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Abstract. A model has been formulated in [7] to describe the spatial spread 
of an epidemic involving n types of individuals, when triggered by the 
introduction of infectives from outside. Wave solutions for such a model have 
been investigated in [5] and [8] and have been shown only to exist at certain 
speeds. This paper establishes that the asymptotic speed of propagation, as 
defined in Aronson and Weinberger [1, 2], of such an epidemic is in fact Co, 

the minimum speed at which wave solutions exist. This extends the known 
result for the one-type and host-vector epidemics. 

Key words: Non-reducible n-type e p i d e m i c - - M e a s l e s - - H o s t - v e c t o r - -  
Car r ie r -borne- -  r ab i e s - -  Spatial s p r e a d - -  Asymptotic speed of propaga- 
t i o n -  Pandemic theorem 

1. Introduction 

In our recent papers [5, 7, 8, and 9], deterministic models were formulated to 
describe the spatial spread of an epidemic involving n types of individual. Special 
cases of such models include epidemics such as measles, host-vector and carrier- 
borne epidemics and rabies involving several species of animal. 

An epidemic was considered in [7] which was triggered by the introduction 
o fan  initial infection from outside. A condition for a major epidemic was obtained, 
and the final size and pandemic theorems established. Wave solutions were 
investigated in [5] and [8]; the condition for a major epidemic being established 
as a necessary condition for the existence of such wave solutions. A further 
condition was established on the contact distributions. For radial contact distribu- 
tions this condition was exponential domination in the tail. Under such conditions 
the existence of  a critical speed Co was established. Wave solutions were shown 
to exist and be unique modulo translation at each positive speed c ~> Co. No wave 
solutions were possible at speeds below Co. 

The main purpose of this paper is to show that co is the asymptotic speed of 
propagation of the epidemic; a result indicated by an approximation obtained in 
our paper [9]. This extends the results obtained by Diekmann [3] and  Thieme 
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[13] for the one-type epidemic, and by the present authors [10] for the host-vector 
epidemic. We use the methods of Diekmann [3]. 

The behaviour when the contact distributions are radial, but not all exponen- 
tially dominated in the tail, is briefly considered. The epidemic, if it is major, 
will then spread too fast to eventually propagate at a finite speed. In addition 
the pandemic theorem is established for all dimensions, in contrast to [6, 7] where 
the result was only obtained for one and two dimensions. 

2. The model 

Consider n populations, the ith of uniform density o-i in R ~  each population 
consisting solely of susceptible and infected individuals. The rate of infection of 
susceptible individuals in population i from infected individuals in population 
j who were infected time r ago is hv(r), and the contact distribution representing 
the distance r over which infection occurs has density pij(r). In population i, let 
x~(s, t) and Ii(s, t, r) dz be the proportions of individuals at position s and time 
t who were respectively susceptible, and infected in the time interval (t - r -  d~-, 
t -  r). Note that Ii(s, t, r)---I~(s, t-r ,  0). 

Infected individuals of k types are introduced from outside at time t = 0, and 
the spread of infection through the n populations caused by these infected 
individuals is studied. Let ej(s, ~') ds dz be the number of such individuals of 
type j  in the region (s, s+  ds) who were infected in the time interval ( - r  - dz, - z ) .  
The rate of infection from such individuals, of susceptibles from population i, 
is A*(r) and the contact distribution has density p*(r). Let e~(s)= So ei(s, z) d~r 
and ei = SRN el(s) ds exist. 

The model is then described by the equations: 

Oxi(s, t) "Xi(S, t) ~, o'j / j ( s - r ,  t, ~)Plj(r)Aij(r) d'rdr+hi(s, t) 
c3t [ . j= l  J R  N ..10 

and 

Oxi(s, t) 
where I~(s,t, 0 ) = -  -~ , for i = l , . . . ,  n, [ (1 )  

J  IIo ~ h i ( s  , t)=j~ R • 8j(s--r, r)p*(r)A*(t+r) drdr. 

The initial conditions are x~(s, 0) -= 1, for i = 1 , . . . ,  n. 
Any solution to (1) is equivalent to a solution of the following equations: 

Oxi(s,t)=xi(s,t){~ I fo~OXj ( s - r , t - z )  } 0 ~  j=l R N 0t p~(r)yij(~') d'rdr-hi(s, t) , 

i=l , . . . ,n ,  (2) 

where y~j(~') = o3h0(z) and xi(s, t) is monotone decreasing in t with x~(s, 0) -- 1. 
An n-type model with constant infectivities Aq and A* and removal rates/zj 

and /z* can be postulated. This is an obvious extension of model 1 for the 
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host-vector epidemic given in our papers [6] and [11]. This leads to a special 
case of the model considered in this paper with hii(z)= h 0 exp(- /z / )  and 
h*(r) = A* exp(-/z* t). 

Conditions are now imposed on the rates of infection and the contact distribu- 
tions. The contact distributions pij(r) and p*(r) are restricted to be bounded, 
continuous radial functions in R u. The rates of infection hij(r) and h*(z) are 

oo 
taken to be bounded with bounded derivatives. In addition y* = ~o h*(~-) dz is 
taken to be finite, as we are interested in the development of an epidemic within 
the n populations which is only triggered by the introduction of infectives from 
outside. 

Define wi(s, t ) = - l o g  xi(s, t). In our paper [9] the solutions xi(s, t) of (2) 
were related to the solutions wi(s, t) of the following equations: 

wi(s, t )=  ~ (1 -exp{-w~(s - r ,  t - z )} )yu(r )p~(r  ) d'rdr+Hi(s, t) (3) 
j = l  X 

where Hi(s, t) = ~t o hi(s, w) dw, for i = 1 . . . .  , n. The lemma relating these solutions 
is stated below. 

Lemma 1. Every non-negative solution xi(s, t), for i= 1 , . . . ,  n, of (2) which is 
monotone decreasing in t and has xi(s, 0)--1, is continuous in t uniformly with 
respect to s for t e [0, ~) .  There is a one to one correspondence between such solutions 
xi(s, t) of (2) and the solutions wi(s, t) of (3), which are non-negative monotone 
increasing in t with wi(s, O) ~- O, given by the relation wi(s, t) = - log  xi(s, t). 

The following lemma may also easily be established. We omit the proof. 

Lemma 2. Every non-negative solution wi(s, t) of (3), which is monotone increasing 
in t with wi(s, 0) - 0, is continuous in s for each t e [0, co). 

We use the same matrix and vector notation as in our paper [5], and define 
p (A), for a non-negative, square matrix A. If A is finite then p (A) is the maximum 
of the moduli of the eigenvalues of A. When A is non-reducible, with at least 

cx~ 
one infinite element, p (A)= oo. Let F = (Yo), where y~ =~o Yo(r) dr, which may 
be infinite. The matrix F is taken to be non-reducible. 

In our papers [5] and [7] it was shown that a major epidemic is only possible 
if p(I') > 1, If  a major epidemic occurs, then wave solutions are only possible if 
the p~(r) are exponentially dominated in the tail; i.e. for some positive real A, 
~R N pu(r) exp(h{r}l) dr is finite, where {r}l is the first component of r. In Sect. 3 
we show that, with these restrictions on F and the pu(r), and with ej(r) and p*(r) 
restricted so that the continuing effect of the infectives from outside does not 
dominate the ultimate behaviour of the epidemic, there is a finite speed of 
propagation. This speed is the minimal speed at which a wave solution exists. 
The case p(F) ~< 1, when there is no major epidemic, corresponds to zero speed 
of propagation. 

