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Abstract. The global behaviour of a class of predator-prey systems, modelled by 
a pair of non-linear ordinary differential equations, under constant rate 
harvesting and/or stocking of both species, is presented. Theoretically possible 
structures and transitions are developed and validated by computer simu- 
lations. The results are presented as transition loci in the F-G (prey harvest 
ra te -preda tor  harvest rate) plane. 
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1. Introduction 

In a sequence of papers [Brauer et al. (1976); Brauer and Soudack (1979a); Brauer 
and Soudack (1979b); Brauer and Soudack (1980)], we have analyzed the global 
behaviour of predator-prey systems under constant rate harvesting of either species 
and under constant rate stocking (which may be viewed as negative harvesting) of 
either species and of both species simultaneously. In all of this previous work, the 
focus of our attention has been on the nature of the phase portrait for a given 
harvest rate and on the transitions between types of behaviours as the harvest rate is 
changed. 

In this paper we generalize our earlier results to allow two independent constant 
harvest rates (positive or negative) for the two species. We also make a slight change 
in emphasis and concentrate on classification of regions in the harvest-rate plane 
rather than on the phase portraits. Of course, the phase portrait analysis can also be 
carried out, and some such analysis is necessary for the desired classification of 
regions. However, we have chosen to suppress much of this detail in order to 
concentrate on the question of what qualitative behaviour is to be expected under 
changes of one or both harvest rates. The models studied are oversimplified, but 
suggest unexpected dangers which may be relevant to the management of real-life 
systems if they persist in more realistic models. 

* Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and in part by 
NSERC of Canada, Grant No. 67-3138 

0303 - 6812/81/0012/0101/$02.80 



102 F. Brauer and A. C. Soudack 

2. General Theory 

We consider the system 

x' = xf(x, y) - F, 

y '  : y 0 ( x , y )  - G (1)  

as a model for the sizes x(t) of  a prey population and y(t) of a predator population. 
Here, f (x ,y )  and g(x,y) are the respective per capita growth rates of the two 
population sizes. As in our previous work [Brauer et al. (1976); Braaer and 
Soudack (1979a); Brauer and Soudack (1979b); Brauer and Soudack (1980)] we 
assume that these depend only on the population sizes at time t. The prey species is 
harvested at a constant time rate F, while the predator species is harvested at a 
constant time rate G. We permit either F, or G, or both, to be negative, to represent 
stocking rather than harvesting of the corresponding species. 

The predator-prey nature of the model is expressed by the assumptions 

fr(x, y) < 0, 9x(x, Y) > 0, gr(x, y) <<. 0 (2) 

for x > 0, y > 0 (subscripts denoting partial derivatives). These assumptions imply 
that the equation 9(x ,y )= 0, representing the (unharvested) predator isocline, 
defines x as a monotone non-decreasing function x = F(y) for 0 < y < Go. We 
assume that this isocline intersects the x axis at (J, 0); that is, that J = F(0), or 

g(J, 0) = 0. (3) 

As we have pointed out previously [Brauer and Soudack (1979a)], in many of the 
commonly-used models the function g is independent of y, corresponding to the 
situation in which the predators do not interfere with one another in their search for 
prey. In this case the predator isocline g(x,y) = 0 is the vertical l i nex  = J. 

The hypothesis (2) also implies that the equation f (x ,  y) = 0, representing the 
(unharvested) prey isocline, defines y as a single-valued function y = ~(x) which we 
assume non-negative on an interval 0 ~< ~ ~< x ~< K ~< oe with ~(K) = 0, or 

f (K,  0) = 0. (4) 

It  is necessary to distinguish three possibilities, as follows: 
(i) e > 0, corresponding to f(0,  0) < 0. 

