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Abstract. We consider a sequence of discrete parameter  stochastic processes 
defined by solutions to stochastic difference equations. A condition is given 
that this sequence converges weakly to a continuous parameter  process defined 
by solutions to a stochastic ordinary differential equation. Applying this result, 
two limit theorems related to population biology are proved. Random par- 
ameters in stochastic difference equations are autocorrelated stationary 
Gaussian processes in the first case. They are jump-type Markov processes 
in the second case. We discuss a problem of continuous time approximations 
for discrete time models in random environments. 
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1. Introduction 

In population genetics fundamental  models are usually discrete time models, and 
the evolution of the system i s  described by a difference equation. Random 
fluctuation of environments introduces stochastic effects to the system and makes 
this equation a stochastic difference equation. In general, random fluctuation of 
environments is not independent between two distinct generations, but has 
autocorrelation. This implies that the analysis of  population genetical models in 
random environments is that of stochastic difference equations whose parameters 
are autocorrelated stochastic processes. 

It is difficult, however, to obtain in these discrete time models the explicit 
expression for biologically important quantities such as the distribution function 
of gene frequencies, average heterozygosity, and so on. To obtain them, con- 
tinuous time approximations are frequently used for the original discrete time 
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models. In spite of common use of the continuous time approximations,  they 
have been introduced more or less heuristically, and this causes some confusion 
concerning biological consequences. There are two ways to get the approximating 
continuous time models. The first method is proceeding to a continuous approxi- 
mation of difference equations by ordinary differential equations before adding 
random effects on environments (for example, see Sasaki and Iwasa 1987). The 
continuous time models are described by stochastic ordinary differential equations 
in this case. The second method is that the effect of  random environments is 
added before the continuous time approximation.  As pointed out by Gillespie 
and Guess (1978), in general these two methods do not produce the continuous 
time models of  the same type. The faithful method to the original models is the 
second one, while the first method is very easy to use. In this paper,  we consider 
the problem to find a condition under which the second method results in the 
same model as the first method. In other words, we will find the property of 
randomly fluctuating environments of the original discrete time models assumed 
implicitly when the first method is used. 

We consider a sequence of discrete parameter  stochastic processes {X~} 
governed by stochastic difference equation of the form X~+~-  X7, = F~ (X~, Y~), 
where { YT~} are so called driving processes and F~(x, y) are appropriate functions 
described later. Our objective is to observe the asymptotic behavior of  {X~} as 
e ~ 0, changing the scale of  the time. 

Guess and GiUespie (1977) studied the case where { Y~} are bounded uniformly 
mixing processes with mean 0 such that the mixing rate 0~ (k) satisfies l i m ~ o  eu~ = 

cG 

0 where l,~ =~k=o 01~/2(k) �9 Assuming that F~(x, y) is a linear function of x and 
F~(x,y)=-ef(x,y)+e2g(x,y)+o(e 2) where f ( x ,y )  and g(x,y) are some nice 
functions, they showed that the continuous parameter  process x~(t)= X~,/~ol 
converges weakly to a diffusion process. For general F~ (x, y), Iizuka and Matsuda 
(1982) proved that x~(t) converges weakly to a diffusion process (also see Kushner 
and Huang 1981; Seno and Shiga 1984 and Watanabe 1984). However, if 
lim~_~o eu~ = u > 0, then {x~(t)} does not converge weakly to a diffusion process. 
Here we are interested in the characterization of this limit process. 

In this paper, we shall consider the problem in a more general setting. Consider 
the stochastic difference equation introduced above. Assuming that there are 
scalings ~-~ > 0, 7~ ~ 0 as e ~ 0, such that y~(t) = Y~t/~l converges weakly to a 
stochastic process y(t) and F~(x, y)/,r~ converges to F(x, y), we will show that 
x~(t) = X~t/~],~>o, converges weakly to solutions to a stochastic ordinary differen- 
tial equation dx/dt(t) = F(x(t),  y(t)). See Theorem 1 in Sect. 2 for a more precise 
statement. As an example of  the above, we shall consider in Sect. 5 the case of 
Gillespie and Guess (1978) where the driving processes {Y~} are strongly 
autocorrelated, i.e. l im~o  eu~ = z, > 0. It will be shown that x~(t)= X~,/~%1 con- 
verges weakly to solutions to a stochastic ordinary differential equation. 