In Sect. 4 the case is briefly considered when the p0(r) are not all exponentially 
dominated in the tail. Essentially if p ( F ) >  1, the epidemic will spread too fast 
for wave solutions to exist and for the epidemic eventually to propagate at a 
finite speed. This may be considered as corresponding to an infinite speed of 
propagation. The case p ( F ) ~  1 again corresponds to zero speed of propagation. 
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Finally, in Sect. 5 the pandemic theorem is established for all dimensions N. 
Note that in our paper [7], when U is finite with pOP) > 1, the pandemic theorem 
was only established for dimensions N = 1 and 2. 

3. The asymptotic speed of propagation when the contact distributions are 
exponentially dominated in the tail 

We restrict each p~(r) so that Pi j(h)=SRNexp(h{r}l)p~(r)dr  exists for some 
positive real A. Let Av be the minimum of  the abscissae of convergence of  the 
Po(A). Define V~j(A)=Pq(A)A~(cA) and {V(A)}~=V~j(A), where Aij(A)= 
So e-X~Yu(z) dr. Then Kc(h) =p(V(h) )  exists for all h real with 0 < h  <Av and 
Kc(0) = p(U), which may be infinite. In our paper [5] it was shown that no wave 
solution exists at any speed if p(F)  ~< 1. When p(U) > 1, a critical speed Co was 
defined by co=inf{cs  R+: K c ( h ) <  1 for some h s (0, A~)}. It was shown that, 
provided co # 0, Co is the minimum speed at which wave solutions exist. Lemma 
3 shows that the conditions restricting the po(r) to be radial functions ensures 
that Co> 0. 

Lemma 3. I f  p(F)> 1, then Co>0. 

Proof. I f  Av is infinite, since F is non-reducible, there exists a distinct sequence 
il,....,im_~, for some l ~ m - l ~ n ,  such that 3'it.i,., # 0  for j = l  . . . .  , ( m - l ) ,  
where i,,---il. Hence, as in the proof  of  Lemma 3 part (i) of  our paper [5], 
K~(A) >- WW-'  ~ . ~ 1  V~:,~:+~(A)} 1/(m-1)" Let T(r)  be the convolution of  T~j,~j+,(~') for 
j = 1, (m - 1) and p(x) be a similar convolution of/~ij, ij+,(x), where/~i#j+,({r}l) = 
SR N-, pij(r) d{r}2 d{r}3 �9 �9 �9 d{r}N, As the pia(r) are radial functions, each/~u(x) and 
hence p(x) is symmetric about x = 0 .  Also So T(~')d~'= [ I j ~  ~ T~j,~j+, # 0. Hence 
there exist reals a, b, A, B, T* and p* with 0 ~ a < b, 0 < A < B, T* > 0 and p* > 0 
such that T(~') ~> T* for ~" ~ [a, b] and p(x) >i p* for x c [A, B]. Hence, for A real 
and positive, 

{K~(~)}m 1> p.T.({e~B _ e,A}lA)({e-~ _ e-~<b}l{cA }) 

~ p*T*(b - a)(B - A )  e A(A-~b). 

Thus for 0 <  c * <  A/b, lim,_>~o Kc.(A)= oo. Take such a e*. Then there exists a 
finite positive A* such that K~.(A) > 1 for A > A*. From the properties of K~(A) 
given in [5], it then immediately follows that K~(A) > 1 for A > A* and 0 < c ~< c*. 

IfAv is finite and P~(A~) is infinite for some i,j (with Tq # 0), then lim~tj ~ Kc(A ) 
is infinite for all c > 0. If  A~ is finite and P,~(A~) is finite for all i, j such that 
T0 # 0, then for each such i, j, Pq(A~)> Pa(0) since pa(r) is a radial function. 
Hence lim~lo K~(A~) >1 p(F)  > 1. In both cases these exists a c > 0 and A* > 0 such 
that K~(A)> 1 for A*~<A~Ao and 0 < e ~ < e  *. 

Now suppose that for each c >  0 there exists a A ~ [0, A~] such that K~(A) < 1. 
Then there exists a monotone decreasing sequence {c,}, with c ~  < c*, and a 
sequence {A,} such that K~. (A, )<I  for n = l , 2  . . . .  , and lim,_>ooc~=0. Since 
c, ~ c*, necessarily A,~A*.  Hence there exists a subsequence n~, n2, . . ,  with 
c,~ > 0 and A~s ~ A a s j o  oo, where A ~ [0, A*]. Hence Ko(A) ~ 1. But P~j(A)Ao.(O) >i 
T~j- Thus Ko(A ) ~> p(U) > 1 and we have obtained a contradiction. Therefore Co > 0. 
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Consider Kc(h). If p(F)<~ 1, then Kc(0)= p(F)<~ 1. The contact distributions 
are radial functions and, from the proof of Lemma 4 of our paper [9], 

K 'c(h ) = E ~ V~j(A ){Adj (p (V(h))I - V(A ))}iff trace Adj(p (V(A))I - V(A )). 
i j 

It is then easily established that K'(0)  < 0 for all c > 0. Hence for each c > 0 and 
h*~ (0, A)  there exists a h E (0, h*) such that Kc(h )<  1. 

When p ( F ) >  1, from [8] and Lemma 3, there is a unique hoe (0, A ]  such 
that K~o(ho) = 1. For each c >  co there exists a h ~ (0, ho) such that K~(A) < 1. 

This suggests the formulation of part (ii) of Theorem 1, from which two 
corollaries, relating to the cases p ( F ) ~  < 1 and p ( F ) >  1 respectively, follow 
immediately. It also suggests conditions to be placed on ej(r) and p*(r). Note 
that Theorem 1 part (i) has been proved in a slightly different way in our paper 
[7]. The adapted method of proof is briefly indicated here as it is necessary for 
the proof of Theorem 1 part (ii). 

Let P*(A) = ~R N p*(r) exp(h{r}~) dr and Ei(h) = sUplrl~R N {eXLrlej(r)}. Then 
p*(r) and ej(r) are restricted so that there exists a positive real h* with P*(h) 
and E~(A) finite for all i, j and h c (0, h*). If  p ( F ) >  1, then they are restricted 
to be finite for h ~ (0, ho). This ensures that the infection from outside does not 
spread the epidemic faster than it is spread by infection within the n populations 
of susceptibles. This is consistent with the infection from outside triggering the 
epidemic but not dominating its behaviour. These conditions are clearly met if 
ei(r) has finite support and the individuals from outside are of the same types 
as those within the n populations of susceptibles so that for each i, j, p*(r) = pit(r) 
for some t. 

Theorem 1. (i) There exists a non-negative, monotone increasing (in t) solution 
wi(s, t) to equations (3) with wi(s, 0)-~ O, (i = 1 , . . . ,  n), which is unique. 

(ii) For any c*>0  such that K c . ( h ) < l  for some h e ( 0 ,  A~), 
lim,_~o~ sup{wi(s, t): Isl~ > c*t}=Ofor i= 1 , . . . ,  n. 

Proof. (i) For any p(F), there exists a c>  0 and h ~ (0, Ao) such that K~(A)< 1 
and P*(A) and Ej(A) are finite for all i, j. Take such a c and h and define 

yi(s, t) = wi(s, t) exp(h({S}l- ct)). 

