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Abstract. Sufficient conditions are derived for persistence and extinction of 
a populat ion inhabiting several islands. Discrete reaction-diffusion population 
models are analyzed which describe growth and diffusion of a population on 
a group of islands or a patch environment. A critical patch number  is defined 
as the number  of islands below which the population goes extinct on that 
group of islands. It is shown that population persistence on one island leads 
to population persistence for the entire archipelago. Both single-species and 
multi-species models are discussed. 
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I. Introduction 

The study of  island biogeography in a mathematical  context began to flourish 
with the work of MacArthur and Wilson [15, 16]. Much work in this area has 
centered on the relationship between species number, island area, and distance 
from the mainland. In this investigation we consider species persistence and 
extinction behavior as related to the number  of  islands. 

The model analyzed is a discrete version of a continuous reaction-diffusion 
equation. The continuous model with exponential growth was analyzed by Kier- 
stead and Slohodkin [8] and Skellam [21]. Kierstead and Slobodkin [8] used a 
reaction-diffusion equation to model the formation of a plankton bloom. They 
found a critical patch size below which the population dies out and above which 
the populat ion survives. Since their initial investigation there has been a consider- 
able amount  of  research on the formation of plankton blooms. A review of many 
of them can be found in Okubo [19]. The investigations have concentrated on a 
continuous spatial e n v i r o n m e n t - - a  model appropriate for aceanic plankton. By 
considering several islands or patches we extend the notion of a critical patch 
size to critical patch number,  where critical patch number  is that number  of  
islands below which the population dies out. 

Several basic assumptions are inherent in the island model due to its relation- 
ship to the continuous model. Each island provides a suitable habitat for growth 
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and reproduction. Thus we concentrate on the relationship between the island 
populations and their surrounding environment. Movement between adjacent 
islands occurs by random diffusion, an assumption which comes from the con- 
tinuous model. Other types of  diffusion are discussed in Sect. IV. Surrounding 
the group of islands is a region unsuitable for survival. This assumption also 
comes from the continuous model. A final assumption is that there is no main 
colonization source; the only source of new members  is through birth or movement  
from another  island. This is a reasonable assumption according to DeAngelis et 
al. [3], since many islands are far from any mainland source and therefore may 
receive new colonists only from nearby islands. Generalizations of  some of these 
assumptions are discussed in Sect. IV. 

The model identification, analysis, and discussion are presented in the follow- 
ing sections. The next section is the model identification. Section I I I  is a presenta- 
tion of  the main results. Section IV is a presentation of several examples, 
applications, and extensions of  the basic model. The concluding section is a 
discussion of  the results. 

II.  The model 

The continuous reaction-diffusion model is described first. The discrete model 
will be subsequently obtained from the continuous model via an appropriate 
discretization over the spatial variable. The continuous version is given by the 
following initial value problem: 

Ou O2u 
- - = u f ( u ) +  O<~x~L, t>~O 3 t D~x2 ' 

u(x ,O)=g(x) ,  O<~x<~L (1) 

u(O, t) = 0 = u(L, t), t >I O, 

where the function u(x, t) represents the populat ion size at position x and time 
t. The constant D is positive and g(x) is nonnegative on 0 ~  < x ~< L. The above 
model is the one analyzed by Kierstead and Slobodkin [8] and Skellam [21] with 
exponential growth, f (u) --- r. In this case the solution can be explicitly determined 
and is given by: 

u(x, t) = ~ C, e ~r-a~ sin(n~rx/L), 
n=l 

where A, = (n~ /L)  2 and 

210~ Cn=-s g(x) s in (mrx /L)dx  for n = l , 2 , . . . .  

The critical patch size is Lc = r I f  L <  Lc, then the populat ion size tends 
to zero or species extinction, but if L >  Lc, then there is exponential growth or 
species persistence. 

The discrete model is obtained using a finite difference scheme of (1) over 
~ N + I  

the spatial domain 0 ~ x ~ L. For N + 1 intervals, let ,~i=l li = L, Xo = O, Xl = 11, 
v N  +1 

x2 = I , + 1 2 , . . . ,  xN+l--~;=l I~=L, u(x,, t ) =  v,(t), and g(x~)=&. The discrete 
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approximation vi(t) satisfies the following system of ordinary differential 
equations: 

~i = v i f (  vi) + Di, i+l( Vi+l - vi) + Di, i - l (  Vi-1 - vi) 

v,(O) = gi, i = 1 , . . . ,  N, (2) 

where D~,~+a, Di ,  i -1 ,  and g~ are positive constants. Notice in model (2) the 
coefficients Di ,  i+ 1 and Dia_l can be unequal. The boundary conditions imply 
v0 = 0 = VN+l. Thus we consider a total of N islands. 

