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At atmospheric pressure, pure ZrO2 exists as three 
polymorphs. On cooling from the melt, the 
high-temperature form of cubic (c) ZrO2 transforms 
to tetragonal (t) symmetry at -2370 °C and then to 
monoclinic (m) form at -1200 °C. c-ZrO2 has a 
fluorite-type structure, where Zr ions are in 
eightfold coordination with their nearest oxygen 
ions. The tetragonal form represents a slightly 
distorted fluorite structure, where the Zr ion is 
associated with two sets of four oxygen ions at 
distances of 0.2065 (Zr-O) and 0.2455 nm (Zr-O'), 
respectively [1]. It is well known that for ZrO2 to be 
utilized for technical applications c-ZrO2 and t-ZrO2 
should be stabilized at an ambient temperature by 
the formation of solid solutions which prevent 
deleterious tetragonal to monoclinic phase transfor- 
mation. The most widely used alloying oxides for 
this purpose are CaO, MgO, Y203, and CeO2, 
among others. Since the technically important prop- 
erties such as phase stability, fracture toughness, and 
ionic conductivity depend on the content of the 
stabilizing oxides in the high-temperature poly- 
morphs, the solid solubility limits of alloying oxides 
have been one of the prime research interests of c- 
and t-ZrO2. 

Recently Yashima et al. [2] reported the determi- 
nation of the phase boundary between t-ZrO2 + c- 
ZrO2 and c-ZrO2 in the system Y203-ZrO2 by using 
Raman spectroscopy. They decided on the composi- 
tion at which one of six distinctive Raman modes for 
t-ZrO2 became extinct with an increase in Y203 
content as the boundary. Within t-ZrO2 solid solub- 
ility limits, however, such extinction cannot be 
expected since the solid solutions should retain the 
characteristic Raman spectra of t-ZrO2. 

Li et al. [3] suggested that the stabilization of 
t-ZrO2 in the system GeO2-ZrO2 is achieved by 
shortening the cation-O bond length of t-ZrO 2 
while lengthening the cation-O'  bond as a result of 
the substitution of Ge 4+ for Zr 4+. It can then be 
expected that solubility limits of GeO2 in t-ZrO2 
solid solutions will be determined by observing shifts 
of the Raman modes corresponding to the stretching 
of Z r - O  and Z r - O '  bonds with increasing GeO2 
content in t-ZrO2, since Raman spectroscopy is 
sensitive to the changes in the bond lengths and 
angles between cation and anion. In the present 
study, the solid solubility limit of GeO2 in 2 reel % 
Y203-stabilized t-ZrO2 (2Y-TZP) was estimated by 
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using Raman spectroscopy and the result was com- 
pared with the limit determined by X-ray powder 
diffraction. 

Specimens were prepared by adding 99.99% pure 
GeO2 into 2Y-TZP powder (Tosoh Inc., Tokyo, 
Japan). The mixing was performed by ball milling 
for 24 h. After drying, the mixed powders were 
calcined for 5 h at 1000 °C, followed by attrition 
milling for 1 h. Zirconia balls were used in both the 
milling processes. Pellets of each composition for 
Raman spectroscopy were isostatically pressed at 
350MPa and then sintered for 3h  at 1350°C. 
Specimens for X-ray diffraction (XRD) were ob- 
tained by heating the attrited powders for 3 h at 
1350 °C. 

Raman spectra were obtained by a double mono- 
chromator (Jobin Yvon U1000, Longjumeau, 
France) in a back-scattering geometry. The spectra 
were excited with an Ar-ion laser operating at 
514.5 nm wavelength. The spectra of each specimen 
were taken three times over the range 
100-900 cm -1, scanning at 1.0 cm -1 step-size with 
an integration time constant of 1 s. XRD data were 
obtained from the powder specimens, mixed care- 
fully with Si internal standard (SRM 640b), using an 
automated X-ray diffractometer (Philips, EA A1- 
melo, Netherlands) with CuK~ radiation, ,~ 
(CuK~i)=0.154060nm. A scan speed of 0.5 ° 
20/rain was employed in the 65 ° to 120 ° 20 range. 
After K~2 peak stripping, the peak positions were 
determined by profile refinement using the built-in 
PC-APD program. Details of the lattice parameter 
refinement procedure have been described else- 
where [4]. 

Fig. 1 shows the Raman spectra of 2Y-TZP as a 
function of the GeO 2 content. The Raman data 
exhibits six distinct peaks of t-ZrO2 [5]. Among 
these peaks, only the 261 cm -1 mode continuously 
shifts to a higher wave number as the GeO2 content 
increases. This peak corresponds to the Z r - O '  
stretching mode [6]. Accordingly, the cation-O' 
bond length in t-ZrO2 decreases with GeO2 alloying. 
This contradicts the rationalization of the GeO2 
alloying effect on the stabilization of t-ZrO2 [3], 
implying that changes in the cation-oxygen bond 
lengths are not a measure of the phase stability of 
t-ZrO2. 