2. The main theorem 

Let { Y~, -oo < k < oo} be a sequence of R"-valued discrete parameter  stochastic 
processes on a probability space (S2, ~, P). Let {F~(x, y), x eN m, y ~  R n} be a 
sequence of Era-valued functions on Nm x N". We define a sequence of discrete 
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parameter processes {XT,, k i> 0} by solutions to the stochastic difference equation 

X L I - X ~ =  F~(XL YD,  k~O,  (2.1) 

and a given random vector X~. 
On the other hand, let y(t),  -oo < t < oo, be a'n Rn-valued continuous parameter 

process on (12, o ~, P),  and F(x, y), x ~ •m, Y ~ R~, be an Rm-valued function on 
R " x  R n. We define a continuous parameter process x(t) ,  t ~  > 0, by solutions to 
the stochastic ordinary differential equation (differential equation with random 
parameter) 

dx( t) 
=F(x ( t ) , y ( t ) ) ,  t~O, (2.2) 

dt 

and a given random vector x(0), under some conditions on F(x, y) described later. 
Let {T~} be a sequence of positive numbers such that ~ ~ 0 as e ~ 0. We define 

two sequences of continuous parameter processes {y~(t), t/> 0} and {x~(t), t >I 0} 
by 

y~(t) = Y~t/~], (2.3) 

x~(t) = X~, /~,  (2.4) 

for t/> 0, where [t] is the integer part of r Sample paths ofy~( t )  and x~(t) belong 
to D~~ oo] and D ~ [ 0 ,  oo], respectively. Here, D~,[0, oo) is the space of R ~- 
valued functions on [0, oo) that are right-continuous and have left-hand limits, 
with the Skorohod topology (see Lindvall (1973)). 

We consider the following conditions. 

[A1] For each compact subset K of R", there exists a positive constant LK such 
that 

sup IF(x2, y) - F(x l ,  y)] <~ LK [x2-x~l, (2.5) 
y ~ K  

for x~, x2 ~ Era. There exists a positive constant L such that 

sup IF(x, Y2) - F(x, y~)] ~< L]y2-y~], (2.6) 
x E ~  m 

for ya, Y2 c R~. 

[A2] For each compact subset K of E", 

sup 1F~(x,y) / ' r~-F(x ,y) l~O as e ~ 0 .  (2.7) 
x c ~ ' n , y c K  

[A3] {x~(0)} and {y~(t), t~>0} converge weakly to x(0) and y(t),  t~O, jointly 
in R r~ x DR-[0, co). 

Remark. Under [A1], (2.2) has one and only one solution (Coddington and 
Levinson 1955). 

Now, we state a limit theorem. 

Theorem 1. Assume [A1] ~ [A3]. Then {x~(t), t/> 0} converges weakly to x(t),  
t>~O, in D~,,,[0, co). 
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3. Proof of Theorem 1 

Since (2.2) is equivalent to 

fo x(t) = F(x(s), y(s)) as +x(0), (3.1) 

{x(s),O<-s<~t} is determined by {y(s),O<~s<~t} and x(0). We can express 
{x(s), 0 ~< s <~ t} = @t({y(s), 0 <~ s ~< t}, x(0)), q~, is a mapping from DR,, [0, t] x R m 
to CR,,,[0, t], where CR,,,[O, t] is the space of Rm-valued continuous functions on 
[0, t] with the uniform convergence topology. 

Lemma 1. Assume [A1]. Then cI) t is a continuous mapping for each fixed t. 

Proof Let {yk(s), 0<~ s ~  < t}, k = 1, 2 , . . . ,  be a sequence from D~,,[0, t] converging 
to y(s), 0<~ s <~ t, in the Skorohod topology. Then for any positive number 7 and 
6, there exist a positive N and a homeomorphism Ak from [0, t] onto itself such 
that supo~s~t  ]y(Aks)--yk(S)[<y and s u p o ~ , ~ ,  [Ags-s ]<~ hold for all k>~N. 
Then we have 

sup sup lyk(s)l<~,/+ sup ly(Aks)l<cc. (3.2) 
k ~ N  O ~ s ~ t  O<.s<.t 

Define zk(t) and z(t) by 

;o ' zk(t) = F(zk(s), yk(s)) ds+xk, (3.3) 

