 0 0 0 0  
I--I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - i  0 0 0 0 0  
--i l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  i 0 0 0 0  

i 0000--i 0 0 0 0 0 0 0 0 0 0 0 0 - - i  0 0 0 0  
--i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - I  001 

--i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  l 
--l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - i  0 i 

- - i O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 i  
I - - I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
- - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - I I  

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

3 0 0 0 0 0 0 0 0 0 0 0 0 0  
3 0 0 0 0 0 0 0 0 0 0 0 0  

3 0 0 0 0 0 0 0 0 0 0 0  
3 0 0 0 0 0 0 0 0 0 0  

3 0 0 0 0 0 0 0 0 0  
3 0 0 0 0 0 0 0 0  

3 0 0 0 0 0 0 0  
3 0 0 0 O 0 0  

3 0 0 0 0 0  
3 0 0 0 0  

3 0 0 0  
3 O O  

3 O  

Bt 
B| 
Bs, 
BI~ 

BI, 
BI: 
Bl: 
Bj 
Bs 
B~ 
B~ 
Bt 
BI 
B) 
B, 
Bl 
B2 
B~ 
Bt 
B, 
B, 
BI 
Bt 
B~ 
BI: 
Br 
B, 
B4 
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where 

A3 = E Z1~41 (7)2 god2 - -  V3 ~Yd3) E Xl Yl' 

A~ = ~ xl 2.1 (v5 w2 - -  va w3) ~ Yl ul ,  

A~ = X xl ul(y5 2.2 - -  Ya z3) X VlWl' 

A .  = E Yl ~1(7)2 ~2 - v3 w3) X Xl/61. 

A n = ~ xl wl (Y5 v2 - -  Y3 va) ~ ZlUl, 

A 13 = X xl wl (Y2 z5 - -  Y3 z3) X ul  vl, 

Als  = ~ Y12.1 (us 7)2 -- u3 v3) ~ xl Wl, 

A1, = E Xl/61(V2 Y2 - -  7)3 Y3) E Zl~d1' 

A 19 = E Xl 7)1 (y2 z2 - y3 z3) E ~1 Wl, 

A21 = ~ Yl zl ( "2w2 - -  r162 w3) E X1~'1' 

A 5~ = X ~1 wl (2.27)2 - 2.~ ~3) E y1-1 ,  

A 25 = E xl q~l (y2 w2 - y3 w3) E z17)1, 

A2, = E ~'1 ~:1 (z57)2 - -  ~ ~) E ~1-1,  

A2~ : ~ Xl yl(U2 w5 - -  u3 w3) ~ zl vl, 

A31 = E Xl Yl (2.2 W2 - -  Z3 W3) E ~ 7)1, 

A 33 -7- E 2.1 Wl (~5 7)2 - -  ~3 V3) E Xl Yl' 

A35 = E XlZl (/62 w2 - / 6 3  w3)E  y17)1, 

A~, = E -1 ~1 (y2 w5 - y3 ~ )  E/617)1, 

A 39 = E Yl Wl (~2 7)2 - -  U3 V3)E X1 2.1, 

A41 : E Xl 7)1 (2.5 W2 - -  2.3 W3) E Yl ~#1, 

A .  = ~ Yl wl (z2/6~ - -  2.3 -3) E xl vl, 

B2 = ~ zl ul vl wl (x, Y5 - -  xa Ya), 

Ba = ~ Xl Yl (25/62 v3 wa - -  za u3 v2 w2), 

Bo = ~ Yl/61 vz wl (x2 z5 - -  

B~ = 2 xl ul 7)1 wl (Y2 z5 - -  

Blo = ~ Xl/61 (Y5 Z2 v3 Wa - -  

B15 = ~', Yl 2.1/61 vl (x2 w2 - -  

B14 = E Xl Yl Zl Wl (7)2 ~2 - -  

B16 ~--- E %1 Yl/61 7)1 (z2 w2 - -  

BIS = ~ ylzlUlWl(X2v2 -- 

B2o = E Xl Yl 217)1 (U,~ W,~ - -  

B22 = Y. x l  Wl (Y2/62 z~ v~ - -  

B2~ = E x l  u l  (Y2 w2 z3 7)~ - -  

B~. = y '  x 1 Yl (2.2 w2 ua va - -  

B2s = ~ xl zl (Y2 w2/637)3 - -  

B3o = ~ xl Vl (Y5 w2 2.3 u3 - -  

%3 2.3), 

Y32.3), 

Y32.37)2 w2), 

X3 W3), 

7)3/63), 
2.3 W3) 
x3v~) , 

/63 W3), 

Ya u~ z~ v~), 

y~ w3 2.2 vs) , 

2.3 W3 r V2) 

Ya wa u2 vs), 

Y3 wa z5/65)" 

A~ = E x~ Yl (va w~ -- va wa) Z zl u x, 

Ai = Z xl Zl (ya u~ -- ya ua) Z Vl Wl, 

As = Z X l ~  (~ ~ - ~, ~ , )X yl  ~,  

A lO = E '~ ~1 (~ "~ - ~ ~'~) X y~ v .  

A ~  = E z~ u~ (v~ y~ - -  7)~ y~) E Xl ~,~, 

A 1~ = E 'q ~ (~ ~'~ - ~*'~) E y~ ~,  
A 16 = E %1 ~1 (gi 7-~2 - z3 ws) E yl  Vl, 

A 18 = E Zl ~1 (7)2 y2 - 7)3 y3) E Xl q~l, 

A~o = E , l , ~ ( ~ w ~  - ~,~.) E y~Zl, 

A22 = E Xi Wl (y2q&2 - y3 q~,~) E z17)1, 
A ~ = ~ y~ u~ (z~ v~ - z~ v~) ~ x~ w~, 

A 26 = E Xl qs (Z2 7)2 - -  Z3 '83) E Yl Wl, 

A ~ = E "~ yl (/6, ~, - -~ v~) E ~ ~1, 

A~, = E x~ ~1 (y~,~ - y~ ~) E/61 ~ ,  
A~o = 2  y~v l (~w~--  u ~ )  ~ X~Zl, 

A 40 = E Xl Vl (y2/62 - y3 ~1,3) E Zl Wl, 

A .  = X Y1.1 (z5 w5 - -  2.3 w3) E '~17)1, 

A44 = E Xl 7)1 (2.2/62 - -  2.3 ~43) E yl  Wl, 

B1 = E xl YlVlWl (2.~ u2 - -  2.~ u~), 

B3 = ~ Xl Yl Zl/6~ (7)2 w2 - -  v~ w3), 

B~ --  ~ x lz  1 v 1 w I (Y2 u2 - -  Y3 ua), 

B7 -----~ 

B9 = ~  

Bil = 

Bia = 

B15 = y '  