The symmetry environment of cations in a schee- 
lite-type ZrGeO4 is exactly the same as that in a 
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Figure I Raman spectra of 2 mol % Y203-stabilized t-ZrO2 con- 
taining (a) 0, (b) 1, (c) 2, (d) 3, (e) 4, (f) 5 and (g) 6 mol % of 
Oe02. 

distorted fluorite-type t-ZrO2 and the germanium 
ions, whose ionic size is smaller than that of the 
zirconium ion, are considered as only tetrahedrally 
coordinated to form isolated GeO4 groups in 
ZrGeO4 [7]. This might also be true for Ge 4+ in 
2Y-TZP so that the shift of 261 cm -~ mode towards 
higher frequencies in Fig. 1 is related to the tet- 
rahedral coordination of Ge 4+ to oxygen ions. It has 
been reported that the substitution of Nb 5+ and Ta s+ 
for Zr  4+ in 3Y-TZP also results in the four-fold 
coordination of the pentavalent ions since the ionic 
sizes of Nb 5+ and Ta 5+ are smaller than that of Zr  4+ 
[8]. However ,  the pentavalent ion doping causes the 
shifts of 261, 609, and 642 cm -1 modes towards 
higher frequencies. The 642 cm -1 and the additional 
609 cm -~ modes correspond to the stretching of the 
Z r - O  bond [6]. The decrease in Z r - O  bond length 
with increasing Nb 5+ and Ta 5+ content was at- 
tributed to a change in local bond structure due to 
annihilation of oxygen vacancies created by the y3+ 
doping in t-ZrO2 [8]. In Fig. 1 it is noteworthy that 
the intensity of the 609 cm -~ band diminishes as the 
GeO2 content increases. The same trend was ob- 
served with Nb205 alloying [8]. On the other hand, 
no such decrease in intensity was detected as the 
contents of cations such as y3+ and Ce 4+ [8, 9] 
increased, which form an eight-fold coordination in 
t-ZrO2. This suggests that the decrease in the 
609 cm -1 line intensity in addition to the shift of 
261 cm -1 mode towards higher wave numbers might 
be characteristic of t-ZrO2 solid solutions containing 
tetrahedrally coordinated cations. 
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The change in frequency of the 261 cm -1 Raman 
mode in Fig. 1 is plotted as a function of tool % 
GeO2 in Fig. 2. As shown, the increase in the 
frequency of 261 cm -~ mode terminates at about 
3.5 mol %,  and there is no shift with further increase 
in the amount  of GeO2. At  this composition the 
cations become ordered,  probably to form Zr3GeO8 
[6, 7], so that 3.5 mol % GeO2 can be considered the 
solid solubility limit of GeO2 in 2Y-TZP at 1350 °C. 
The plot of the full-width-half-maximum (FWHM) 
of the 261 cm -~ line as a function of GeO2 content in 
Fig. 3 conforms to the result in Fig. 2. The Raman 
line continuously broadens with increasing GeO2 
content and no further broadening occurs above 
3.5 mol% GeO2. The broadening of the Raman 
band occurs when disorder is introduced into the 
crystal structure [10]. Therefore,  it is likely that an 
ordering of cations occurs at 3.5 mol % GeO2. The 
measurements of a and c lattice parameters further 
support the determination of the solubility limit of 
GeO2 in 2Y-TZP by Raman spectroscopy. In Figs 4 
and 5 the a and c lattice constants of 2Y-TZP 
linearly decrease and increase, respectively, as the 
GeO2 content increases up to 3.5 t oo l%,  and the 
constants do not vary with additional increase in the 
content. The linearity, which corresponds to 
Vegard's law, shows that the solid solubility limit of 
GeO2 in 2Y-TZP is about 3.5 tool %. The identical 
results demonstrate that the Raman spectroscopy is 
a practical tool to determine the solubility limit 
because of its relatively simple procedures for 
specimen preparation and data analysis. 
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Figure 2 Shift of the 261 cm-: mode of t-ZrO2 Raman spectra as a 
function of GeO2 content. 
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Figure3 Full-width at the half-maximum of the 261 cm -t Raman 
line as a function of GeO2 content. 
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Figure 4 a lattice parameter  of 2 tool % Y203-stabilized t-ZrO2 as 
a function of GeO2 content.  
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Figure 5 c lattice parameter  of  2 mol % Y203-stabilized t -ZrO 2 as 
a function of GeO2 content.  
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