Io' z ( t ) =  F(z(s ) ,y (s ) )  ds+x,  (3.4) 

where x k o x  as k o e c  in N'~. By [A1], if k>~N, 

;o I z k ( t ) - z ( t ) l < l x k - x l +  IF(zk (s ) , yk (s ) ) -F(z ( s ) , y ( s ) ) l  ds 

Io fo <~[x.-x[+L lYk(S)--y(s)Ids+LK, Izk(s)-z(s)lds, (3.5) 

where K1 = {y c N"; lyl ~ ~ +SUpo_~,_~, [y(s)l). By Gronwall's lemma, 

{ j } Iz~(t)-z(t)l<~ Ix~-xl+g lyk(s)-y(s) lds  exp(LKlt). (3.6) 
o 

If s is a continuity point of y, then yk(s) converges to y(s). Since the points of 
discontinuity of y are at most countable, 

fo[Yk(s ) -y ( s ) t  as (3.7) ds -~ O k-~ ~.  

Therefore zk converges to z uniformly. The proof of the lemma is complete. 

Proof of  Theorem 1. For each fixed t, define z~(t) by 

;o S ( t ) =  F(z~(s),y~(s))  ds+x~(O). (3.8) 

By Lemma 1 and [A3], {z~(s), 0~<s~ < t} converges weakly to x(s), 0<~ s < - t, in 
D~,o[0, t] (see Theorem 5.1 of Billingsley 1968). 
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On the other hand, note 

[ t / ' % ] - - I  
E E x ' ( t )=X[ , /~= Y. F~(Xk, Yk)+Xo 

k 0 

1 Ii t/'~l~ 
-- ~ F~(x'(s),y~.(s)) ds+x~(O). (3.9) 

7" 

By tightness of {y~(t)} in D~~ oo), for each ~1 (>0),  there exists a positive 
constant a such that P ( s u p o ~ ,  ] / (s) l> a)~< ~, e > 0 (see Theorem 15.2 of 

E e Billingsley (1968)). On g2, ={w ~ O; sup0~_~,ly (s)]~ a}, we have 

sup 
Lx~N~ ,yEKa  

+T~ I sup IF(x,y)l}, (3.10) 
L xENm,y~ K2 

where K2 = {y c R"; lyl ~< a}. Using Gronwall's lemma, we get 

]z~(t)-x~(t)l<~tt( sup ]F(x,y)-F~(x,y)/r~]) 
k \ x ~ m , y E K 2  

+~-~( sup ]F(x,y)l)}exp(LKfl), (3.11) 
\ x ~ m , y ~  K2 

on g2;. For simplicity, we assume that SUpx~,y~K~ IF(x, y)l < +oo. By [12] and 
(3.11), for each Y (>0),  there exists eo (>0)  such that if e < eo, then 

+ P ( f2 \ f2 ; )  ~< 2r/. (3.12) 

This implies that 

limP(~o osup, Iz~(s)-x~(s)l > y)=0.  (3.13) 

For general F(x, y) satisfying [All  and [12],  we can get the same estimation 
using [A1], tightness of {y~ (s), 0 ~< s ~< t}, that of {x ~ (0)}, and Gronwall's lemma. 
By Theorem 4.1 of Billingsley (1968), we have proved the theorem. 

4. Applications of Theorem 1 

In this section, we consider two examples for Theorem 1. 

Example 1 : Stationary Gaussian processes 

Gillespie and Guess (1978) considered the following problem. Let Y~,, -co < k <  
oo, be a stationary Gaussian process on R 1 such that E[  Y~] = 0 and E[  Y~, Y~+~] = 
( 1 -  ae) j, j >1 O, where a is a positive constant. Put s~, = ~reY~+ Ixe, where/x and 
o-(>0)  are constants. Let G(x, s) be a real valued smooth function on ~ l x  •1 
such that G(x, 0) = 0. Let X~, k >f O, be a process defined by solutions to 

X~+,-X~= G(X~, s~),  k~O. (4.1) 
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On the other hand, let x(t) ,  t >/0, be a real valued continuous parameter process 
defined by solutions to 

dx( t) 
dt = {Ix + ~ t)}Gs(x( t)' 0), (4.2) 

where Gs = OG/Os and y(t)  is an Ornstein-Uhlenbeck process such that E[y(t)] = 
O, E[y2(t)] = 1 and autocorrelation function exp(-a] t [ ) ,  that is, a diffusion process 
with infinitesimal generator A = a ( d Z / d y  2) - a y ( d / d y ) .  