Let y~~ t )=  H~(s, t )exp(h({s}l-  ct)). Then 

lyl~ t)[~ < ~ y* f [e~(s-r) exp(h({S}l--{r}~))][p*(r) exp(h{r}~)] dr 
j = l  R N 

k 

j ~ l  

Hence yl~ t) is uniformly bounded for s~ R N and t~O. 
Define y}m+~(s, t) recursively for m = O, 1 . . . .  by 

.(m+l~/~ t )=  ~ [ 1 - e x p { - y ~ m ~ ( s - r , t - r ) e x p [ - h ( { s  r I l - c ( t - - r ) ) ] }  ] Y i  k ~,  
j = l  N 

x [yu(z) e-~][p~j(r) exp(A{r}~)] 

• [exp{h ( { s - r } l -  c ( t -  ~))}] dr  d r +  H;(s, t) exp(h ({s}l- ct)). 
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Let u~m)=suplylm§ t ) -yl"O(s ,  t)], where the sup is taken over s~ R N and 
t I> 0, and define {u(m)}i = u~ m). Then 

U (re+l) ~ V(/~ )U (m). 

Take a '>  0' to be the left eigenvector corresponding to p(V(A)). Then 

a'u ~ <~ Kc(A )a'u (m>. 

Hence 

U~ re§ ~ (gc(A))rn+la'u(~ 

But y~~ t) is uniformly bounded Hence there exists a positive vector D such 
that yl~ t)~<(D}~. Therefore u~~ < V(A)D and 

u~ m+l) <~ (Kc(A ))ma'D/ {a}i. 

Since Kc(,~)< 1 it immediately follows that yl~)(s, t) converges uniformly for 
t~>0 and se  R N to a limit yi(s, t) which satisfies the following equation: 

yi(s, t)=j~=l N [ 1 - e x p { - y j ( s - r ,  t - r )  e x p [ - A ( { s - r } l - C ( t - r ) ) ] } ]  

x [%j(r) e-~C'][pij(r) exp(A{r}l)] 

x [exp{A ({s - r} l  - c(t - r))}] dr  dr+ Hi(s, t) exp(A ({s}l - ct)). 

The uniqueness of yi(s, t) follows from a similar contraction argument. This 
then establishes the existence and uniqueness of y~(s, t) and hence of  w~(s, t). 
The mononicity of wi(s, t) in t is easily verified since each y~(s, t) exp{-(A{S}l-  
ct)} can be shown to be monotonic increasing in t. 

(ii) Consider any c* > 0 and A e (0, Av) such that Kc.(A) < 1 and P*(A) and 
Ej(A) are finite. Since Kc(A) is a continuous function of  c for each fixed A, there 
exists a positive c < c* such that K~(A) < 1. Note that if p(F)  > 1 then necessarily 
c >  c o. 

Define ylm)(s, t) as in the proof  of part (i) for these values of c and A. Let 
{yO.)}~ = y ~ )  = sup{y~m)(s, t)}, where the sup is taken over s c R N and t/> 0. From 
the proof  of  part (i), y~O) ~< {D}~. Note that the constant does not alter if we rotate 
the co-ordinate axes in R N. Then 

y(m§ <~ V(A )yO,) + y(O). 

Taking a' as in the proof  of  part (i), we obtain 

a'y("+l) <~ K~(A )a'y (~) + a'y (~ ~< a'y(~ - K~(A)) ~< a'D/(1  - K~(A)). 

Therefore y~m§ where D*=a'D/((1-K~(A)){a}i ) .  Hence wi(s , t )~  
D* e x p ( A ( c t -  [sl)) fo r sE  R N, t~>0 and i =  1 , . . . ,  n. Now sup{w~(s, t): Isl i> ~*t}-< 
D* e ~(ct-~*t). The result then follows immediately since c* > c. 

Corollary 1. I f  o(F)  ~< 1, then for any c > 0, l i m t ~  sup{w~(s, t): Isl ~> ct} = 0 for 
i = l  . . . . .  n. 
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Corollary 2. I f  p ( r ) > 1, then for any speed c > co, limt~,oo sup{wi(s, t): Is 1 i> ct } = 0 
for  i=  l, . . . ,  n. 

The asymptotic speed of propagation, as defined in Aronson and Weinberger 
[1, 2], is c if for any cl and c2 with O < c ~ < c < c 2 ,  

(i) the solution wi(s, t) tends uniformly to zero in the region Is[ I> czt; 
(ii) the solution w~(s, t) is bounded away from zero uniformly in the region 

Isl ~ cl t for t sufficiently large. 
Corollary 1 shows that if p(r)<~ 1, no matter how slowly you travel, the 

proportion of  infectives ahead of you will tend to zero. This corresponds to an 
epidemic which is not severe. The speed of propagation may be considered to 
be zero. 

When p ( r )  > 1, Corollary 2 establishes that Co satisfies part (i) of the definition 
of the asymptotic speed of propagation. We now state Theorem 2, which says 
that co satisfies part (ii) of  the definition, and hence proves that co is the asymptotic 
speed of propagation of the epidemic. Before proceeding to the proof  of Theorem 
2, it is necessary to prove certain lemmas and state a comparison principle. The 
proof of Theorem 2 is then given at the end of this section. 

Theorem 2. For p(I ' )  > 1 and any cl ~ [0, Co), there exist positive constants b~ and 
constants T~ sufficiently large such that min{wi(s, t):ls I <~ c~t} >i b~ for all t>~ Ti and 
i = l , . . . , n .  

We assume for the rest of this section that p ( r )  > 1. Define BR to be the 
closed ball of radius R, centred on the origin, in R N. Observe that if cl < c < Co, 
then Kc(A)> 1 for all A ~[0, Ao]. We need to construct a function E operating 
on w~(s, t) so that wi(s, t ) ~  > E[w~(s, t)] with an associated function k(y )  with 
Laplace transform which is everywhere greater than one. We can then use a 
subsolution and comparison lemma as in Diekmann [3]. 

Using eqs. (3) we have 

f Io wi(s, t) >I ~ (1 - exp{ -wj ( s -  r, t - ~')})%j(.r)pu(r ) d'r dr. 
j = l  N 

We may reuse this inequality for w~(s - r ,  t - T) in the integrand on the right hand 
side to obtain a further inequality. This may be repeated any number of times 
and in the final replacement of the inequality, the summation may be truncated 
to include the term j - -  i only. The associated k(y )  then has Laplace transform 
{V m (A)},. For c such that 0 < c < Co we can choose m such that {V m (A)}, > 1 for 
all A ~ [ 0 , / t ] .  In fact E is defined so that k(y )  has compact support with its 
Laplace transform arbitrarily close to {vm (;t)},, and hence still able to be made 
greater than one for all A. It is therefore appropriate to prove Lemma 4 before 
defining the function E. 

We first make the following definitions. Let V(;t; R, T) be the matrix with 
/jth element 

{V(A; R, T)}~j = exp(A[{x}~-ct])po(x)y~j(~') d x  d~. 
R 

Define {V ~ (1)}0 = lim~r_,~{W (1 ; R, T)}~ for any positive integer s. Then V s (1) 
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has the usual interpretation when V(A) is finite; in addition it is defined when 
some of the elements of  V(A) are infinite. Note that we may choose R and T 
sufficiently large so that {V(A; R, T)} o. = 0 if and only if Yu = 0. Hence the zero 
elements of  V~(A) are in the same positions for all real finite A. 