BI~ ~--- E 

B19 = E 

B 2 a :  

B~o ----- 

XlZ1 (Y2~2V3W3 - -  y3q~3V2Wg) , 

Yl Z1731 Wl (%2 U2 - -  X3 U3)' 

x 1 z~ u 1 Wl (v2 y~ - v8 Y3), 

xl wl (yz v2 z~ ua - -  ya v 3 z~ u~), 

xl wl (y2 z~ u3 v8 - Y8 z3 u2 v2), 

xl ul (Y~ v2 za w3 - -  Ya v8 z~ w~), 

xl vl (y~ z2 u3 w3 - -  Y3 z3 u~ w~), 

xl Yl ul  wl (z~ v~ - -  z3 v3), 

xl zl ul  vl (y~ w2 - Y8 w3), 

x l  Yl (z2 v~ u3 w3 - z3 v3 u2 w2), 

xl Zl (y~ v~ u3 w3 - Y3 v3 u2 w2), 

xl vl(y~ u~ z 3 w 3 - -  Y3ua z~ w2), 
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The 45 •  matr ix  above is clearly of at  least rank 29. I t  is not  of rank 30 
since we obtain a column of zeros upon addit ion of columns t . . . .  , 14  and 30. 
Thus, the matr ix  is of rank 29 and it is clear tha t  {C* l m }  m a y  be taken as 

Y~ xl yt z~ ~ (~2 w2 - ~ w~). 

Summariz ing the conclusions reached above, we see tha t  an irreducible in- 
tegr i ty  basis for the n vectors  A (') (r = l . . . . .  n) for the diploidal class is formed 
by  the invar iants  (9.2), together  with 

X q * ~ ( q  - ~) ;  

�9 ~ (y2 - y~), 

8 (22 y2 - 2~ y3), 
X y~(23 y~ - 2~ y~), 

X 2~ y ~ ( 2 ~  y2 - 23y~), 

E x~ yl ~ (x2 y2 - x3 y~), 
y , q  2 ~ 22(yl - y~), X x~ 2~ (xl yl  22 y2), 
Z 2 2 2 

Yl Y2 (Xl - -  x~), E Yl 2 Y~ (Xl 3"1 22 Y2); 

E xl Yl (x2 z2 - -  x3 z3), (9.3) 

~ x~YtZl(X2Z2--x~z3),  ~ x~(Y2z2--YaZ3) 

and the invar iants  obtained from these by  cyclic permuta t ion  of x, y, z; 

E Xl ~ Yl Zl (Y2 Z2 --  Ya Za); 

Z 21 Yl (Z2 r - -  Z3'/~3) ' Z XlZ1 (Y2U2 - -  Y3 r ' E 21Ul(Y2Z2 --  YaZ3) ' 

Z Xl Yx zl ut  (2~ - -  xa~), ~ 21 Yl Zl ~/'1 (y2 - -  y2) ,  E 21 Yl Zl Ul (Z2 ~ - -  Za~), 

X ~1 ~q  (~ y~ - 22 y~); 
X ~ y~ ~"~ (~ - ~) 

and the invariants  obta ined from this by  cyclic pe rmuta t ion  of x, y, z, u and v; 

2~ yx zt u~ (v2 w2 - v~ w2). 

(d) Hextetrahedral class (I, D 1, D 2 , O3). (/, M 1, M s , T I, T 2 , Ta) 
We first generate an integri ty  basis for three vectors  x,  y, z and for this 

purpose it is convenient  to hold in abeyance the convent ion described in w 3. 
We see, from the discussion of the rhombic-disphenoidal  class in w 5, t ha t  if 
a polynomial  in the vectors  x, y, z is invar iant  under  the t ransformat ions  
/, 91, 02, Oa, it mus t  be expressible as a polynomial  in the quanti t ies 

21 x2 2a, Yl Y2 Ya, zlz223, xlY2Z3, x2 YaZl, xsylz2,  
(9.4) 

2t Y3Z2, 22 YlZa, X3 Y2 Zl 

and the quanti t ies --iTU~) (i = t ,  2, 3; c~ = t ,  2, . . . ,  t2) defined b y  

X !  1) = Xi ,  = Zi, 
(9.5) 

x ? )  = y, ~,, x !  ~) = z, x,, x?~ - 2, y, 

and 
X(7) = X2 x3 Yl , 

X(7) = xa Xl Y2, 

X(7) = Xl x2 Ya, 

X~S)=Y2 Ya xt . . . .  , 

X ~ ) = y a y l x 2  . . . . .  

X~S)=Yl Y2 x a , - . - ,  

X ( 1 1 2 )  = Z2 Z3 Yl,  

2(12) = Z3 Zl Y2' 

X(3 u) = zl z2 Y3. 

(9.6) 
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We note tha t  the product of any two quantities selected from (9.4) and (9.6), 
including the square of a single quanti ty,  m a y  be expressed as a monomial  in 
the quantities (9.5). I t  follows tha t  any polynomial in the quantities (9.4), (9.5) 
and (9.6) may  be expressed as a polynomial in these quantities, of degree uni ty 
in (9.4) and (9.6). We note further that  the quantities x l x 2 x  a, YlY~Y3, zlz2z3 
are invariant  under (I, D1, D s, D3) �9 (I,/F/l,  M s, T~, ~ ,  Ta) and that  any linear 
function of x ly2z  3, xsyaz~, x~ylz  2, x lyaz  s, x2y~z 8, x3y2z 1 with coefficients which 
are polynomials in the quantities (9.5) is expressible in terms of (i) linear func- 
tions of xly~z a . . . . .  x3y2z 1 with coefficients which are polynomials in ~ x~, 

y~, ~z~ and (ii) linear functions of the quantities (9.6) with coefficients which 
are polynomials in the quantities (9.5). This follows immediately from identities 
of the form 