Guess and Gillespie (1977) proved weak convergence of x~(t) = X~,/~ to x(t)  
in the case where G(x, y) is a linear function of x. Gillespie and Guess (1978) 
proposed a conjecture that x~(t) converges weakly to x(t)  for general G(x, s). 
We prove this conjecture as the first application of Theorem 1. 

We consider the following conditions. 

[A4] Gs(x, 0) is Lipschitz continuous in x, and supx~R, ]Gs(x, 0)] < co. 

[A5] For each compact subset K of R 1, 

oZG 
sup ~ s  2 (x, s) < oo. 

xERI,scK 

Theorem 2. Let X~ and x(t)  be processes defined by solutions to (4.1) and (4.2), 
respectively. Assume [A4], [A5], and that X~ converges in probability to a constant 
x(O). Then x~(t)= X~,/~ 1 converges weakly to x(t)  in DR,[0, co). 

Proof By (4.1), G(x, 0 ) = 0 ,  and s~= treY~+Ixe, we have (2.1), where 

02G 
F~(x,y)=e(Ix+o-y)G~(x,O)+e2(Ix+o-y)2--O--s2s2 (x, eh(Ix+o'y))/2 , O<~h~<l. 

(4.3) 

Let F(x, y) = (Ix + o-y)Gs(x, 0) and re = e. If  we prove [A1] - [A3], then we have 
the conclusion by Theorem 1. [A1] and [A2] is easily shown by [A4] and [A5]. 
Thus, it is enough to prove y~(t) = Y~t/~l converges weakly to y(t)  in D~,[0, oo). 

Since y~(t) is a Gaussian process with E[y~(t)]=O and E[y~(t)y~(s)] = 
( 1 - a e )  E'/~I-E'/~3, t ~  s, we have lim~+o E[y~(t)] =0  and l im~o E[y~(t)y~(s)] = 
e x p ( - a ( t - s ) ) ,  t/> s, and the finite dimensional distribution of y~(t) converges 
to that of y(t).  Using Schwarz's inequality and 

f ~o x 2" exp ( - cx  2) = dx cln( q.g / c2n+ l) 1/2, 

we have E[iy~(t)J] < - 1 and 

E[ly~( t) - y~( tl)l'ly~( t2) - y~(t)]"] < C2(t2 - tl) n, 

for fixed t~ < t < t2, where C~, and C 2 are constants. This estimation implies that 
{y~(t)} is tight in Du~[0, oo) by means of the tightness criterion by Kolmogorov- 
Chentsov (see Kunita 1986). 

Example 2: Jump-type Markov processes 

We consider ' jump-type Markov processes for Y~, and y(t). For each e > 0, let 
a~(y) be a real valued measurable function on R" such that 0 < a ~ ( y ) <  1. We 
denote the Borel field of ~ by ~(R") .  Let cry(y, E)  (resp. rr(y, E)) be a real 
valued function on ~ • ~ (R" )  such that Ir~(y, �9 ) (resp. ~r(y, �9 )) is a probability 
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measure on N(~")  for fixed y, and ~-,(., E)  (resp. ~r(., E))  is a measurable 
function for fixed E such that Try(y, {y})=0 (resp. 7r(y, {y})=0).  Let Y ~ , - o o <  
k < oo, be a Markov process on R" with transition function 

~1 -A~(y) if E = {y} 
P(Y~+leEIY~'=Y)=I .A~(y)~(y ,E)  if y ~  E e ~ ( ~ " ) .  (4.4) 

We define X~,, k~>0, by (2.1) and a given random vector X~. 
On the other hand, let A (y) be a real valued bounded measurable function 

on A n. Let y(t) ,  -oo < t < co, be a continuous parameter jump-type Markov process 
on ~" with infinitesimal generator 

Af(y )=A(y){ IRf ( z )Tr (y  , d z ) - f ( y ) } .  (4.5) 

We define x(t), t >i O, by (2.2) and a given constant vector x(0). 
For simplicity, we consider the following case of compact state space. 

[A6] There exists a compact subset K of R" such that 

~r(y, K)  = 1 for y c K, and P(y(O) c K) = 1. 