For any positive e, R and T, define 

L r 1 7 6  fo~e~(V-cu) ~ ~ . . .  
oo j , ~ l  j 2 = l  

/~/,j,,...,j . . . .  i(v)yi, j,...,j . . . .  i( u) du dv 
j m - l =  1 

where/~q(x) is pij(x) truncated outside the region x ~ Bm~ , and 

Pi, jl,.",J . . . .  i ( { X } l )  = - -OOP0I  * ~ " " * PJm--I i ( x )  d { x } 2  " " " d { X } N  

and 

y , , j  ...... j . . . .  , ( u )  = ~ o ,  * YJ~J2 * "  " " * Y J m - , , ( u )  �9 

Lemma 4. For any positive c < Co, there exists a positive integer m, a positive real 
h < 1 and positive reals Ro and To sufficiently large such that hLc(A; R, T, m ) >  1 
for A ~ R and R >- Ro and T >t To. 

Proof We first show that, for any suffix i, there exists a positive integer m such 
that {V"(A)}, > 1 for all A 1> 0; with (vm(A)}, infinite for A > Av when Av is finite. 
Define p(A) -= p(V(A)). 

We use the results in Schaefer, ([12], Chap. 1, Prop, 7.3 and 7.4). Let A be 
a finite non-reducible, non-negative square matrix, which is not the 1 x 1 zero 
matrix. There exist positive integers 1 and s so that, by choosing a suitable 
permutation to apply to both rows and columns, 

B] 0 �9 �9 �9 

where Bj is a positive square matrix with p(Bj) = (p(A)) t' for j = 1 , , . . ,  I. The 
positions of  the zero entries of  A determine the appropriate permutation, the 
integer l, the smallest possible s and the sizes of B1, �9 �9 �9 Bl. Take A with {A} 0 = 0 
if and only if  70 = 0. Find 1 and s. Then for R and T sufficiently large so that 
{V(A, R, T)}~j = 0 if and only if T0 = 0, by relabelling the populations 1 , . . . ,  n, 

tBl(A; R, T) 0 . .  �9 0 \ 

Vt~(A; R, T ) =  0 B2(A; R, T) �9 .- 0 

0 0 . . . . . .  B~(A; R,  T 

where Bj(,~; R, T ) > 0  and p(Bj(,~; R, T ) ) =  p(V(,~; R, T)) ~. 
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Now if V(A*) has an infinite element, then each B~(A*; R, T) must have an 
element which tends to infinity as R, T~co .  Hence if B~(A)= 

r �9 limR, r-,~o B~(A, R, T), then 

(B~(h) o ... )) 
I . . . . . .  ~ o 

\ . . . . . .  n~(~ 
where B~(A) has all infinite elements for r/> 3, A = h* and j = 1 , . . . , / .  

Note that if a is finite this implies that {V'tS(A)}~i = co for r ~  > 3 and A > A. 
If  a is finite with O(~lv) infinite the result also holds at h = A. When p(0)=oo 
the result is valid at h = 0. When zl~ is finite take m * =  31s. 

If zl~ is infinite, since p ( h ) >  1 for all h, necessarily lim~_,oo p(h)  = oo. Hence 
there exists a sequence i l , . . . ,  i, with i, = il, such that lim~_.~ [I~-11 {Bj(h)}ij~j+, = oo, 
(see [5] Lemma 3). Hence there exists a positive integer w~>3 such that 

W m *  lim,_~oo{Bj (h)}~,=oo for all v, t, j. Take m * =  lsw. Then limx_,oo{V (h)}~i=oo. 
When V(0) is finite, take Ao = 0. If  V(0) has an infinite element then {V"*(0)}i~ = 

oo. Hence we may find a h o > 0  such that {Vm*(h)}~> 1 for 0<~h <ho.  When ~1~ 
�9 m *  is finite with V(Ao) finite, take h* = A. In all other cases hm~_~ao {V (A)}~ = oo, 

and we may find a A* < zl~ such that {V"*(A)}~ > 1 for A > A*. 
m *  Thus in all cases {V ( h ) } , > l  for h < h o  or h > h * .  Also if 3~ is finite 

{V"*(A)}~ = oo for h > LI~. Note that vm*(h) is finite for h ~ [ho, h*]. 
Now suppose that there is no positive integer q so that {Vq~*(A)}, > 1 for all 

h I>0. Then there exist sequences {qj} amd {Aj}, with limj_,~ qj = oo, such that 
{Vq/"*(Aj)}, <~ 1. Note that necessarily h je  [Ao, A*]. Hence there exists a conver- 
gent subsequence; the subsequence of {Aj} tending to h e[Ao, h*]. Then 
lim q_~o~{vq"*(~)}~ < 1. But m* is a multiple of Is and lim~B~(Tt)/(p(h))rt~= 
Ej(A) > 0, where Ej(h) is the idempotent of B~(]) corresponding to (p(~))l~. Since 
p ( [ )  > 1, limq_~oo {vq~*(h)}~i = oo, which gives a contradiction. 

Hence there exists a positive integer q so that {vq"~(A)}~> 1 for all A i>0. 
Take m = qm*. Note that {Vm(h)}, =oo for A > a~ if a is finite. 

Now L~ (A ; R, T, m) may be written as the Laplace transform of a non-negative 
function. In addition it is an increasing function of R and T, which tends to a 
limit {Vm(A)}, > 1 as R and T tend to infinity. We can clearly choose R and T 
sufficiently large so that L~(A; R, T, m)~oo  as h ~oo. Take R1, T1 and A* so that 
L~(A; R, T, m ) >  1 for h >~h*, R>~R~ and T ~  > T1. Suppose no Ro and To exist 
such that Lc(h; Ro. To, m ) >  1 for h 6 [0, oo). Then there exist sequences {R~}, 
{T~} and {)t~} such that L~(A~; R~, T~)<~I with lim~_,~ R~ =oo, lim~_,oo T ~ = ~  and 
necessarily hi e [0, h*). Hence there exists a convergent subsequence. Then there 
is a h ~ [0, h*] with limR_~,~o~ L~(h; R, T, m) <~ 1, which gives a contradiction. 
Thus there exists an rn, Ro and To such that L~(A; Ro, To, m ) > l  for h ~ [0, oo). 
Note that Lc(A;R, T,m)~L~([AI;R, T,m) for h real. It then follows that 
Lr R, T, m ) > l  for all real h and R~Ro and T ~  > To. 

Since limL~(A;Ro, To, m)=oo,  both as A~a3 and as h ~ - o o ,  we obtain 
the result that infa~ R Lr Ro, To, m) > 1. Take h such that 
{infa~R L~(A; Ro, To, m)} -~ ~< h < 1. The lemrna then follows immediately. 
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Choose an m, Ro, To and h as in Lemma 4. Take R and T so that R ~ R o  
and T ~  To. We then define an operator E, operating on ~b(s, t). Let g(x)  = 1 - e -~. 
Define 

r = l  r = l  j 

T--V~ r=l "rr A m--1  m - 1  

Yji(~'o)Pji(so)g x -  Y. Sr--S0, t-- Y, ~'~--~'0 dsod~'o. 
r = l  r = l  

Then successively for 1 ~< k ~  < ( m - 2 )  we define 

E~) O x -  E s ~ , t -  E ~'r 
r = k + l  r = k + l  j 

' =1  dO R N ")/Jl('l'k ) P f l ( S k  ) 

(( ( (xy - ,  )))) x g E ~  -1) O s~, t -  ~ rr dSk d'rk. 
k r = k  j 

Finally we define 

fo I ET(~b(x, t ) )=  ~ "Yij('Fm-1)Pij(Sm-l) 
j = l  R N 

X g({E~m-2)(~b(X-Sm_l, t-"r,,,-1)}j) dsm-1 d~'m-l. 

Observe that m, Ro, To and h, and hence Er, depend on i. Note also that 
wi(x, t)>~Er(wi(x, t)) for t ~  > T. 