Another method of obtaining the discrete model is via a random walk. Thus 
frequently the discrete model is taken to be of the form: 

N+I 
bi=v~f (v , )+ • D u ( v j - v i )  , i = l , . . . , N ,  (3) 

j=0  

where D~ = Dj~ (Allen [1, 2], Hastings [6, 7], Levin [11, 12], Namba [18], Yodzis 
[23]). Model (3) is a generalization of (2) to more complex spatial arrangements 
of islands. The following analysis considers just the linear arrangement of islands, 
but extensions to more complex arrangements are discussed in Sect. IV. 

III. Main results 

We now state the main results in regard to model (2). All of the proofs, for 
convenience, have been placed in the Appendix. 

The following mathematical assumptions and definitions are made for model 
(2). The per capita growth rate f ( v )  is a sufficiently smooth function such that 
there exists a unique solution to (2) on [0, 00). The operations on the vector 
V = ( v l , . . . ,  vu)  r are component-wise--e.g. ,  V ~  > 0 means vi/> 0, i = 1 , . . . ,  N, 
lim,_~o~ V( t )  = 0 means limt~oo vi(t) = O, i = 1 , . . . ,  IV, and lim sup,_~ V(t )  > 0 
means l imsup,_~ v i ( t )>0 ,  i = 1 , . . . ,  N. By species extinction we shall mean 
limt_,o~ V( t )  = 0 and by species persistence we shall mean lim sup,_,~ v~(t) > 0 for 
some i. The proofs of the theorems rely on comparison techniques, therefore f ( v )  
is bounded. 

A sufficient condition for species extinction is given in Theorem 1. In addition 
a critical patch number is defined as that number below which the population 
goes extinct. 

Theorem 1. Let 2 D : m i n i { D i ,  i+l+Di, i 1} and l ) = m a x i { D i ,  i+l, Di, i_l}. I f  
supv~of(v) = r is positive and 

r <2[_D+/~ c o s ( ~ N / ( N +  1))], (4) 

then lim,_,~ V( t )=  0. The critical patch number is 

Arc cos[(r - 2 _D)/2/)] 
Nc - ~r - Arc cos[(r - 2 _D)/2/3]" (5) 

Note that if r is nonpositive, inequality (4) is automatically satisfied and the 
population dies out. 
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According to Theorem 1 fewer islands than Arc implies extinction. However 
more islands than Nc doesn't  necessarily imply persistence, since inequality (4) 
is a sufficient but not necessary condition for extinction. We call Nc a critical 
patch number because Arc is the "best" possible number for all models satisfying 
the hypotheses of Theorem 1. The exponential growth model with equal diffusion 
coefficients satisfies Theorem 1 and for this model Nc is a true critical patch 
number in that fewer patches than Arc implies extinction and more patches than 
Arc implies persistence (inequality (4) is a necessary and sufficient condition). 
This case illustrates the similarity between the discrete exponential model and 
Kierstead and Slobodkin's [8] and Skellam's [21] continuous model. 

For fixed values of  D and D, the critical patch number is a function of r. It 
is a decreasing function of r (see Fig. 1); fewer islands are needed for survival 
as the value of  r increases. 

Theorem 2 states sufficient conditions for species persistence. For persistence 
a lower bound on the value of  f near zero is needed. 

Theorem 2. Let 215 = m a x i { D i ,  i+ 1 q- Di, i_l}. I f  limv ,o+f(v) = s and 

s > 2L3, (6) 

then lim supt->oo V ( t ) > 0 .  

I f f  is continuous at zero, then inequality (6) can be replaced by f ( 0 ) >  2/5. 
The persistence result is stronger than species persistence since the population 
survives on all islands. This is due to the interconnection of  the islands via 
diffusion. The persistence of  the population on one island spreads to all islands. 
Theorem 3 states this result formally. 

Theorem 3. I f  limt_,oo V(t) exists and lim,_>oo v j ( t )>0  for some j ~ { 1 , . . . ,  N}, 
then limt_>oo V(t) > O. 

i 

! 