and 

xl Y~ z3" xl Yl ---- x~. Yl Ys z3, xl Ys z~. x s Ys = Y~" xl xs z3, 

Xl Ys z3" x3 Y3 = Y~ z3" x3 Xl Ys, xl Y2 z3" x~ = x s Ys" xl x2 z~, 

xlYsZs " x~ = x 3z~. x ax ly2 

= F ,  - - 

I t  follows immediately from theorem 4 and the further requirement of invariance 
under (I, D 1, Ds, Da) �9 (M1, 3/s,  T 1 , T2, T3) tha t  an integrity basis for polynomials 
of type  (i) is formed by  ~ x~, ~ y~, ~ z~, ~ x 1 (yszs + yszs). The further require- 
ment  of invariance under these transformations implies that  the polynomials in 
the quantities (9.5) and (9.6) must  be invariant under all permutat ions of the 
subscripts on the X's.  Consequently, from theorem 2 and bearing in mind the 
linearity of the polynomial in (9.4) and (9.6), it must  be expressible as a poly- 
nomial in invariants of degree not greater than 7 in the vectors. 

I f  we examine the invariants of total  degree seven in the vectors ae, y and z 
generated by  the application of theorem 2, we find in each case tha t  they can 
be expressed as polynomials in invariants of lower total  degree. We conclude, 
therefore, tha t  the elements of an irreducible integrity basis for the vectors x, y 
and z for the hextetrahedral  class are of total  degree not greater than six. 

The elements of the integrity basis which involve one vector only are, from 
(9.4), (9.5) and theorem 2, ~ x~, ~ x~ x~ and xl x s x 3, together with the invariants 
obtained by  substituting y and z for x. We shall determine, following the pro- 
cedure described in w 9 (a), elements of an irreducible integrity basis involving 
two and three vectors. I t  will be seen tha t  the invariants in the irreducible 
integrity basis for three vectors so obtained are of degree not greater than four. 
I t  then follows from theorem 5 that  the elements of an irreducible integrity 
basis for an arbi t rary number  of vectors have degree not greater than four. 

Accordingly, we calculate Pil~ for all non-zero values of i 1 and i 2 such tha t  
i I + i s <-- 6 and Pil~2is for all non-zero values of i 1 , i 2 and i s such that  i 1 + i 2 + i 3 ~ 6 
and, in addition, we calculate Pml .  These values are given in Table t t .  Pro- 
ceeding in the manner  described in w 9 (a) we obtain the following results, using 
again the notation of w 
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i 1 i , . . .  in 
Pi~iv..i, 
~i~i,...i, 
Ri,i~...i, 

o o 

o o 

3t 22 41 

t 2 2 
t 

3i5' ,4 
Table 1 t 

42 t t t  

o 

211 31t 

4 
2 4 

221 41 t 

5 7 

321 222 
9 12 

11 15 
9 12 

1111 
4 
3 
3 

For  itis ... i , = 1 1 :  P n = t ,  O n = 0 ,  hence {Cn} m a y  be taken as ~ Xly 1, 

P21=t ,  vq21=O, hence {C2t } m a y  be taken as ~ xtx2y z, For  i l i  ~ ... i , = 2 t  : 

~, Yt Y2 x3* 

For  i t i s . . ,  i~ = 3 1  : 
A1=(1, t) (Bt) 

B2 ' 
where 

At ~--- E X12 E XlYl' 

and hence {Ca1 } m a y  be taken as ~ x~(x2y2+x3y3), ~ y~(x2y2+x2y3). 

For  i t i2 . . .  i~ = 22 : 

A t 0, t,  B t , 

B2 
where 

A1----(2 xtyl)  2, A 2 = E  x ~ Y ~ ,  

Bt = Z x~ y~, B2 -- Z xt x2 Yt Y2, B3 = Z x~ (y~ + Yl) , 

and hence {C22 } m a y  be taken as ~ x ix2y ty  2. 

For  i l l  2 . . . i . = 4 1 :  

where 
At=X,~2x3y, Xx*,, A2=x~,~x.X,~yi, 
B, = -~,~ x3X -tYi, B2 = E  ~ (-, y3 + x3 y2), 

and hence we see tha t  {C4t } contains no elements. 

For  i t i  2 .. .  i , =  32: 

A s -~ t, B 2 

As B3 
where 

A I = X x ~ E x l y 2 Y 3 ,  As = 2  x l y t 2  xt x2Y3, 

B~ = E x~ Y2 Y3, B2 = E ~ Yt (~ Y3 + x~Y2), 
and  hence we see tha t  {C32) contains no elements. 

For  i t i  2 ... i , = t 1 1 :  P111=t, v~111=0, hence {Cttl} m a y  be taken as 

E Xl ( y2z3 "~- Y 3z2)" 

A3 = xt x2 x3 Y~ y~, 

B3 = xt x2 x3 Y~ y~, 
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For  iii ~ ... i . = 2 t l  : 

where 

A~--E x~E yxh, 
Bx = Y. x ~, Yx z~, 

tAlt:tt 0:1 A~ t, B~ , 
B1 

A~ = E  xxy~X ~X~l, 

For  i xi~ . . .  i .  = 3 t t : 

where 

A1, 1t t t ( 11 
A~) I 1, O, B2 
A S = 1, B~ ' 

A~ 1 B~ 

A ~ = ~ X x Yl 2 X2 X3 21' 

and  hence we see tha t  {C31x} contains no elements. 

For  i x i 2 . . .  i,----- 221 : 

A4 t t ,  0, B z 

Aa = 1, 1, B~ , 

As J 1, B a 
5--Ax+ A4--A3+ 2A~ B 

where 

A4 = xx x~ x a ~  ylgl~ 

B2 = 2 x~ zl (x2 Ya + x3 y2), 

B 4 = x x x2 xa E Yx21, 

Bx = E  X12 Yl(Y2 Z3 -1- YaZ2) , B2 = E  XlY~ (X2~a "AF X3Z2)' 
Bs=Z xtyxzx(x2y3+ xzy2), B4---Exiy~y3z~, Bs=Eyix~x3z t ,  

and  hence we see tha t  {C221} contains no elements. 