The definition of the operator ET enables us to state a comparison principle 
which is essentially that of Diekmann ([3], Lemma 1). The proof  is identical so 
is omitted. Define ~ > ~b if d~ and ~ are continuous functions defined in R N with 
~b(x) t> 0(x) ,  the inequality being strict for x~ supp ~b. 

Lemma 5 (Comparison Principle). Suppose that ET[~](  ", t) > ~( ", t) for all t >~ T, 
where ~b : R N • R+ ~ R is a non-negative continuous function such that 

(i) for any t l > 0  there exists an S = S ( t l ) < ~  such that for any t o [0 ,  tl], 
supp ~b(., t) c Bs; 

co c R  N (ii) /f {(s., t .)}.=l x R+ is a sequence for which s. ~ supp tp(., t .) and 
l i m . ~  (s., t . ) =  (s, t), then necessarily s~ supp O( ' ,  t). 

I f  there exists a to >i 0 such that w~(., to + t )> ~b( ., t ) for  all 0 <~ t ~ T, then the 
relation holds for all t >~ O. 

Consider L(A)=  hL~(A; R, T, m ) = f R  e~Yk(Y) dy, where 

j l = l J 2 = l  J m - l =  1 

Note that k(y)  has compact support and L(A)>  1 for all real h. We now 
define a subsolution ~(s, t), using the definitions and a lemma from Diekmann 
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[3], which are stated below. The subsolution ~ is chosen to satisfy the condit ion 
ET[~b](-, t ) >  ~b(., t) for  t ~  > T. 

Define 

{;-~Y sin (/3y) forO<~y<~er//3 
q(y; a, /3)  = f o r y ~  R \ [0 ,  ~/ /3] .  

Lemma 6. Let k c L~( R ) be a non-negative function with compact support such that 
L(h) = ~  eXYk(y) dy> 1 for all h c R. Then there exists a positive number/30, a 
continuous function J = ~ (/3) and a positive function A = A (/3) defined on [0,/30] 
such that, for any/3 ~ [0,/30] and any 6 ~ [0, A (/3)], 

~b* k >  q~, 

where 4)(Y) = q(Y; a(/3), /3) and dp~(y) = 4)(Y - ~). 

Starting from q, a three-parameter  family of  non-decreasing functions r is 
formed as follows, 

r(y; a,/3 T) --- max q(y + n; a,/3), 
rl>>--- T 

or equivalently 

{ M  fory~< 3 ,+p  

r(y;a,/3,  y )=  ( y - y ; a , / 3 )  fory+p<~.y<~y+(cr//3) 

f o r y ~  > y +  (~r//3), 

where M = M ( a, /3 ) = max{ q (y; a, /3):  0 <~ y ~< ( 7r//3 )} and p = p (,/3 ) is the value 
of  y for  which the max imum is achieved. 

Define ~b(s, t ) -  = r a,/3, D+ct )  for  any o->0.  

Lemma 7. There exists a o-*>0  and D > 0  such that, for any 0 < t r < t r * ,  
ET[tP](- ,  t )> ~ ( . ,  t) for t>~ T. 

Proof. Note  that  ~b(s,t)<-crM for  all s ~ R  N and t~>0. 
sufficiently small so that (1 - e -x) i> hl/mx 
max{l ,  {n maxj, k So r Yjk(Z) dr}m-l}. 

Take or such that 0 < o-< or*. Then 

Er[~b](s , t )>~hforfRNfOr-~m-' fRN' ' ' fO T-zT--)~ 

X @ Sj, t--  Y, rj . . .  T / j l ( ' r m _ l )  
R N 1 j = l  j l t= l  Jm 1 =1 

x yj, j2(,r,~_2).., yjm ,,(ro)/3~jx(Sm_0 �9 �9 �9 dso d z o " "  dsm-1 drm_~ 

fo f = h ~b(r, t - fb) riO', *" " " * fij~_,i(s-r)3'i.~ ...... j . . . .  ,(~b) dr  dth 
R N j l = l  Jm-I =1 

fo f = h  o ' r ( [s-x[ ;  a,/3, D + c ( t - c k ) )  . . .  /~jl* �9 �9 �9 * fij~_,~(x) 
B R j l = l  J m _ l = l  

We can choose o-* 
for O<~x<<-~r*M 

• Ti, j ...... Jm 1,i(~b) dx  d~b. 
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We first observe  that  if  ~(s,  t ) = 0 ,  i.e. if  [s]~ > D+ ct+(zr /~) ,  then trivially 
Er[4 , ] (s ,  t) > tp(s, t). We need to show this result holds for  all s and  t. 

Case (i). I f  I~1 ~ D + c ( t -  ~) + p - R, since I s -  xl ~ I~1 + Ixl ~ Isl + R for x ~ n~, then 
[ s - x l < - D + c ( t - C b ) + p  for  X6BR and 0 < ~ b ~  < T. Therefore  

Er[~b](s, t) >>- h ~rM " " " Pijl *" " " * ~ ,i(X) Yi, j ...... j . . . .  i ($ )  d x  dq5 
R Jl =1 Jm~l =1 

=o'MhL~(O; R, T, m ) >  crM~> $(s ,  t). 

Case (ii). I f  D + c ( t - r ) + p - R < l s l < - D + c t + ( z r / f l ) ,  then if we choose D ~  > 
(R2/{28}) - p + R, Is - x I = (s's + x 'x  - 2s'x)1/2 ~ [sl- (s 'x/Isl) § ~. Note  that  0 < 8 < 
A(/3) as in L e m m a  6. 

Since r(y; a, fl, 3') is a decreasing funct ion of  y and/$i~1 * " " " */$j~_,~(x) is a 
radial  funct ion,  then 

ET[~b](S, t ) ~  > ho" r ( l s l -{X}l+  iS; a, fl, D + c ( t - c b ) )  
R 

• �9 . �9 p i j l  * "  �9 �9 * p j ~ _ l i ( X )  
j l = l  J m - l = l  

• Yi, j . . . . . .  ~ . . . .  i(&) dx  d~b 

= h ~  max  q(lsl-{xh+~+n; o~,~) 
R " o ~ - - D - - c ( t - - ~ )  

• ~: "-" X &j,,....j . . . .  ,(~xh)r,.j,.....j . . . .  , (6)  d{xh  d , .  
j l = l  j m _ l = l  

Let u = {X}l - cq5 and  ~7" = r / -  c~b. Then  

ET[tp](s , t )~htr  foo max  q([sl-u+~+n*;~,~) 
J - - o o  r t*>-- -D--c t  

j l = l  j m - l = l  

=h~ ~*~>-o-c,max q( ls l -u+~+~7*;a ,  f l )k(u)  du 

Hence  f rom L e m m a  6, ET[O](s, t ) >  ho" maxv .~>_o- ,  q(Isl+ 77*)= ~(s, t). This 
comple tes  the proof .  

We now show that  wi(s, t ) > 0  for (s, t) CBRX[to, t o + T ] .  Since wi(s, t) is 
m o n o t o n e  increasing in t, the inf  o f  wi(s, t) in this range is identical  to inf  w~(s, to) 
over  s~  BR. From L e m m a  2, w~(s, to) is cont inuous  in s. This then implies that  
inf  w~(s, t ) >  0 for  (s, t)~ BR • [to, to+ T]. This enables us to comple te  the p r o o f  
of  T h e o r e m  2. 