2_o 

Nc 

F Fig. 1. The critical patch number, No, 
(Eq. (5)), is a decreasing function of r 
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The conclusion of Theorem 3 illustrates theoretically the importance of spatial 
considerations to population persistence. For example consider a system of N - 1 

islands, where the population cannot survive. If  a persistent population is intro- 
duced on another island, the entire system becomes inhabited by the population. 
This is a case where the interplay between migration and extinction in a spatially 
heterogeneous environment has a stabilizing effect (May [17]). 

The persistence and extinction results for multi-species communities consisting 
of M species and N islands are stated in Corollary 1. The function v~ represents 
the j th  species on the ith island. The system of equations for v~ is given below: 

- - v i f  ( V i , -  V M) J J -- + Oi ,  i+x(Vi+ 1 v j )  J J _ J �9 . ,  q - D i ,  i _ l ( V i _  1 v i )  

vi(O) = g~, i= 1 , . . . ,  N, j =  1 , . . . ,  M, 

where Di.i+l,~ Di,~_l,J and g~ are positive constants and v~ = V~+l = 0. For notational 
convenience we denote the M-vector U = (u 1, . . . ,  uM) r and the N-vector W = 
( v { , . . . ,  v~) r. Thus U is a "species" vector and W is an "island" vector. 

Corollary 1. Let 2_D ~ =mini{D~i+l+D~i_,}, 2D j -  J J - maxi{Di.i+l+ Di~i-l}, and 
l ~ J - -  J J - max~{Di,~+~, D~,~_~}. Assume there exist positive constants r j and s j such that 
supv>_off ( U) = r j and limu~o+ f f  ( U)= sJ. I f  

r j < 2[_DJ+ D j cos ( r rN/ (N+I) ) ] ,  (7) 

then limt_,~ W ( t ) =  O. I f  

s t > 2 /5  j, (8) 

then for every i, ie{1 . . . .  , N } ,  there exists k, k e { 1 , . . . , M }  such that 
lira s u p , ~  v~(t) > O. 

In other words, if condition (7) or condition (8) is satisfied by the j th  species 
of the multi-species community, either the j th  species is eliminated over the entire 
group of islands or on every island at least one species survives. The extinction 
result is more straightforward. If inequality (7) is satisfied by all species, then 
the entire community of  islands goes extinct. However even if inequality (8) is 
satisfied by all species, some species may not persist. It is interesting that we 
cannot predict which species will survive. 

The theorems and corollary can be generalized by assuming the growth 
functions f and fJ  are island dependent-- i .e . ,  f and f~. Similar results hold if 
the functions f and f~ satisfy the assumptions for all islands, i = 1 , . . . ,  N. 

Theorem 3 can also be stated in terms of the multi-species community, if V 
is replaced by W. 

In the next section the results are applied to several examples. Some extensions 
are also discussed. 

IV.  A p p l i c a t i o n s  and e x t e n s i o n s  

The results of the theorems and corollary are illustrated by some well-known 
ecological growth models. In the case of  exponential growth, f ( v ) = r ,  and 



622 L.J.S. Allen 

Di, H = Di, i-1 = D/l  2, condition (4) is a necessary and sufficient condition for 
extinction. In this case the linear system has negative eigenvalues if and only 
if (4) holds. For logistic growth f (v)  = r(1 - v/k), s u p ~ o f ( v )  --- r and f (0)  = r. 
For the spruce budworm growth equation (Ludwig et al. [13]) f ( v ) =  
r (1 -v /k ) -Tv / (62+v2) ,  we also have supo~0f(v) = r and f ( 0 ) = r .  Thus if 
inequality (4) holds, population extinction occurs, but if r>2 /5 ,  population 
persistence results. 

For exponential, logistic, and spruce budworm growth models in the con- 
tinuous model (1), it has been shown (Ludwig et al. [14]) that if L < L~ = 1r~/D/r, 
the population goes extinct, but if L > Lc, the population is persistent. For model 
(2), if the patch number N < No, the population goes extinct, but if N > Arc, the 
population may be persistent (it is persistent for exponential growth). 

Lotka-Volterra competition where fJ(v~, . . . ,  I)M)=rJ--~M=I bJkv k is an 
example where Corollary 1 is applicable. In this case supt:~of~(U)=r j and 
fJ(0)  = r j. 