For  iii 2... i ~ = t l l t :  

where 

A x = X Xl yX Y~ *l "1, 
A3= y~x~.lY~yxzx, 

B4 = ~ xi ui  (Y2 z2 + Ya z3) 

A 2 = t ,  0, B 3 

Bx 

A 2 = E  xlzlZyl~x,  
Bx ~- ~ xl YI zx Ul, 
B3 = ~ xx zx (y2 ~ + Y3 u3), 

and we m a y  take  {Cnll} as ~ x iYiz iu l .  

and we m a y  take  ( C m } =  E x~yizi, ZY~XiZi, Ez~xiYi �9 
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For i l l  2 ... i ,=51 ,  42, 33, 411, 32t, 222, we have seen in the case of the 
hexoctahedral class that  there are 4, 6, 6, 7, 9, 12 linearly independent invariants 
respectively which may be generated by the elements of the integrity basis for 
the vectors 0~, y and z for the hexoctahedral class. From (9.2), (9.7) and the 
identity 

+ E z~ x t y l ~  x l y  I -- E x~E YlY2ZlZ~ - E XlYlE xIZ1Z Yl z l :  3 2 x~Y21Z~ , 

it is readily seen that  each of these basis elements for the hexoctahedral class is 
expressible in terms of basis elements of total degrees 2, 3 and 4 for the hextetra- 
hedral class. Thus, Ri~i,...i" for ili2 . . . i ~ = 5 1 ,  42, 33, 411, 32t, 222 must be 
at least equal to 4, 6, 6, 7, 9, t2 respectively for the hextetrahedral class. Since, 
from Table i t ,  these coincide with Pi~i,...~, for i l l  2 ... i~----5t, 42 . . . . .  222, it is 
clear that  {C51), {C,2}, {C33}, {C411}, {C321} and {C222) contain no elements. 

Summarizing the conclusions reached above, we see that  an irreducible in- 
tegrity basis for the n vectors AI') (r----t, . . . ,  n) for the hextetrahedral class is 
formed by 

Z x, Z 
Xl Yl, Z Xl X2 Y3, ~ Yl Y2 X,, ~ X122YlY2, 

Z x (22 + x3 y3), Z y (x2 + 
XXl(y2z +y z2), Xx y z , Zy, Xl l, 

Xl Yl zl ~tl. 

(9.7) 

(i--= t, 2, 3) defined by  

x!l/= g, 
and 

X[ 41 = x2 x3 Yl , 

X! 2~ ---- y~, X! 3) = xl y, (9.8) 

X(241 = x3 Xl Y~,  X(34> = xl x2 Y3, 
(9.9) 

X l  5) = Yg Y3 x1, X2 5) = Y3 Yl X2, 2(5) = Yl Y2 X3" 

We note that  the product of any two quantities selected from (9.9), including 
the square of a single quantity,  may be expressed as a monomial in the quantities 
(9.8). I t  follows that any polynomial in the quantities (9.8) and (9.9) may be 
expressed as a polynomial of degree unity in (9.9). If further this polynomial is 
invariant under the transformations (I, D~, D2, D3). (M~, 3/12), it follows from 
Table t that  it is invariant under cyclic permutation of the subscripts on the 
X's. Consequently, from theorem 3 and the linearity of the polynomial in (9.9), 
it follows that  the elements of an irreducible integrity basis for the vectors x, y, 
for the tetartoidal class, are of total degree not greater than seven. 

If we examine the invariants of total degree seven in the vectors x and y 
generated by  the application of theorem 3, we find in each case that  they can 

(e) Tetar/oidal class (I, D 1, D 2, D3) �9 (I, M 1, M2) 

We shall first generate an integrity basis for the two vectors x and y and 
for this purpose it is convenient to hold in abeyance the convention described 
in w 3. As in our discussion of the hextetrahedral class, we see that  if a poly- 
nomial in x and y is invariant under the transformations I, D1, D~, D 3, it must 
be expressible as a polynomial in x 1 x 2 x3, Yl Y2 Y3 and the quantities X! 11, X! 21 . . . . .  X! 51 
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be expressed as polynomials in invariants of lower total degree. We conclude, 
therefore, that  the elements of an irreducible integrity basis for the vectors 
x, y for the tetartoidal class are of total degree not greater than six. 

The elements of the integrity basis which involve one vector only are, from 
theorem 3, ~ x~, ~ x~ x~, xl x2x 3, ~ x~ x~(x~-- x~), together with the invariants 
obtained by substituting y for x. 

We shall determine, following the procedure described in w 9 (a), elements 
of an irreducible integrity basis involving two vectors. I t  will be seen that 
the invariants in the irreducible integrity basis for two vectors so obtained are 
of degree not greater than six. I t  then follows from theorem 6 that the elements 
of an irreducible integrity basis for an arbitrary number of vectors have degree 
not greater than six and therefore none of the elements can involve more than 
six vectors. In reaching this conclusion, we note that  det [x, y, z], where x, y, z 
are three vectors, is invariant under the transformations of the tetartoidal class. 

In constructing an irreducible integrity basis for an arbitrary number of 
vectors for the tetartoidal class, we note that  any invariant of even total degree 
is an invariant for the diploidal class and can therefore be expressed as a poly- 
nomial in the elements of the integrity basis for that  class. This integrity basis 
consists of the irreducible integrity basis for the hexoctahedral class (9.2) to- 
gether with the invariants (9.3). We also note that any invariant for the hexocta- 
hedral class is also an invariant for the hextetrahedral class and can therefore 
be expressed as a polynomial in the elements (9.7) of the irreducible integrity 
basis for that  class. Consequently, any invariant of even total degree for the 
tetartoidal class can be expressed as a polynomial in the elements of (9.3) and 
(9.7). We note that  all of the elements in (9.3) and (9.7) are invariants for the 
tetartoidal class. I t  is apparent, by inspection, that  none of the elements in 
(9.3) and (9.7) is redundant in the sense that it can be expressed as a polynomial 
in the remaining elements. 

Therefore, in order to construct an irreducible integrity basis for the tetartoidal 
class, we must construct those elements of odd total degree which together with 
(9.3) and (9.7) form such a basis. I t  is apparent from theorem 3 that there are 
no such additional invariants of degree 3, which involve two vectors only. 