(ii) ~ = 0, corresponding to f(0,  0) t> 0, and there exists L < oe such that 

f(0,  L) = 0. (5) 

(iii) c~ : 0, L = oe. 
Biologically, e > 0 is the case in which the prey population is unable to develop 

if it gets too small, even in the absence of predators. I f  c~ = 0, the prey population 
can establish itself f rom a small initial population; L is the maximum predator 
density for which the prey population can establish itself. I f  e = 0, L = 0% the prey 
population can establish itself for any predator population. Finally, we assume 

cr < J < K. (6) 

The cases J ~> Kand  J ~< e may be analyzed by the same methods and are essentially 
trivial. A discussion of the biological significance of the numbers e, J, K, L may be 
found in [Brauer and Soudack (197%)]. 
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An equilibrium P(~, 33) of  the system (1) is an intersection of the prey isocline 
xf(x ,  y) - F = 0 and the predator isocline yy(x,  y) - G = O. To  study the (local) 
stability of an equilibrium, we linearize about the equilibrium, forming the matrix 

A(P) = [~ f~(2 ' ) )  + f (2 ,~ )  2 fy(~ , ) )  

[_ 33gx(~, 3 3) )3gr(~ , 33) + g(2~, 33)J 

and then determine the eigenvalues of A(P). In particular, i fdet  A(P) < 0, then the 
eigenvalues have opposite sign and/3 is a saddle point. I fde t  A(P) > 0, then the real 
parts of  the eigenvalues have the same sign and/3 is a node or spiral point which is 
asymptotically stable if tr A(P) < 0 and unstable if tr A(P) > 0 (corresponding to 
eigenvalues with negative real part  and positive real part  respectively). 

I f  G # 0, the predator isocline yg(x, y) = G is a curve which approaches the 
curve g(x, y) = 0 asymptotically. The portion of this curve in the first quadrant  lies 
to the right of  g(x, y) = 0 if G > 0 and to the left of  g(x, y) = 0 if G < 0. 

To describe the prey isocline x f ( x ,  y) = F for F # 0, we define 

F 
f * ( x , y )  = f ( x , y )  - - 

X" 

Then the prey isocline is the curve f * ( x , y ) =  0; we shall regard f * ( x , y )  as a 
modified per capita growth rate for each fixed F. It is easy to see that for every 
F < 0, f *  satisfies the same hypotheses as f and is of the type ~ = 0, L = ~ ,  
independent of  the type for F = 0. For  F > 0, there are two critical values ofF.  For 
sufficiently small F > 0, f *  satisfies the same hypotheses as f and is of  the type 

> 0, with a = ~(F) < J and K = K(F) > J. There exists Fc > 0 such that either 

(i) ~(Fc) < J, K(Fc) = J 

or  

(ii) a(Fc) = J, K(Fc) > J. 

Further, there exists F* > ?~ for which 

~(g*) = K(F*) 

[Brauer and Soudack (1979b)]. Then f *  satisfies the same hypotheses a s f a n d  is of  
the type ~ > 0 for 0 < F <  F*. 

This suggests that models of  the type ~ > 0 with F = 0 may be the result of  some 
harvesting of prey by biological mechanisms outside the system, while models of the 
type ~ = 0, L = m may represent some external stocking of prey. Models with 

= 0, L < ~ which are the type most frequently studied, represent a critical 
balance between external harvesting and stocking. 

For each suitably chosen fixed F, we may now view the system (1) as a pure 
predator harvesting or stocking model 

x' = x f * ( x ,  y), 

y' = yg(x ,y )  - G (7) 

with the prey harvest or stocking built into the prey growth rate. Thus as G is varied 
for any fixed F, the possible transitions are of the same types as for pure predator 
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harvesting [Brauer and Soudack (1979a)]. The first question we wish to examine is 
the existence of an equilibrium of the system (1), or (7), in the interior of  the first 
quadrant. It  is known [Brauer and Soudack (1979a)] that there exists G § = 
G +(F) > 0 such that the system (1) has an equilibrium P~o = P~(F, G), not a saddle 
point, in the interior of  the first quadrant  of the x-y plane if 0 ~< G < G +, and has 
no equilibrium in the interior of  the first quadrant  if G > G +. This holds for all 
F < 0 and for sufficiently small positive F. It  is easy to see graphically that G +(F) 
must be a monotone decreasing function of F for - oo < F < oo. 