By the same discussion as Stroock and Varadhan (1979), we have 

Lemma 2. Assume [A6]. Then the martingale problem for 

Mf( t) = f (y (  t), t ) -  f(y(O), O)- I~ ( O+ A)f(y(s) ,  s) ds , (4.6) 

f(y, s) c C2'1(R" x [0, oo)), has a unique solution, where C~'I(N" x [0, oo)) is the 
space of C2"l-class bounded functions on R" x [0, oo) whose derivatives are bounded. 

To apply Theorem 1, we consider the following conditions. 

[A7] A(y) is a bounded continuous function, and there exists a sequence of 
positive numbers {~-~} such that ~-~ ~ 0 and 

sup ]h(y) -h~(y) / r~] ->0 as e-->0. 
y 

[A8] For each bounded continuous function f (y)  on R" vanishing at infinity, 
~.f(z)rr(y ,  dz) is continuous in y. For each C~-class function g(y) on ~ with 
compact support, 

s u p l I ~  g(z)Tr(y, d z ) - f ~  g(z)rr~(y, dz)-~0,  a s e ~ 0 .  
y n n 

Theorem 3. Assume [A1], [A2], [A6] ~ [A8]. Further, assume that Y~ converges 
weakly to y(O) and X;  converges in probability to a constant vector x(O). Then, 
x~(t) = X~t/,~l converges weakly to x(t) in D~m[0, oo). 

Proof If we show that y'( t )  = Y~,/,~I converges weakly to y(t) in DR,[0, co), we 
have the conclusion by Theorem 1. Indeed, we can prove this by the result of 
Kushner (1980). We give a brief outline of this. 

For each C~-class function f(y, t) on R" x [0, oo) vanishing at infinity, let 
f~(t) =f(y~(t), T~[t/~]).  We define A~ by 

A~f~ (t) = {E[f~(t + ~'~) ] ~ ; ]  - f~ (t)}/~'~, (4.7) 
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where ~-7 is the sub o--field of ~ generated by y~(s), s <~ t. By (4.6) and (4.7), 
we have the following inequalities after some calculation. 

~<{suplA(y)]}{sup f~f(z,t)~r~(y, dz)- fe ,  f(z,t)1r(y, dz) } 

+2{suplf(Y,t)]}{sup]A(Y)-A~(Y)/r~]} 

+2(l+[t/r~]-t/~'~){suplA~(y)l}{sup ~t(Y, t) } 

+(r~+t-~[t/r~]){sup 02f ( , -y.~ ~-~ y t) } / 2 .  (4.9) 

The right-hand sides of (4.8) and (4.9) tend to 0 as e -~ 0. By these inequalities, 
(3.1) and (3.2) of Kushner (1980) hold. Since {y~(t)} is tight in De'[O, oo) by the 
following lemma, we have the conclusion by Theorem 3 of Kushner (1980). 

Lemma 3. Assume [A6]. Then {y~(t)} is tight in D~~ oo). 

Proof For each C~-class function f(y) on N" vanishing at infinity, let f~(t)= 
f(y~(t)). Then, we can show that 

<~ 4{sup la(y)l}{sup If(y)l}. (4.10) 

Therefore, the discrete parameter version of Theorem 2 of Kushner (1980) (see 
Sect. 4), we have the conclusion. 

5. Relation to diffusion limits 

Let { Y~, - ~  < k < co} be a sequence of real valued bounded uniformly mixing 
(~b-mixing) processes with E[Y~] =0 and mixing rate ~b~(k) (see Sect. 20 of 

c o  

Billingsley (1968)). We assume that v~ = Y,k=o ehlJ2(k) is finite for each e > 0. v~ 
denotes the degree of autocorrelation of Y~. According to Guess and Gillespie 
(1977), we say { Y~} has weak, moderate, or strong autocorrelation if sup~ v~ < oc, 
sup~ u~ = co and ev~ --> 0 as e ~ 0, or ev~ -~ v, 0 < v < co, as e ~ 0, respectively. Let 
F~(x, y) be a real valued bounded function on R 1 x N~ such that 

F~(x, y) = sf(x, y) + eZg(x, y) + o(e2), (5.1) 

where f(x, y), g(x, y) and F~(x, y) - ef(x, y) - eZg(x, y) are bounded functions 
in x. We define {X~, k ~  > 0} by solutions to (2.1). Under additional conditions on 
f(x, y) and g(x, y), x~(t)=XE,/~:, A converges weakly to a diffusion process in 
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DR'[0, co), if ev~ ~ 0 as e ~ 0 (see iizuka and Matsuda (1982), also see Guess and 
Gillespie (1977), Kushner and Huang (1981), Seno and Shiga (1984) and 
Watanabe (1984)), which implies that {x~(t)} converges weakly to a diffusion 
process if { Y~} has weak or moderate autocorrelation. 