Analogously to the case of the diploidal class, we define P,* . as the number 
of linearly independent invariants of odd total degree i l l  2 ... i,~ for the tetartoidal 
class which are not invariants for the hextetrahedral class. ~.*. �9 R*. �9 

$i$2...$n, $1~2...$n, 

C* { ~ . . . ~  are defined in a corresponding manner. Again, in constructing relations 
of the type (9A), the A's  and B's  will, of course, refer only to invariants which 
are invariant for the tetartoidal class, but not for the hextetrahedral class. In 

Table 12 

i l i 2 . . . i  . 41 32 t t l  311 221 2111 11111 
P;*. - 1 3 3 6 10 
v q.* - �9 0 0 0 ! 1 4 10 
/?-~" ' 0 0 0 1 1 3 6 

Table 12 are given the values of P;* - for i x + f 2 +  ... - / i ~ = 5  where at least 
two of the i 's  are non-zero and also for i l l  2 ... i . = 1 t I .  We then proceed in the 
manner described in w 9 (a) and obtain the following results. 
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For  i t i  ~ . . .  i ,  = 41 : P4* = 1,0"1 = 0, hence 

{Cl'x} m a y  be taken  as ~ ~ (x s Y8 - -  x3 Ys), 

�9 P~  = 1 hence �9 , ~gs~-- 0,  F o r i t i  ~ . i ~ = 3 2 :  * * - -  

{C~} m a y  be taken  as 2 x ~ y l ( x s y ~ - - x z y s ) ,  

For  i t i s . . .  i ,  = 111 : P~*t = t ,  ~9~'n = 0, hence 

{C'n} = 2 x t  (Ys z~ - -  y~zs) = det Ix, y ,  ~ . 

For  it  is . . .  i ,  = 31 t : 
At  = (1, t ,  

where 

At = E ,~t (ys~  - y ~ s ) .  E xL 

and {Cm} m a y  be taken  as 

For  i l i s  . . .  i , = 2 2 1  : 

,y_, y3 (x~ Y3 - x8 y~). 

y,~ x l  (xs Y3 - x3 Ys). 

Bs , 

Ba 

Z Y~ xl(ys zs - Y3 z2), 

A I = ( I ,  t , - - I ) ( B t )  

Bs , 

B3 
where 

At = X ~t (ys ~ - y~s )  �9 X ~t yl,  

and {C*zt} m a y  be taken  as 

For  i t i s  . . .  i , = 2 t t l  : 

As = 1, 

A3 
A 1 - - A s + A s - - A 4  

where 

~,z~  y t  ( x ~ z 8 -  xszs)  , 

At ; X - t  (Ys z, - -  y.  zs). Z x t - t ,  

Bs  = Y" x t z l  ~ 1 (x  s Y3 - -  x3 Ys),  

Bt = ~ xl YtZl(Xs Y3 --  x3 Y2), 
B3 = ~ y~ x t  (x2z3 - -  x3zs) 

Z Y'~ zt (xs z3 - -  x3 Zs), z~. xt (xs y~ --  x3 Ys), 

t, o, o, o,!) 
0, 0, 1, 

t ,  1, 0, 

0, 0, 

B4 

Be 
B2 ' 

B~ 

Be 

As = E x1(Y2~3 - -  Y3U2) " 2 XlZl' 

B2 ----- ~ x~ y l  u l  ( x s z ~ - -  xsz2) ,  

B4 = ~ x~ zl (Ys u3 - -  Y~ u2), 
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and {C~'m} may be taken as Z xxy~u~(x~z3--x~zs), E XlZlUt(x~y~--:v3y~), 
~. xlY~Zx(XsU3--x3us) and the invariants obtained from these by  cyclic per- 
mutat ion of x, y, z and u. 

For  ili ~... i .=ttt11: 

A2 
At 
As 
A7 
A6 
A~ 

A3--As+A6--A~ 
A,--AI+A~--A ~ 
Ao--As+A~--A ~ ] 

where 

0, 0, 0, 
t ,  0, 0, 

t ,  0, 
t ,  

0, 0 , - -1 ,  t ,  0, 
0, 0, --1, 0, 1, 
0, 0, 0, - - t ,  t ,  
0, 0 , - -1 ,  0, 0, 
1, 0, 0, - - t ,  0, 

1, 0, 0, - - t ,  
0, 0, 0, 

0, 0, 
0, 

0" 'n  1 
0 B s 
0 B3 
i B 4 
t B 5 
1 B e 

0 B7 
0 Bs 
0 B,  
0 B i, 

At-=XXl(Z~V3-Z3Vs).~_,ytul, Ag.= E 

A3=E y,(~su3-~3us). E ,lV~, A,=E 
A~-=Ext(ysz3-y3zs) .EUtVl, A6= E 

A7 = X  x~(y~va -- YzVs)" Xztul,  As = Z  

Ag=XYt(U~va-u3vs)'XXlZl, Axo= x 

B8 -- Z xl Y~ v~ (z s u 3 --  z 3 us) , B,  = Z 

B5 = E  XlZlVl(y2u3 - -  Y3U2) , B6 = 2  

B7 = ~ YI Zl UI ( X$ 7) 3 - -  X 3 VS) , 

B 9 -----~ ytutvl(x~z3 -- x3z~), 

Xl ( ~  v3 - -  u3 vs) .  ~ y~ Zl, 

Yl (ZsV3 -- Z3VS)' 2 XlUl'  

x l (ysu3  - y3us)" ~ ZtVl, 

x~ (z2~3 - z3us )"  F~ y~ Vl, 

z~ (us v 3 -  .3 v~) . y~ xt yl ,  

Xl y~ u~ (z2 v3 - z3 v,~) , 

xl zl ul  (Ys v3 - Y3 vs), 

x~ ut vl (Ys z3 - Y3 z~), 

Bs = ~ y~ZlVx (x2.3 -- x3u~), 

BI0 = ~ zl u l v l  (x~ Y3 - -  x3 y~) 

and {C~m } may be taken as ~ ylzlu~(x2v3--x3vs), ~., ylZ~Vl(X2U3--x3us), 
Y~ yl U~ V~ ( x2z3 - x3 zs), ~ h u~ vl ( x ~ y 3 -  x3 Ys). 