I f  G < 0 we must distinguish between the cases F >~ 0 and F < 0 because of the 
difference between the cases e > 0 and e = 0, L - - o %  [Brauer and Soudack 
(1980)]. I f  F > 0, corresponding to e > 0, there exists G - = G - ( F )  < 0 such that 
the system (1) has an equilibrium P~ = Poo(F, G) (not a saddle point) in the interior 
of the first quadrant if 0 >/G > G - ,  and has no equilibrium in the interior of the 
first quadrant if G < G - .  It is easy to see that G -  (F) is a monotone increasing 
function of F. I f  F < 0, corresponding to e = 0, L = o% the system (1) has an 
equilibrium P~o in the interior of the first quadrant for all G < 0. 

The above analysis is valid for all F < 0, but for positive F i t  is obviously valid 
only for 0 ~< F < Ft. However, if e(Fc) < J, K(F~) = J and G < 0, it is easy to see 
that it is in fact valid for 0 ~< F < F*. Similarly, if e(F~) = J, K(Fc) > J, and G > 0, 
it is valid for 0 ~< F < F*. We may collect this information on the values of  the 
harvest rates F and G for which there is an equilibrium P~ = P~(F, G) in the 
interior of the first quadrant  of  the x-y plane. In Figs. 1 and 2, the interior of  the 

) 

F* 

Fig. 1. c~(F~) < o r, K(F~) = J 

G 

3c 

Fig. 2. o~(F~) = J, K(F~) > J 
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shaded region indicates the set R of such values in the F-G plane. Such figures have 
been given before for species in competition [Yodzis (1976), Reading (un- 
published), Griffel (1979)]. 

As we have shown in our earlier work on harvesting of one species [Brauer and 
Soudack (1979a and b)], the existence of an equilibrium in the interior of the first 
quadrant of  the x-y plane does not guarantee the survival of both species. 
Resolution of this question depends not only on the existence of an equilibrium but 
also on the structure of separatrices at the one or more saddle points in the interior 
of the first quadrant. We have given a classification in the two one-species 
harvesting problems which can be combined into the following classification for 
any model of  the form (1) with (F, G) in the interior of  R, so that there is an 
equilibrium Po~(F, G) in the interior of  the first quadrant of  the x-y plane. There 
is then at least one saddle point in the first quadrant, possibly on one of the 
axes. 

Case 1. There is an orbit running from a saddle point as t ~ - ~ to P| or a limit 
cycle around Po~ as t ~ + ~ .  

Case 2. There is an orbit running from a saddle point as t ~ - m to a saddle point 
as t ~ + m (homoclinic-type orbit). The two saddle points may be the same. 

Case 3. There is an orbit running from P~ or a limit cycle around P~ as t ~ - ~ to 
a saddle point as t ~ + ~ .  

For each case there are two alternatives which we index as a or b according as 
the equilibrium P~ is (locally) asymptotically stable or unstable respectively. In 
case 1 a, Po~ is asymptotically stable and there is a region of asymptotic stability for 
Po~ - the set of  initial values for which the solution tends to Po~ as t ~ m, which can 
be described in terms of the separatrices at saddle points. In case lb, P~ is unstable 
but there is an asymptotically stable limit cycle with a domain of asymptotic 
stability which again can be described in terms of separatrices. Case 2 may be 
viewed as a transition between case 1 and case 3. In case 3a, P~ is asymptotically 
stable, but the domain of asymptotic stability consists only of  the interior of  an 
unstable periodic orbit around P~.  In case 3b, P~o is unstable, and every orbit goes 
to an axis in finite time, corresponding to extinction of one of the species. Thus in 
practical terms, the two species can coexist only if the system is in case 1, even 
though in case 3a there is a "small" set of  initial values for which there is 
coexistence, and in case 2 there may be a coexistence region which is extremely 
susceptible to collapse under small perturbations of  harvest rates. 

This suggests the importance of dividing the region R in the F-G plane into 
subregions corresponding to the various cases in order to determine the set of values 
(F, G) for which the system can continue to function with both species co-existing. 
For any given (F, G) ~ R, we may calculate P~(F, G), and then tr A {P~(~, G)}. The 
set of points (F, G) E R for which tr A {P~ (F, G)} = 0 is a curve a in R corresponding 
to the transition between the alternatives a and b (local asymptotic stability and 
instability respectively). There may be another curve h in R describing the set of  
values (F, G ) s  R for which there is a homoclinic type orbit and the system is 
in case 2. While the curve ~r may be drawn approximately by calculation of 
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tr A {Po~(F, G)}, the curve h can be approximated only by computer simulation of 
the orbits of the system (1) and classification of cases [Brauer and Soudack (1979a), 
(1979b)]. 