Lemma 8. For any R > 0 there exists a to = to(R) such that wi(s, t) > 0 for (s, t) 
BR X [ to, oO). 
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Proof. The conditions imposed on ej(s, ~), ~t*(r) and p*(r) ensure that there 
exists an open set F in R N and a positive constant T, such that for some j, 
~ ( s ,  t ) >  0 for t ~> T and s ~ F. We may shift the origin so that, without loss of 
generality, F ~  BA for some positive A. Hence wj(s, t ) > 0  for sE BA and t ~  Z 

Since F is non-reducible, there exists a sequence j ~ , . . . ,  j~ with j~ = j  and j, = j  
and 3Jjs.j~§ ~ 0  for s =  1 , . . . ,  (1 -1) .  Now w~s+, > 0 if 

fo I R N 

It is easily seen therefore that w~(s, t )>  0 if 

forf~wj(r,~')y~j~*'"*ys,_~,(t-~')pj~j~*"'*p~,_~j,(s-r)drd'r>O. 

Now for some B, C, T~, T2, pj~j~*'"*pj~_~j,(x)>0 for B ~ [ x  I~<C and 
YJ, i~ *" " " * yj~_,j,(r) > 0 for r [T~, T2],withB<C and T~< T2. Hence w~(s, t ) > 0  
for s ~ BA and /o r  B - A ~< Isl ~< A + C and t/> T +  T~. Repeating this procedure, 
in two steps we obtain the result that wj(s, t ) > 0  for s~ Ba+c-s and t>~ T+2T~. 

If  j---i, choose a non-negative integer r such that R ~ A + r ( C - B ) ;  then 
w~(s, t ) > 0  for S~BR and t>-to where to = T+2rT~. 

If  j ~ i, there exists a sequence i~,. . . ,  ik, with ik ~-j, i~ = i and 3 ' ~ ,  ~ 0 for 
t 

s - = l , . . . , ( k - 1 ) .  Now wi(s, t ) > 0  if [.O~R ~ wj(r,'r)'yi, i~*. .  "* 7i~_,i~(t--z)X 
P~i~ * " " " * p~_~(s--r) dr dr> O. There exist non-negative reals S~, $2, D and E 
such that y~,~ * . . .  * 3,~_,;k(t) > 0 for t~[S~, $2] and p~,~ *.  �9 �9 *p~,_,~(x)>0 for 
D<~Ix]~E. Choose r such that R + D < ~ A + r ( C - B ) .  Then w~(s, t ) > 0  for s~ 
B~+o and t ~  T+2rT~. Hence w,(s, t ) > 0  for s~ B~ and t>~ T+2rT~+S~. In this 
case we take to = T+2rTI+S~. This completes the proof. 

Proof of Theorem 2. From Lemma 8, for any finite positive T,-inf w~(s, t ) >  0 for 
(s , t )~Bex[to ,  to+T]. Choose tr such that 0 < t r < o - *  and trM<infw~(s,t) 
where the infis  taken over (s, t) ~ Ba • [to, to+ T]. Hence w,(s, to+ t) > r t) for 
0 ~  < t<~ T. Using the comparison lemma, (Lemma 5), we then obtain the result 
that w~(s, to+ t ) >  ~p(s, t) for all t~>0. Hence w~(s, to+ t ) ~  trM for ]sl<~p+D+ct 
and t~>0. Thus w~(s,t)>~crM for I s [~p+D+c( t - to )  and t>~to. Therefore 
w~(s,t)~trM for Isl<~c~t if  c~t<~p+D+c(t-to) and t>~to, i.e. if t ~  > 
max{to,(Cto-p-D)/(c-c~)}.  Then if we take bi=trM>O and T/= 
max{to, (Cto-p-D) / (c -c~)} ,  we obtain the result min{w~(s, t): Isl b, for 
all t ~> T~. 

Note that we can define the appropriate operator E r  for each value of  i, and 
hence obtain the corresponding b; and T~, so that Theorem 2 holds for all 
i ~ - l , . . . , n .  

Corollary 2 and Theorem 2 together show that if p(F) > 1 then the asymptotic 
speed of  propagation is Co, the minimum speed at which wave solutions exist. 
Corollary 1 shows that if p(F)  ~< 1 the speed of  propagation is zero. In order to 
prove these results we require each p0(r) to be exponentially dominated in the 
tail and suitable restrictions to be placed on the e~(r) and p~(r) so that the effect 
of the infectives from outside does not dominate the ultimate behaviour of the 
epidemic. The restrictions on the e;(r) and the p*(r) are only required to prove 
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theorem 1, so that, if  ( p ( F ) >  1), the speed of propagation is at least Co even if 
these restrictions do not hold. If  P*(A) and E~(h) are finite for all i, j and 
0 ~  < A < a < ho where a is such that Kc.(a) = 1, then it may easily be shown that 
the speed of  propagation c, (when p ( F ) >  1), satisfies the inequality Co ~< c ~< c*. 
In this case the infection from outside is feeding the epidemic ahead of  the 
epidemic generated within the n populations of  susceptibles. 

4. The behaviour when at least one contact distribution is not exponentially 
dominated in the tail 

In this section the behaviour is considered when some P~(A) is infinite for h real 
and non-zero. The existence and uniqueness of w~(s, t) may then be established 
as in our paper  [7, theorem 4]. We first prove the analogue of Lemma 4. 

Lemma 9. When p(F)  > 1, for any c > 0 there exists a positive integer m, a positive 
real h < 1 and positive reals Ro and To sufficiently large so that hLc(h; R, T, m) > 1 
for A e R, R >- Ro and T >>- To. 

Proof. As in Lemma 4, there exist positive integers I and s so that, by relabelling 
the populations 1 , . . . ,  n, 

/BI (A)  0 
B2(x) . . .  00 

0 " ' "  Bt 

where Bj(A)>0.  Also {Vrl'(h)}i~=oo for h > 0 ,  r~>3 and all i. If V(0) has an 
infinite element, then {Vr~(0)}i~ =oo for r~>3 and all i. Take m =31s. 

When V(0) is finite, since p ( 0 ) > l  and B j (0 )>0  for all j, 
limr_,~ B;(0) / (p(0))  r/s= Ej (0)>  0; where Ej(0) is the idempotent of Bj(0) corre- 
sponding to the eigenvalue (p(0)) ts. Then there exists an r I> 3 with {Wl~(0)}~ > 1 
for all i. Take rn = rls. 

Then {Vm(h)}~> 1 for all h ~>0 and all i, and {Vm(h)}i~ =oo for A >0 .  
We may then proceed exactly as in the proof  of  Lemma 4, noting that 

limR, T-,o~ Lc(h; R, T, m) ={Vm(h)}~i> 1 for h~>O. 
In an identical manner  to Sect. 3 we may then use this lemma to define the 

operator ET and hence to prove the following theorem. 

Theorem 3. When p ( F ) >  1, for any e> 0 there exist positive constants b~ and T~, 
with T~ sufficiently large so that min{wi(s, t): Is] ~< ct} >- bifor t 1> T/, (i = 1 , . . . ,  n). 

When p(F)  > 1 and at least one p~(r) is not exponentially dominated in the 
tail the asymptotic speed of  propagation may then be considered to be infinite. 

In order to establish the result that the speed of  propagation is zero if p(F)  ~< 1, 
we impose the further condition that each p0(r) is monotone decreasing in [r], 
differentiable with bounded derivatives and convex in the tails. Since w~(s, t) is 
monotone increasing in t and uniformly bounded for F with all finite elements, 
wi(s) = lim,_,oo w~(s, t) exists and is finite. 
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Theorem 4. I f  p(F)  <~ 1, then lim,_,~ sup{wi(s, t): Isl >I ct} = 0 for any c > 0 and 
i = l , . . . , n .  