In this section, we construct an example that { Y~,} has strong autocorrelation 
and {x~(t)} does not converge to a diffusion process, but converges to solutions 
to a stochastic ordinary differential equation. 

Let Y~, - c o <  k<co ,  be a jump-type Markov process on {-1,  1} with jump 
probability A~ (0<  A~ < 1), that is, a Markov process on {-1,  1} with P(Y;+I  = 
- y ] Y ~  = y ) =  A~, y = +1. We assume that 

h J e - * a ,  0 < a < c o  ase -~0 .  (5.2) 

Since Y~, is a Markov process on a finite state space, Y~ is a uniformly mixing 
process. Further, we can estimate v, explicitly for this process. This is the reason 
for considering {-1,  1} as state space. We show later in this section (see Lemma 
4) that, for this Y~, 

(1 - A~)/2A~ <~ v~ ~< {1 + (1 - 2A~)l/2}/2A~. (5.3) 

From (5.2) and (5.3), we have e2t'~-+0 as e-+0, and there exists v = lim~_,0 ev,, 
0 < v < co (take a subsequence if necessary). This implies that { Y~,} has strong 
autocorrelation. We define X~,, k/> 0 by (2.1), (5.1), and a given random variable 
X~. We assume that f (x ,  y) is Lipschitz continuous in x. 

On the other hand, let y(t),  -co < t < co, be a continuous parameter jump-type 
Markov process on {-1,  1} with jump rate A = oz/v, that is, a Markov process on 
{-1,1} with infinitesimal generator A f ( y ) = A { f ( - y ) - f ( y ) } ,  y = + l .  Let 
F(x, y ) = f ( x , y ) / v .  We define x(t) ,  t~>0, by solutions to stochastic ordinary 
differential equation (2.2) and a constant x(0). By Theorem 3, we have the 
following result. 

Corollary. Assume that Y~ converges weakly to y (0) and X~) converges in probability 
to a constant x(O). Then x~(t)= X~,/~:~] converges weakly to x(t) in D~[0,  co). 

This result provides an example that {Y~} has strong autocorrelation and 
{X~/~,~]} does not converge to a diffusion process, but converges weakly to 
solutions to a stochastic ordinary differential equation. This result implies that 
the strong autocorrelation of randomly fluctuating environments is implicitly 
assumed for the original discrete time models when the first method (mentioned 
in Sect. 1) to obtain the approximating continuous time models is used. For the 
analysis using stochastic ordinary differential equations, see Slatkin (1978), Mat- 
suda and Ishii (1981), Ishii and Kitahara (1982), and Sasaki and Iwasa (1987). 

Finally, we prove the following lemma. 

Lemma 4. Let Y~, - o o < k < c o ,  be a jump-type Markov process on {-1,  1} with 
jump probability a~. Then we have (5.3). 

Proof Let p ~ = P ( Y ~ = y ]  Y ; = y ) ,  y = + l ,  k>~0. Since p ~ = l - a ~ ,  and p~+l = 
( 1 -  a~)p~+ a , ( 1 - p ; ) ,  k~>0, we have 

p~={l+(1--2a~)k}/2,  k>~O. (5.4) 
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Therefore, E[  Y; Y~] = p~ - (1 -p~)  = (1 - 2A~) k, k i> 1, and 

E[Y~Y~]=E[(Y~)2]+2 ~ E[Y;Y~]=(1-A~)/A~. (5.5) 
k ~ - - c o  k = l  

By (20.35) of Billingsley (1968), 

E[Y~Y~]<~2~,~. (5.6) 
k = - - o o  

From (5.5) and (5.6), we have (1-A~)/2A, ~< ~,~. 
On the other hand, the stationary probability p of Y~ is p({1}) = p({-1}) = 1/2. 

By (5.4) and (20.11) of Billingsley (1968), we have &~(k)~< (1-2A~) k. Then, we 
get ~,~ ~< {1 + (1 - 2A~)1/2}/2A~. 
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