By examining the prey and predator isoclines it is not difficult to see that the 
qualitative structure for the system (1) with F r 0 is the same as the qualitative 
structure for the system (1) with F = 0, except that there are differences when G = 0 
as shown in [Brauer and Soudack (1979b)-]. By the same methods as those used in 
the case F = 0, we may establish the following results. 

Theorem 1. There is a neighbourhood of the origin in the F-G plane in R for which 
the system (1) is in ease la or in case lb. 

Theorem 2. I f  (F, G) is sufficiently close to the boundary of the region R in the F-G 
plane for which the system (1) has an equilibrium, and if trA{P~(F,G)} ~ O, 
then the system (1) is in case la or in case 3b. 

It follows from Theorem 2 that if the curve h goes to the boundary of R, it must 
intersect the curve a there, since h can meet the boundary of R only in a point where 
tr A{Po~(F, G)} = 0. We have also shown [Brauer and Soudack (1980)] that in the 
third quadrant of the F-G plane, corresponding to stocking of both species, the 
system is in case la or case lb. Thus the curve h cannot enter the third quadrant. 

A final general remark is that as we have shown in [Brauer and Soudack 
(1979b)], if the boundary G = G+(F) of R meets the F-axis at (Fc,0) and the 
boundary G = G-(F) meets the F-axis at (F*,0) (Fig. 1), then the system is in 
case la at (Fc,0), while if G = G+(F) meets the F-axis at (F*,0) and G = G - ( F )  
meets the F-axis at (F~, 0), (Fig. 2), then the system is in ease 3b at (F~, 0). 

In the next section we shall indicate by considering a class of examples how the 
classifications for pure predator harvesting and pure prey harvesting can give 
information about the structure of the region R and the classification for two- 
species harvesting. 

3. A Class of Examples 

In our previous work on harvesting and stocking [Brauer et al. (1976); Brauer and 
Soudack (1979a), (1979b), (1980)], we have used the model 

x + A '  

( X J ) _  s A ( x - J )  
9(x,y) = s x + A J + A (J + A)(x + A) (8) 

[Holling (1965)] as a source of examples. For  this model, K and J are the K and J of 
the general theory in Section 2, while L = rA. As we have shown previously, 

rsA(K - j)2 rJ rK 
Go-  4K(J + A) ' F c= ~ ( K -  J), F* =--.r (9) 

It is easy to calculate that 
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trA(x,y) = r ( 1 - ~ - )  Ay + s A ( x -  J) 
(x + A) 2 (J + A)(x + A)" 

In particular, if F = G = 0, then xoo -- J, y~ = (r/K)(J 4- A)(K - J), and 

tr A [x~ (0, 0), y~ (0, 0)3 - 
rJ 

K(J + A) 
( K -  A - 2J). 

For  F = F~ and G = 0, we have x~o = J, y~ = 0, and 

P 
tr A i x .  (Fc, 0), y .  (f~, 0)] = ~ (K - 2J). 

For F = 0 and G = Gc, we have 

J + K  
X o  o - -  

2 

and 

r ( J + K + 2 A ) ( K - J )  
Yoo ~ K 4 

tr A [x~ (0, Gc), y~ (0, Go)] = 
sAK(K - J) - r(A + j ) z ( j  + K) 

K(J + A)(2A + J + K) 

The stability curve a in the (F, G) plane corresponds to tr A = 0. Thus for a given 
pair (F, G), we calculate P~(F, G), and hence tr A [P~ (F, G)]. By varying (F, G) we 
may plot the curve a. The curve h describing the pairs (F, G) for which there is a 
homoclinic orbit cannot be sketched so easily. For this we need information about 
the dynamics of the system, and must compute orbits. 