Thus, an integrity basis is formed by  the quantities (9.3), (9.7) and the 
C* { ili,...i~} given above. I t  remains to show that  none of these quantities is re- 

dundant. 

I t  is apparent, by  inspection, that  none of the elements of (9.3) and (9.7) 
can be expressed as a polynomial in the remaining elements of (9.3) and (9.7). 

C* It  is also clear from the manner of derivation that  none of the { i,i,...i~} is 
redundant. I t  is necessary however to verify that  the products of elements 
of degree three from (9.7) and the (C*i,...~} may not be used to eliminate elements 
of degree six from (9-3). We are assured of this by  identities of the form 

XS, Y2, ZS" U2, V2, WS = :2XlVl, 2YlVl, EZIVl 
x3, y3, u3, v~, XX~Wl, X y l w ~ ,  Xz~w~ 
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and 
3E xl (y2 z3 - y3 z~). ~ ~1 (v~ w3 + v3 ws) = ~ x1,~1 (y2 v~ - y3 ~3)- ~ 21 ~1 

- - E  Xl f f l (Z2W2- -Z3W3) 'Ey lVl - -EZlW1(u2Y2- -v3Y3) 'E  Xlq21 - -  

- Z xl ~1 (z~,,5 - 23 ~3). Z y, vl + Z ~1~1 (y2 ~5 - y3 v3). Z 21 ~1 - 

- -  E 21 q2'1 (V2 Y2 - -  'U3 Y3)" E Xl Wl -~- E X1 Wl (Y5 q/~2 - -  Y3 ~/~3) ' E 21 Vl - -  

- X x1~1 (25 ~5 - 23 v3). E yl ~1 + E yl ~ (~ v~ - 23 ~3). X xl wl + 

- E ~1 ~1 (22 ~ - 23 w3). X yl ~1 + X yl ~1 (z~ ~2 - ~3 w3). E ~1~1 + 

-JF X Xl Vl (Y2 W2 --  Y3 W3)" E 21 '/"1 - -  E Xl Vl (22 ~5 - -  Z3 qA3)" E Yl Wl -~- 

+ X y1~1(22~ - ~3~3) X x1~1. 

Thus, the invariants of the form ~xl (ysz3- -y3z2) .~u l (v2w3+v3w2)  and 
E ~ 1 ( y ~ 3 - y 3 ~ ) .  X ~ 1 ( v ~ 3 - v 3 ~ 5 )  are seen to be expressibl* as products of 
invariants of degrees two and four from the sets (9.3) and (9.7) and hence may 
not be used to eliminate invariants of degree six from (9.3)- 

Summarizing the conclusions reached above, we see that  an irreducible in- 
tegrity basis for the vectors A(0 (r = 1 . . . . .  n) for the tetartoidal class is formed 
by the invariants (9.3), (9.7) and 

Z yl ~ ~1(x5 y3 - ~3 y~), Z y~ (~  y3 - x3 y~); 
~, Xl (Y2 z3 -- Y3 z2) = det Ix, y, z~ ; (9.t 0) 

2 x~yl(x~z3 -- x3h), ~ X~Zl (x2 Y3 -- bY2) ,  
Z Xl~ yl(y~ 23 - y3~) ,  Z yl ~1 ( x ~  - x325) 

together with the invariants obtained from these latter invariants by cyclic 
permutation of x, y and z; 

together with the invariants obtained from these by cyclic permutation of x, y, 
z and u; 

E YlZlUl(X2V3 -- X3V2) ' E YlZIUl( X2u3 -- X3~2) ' 

E Y1~1 Vl(X2 23 - -  X322) ' E Zl~lVl (X2 Y3 - -  X3 Y2) " 

10. Integrity bases for absolute and polar vectors 
For a proper orthogonal transformation, the transformation law for absolute 

and polar vectors are the same and consequently for the non-centrosymmetric 
groups considered (subgroups of the proper orthogonal group) the irreducible 
integrity bases obtained for absolute vectors are also irreducible integrity bases 
if some or all of the vectors are polar vectors. 

Consider a centrosymmetric group {~2}, the transformations of which con- 
sist of those of some non-centrosymmetric group {~1}, together with the central 
inversion transformation and its products with the transformations of {~1}. 
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Let A ,  (r = t ,  2 . . . . .  n) and B, (s -----1, 2 . . . . .  m) be absolute and polar vectors 
respectively. Suppose that  I 1, l s ,  . . . ,  I N and J1, J2, .-. ,  JM are the elements of 
an irreducible integrity basis for these vectors under the group {fgl} of even 
and odd degrees respectively in the absolute vectors. Then J1, J2 . . . . .  JM change 
sign under ~he central inversion transformation, while I~, Is  . . . . .  IN are invariant  
under the central inversion transformation. Applying theorems I and 4, we see 
tha t  an integrity basis for the vectors A ,  (r = t ,  2, . . . ,  n) and B s (s = 1, 2 . . . .  , m) 
under the group {~2} is formed by  11, I s . . . . .  I N and JvJQ (P,  Q = t ,  2 . . . . .  M ;  
P-< Q). From this integrity basis, an irreducible integrity basis can be derived 
by  eliminating redundant  elements by  methods generally similar to those used 
in deriving irreducible integrity bases for absolute vectors. Also, the irreducibility 
of the integrity bases can be demonstrated by  methods similar to those used 
earlier in this paper. 

11. The anisotropie tensors  

We define an anisotropic tensor with respect to a group {~} as a tensor 
the components of which are unaltered by  each transformation of the group. 
I t  has been seen in a previous paper (SMITH & RIVLIN (1957)) that  for any 
given group {~}, there exists a finite number  of anisotropic tensors in terms 
of which any anisotropic tensor m a y  be expressed as a sum of outer products 
with scalar coefficients. This set of anisotropic tensors m a y  be called a tensor 
basis for the group. If  any element of the tensor basis may  be expressed as a 
sum of outer products of other elements with scalar coefficients, it may  be 
omit ted from the basis and a tensor basis which is such that  no element is 
expressible in this way, in terms of the remaining elements, is called an irreducible 
tensor basis. 