Proof Take H*(s,  t )=sup{Hi(x ,  t): Ixl  > Isl], Then H*(s,  t) is a radial function 
of s and is monotone decreasing in Is]. It is also continuous in s and uniformly 
bounded. Let w*(s, t) be the unique solution to 

f f0 w*(s, t ) =  ~ 3/o(r t - z ) )  drdr+H*(s,  t), (4) 
j = l  N 

with w*(s, t) monotone increasing in t and w~*(s, 0) - 0 for i = 1 , . . . ,  n. Note that 
g(x) = 1 - e xp ( -x ) .  

Using the construction of the solution w*(s, t), and that of wi(s, t), given in 
[7] Theorem 4, it is easily seen that wi(s, t) <~ w*(s, t) and w*(s, t) is a radial 
function of  s which is monotone decreasing in Isl. Let w*(s) = lim,_,~ w*(s, t) and 
a*(s) = lim,_~o~ H*(s,  t). If  monotone convergence is now applied to (4), we obtain 
for each i =  1 , . . . ,  n, 

w*(s) = ~ 3',j ~pi j ( r )g (w*(s - r ) )  dr+a* ( s ) .  
JR 

Since w~*(s) is a radial function of s and is rnontone decreasing in Isl, 
w* = limlsl_,o~ w*(s) exists. Note that w*/> 0. Let ai(s) = lim,_,~ Hi(s, t). The condi- 
tions imposed on 3'* and e~(s, ~-) imply that a~(s) is uniformly continuous with 
JR ~ ai(s) ds finite; and hence that limlsl_~ a*(s) = 0. Therefore w* = ~j"~l 3"~g(w*) 
for i = 1 , . . . ,  n. From our paper, [7], since p(F)  <~ 1, we obtain the result that 
w*=0. 

Now for any c > 0, sup{wi(s, t): Isl/> <- sup{w,*(s, t): Isl I> ct]  = w*,(ct, t) .  For 
t ~  > T, we have w*(ct, t)<<- w*(cT, t)<<- w*(cT). Hence, since w*= 0, we obtain the 
result that for any c > 0 and i = 1 . . . .  , n, lim,_,~ sup{wi(s, t): [s[>~ ct} = O. 

5. The pandemic theorem 

Since xi(s, t) is monotone decreasing in t and bounded, vi(s) = 1 - l imt_~  xi(s, t) 
exists, and measures the proportion of the population at position s who eventually 
suffer the epidemic. Note that ai(s) = lim,_~o~ Hi(s, t) is continuous and integrable, 
so that ai --- infs ai(s) is necessarily zero for all i. 

In our paper, [7], we did not restrict the ai to be all zero, and proved the 
pandemic theorem giving a lower bound for vi(s), which depends on the ai. In 
that paper the theorem was established for all dimensions N if at least one ai > 0 
and/or  F has at least one infinite element. Ess6n's result [4], which restricted 
the validity of  the proof  to N = 1 and N = 2 only, was only necessary when 
considering the case where ai = 0 all i and F is finite. 

In this section we assume that p(U) > 1, so that a major epidemic occurs. We 
can improve the lower bounds bi in Theorem 2 for wi(s, t) and interpret them in 
terms of-vi(s, t )=  1-x i ( s ,  t). We show that for c > 0 ,  with C<Co if all the po(r) 
are exponentially dominated in the tail, limt_>~ inf[min{vi(s, t): Isl ct]] for 
i = I , . . . ,  n, where ~7i is defined as follows: 
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element in each row, then ~ = 1 for 

to 

n 

- l o g ( 1 - y ~ ) =  ~ YoYJ for i =  1 , . . . ,  n. 
j = l  

This is a stronger form of  the pandemic theorem. The pandemic theorem given 
in [7], for the case ai = 0 all i, then follows immediately as a corollary, and is 
valid for all dimensions N. 

Note that this section may easily be rewritten without restricting a~ to be zero 
for all i. Only minor modifications are needed to lemmas 10 and 11. This would 
then establish the stronger form of pandemic theorem for all a~, and also give an 
alternative proof  in all cases of  the pandemic theorem of  [7]. We omit the details. 

Let To(R, T) = S~ Yo(z) dr SBR PO(r) dr and F(R, T) = (y0(R, T)). Note that 
F(R, T) is non-reducible for R and T sufficiently large, and p(F(R,  T)) is a 
continuous, increasing function of R and T. Hence there exists an Ro and To 
sufficiently large so that F(R, T) is non-reducible with p(F(R,  T)) > 1 for R/> Ro 
and T ~  > To. For R ~ R o  and T ~  > To, define r/~(R, T) to be the unique positive 
solution y~ = ~7~(R, T) to 

- l o g ( 1 - y ~ ) =  ~ To(R, T)yj for i =  1 , . . . ,  n. 
j = l  

Take any positive speed c such that either (i) pq(r) is exponentially dominated 
in the tail for all i, j, and c < Co, or (ii) at least one p0(r) is not exponentially 
dominated in the tail. For any such c, any e > 0 ,  R~>Ro and T ~  > To, we 
show that there exists a t*>  T such that min{w~(s, t): [s[<~ct} 
- log(1 - r/~(R, T)) - e, for t ~> t*. 

To establish the stronger form of pandemic theorem from this, it is necessary 
to show that ~/~(R, T)I" r/~ as R and T tend to infinity. The result is established 
in the following lemma. 

Lemma 10. For each i = 1 , . . . ,  n, ~?i( R, T! ~ ~7~ as R and T tend to infinity. 

Proof. Take any R/> R * ~  > Ro and T ~  > T * ~  > To, where F(Ro, To) is non-reducible 
with p(F(Ro, To))> 1. Now, for each i, 

- log( l -~Tg(g ,  T ) ) =  ~ 70(R, T)nj(g, T)= ~ v0(g*, T*)nj(g, T)+d,, 
j = l  j ~ l  

(i) I f  F has at least one infinite 
i-- 1 , . . . ,  n. 

(ii) I f  F is partitioned into 

(F l l  F,2~, 
F=kF21  F22] 

where 1~11 is m • m and (F21F22) has at least one infinite element in each row, 
but (F1aF12) has no infinite elements, then ~i = 1 for i = m + 1 . . . .  , n, and '1/for 
i = 1 , . . . ,  m is the unique positive solution Yi = ~ to 

- l o g ( l - y / ) =  ~ YoYj + ~. yg for i = l , . . . ,  m. 
j = l  j = m + l  

(iii) If  F is finite, then ~ for i = 1 . . . .  , n is the unique positive solution y; = ~ 
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n 
where di =~ j= l  (70( R, T ) - y i j ( R * ,  T*))~Ts(R, T)>~O. Hence from [7], Theorem 
1, rh(R*, T*)<~ r/,(R, T). 

We first consider the case where F is finite. We may proceed as above using 
F in place of  F(R, T), to obtain the result ~7~(R*, T*)~< r/, for R*~Ro and 
T*/> To. Hence ~7,(R, T) is an increasing function of R and T, for R ~> Ro and 
T >~ To, which is bounded above by rl, and below by ~7,(Ro, To). Then ~7,(R, T) 
tends to a positive limit y, as R--> oo and T-> ~ ,  satisfying 

- l o g ( I - y , ) =  ~ 3"oYs for i=  1 , . . . ,  n. 
j = l  

Then from [7], Theorem 1, necessarily Y~=~7~ for i = l , . . . , n .  Hence 
limR, T-,~ ~ (R ,  T) = 9,. 