As we have observed in the general theory, there are situations in which we may 
have either predator extinction or prey extinction, depending on the initial state. We 
remark that it is easy to separate these two possibilities by computing the orbit from 
the origin in the x-y plane backwards in time. This orbit serves as a separatrix 
between predator extinction and prey extinction. (In practice, the computation may 
be carried out more efficiently if the starting point is taken near the origin rather 
than at the origin. 

We now give several examples using this model to indicate the range of 
possibilities and the procedure for analyzing a model. For a given choice of the 
parameters of the model and a given pair of harvest rates, orbits can be 
approximated by computer simulation just as in our previous work [Brauer et al. 
(1976), Brauer and Soudack (1979a, 1979b, 1980)]. In this paper, we emphasize the 
shape and structure of the region R in the F-G plane for which there is an 
equilibrium in the interior of the first quadrant of the x-y plane, the curve cr in R 
corresponding to the transition between local asymptotic stability and instability of 
this equilibrium, and the curve h in R corresponding to values (F, G) for which there 
is a homoclinic type orbit. Thus we show orbits for only one of the examples, even 
though it is necessary to compute orbits in order to locate the curve h for every 
example. The curve a and the boundary of the region R can be approximated 
numerically by calculation of equilibria and the trace of the matrix A, without 
requiring calculations of orbits. The computations reported below were carried out 
on the University of Wisconsin UNIVAC 1110 and the University of British 
Columbia Amdahl 470. 
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Our general procedure in each example has been to examine the case transitions 
as one of the harvest rates F, G is varied while the other is held at zero. This gives the 
"corners" of the region R. Then the boundary of R can be filled out by varying G 
with Ffixed. To locate the curves a and h, we proceed just as we did in our previous 
work dealing with harvesting and stocking of a single species. For each example we 
make some general observations, not all of  which are shown in the figures 
reproduced here. 

Example 1. r = 1,~ s = 1, A = 10, J = 20, K =  40. For this set of parameters, 
Fc = F* = 10, Gc = 0.83, from (9). The system is in case la  for all (F, G) ~ R (Fig. 3) 
and is strongly stable in the sense that orbits approach the equilibrium P~(F, G) 
rapidly. The orbits are similar to those in the case of pure predator harvesting in 
that the stability region determined by the separatrices at the saddle point becomes 
smaller as G is increased, for each F. Outside the region of asymptotic stability, 
there is a region of prey extinction and a region of predator extinction which may be 
separated numerically by integration of the system backwards in time from 
(~, ~). 

Gc. 
. 8  

.6 

G 

, ~ i , ~ , , , f F t  = F .  

1 2 3 4 5 6 7 8 9 10 
F 

Fig. 3. r =  1, s = 1 , , 4 = 1 0 ,  J = 2 0 ,  K = 4 0  

B c 

8 
" ~ R BOUNDARY 

4 

2 

0 ) ~ "-..--- , , , , , 
0 2 4 6 8 10 12 14 F*  

Fig. 4. r =  1, s = 4 ,  A =  10, J = 2 0 ,  K = 6 0  
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Example  2. r = 1, s = 4, A = 10, J =  20, K =  60. Here,  Gc = 8.88, Fc = 13.33, 
F* = 15, f rom (9). In bo th  F and G separately, the case transi t ions are lb  ~ 2b 

3b (Fig. 4). No te  that  since the equil ibrium is unstable at (Fc, 0) the region R 
extends to (F*, 0) in the first quadrant .  As in Example  1, the region of  asymptot ic  
stability becomes smaller as G increases, and there is a coexistence region only for  a 
small par t  of  R. 