I t  has been shown in the previous paper  how a tensor basis for any group 
may  be obtained if the integrity basis for an arbi trary number  of vectors is 
known for that  group. Let I1 ,  12 . . . . .  I M be the elements of the integrity basis 
for the N vectors A! R) (R = t, 2 . . . . .  N) under the group {fg}, which are multi- 
linear in their argument vectors. Then, a tensor basis is formed by  the tensors 

OA !R1) OA !R,I . . O A  ~R~, I  , 

where IR is multilinear in the /, vectors A !  e,I, A !  R,I . . . . .  A!e~ '). If  the set of in- 
var iants  11, I s . . . . .  IM is such tha t  none of them is expressible as a polynomial 
in terms of the remainder, it is easily seen tha t  the tensor basis generated is an 
irreducible one. For, suppose the tensor ~ ' IR /OA!  R~) OA} R,) ...  0A~e,l is expressible 
as a sum of outer products of other elements of the tensor basis, with scalar 
coefficients. Then, it is apparent  tha t  

0t, IR 
~A(R~ ) OAi(R,)... OAi,~, ) A~ &) A!R' ) . . .  A f t ' )  = I R 

is expressible as a polynomial in invariants other than/R of the set I1 ,  12 . . . .  , I M . 

The procedure described above has been used to obtain an irreducible tensor 
basis for each of the 3t t ransformation groups for which irreducible integrity 
bases for N vectors have been obtained. The tensor bases obtained are listed 
below. 
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Triclinic system 

Pedial: 0~ (~---- 1, 2, 3), 
Pinacoidal: 0~,~6t~ i (~,fl----1, 2, 3). 

Monoclinie system 
Domatic: 6~61~, 02/ ,  0s~, 
Sphenoidal: 01o 0~0aj (~,fl=2,3), 
Prismatic: 01i01 i, 0~/6~i (~,fl=2,3). 

Rhombic system 
Rhombic-pyramidal: 
Rhombic-disphenoidal: 
Rhombic-dipyramidal: 

Tetragonal system 
Tetragonal-pyramidal: 

01~, 62~02i, Os~Os i, 

0~, ~ 6~, i (~=1,2,  3). 

63i, 61i01i + 62i ~2i, 

015 6 2 j - -  62i 01j, 61iOlj61kO11~-O2562102k621, 
01i 01i 01k 62z -- 02~ 62i 02k 61l, 

Tetragonal-disphenoidal: 03 i 6~ i, 61 i 61 i + 62 i 62 i, 

01i02i-- 62i01i, 01i 01i 01k 01z + 02i 02i62k 02~, 
61 i 01i 01/~ 62l - -  62 / 62/" 02/; 61/, 03 i (61j 01L" --  02 j 62k) , 

03i(61k 61~- 02k 62i), 03k(61/01i- 02i62j), 
63/(01~ 62k + 02i6~k), 63j(6~k 02~+ 02k 61~), 
0~k (61i 02~ + 02i 0~j), 

Tetragonal-dipyramidal: 03i 0si, 01i01~'+ 02i02i, 
61i 02 ] - -  625 61j, Oli01jOlk611-~62iO2j020021, 
61i 01j 01/~ 621 - -  02i 02 i 62k 011, 

Ditetragonal-pyramidal: 63 i, 01 i Oli + 0~ i 02i, 

61i Ol i 61k 011 -j- 02/02i 621; 621, 

Tetragonal-scalenohedral: 0s / 6si, 61 i 01 i + 02 i 02 i, 

61i61~611~611-~02i02~026621, 03 i (61 j 62t~ -~- 62 i 61/;) , 

03j{O1kO2~-~62k01~), 03;~ (61 ~ 02 j -[- 62 i 61i) , 

Ditetragonal-dipyramidal: ~3 / 6a i, 61 ~ 61 i + 62 ~ 62 i, 

61~61i61~ 6~ + 02/62i62~ ~2~, 

Tetragonal-trapezohedral: ~s~ 6si, 6~ 01i + 02~ 02 i, 
61 ~ 01/ 61k 011 ~- 02i 62 j 02/~ 621, 035 (61i 62~ - -  02i 61/~) 
and tensors obtained by cyclic permutation of i, i, k, 

0s~(~1~. 6~ 61~ 6~  -- 6~ i 62~ 62~ 61m) 
and tensors obtained by cyclic permutation of i,/', k, l, m. 
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Hexagonal system 

Trigonal-pyramidal: 83~, ~1~ 81j"~02i  82j, 01i ~2j--02i ~1;, 
01i 81 i Oil--Oii 82j 02k--81j 82k 82i--01k 02i 02j, 
02~ 82; 82~--82~ 81i 8ii--82i 8i~ 81~--82~ 8i~ 01i, 

Trigonal-dipyramidah 02~8a;, 8i~01;+82~82;,  

01i 82i--02i 8i i, 01i 61j 01k--81i 82j82k--81 ; 82k 02i--81k 82i 82 i,  

02~ 02i 02~--02~ 01i 81~--02; Oil 81~--82t 81~ 81j, 

Hexagonal-pyramidal: $2~, 01~ 01;"~-82i82j ,  015 82j- -02iSl j ,  

(81~ 61i 81~--81~ 83i 02k--81i 02~ 02i--01~ 8~ 82i)• 
• (81, 81~01.--81~ 02~82~--81~82.82~--81.82,  82~), 

( 0 1 i 8 1 / 8 1 ~ - - 8 i i 8 2  i ~ 2 k - 8 1 j O 5 k 0 2 i - 0 1 ~ 8 2 i 0 2 i ) •  

• (82~ 02~ 82.--82,  8i~ 01. - -02~ 81.8i , - -02 .81~ 01~), 

Hexagonai-dipyramidal: 8s~82i, ~i~81i+82~82i, 01~82;--82~61i, 

(81~81jOlk--Oli82/O5k--OliO2k82i--81k02i82;)2 
X(81/81m81n--81182m82n-- 

(81581;81k--81iO5j82~--~li82k 
• 82~ 82.--82~ 81~ 81.-- 

81,. 82,) 02, - (~i,, 02~ 82,,,), 

8'> m 81n 81~ - -  02. 811 81m), 

Rhombohedral:  The tensors given for the hexagonal-dipyramidal class. 

and 83i (82; 82k 821 - -  82] 01/~ 81l - -  82k 011 8 1 j -  82l 01; 01k) 
and tensors obtained from these by cyclic permutat ion of i, i, k and 1. 