Now suppose that for some 0 ~< m < n, F is partitioned into 

= (I~11 r12'~, 
F \F21 F J  

where Fll  is m • m, (1711F~2) has all finite elements and (FzlF2z) has at least one 
infinite element in every row. Take R ~  > Ro and T>~ To so that p(F(R,  T ) ) >  1. 
For each i > m there exists a j such that Yo = ~.  Then, for such an i and j, 

- l o g ( 1 -  n,(R, T))>I 3,0(R, r)71s( R, T)>! 3,o( R, T)rls( Ro, To). 

Hence limR.v-,o~ ~,(R, T) = 1 for i = m + l , . . . ,  n. If m =0,  i.e. 1 TM has an infinity 
in every row, this completes the proof. 

I f m > 0 ,  t h e n f o r i = l , . . . , m  a n d R ~ R o a n d  T ~ T o ,  

- l o g ( 1 -  r/,(R, T ) ) =  ~ 3,0(R, T)~Ts(R, T )+  d~(R, T), 
j=l 

where d,(R, T ) =  Y~s~m+l 77o(R, T)~Ts(R, T). Since 9s(R, T)is monotone increasing 
in R and T and bounded above by ~s, it tends to a limit Ys as R and T tend to 
infinity satisfying the equations 

- l o g ( l - y , ) =  ~ 3,oys+ ~ 3'0 f o r i = l  . . . .  ,m. 
j = l  j = m + l  

We can then use [7], Theorem 1 to obtain the result that y, = r/, and hence 
limR.T-,oo r/,(R, T) = ~7, for i = 1 , . . . ,  m. 

Lemma 11. Let B = ([30) be a non-negative, non-reducible matrix of finite elements, 
with p(B) > 1, and let y, = fb, be the unique positive solution to 

- l o g ( I - y , )  = ~ [3oYs for i= 1 , . . . ,  n. (5) 
j=l 

Take u > 0  to be the right eigenvector corresponding to p(B), scaled so that if 
{a}, = - log(1 - {u},), then p(B)g({a}i) > {a}/for all i, where g(x)  = 1 - e -x. Define 
No = a and successively define for m = 1, 2 , . . . ,  

{Nm+x} i = ~ [3og({Nm}s) for i = 1 , . . . ,  n 
j=l 
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Then for every e > 0 there exists an M such that N., > d~ - e for m >>- M, where 

{ ~ } i  = ~i. 
n rl 

Proof N o w  {N1}i = Zj=I  fl~g({N0}j) = Zj=I/3o{u}j- Hence  N1 = Bu = p(B)u  > a = 
No. Clear ly  f rom the definit ion of  N,, and  the non-reducibi l i ty  of  B, {Nm} is 

n 
a strictly increasing sequence.  It  is b o u n d e d  above  since {N,,}I~Y.j=~/3,~ for  
i = l , . . . ,  n. Hence  Nm tends to a limit N as m ~ o o ,  where  N satisfies the 
equat ions  

{N}i = ~ /3og({N} j) for  i =  1 , . . . ,  n. 
j = l  

As N > No > 0, it fol lows that  N = +.  Therefore  there exists an M sufficiently large 
so that  Nm > ~b - e for  m i> M. 

Theorem 5. Consider any positive speed c such that either (i) p0(r) is exponentially 
dominated in the tail for all i, j, and c < Co; or (ii) p~(r) is not exponentially 
dominated in the tail for some i, j. For any do>  c still satisfying these conditions, 
take R and T sufficiently large, and h < 1 such that hp(F( R, T) ) > 1. Then for every 
e i > 0  ( i = l , . . . , n )  there exists a t*> T such that min{wi(s,t):[s[<~ct}>~ 
- log(1 - rli(R, T)) - eifor i = 1 , . . . ,  n and t >- t*, where Yi = 71i(R, T) is the unique 
positive solution to (5) when B = F(R,  T). 

Proof From Theo rem 2, there exist posi t ive constants  b, and To such that  
min{wi(s, t): ]s I<~dot}>-bi for  all t~>To and i = l , . . . , n .  In  L e m m a  11 take 
B = F(R,  T)  and  the cor responding  a > 0 so that  {a}, <~ hi for  i = 1 , . . . ,  n. Then 
wi(s, t) >I {No}i for  Isl <~ dot and t ~> To, (i = 1 , . . . ,  n). 

N o w  for  t i> T, 

f o r f  g ( w : ( s - r , t - z ) ) y ~ ( z ) P ~ ( r ) d r d T  
BR 

wi(s, t) >i 
j = l  

j = l  
To(R, T)g({No}~) = {Na}i, 

if  I s - r ]  ~< d o ( t -  "r) for  r e  BR a n d  ( t -  ~-) ~> To when  r~< T. These condi t ions will 
cer tainly hold  if [sl<~ - R - d o T + d o t  and t>~ To+ T. 

Next  take d l ~ ( c ,  do), Then  wi(s, t)~>{N1}i for  Is[<<-da t and t ~  Ta, where 
T1 = m a x { T o +  T, ( R +  Tdo)/ (do-dl)} .  By successively choosing dj+l ~ (c, dj) and 
defining Tj+I = max{Tj + T, ( R +  T d j ) / ( ~ -  dj+l)} for  j = 1, 2 , . . . ,  we obtain  the 
result  wi(s, t) i> {Nj}i for  ]s[ ~< djt and t I> Tj for  i = 1 , . . . ,  n and j = 1, 2 , . . . .  

N o w  for  any s i > 0  ( i =  1 , . . . ,  n) choose M as in L e m m a  11 so that  {NM}i ~> 
--log(1 -- r/i(R, T))  - e~. Then  wi(s, t) t> - l o g ( 1  - rh(R , T)) - ei for  Is[ <~ dMt and 
t i> TM. Hence  if we take t* = TM, we obta in  the result  

min{wi(s, t): Is[ ~< ct} >- - l o g ( 1  - ~Ti(R, T)) - ei for  i = 1 , . . . ,  n and  t 1> t*. 

The result  for  we(s, t) m a y  easily be conver ted  into an equivalent  result  for  
vi(s, t) = 1 - xi(st) ,  n ame ly  

min{vi(s, t): Isl ~< ct} ~> 1 - exp(log(1 - r/i(R, T))  + el) = 1 - (1 - ~i(R, T) )e  ~' 
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fo r  i = 1 , . . . ,  n a n d  t 1> t*. F r o m  this  resul t ,  a n d  L e m m a  10, t he  f o l l o w i n g  t w o  

co ro l l a r i e s  a re  i m m e d i a t e .  

C o r o l l a r y  3. Under the conditions on c specified in Theorem 5, 

l im,_.~ i n f  min{vi ( s ,  t):  Is[ ~< ct} >~ r h for  i = 1 , . . . ,  n. 

C o r o l l a r y  4. (The  p a n d e m i c  t h e o r e m ) .  For all s and i = 1 , . . . ,  n, v~(s)/> ~ .  

N o t e  tha t  C o r o l l a r y  4 g ives  a l o w e r  b o u n d  fo r  the  p r o p o r t i o n  o f  i n d i v i d u a l s  

at  p o s i t i o n  s, in p o p u l a t i o n  i, w h o  e v e n t u a l l y  suffer  the  e p i d e m i c ;  th is  b o u n d  

h o l d i n g  w h e n  p ( I ' )  > 1 so tha t  a m a j o r  e p i d e m i c  occurs .  
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