In addition to these theoretical applications, an experimental study conducted 
by Fahrig and Merriam [4] also support our basic conclusion that more patches 
increase population survival. They studied white-footed mice inhabiting patches 
of forests and found that mouse populations in isolated woodlots (one patch) 
have lower growth rates and are more likely to become extinct than those in 
connected woodlots (more than one patch). 

The results can be generalized to more complex arrangements of  islands. In 
particular if the islands are arranged in a rectangular pattern, the finite difference 
scheme can be extended to these cases. Consider a rectangular pattern of  size 
N x M where the NM-vector  is given by 

V ~ -  ( / ) 1 1 , / ) 1 2 ,  �9 �9 �9 , V I M ,  V 2 1 ,  �9 �9 �9 , ' / ) 2 M ,  �9 �9 �9 , / ) N 1 ,  �9 �9 - ,  / ) N / ~ / )  T 

For the extinction result we comapre 17 ~< CV, where C is an NM x N M  symmetric 
block tridiagonal matrix. Matrix C can be expressed very simply using direct 
products, C = IN |174  where A and B are tridiagonal matrices of size 
M x M  and N x  N, respectively, and IN and IM are the N x N  and M x M  
identity matrices. The NM eigenvalues of C are of the form hi + u s, i = 1, . . . ,  M, 
j = 1 , . . . ,  N, where a~ are the eigenvalues of A and uj are the eigenvalues of B 
(Lancaster [10]). The eigenvalues of A and B can be determined via the lemma 
given in the Appendix. Extinction results if all of  the eigenvalues a ,+  us, are 
negative. For the persistence result we need s (lim~+0+f(v) = s) to be larger than 
4/3 where 4/9 = max;,j{Di.i+l;j + D~,i_],j + Di;j,j+l + Di.j,i-~}- Any island popula- 
tion can move between a maximum of four adjacent islands, thus the diffusion 
coefficients given in the expression above are representative of that diffusion. 

Some other arrangements of islands are analyzed by Othmer and Scriven [20], 
where they consider the linear stability of a network of intercommunicating cells. 
However the populations and islands in their analysis correspond to chemical 
substances and cells. Since our results depend on comparison with a linear system, 
the sufficient conditions for extinction (Theorem 1 and Corollary 1) follow from 
their linear analysis. 

Movement by random diffusion is realistic for oceanic plankton, but not for 
more highly developed organisms, except as a first approximation. Other types 
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of movement  such as biased diffusion (Gurney and Nisbet [5]), where movement  
occurs due to overcrowding, is more realistic. In the discrete model,  biased 
diffusion can be modelled as follows: Di, i + l ( v i 2 1 -  v 2) + 2 2 Di.i-a(Vi-1 - vi), (Allen 
[2]). The persistence result of  Theorem 2 is applicable if condition (6) is replaced 
by lim ~ o  + f ( v ) / v  > 2/). In general persistence of the population is enhanced by 
biased diffusion (Allen [2]). 

The zero boundary conditions are also a limiting assumption. Other types 
such as zero flux boundary conditions tend to increase populat ion persistence 
(Allen [1]). 

V. Discussion 

Sufficient conditions are derived for persistence and extinction of a population 
inhabiting several islands. The extinction condition depends upon the critical 
patch number  (Eq. (5)). 

The relationship between the critical patch size of  model (1), Lc = r 
and the critical patch number  of  model (2), Nc (Eq. (5)), can be illustrated for 
exponential growth, f ( v ) =  r and equal diffusion coefficients, Di,  i+l = Di, i-1 = 
O / l  2. The critical patch size Lc is generally interpreted as the size at which the 
rate of  growth within a patch is equal to the rate of loss due to diffusion into 
the surroundings (Okubo [19]). An analogous explanation is valid for the critical 
patch number. For Nc = 1, r = 2_D = 2 D / l  2 (Fig. 1), the rate of  growth is approxi- 
mately equal to the rate of  loss. I f  Arc > 1, (r < 2D) and if there are fewer islands 
than Arc, populat ion extinction results (Theorem 1). On the other hand, if 
Nc < l ( r >  2_D), the populat ion is persistent on just one island. 

The connection of the islands via diffusion is important to populat ion per- 
sistence. The presence of a persistent population on one island can lead to 
persistence on all of the islands (Theorem 3). 