Ditrigonal-pyramidal: 03 i, 81 i 81; + 82 i 82 i, 

82i 82; 82k - -  82i 01 i 81k --  82/. 81/: 81i - -  02k 01i 81 i , 

Ditrigonal-dipyramidah 83.03i, 81i 81i + 82i82 i, 
82 i 82 j 02 ;~ - -  82 i 81 ; 01k - -  82 i 81k 01 i --  02 k 81 i 01 j '  

Trigonal-trapezohedral: 83 i 8z ;, 81 i 81; + 02 ~ 02 ;, 

01i 81; 81k -- 01i 82; 82k -- 01i 82k 02i -- 01k 82i 02;, 0ai(81;02~-- 82;81k) 
and the tensors obtained from this by cyclic permutat ion of i, j, k, 

83i(82; 02k 821 - -  82j 81/~ 811 - -  02; ~ 811 81i - -  8,~i 81i 01/r 

and the tensors obtained from this by cyclic permutat ion of i, i, k, l. 

Dihexagonal-pyramidal: 83 i, 01 i 81; + 82 i 82 ;, 

(01 i 81 ; 81k - -  81 i 82 ; 8.~ k - -  01 ; 82 k 82 i - -  01/~ 82 i 82 j) • 

X (01/ 81m 81. - -  811 02m 82. - -  01m 02. 021 - -  81n 02l 02m), 

Dihexagonal-dipyramidal: 82i 82 i, 81i 81j "71- 02i 82j, 
(81~ 81; 01k -- 81i 0~; 02k -- 81; 02~ 82~ -- 81~ 02i 83j) • 

• (8ii 81m 01. -- 8i: 02~ 82~ -- 01.~ 02~ 02: -- 81.82~ 02=), 
~6" 
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Hexagonal-scalenohedral: The tensors given for the dihexagonal-dipyramidal 
class together with 

(~3~(~21" ~2k (~2z --  ~2i ~1~ 81~ --  ~2~ 8~ ~ .  - -  ~2~ ~ 8~)  

and tensors obtained from this by cyclic permutation of i, 7", k, I. 

Hexagonal-trapezohedral: The tensors given for the dihexagonal-dipyramidal 
class together with 

(~3 i (81i 82/: -- 82i ~lk), 03i (81i 81/~ ~1l -- ~Xi (~2~ 82l -- 81k (~2t 82i -- 
- -  fi~ t 6~ i ~z~) (~3z,~ ~an ~2p -- $~,n 61n hip -- bz, Sip (3ira --  ~2~ r ~31n) 
and tensors obtained from these by cyclic permutation of i, j, k and 

i,/', k, l, m, n, p respectively. 

Cubic  s y s t e m  

He• class: 6ii, ~ ~1i 81j 61k ~il, E bli 61J ~lk ~1l ~lrn 61n, 
Diploidal class: ~ i '  ~ 81~ 81f 61/~ 81Z' E ~I~ 81 i 81k 81t 81m ~ln, 

E ~li 8X f(~2b 821 -- ~3k ~3l), E ~li ~lk (82 ~' 82l --  83/' 83l), 
s (~li 81l (82 f 02k -- ~3 f 83 k), E 81i $1 i ~ik 811 (~2 m 82. -- 8a m 83 n), 

Hextetrahedral:  8~i, ~ ~Sx ~ 8~ i 8~ ~ (Sx ~, ~ 61 ~ (62 i ~ ~ + 8a j 82 ~), 

Tetartoidal: ~0', ~ 6x~ 81~. 6,~ ~lt, ~ 6~ ~1i(62~ ~2~ -- 83~ 63~), 

X 81fSlk~ll(~gi83m--83i~2rn), s ~l~81k~lm(02i~31--83i821), 

12. The use of the tensor bases in the generat ion of integrity bases 

Let Sx, So . . . . .  S N be an irreducible tensor basis for the group {~} which is 
the orthogonal group {0} or a subgroup of it. We shall prove that  if I is a poly- 
nomial invariant of the tensors A x ,  A 2  . . . . .  A R and S 1, S 2 . . . . .  S~ under the 
orthogonal group {d~), it is an invariant of A1, A S . . . . .  A R under the group {~). 

Let G be a generic transformation of the group {f#}. Let Ax, A2 . . . . .  AR 
be transformed into A1, A S . . . . .  ~ (say) by  the transformation G. Since 
Sx, $2 . . . . .  Sx are anisotropic tensors with respect to the transformation G, 
they are unchanged by the transformation. Since G is a transformation of 
the group {0), it follows from the fact that  I is a polynomial invariant of 
Ax, As . . . . .  AR and $1 ,  S 2 . . . .  , SN  under the orthogonal group, that  

I ( A  1, A S . . . . .  A e  ; S~ ,  S z . . . . .  SN) = I (AI,  A 2 . . . . .  2tR ; S x ,  $ 2 , . . . ,  SN) . 

Thus, I is a polynomial invariant of A x, A 2 . . . . .  A R under the transformation G 
and hence under the group {~}. 

We shall now prove the converse theorem: if I is a polynomial invariant 
of A x, A S . . . . .  Ae under the group {~}, it is a polynomial invariant ofA1, A 2 . . . . .  A R 
and S x ,  S 2 . . . . .  S N under the group {d~}. 
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If  I is a polynomial  invar iant  of A1, A~ . . . . .  A R under  the group {~), it 
mus t  be expressible as the sum of a number  of terms of the form 

where ~,~,...~e is an outer  p roduc t  formed f rom the tensors A 1 ,  A ~ ,  . . . ,  A R ,  and 
~,i,...~e is an outer  p roduc t  formed from the tensors S 1, $2, . . . ,  SN and  ~ is a 
constant .  I t  is easy to see tha t  each such term and hence I is a polynomial  
.nvariant  of A 1, A 2 . . . .  A R and $1, $2 . . . .  , SN under  the group (0).  Let  
1 

~,~, . .  ~ ~ tel i, t~,i,.., tieie %'1h... Je 

fl ~, ~,.. ~ = t i, i, t~, i,... tie ie fli, i, ...ie 

where IIt,;I l is a generic t ransformat ion  of the group (d~). Then, since t,k ti~ = 
tk i  tk,. '= $ i i ,  it follows immedia te ly  tha t  
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