G R BOUNDARY 
. . . . . . .  o- LOCUS 

- - -  h LOCUS 

Fig. 5. r = l ,  s = 7 ,  A = 1 0 ,  J = 2 0 ,  
K = 40 (full F-G plane) 

- 4  - 2  I 4 6 

-4  

-8  

-12 

--16 

-20 

-24 

2 

| 

Fig. 6. r =  1, s = 5 ,  A =  10, J = 2 0 ,  
K = 45 (full F-G plane) 

-4 

- 6  
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.." | 

/ R BOUNDARY 
/ ....... o-/__, 
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Example 3. r = 1, s = 7, A = 10, J =  20, K =  40. Here,  Gc = 5.83, Fc = F* = 10. 
The case t rans i t ion  is l a  --, 2a ~ 3a ~ 3b in G for F = 0, and  the system is in case l a  
for  G = 0, 0 ~< F < F*.  The 3a region is very small,  suggesting tha t  in prac t ica l  
terms the t rans i t ion  is l a  --* 3b. The system is weakly  s table in the sense that  orbi ts  
a p p r o a c h  the equi l ibr ium P~o very slowly. F o r  this example,  we have also indica ted  
the region R in all four  quad ran t s  o f  the F-G plane  (Fig. 5). 

Example 4. r = 1, s = 5, A = 10, J = 20, K =  45. Here,  Gc = 5.787, Fc = l l . l i ,  
F*  = 11.25. The case t rans i t ions  are l a  ~ l b  ~ 2b --* 3b in F a n d  l a  -* l b  ~ l a  in 
G. Fig. 6 indicates  tha t  the curves a and  h meet  on the b o u n d a r y  o f  the region R. 
There  are  two componen t s  o f  the curve a in the first quad ran t ;  in Fig. 6, we see how 
the curve a goes into the second q u a d r a n t  and  then re turns  to the first quadran t ,  so 
tha t  the two componen t s  in the first q u a d r a n t  are not  really separate.  The  reader  
should  note  f rom Fig. 6 tha t  for  fixed F = 1 and  increasing G, the case t rans i t ion  is 
l a  ~ l b  ~ 2b ~ 3b ~ 2b ~ l b  ~ l a ;  this is much  more  compl ica ted  than  for  
F = 0, but  can still be read  f rom the figure. 

Example 5. r = 2, s = 1, A = 10, J = 20, K =  60. Here,  Go--4.47~, Fc = 26.6, 
F*  = 30. The case t rans i t ions  are l b  ~ l a  in G and l b  ~ 2b --+ 3b in F. Again ,  as 
m a y  be seen, several t ransi t ions  are possible  when one o f  F and  G is held fixed and 
the other  is varied,  more  than  in the special cases F = 0 and G = 0. We have 
included some phase  por t ra i t s  for  this example.  We see (Fig. 7) tha t  for F = 3, 
G = 0.5 the system is in case 3b. F o r  F = 3, G = 1 (Fig. 8) the system has jus t  shifted 
to case l b ;  the l imit  cycle is large with a fur ther  increase in G to F = 3, G = 2 (Fig. 9) 
the system is still in case l b  bu t  the l imit  cycle is smaller.  F o r  F = 3, G = 3 (Fig. 10) 

SADDLE ASYMPTOTES 

- - - -EXT INCT ION BOUNDARY 

2O 

S 
0 1 1  , , - : - I ,  = 

0 20 40 60 x 
Fig. 7. r = 2 ,  s =  1, A =  10, J = 2 0 ,  K = 6 0 ,  F = 3 ,  G=0.5 
(Case 3b) 

Y 

40 

20 

SADDLE ASYMPTOTES 

m m  EXTINCTION BOUNDARY 

C--COEXISTENCE REGION 

2'o 4b ~'  60 x 
Fig. 8. r = 2 ,  s = l ,  A = I 0 ,  J = 2 0 ,  K = 6 0 ,  F=3,  G = I  
(Case lb) 
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Fig. 9. r = 2 ,  s =  l, A =  10, J = 2 0 ,  K=60 ,  F = 3 ,  G = 2  
(Case lb) 

Y 
60 

40 

20 

SADDLE ASYMPTOTES 

--- EXTINCTION BOUNDARY 

C -  COEXISTENCE REGION 

"7--4- 
20 40 50 x 

Fig. 10. r=2, s = l ,  A = 1 0 ,  J = 2 0 ,  K=60 ,  F = 3 ,  G = 3  
(Case la) 

Y 
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4(] 

20 

SADDLE ASYMPTOTES 

_ _ _ _  EXTINCTION BOUNDARY 

c-COEXISTENCE REGION 

f A ' ' ~  ~ . . . , .  