The present analysis introduces another aspect into the study of island bio- 
geography. In addition to species number, island area, and distance from the 
mainland, the study of island biogeography should include the number  of  habit- 
able islands, especially if the islands are relatively isolated from the mainland. 

Appendix 

We state a lemma and give the proofs of Theorem 1, 2, 3, and Corollary 1. 
Lemma. The N • N tridiagonal matrix, 

I 
a fl 0 

fl a .  
�9 ~ . 

A = (9) 
�9 ~ . 

0 fl a 

has N distinct real eigenvalues, A k = a - - 2 ] 3  cos(~rk/(N+ 1)), k = 1,... ,  N. 
For the particular matrix A the form of the eigenvalues are well known (see for example Svirezhev 

and Logofet [22]). 
Proof of Theorem 1. Note that the assumptions on f and the fact that (2) is an autonomous system 
with positive initial conditions imply the solutions v~(t) exist, are unique, and positive for all t ~ 0. 
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The proof  of  the theorem requires a comparison principle. Since f ( v )  <- r the following inequalities 
hold for hi: 

1)i'~OlUi-~[~(Di_l-}-I)i_l_l) , i = l , . . . , N ,  (10) 

where a = r - 2 D  and 13 =/9.  The comparison system i f ' =  AW, where W = ( w l , . . .  , WN) 7" and A is 
given in (9) is quasi-monotone nondecreasing-- i .e . ,  the off-diagonal elements of  A are nonnegative. 
Lakshmikantham and Leela [9] have shown that the vector solutions V(t) and W(t) must also satisfy 
the inequality given by (10), thus V(t)< W(t), t > 0. Since all of  the eigenvalues of  A are negative 
if and only if (4) holds, W(t) tends to zero, hence V(t) tends to zero. 

Proof of Theorem 2. We assume for purposes of  contradiction that l i m ~  v~(t)=0 for some i, i~ 
{ 1 , . . . ,  N}. Recall that v~(t)> 0 for t/> 0. Let e I ~ 0 be given such that s -  e I > 2/5, then there exists 
E 2 3> 0 such that 0 < v < e 2 implies f ( v ) >  s -  e 1 . Since limt~o vi(t)= 0, there exists a T >  0 such that 
O<vi( t )<e 2 for t~>T. Thus we have (J i>vi(s-e l -219)  which implies vi(t)> 
vi(T) e x p ( s -  e l - 2 / 5 ) ( t -  T) for t >/T, contradicting the original assumption. 

Proof of Theorem 3. Consider the ( j  + 1)st or ( j -  1)st island. Without loss of  generality we consider 
the ( j +  1)st. The following differential inequality is satisfied by ~)j+l: 

/)j+l ~/) j+1[f( /93+1) -- D j + I , j + 2  -- Dj+l,j] + Dj+l.jvj. (11) 

For purposes of  contradiction assume l i m t ~  vj+l(t)= 0. Choose an increasing sequence {tk}~=l, 
where l i m k ~  tk = CC and such that limk~r vj+ 1 (tk) = 0 and t)j+ 1( t k) < 0. For t sufficiently large (t > T), 
vj+l(T) is sufficiently small such that the right-hand side of  (11) is positive. Hence bj+x(t ) >I O, for 
t > T. This contradicts the choice of  the sequence {tk}. Thus l i m , ~  vj+a(t)> O. 

We have shown that any island adjacent to an island with a persistent population has a persistent 
population. Hence all islands have persistent populations: l i m t ~  V(t)> O. 

Proof of Corollary 1. S ince f f (v  a . . . . .  VM)~ < r j we have the differential inequality (/J<<-AJV :, where 

a j /3 j 0 ]  

/33 or). 

A j = �9 . , 

�9 o~J /3J 

0 /V a j 

is a tridiagonal matrix with Ot j = r j - - 2 _ 9  j and •J  = /~J. As in the proof  of  Theorem 1, the solution 
of  the comparison system rWJ = AJW j tends to zero if and only if (7) holds. By the comparison 
principle, vJ(t)  also tends to zero. 

The second part of  the proof  is by contradiction. Assume limt~ ~ v~(t) = 0 for every k = 1 , . . . ,  M. 
As in the proof  of  Theorem 2 there exist T > 0 and e 1 > 0 such that v{(t) > v{(T) exp(s j - e a - 2/9 j) 
(t - T) for t ~> T, a contradiction. 
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