I I Poo c 

20 40 60 x 

Fig. l l . r = 2 ,  s = l , A =  IO, J=20, K=60, F= 13, G =  16 
(Case lb) 
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20 
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D EXTINCTION BOUNDARY 

C -  COEXISTENCE REGION 

40 60 x 

Fig. 12. r = 2 ,  s =  1, A = 10, J = 2 0 ,  K=60 ,  F =  13, G = 2  
(Case la) 

20 

0 
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the system is in case la. Note that in Figs. 11, 12, 13, the separatrix between 
predator extinction and prey extinction is roughly the same but the region of 
coexistence shrinks as G increases even though P~ is stabilizing (locally). For larger 
F, F =  13, G = 1.6 (Fig. 11) and F =  13, G = 2 (Fig. 12) we have cases lb and la 
respectively. The predator extinction - prey extinction separatrix is lower, giving a 
larger region of prey extinction and smaller regions of coexistence and predator 
extinction. In Fig. 13, we have shown all four quadrants of the F-G plane, with the 
curves a and h meeting at two points of the boundary of R. The lb region in the 
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Fig.  13.  r = 2, s = 1, A = 10, J = 20,  K = 60  (full  F-G p l a n e )  
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Fig.  14. r = 2,  s = 1, A = 10, J = 20 ,  K = 50 (full  F-G p l a n e )  



Coexistence Properties of Predator-Prey Systems 113 

fourth quadrant is unstable in practical terms because the limit cycles come very 
close to the coordinate axes. There is also a small la region in the fourth quadrant, 
but this also is not practically stable because P~ is very close to the y-axis. 

We have also examined some variations on Example 5, holding r = 2, s = l, 
A = 10, J = 20 and changing K. For example, with K = 50, the curve a passes 
through the origin (an immediate consequence of the fact that K = 2J  + A). 
Qualitatively, the picture (Fig. 14) is much like that for K = 60 (Fig. 13), except that 
the curves o- and h have moved down. Similarly, for K = 70 the picture is similar 
except that the curves a and h move upwards. 

4. Conclusions 

We have extended the study of constant-rate harvesting in predator-prey systems to 
allow simultaneous harvesting of both species. This includes stocking of either or 
both species, viewed as negative harvesting. We have shown how to approximate 
the region of asymptotic stability in biological terms the initial states which lead to 
coexistence of the two species by efficient computer simulations. In situations where 
one of the two species must go to extinction, we have given a computational method 
of separating the initial states which lead to prey extinction from the initial states 
which lead to predator extinction. We have also shown how to identify values of the 
harvest rates for which the region of asymptotic stability disappears corresponding 
to collapse of the biological system for every initial state. 

We illustrate our procedure by applying it to study of a class of examples. The 
results can be described by dividing the F-G plane, where F and G represent the prey 
and predator harvest rates respectively, into a region for which there is no 
equilibrium (extinction of one species), a region for which there is an asymptotically 
stable equilibrium (coexistence of both species in equilibrium), a region for which 
there is an asymptotically stable limit cycle (coexistence of both species in sustained 
oscillations), and a region for which there is an equilibrium but no region of 
asymptotic stability (extinction of one species). For any choice of the harvest rates 
we may use a computer simulation to estimate the region of coexistence if any. 

The class of examples considered exhibits behaviour under harvesting of both 
species which cannot arise when only one species is harvested. A case in point is 
Example 5 for which if there is a positive prey harvest rate, an increase of the 
predator harvest may move the system from predator extinction to coexistence of 
both species. Such apparently paradoxical behaviour, if observable in real life, may 
be an indication of some external biological mechanism unrelated to the predators 
which is controlling the prey population. 

Our primary point is that the results obtained by linearization about equilib- 
rium points are often incorrect and that population systems tend to be much more 
fragile under harvesting than such analyses would suggest. These changes are not 
reduced in the more complex systems in which both systems are harvested. Whether 
still more complex systems with more realistic harvesting strategies continue to 
exhibit this fragility is a question deserving further study. 

The authors wish to thank Mr. AI MacKenzie of the Department of Electrical Engineering, University of 
British Columbia, for preparing the figures in this paper. 
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