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threshold 6; the impulse resets the integral to zero,
and so on. In this interpretation, the threshold is a
random function; I’ represents, up to a proportion-
ality factor, the distribution of the amplitude of the
threshold sampled at the time of firing. The in-
variance of I’ shows that this distribution is in-
dependent of the stimulus acting on the cell.
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Summary 1t is argued that the usual method of charac-
terizing dendritic fields of nerve cells by enumerating the
number of bifurcations and end points at various distances
from the perikaryon, and the number of intersections of den-
drites by virtual spheres around the centre is of limited value
for an adequate description. Although these parameters give
a reliable indication as to the spatial density of the dendritic
material, one shortcoming is that the structural content of the
plexus remains rather obscure because the topological and
metrical aspects are represented in an intermingled way. A
statistical theory is put forward that separates the two factors.
As to the first factor, many experimental data can be described
by assuming that the probability of bifurcation of a segment
decreases geometrically with the order of that segment. As
to the second factor, it is deduced that in most instances the
terminal segments are, on the average, several times longer
than the intermediary situated segments.

Upon elaboration of the theory, in comparison with experi-
mental findings reported in the literature, it seems profitable
to evaluate these factors separately by measuring the distribu-
tion of the number of segments per order or generation, and
the distribution of the lengths of the segments for each order.
Emphasis is laid on the dynamic aspects of dendritic growth
by analyzing data on changes in dendritic ramification patterns
of cells in brains of animals of various ages, and reared under
either normal or experimental conditions.

Introduction

Treatment of the mode of functioning of the central
nervous system lays emphasis on the pattern of con-
nectivity between axons, perikarya and dendrites of
nerve cells. Xspecially the latter category of processes
has received rather intensive attention from neuro-
histologists in the last fifteen years, and a considerable
amount of quantitated information has become avail-
able on the mode of branching of dendrites.

In some detail, Bok (1936) has described the den-
dritic ramification for eight cells in the outer layer of
an unspecified part of the ecat’s brain. Common features
in the branching pattern of the neurons, as well as
certain differences, were noticed. It was tentatively
concluded that dendrites of a neuron first bifurcate
at an equal distance from the cell body, while their
branches tend to bifurcate or end at points that are
twice this distance farther from the cell. The said

author admitted that not all cells measured showed
the relation quite as clearly; in the largest neurons it
was even impossible to distinguish groups of related
distances.

Sholl (1953) has studied extensively the size and
arrangement of the dendrites of 30 neurons in the
visual and motor areas of the cerebral cortex of the
adult cat, and doubted of a deterministicall mode of
branching with preferred sites of bifurcation or ending.
He found it impossible to establish a simple rule, for
instance for the length of branches. In addition, the
use of statistical measures was stressed to exclude ir-
relevant information and allow pertinent features to
be expressed concisely.

Several studies have since been published which
were concerned not solely with brains of normal and
adult animals, but also with brains of young animals,
and animals grown up under abnormal experimental
conditions. To our knowledge, no attempt has yet been
undertaken to unify in analytic terms the diversity
of published material on dendritic arborizations, which
is widely diffused through the literature. It is the aim
of the present communication to do so by means of
a relatively simple theoretical framework; it allows
generalizations and suggests improvements with regard
to future procedures for data collection. Such an under-
taking would seem opportune in the light of the search
for the interrelationship between electrical activity
recorded by micro-electrodes and gross electrodes,
which requires knowledge about the geometry of the
“cell territory’’ of individual neurons expressed in
terms of packing density of the perikarya and the
extent of their associated dendritic field.

Furthermore, in view of the current interest (cf.
Scherrer, 1967) in connections between the onset of
electrical functioning of the nerve centres on the one
hand, and the anatomical maturation of the brain or
the behaviour of the animal during postnatal life on
the other, we thought it opportune to focus attention
primarily on the dynamic aspects of growth as dis-
closed in the course of ontogenetic development. We
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are prompted through good reports on this matter
from Peters and Bademan (1963), Eayrs and Goodhead
(1959), and Schadé and Van Groeningen (1961); these
we shall (re)analyse in some detail and they are, in
fact, the main constituent of the present communica-
tion. In addition we shall discuss, against the back-
ground of theoretical deductions, the outcome of in-
vestigations on distortion or retardation of growth of
dendritic organization of neocortical neurons, following
X-irradiation during foetal life of rats (Berry and
Eayrs, 1966), or during early life of monkeys (Caveness
etal.,1965), after experimental cretinism in rats (Eayrs,
1955), after sensory deprivation in rats (Holloway,
1966) and cats (Coleman and Riesen, 1968) and surgical
deafferentation in the cat (Jones and Thomas, 1962).

Ezxperimental Methods

It was noticed by Sholl (1953) that the dendritic
branches of stellate cells and the basal dendrites of
pyramids form a reasonably symmetrical field around
the perikaryon. This permits a convenient character-
ization of each dendritic tree by imagining that the
perikaryon is surrounded by a set of concentric spheres.
Their radii increase with a constant amount, i.c. 20 p,
denoted by Ar hereafter. After supposition of spherical
symmetry, the 3-dimensional picture can be condensed
to a function of one variable, viz. the distance r to
the perikaryon. The number of dendrites intersecting
the hypothetical spheres with radius » has been counted
and will subsequently be called ¢(r). By analogy, the
number of dendritic segments attached to the cell
body, primary or basilar dendrites, is denoted by ¢(0).
If Ar is not too large, the set of numbers ¢(0), ¢(4 ),
c(247), ete. gives a good description of the density
of dendrites around the centre of the cell body.

One should realize, however, that the character-
ization of a tree by c¢(r) is by no means unique. It
follows from the definition that ¢(r) can be found also
by counting the number of bifurcations within a sphere
of radius r, P(r), adding the number of primary
dendrites, ¢(0), and subtracting the number of endings
within that sphere, @(r), or in symbols ¢(r)=
¢(0)+ P(r) —@Q(r). The method has been utilized by
Van der Loos (1959). For large r, larger than the
maximum extent of the tree, quantities P(r) and @(r)
converge to the total number of bifurcations and end-
ings per cell, respectively denoted by P and . Because
¢(r) equals zero for large r, it follows ¢(0) =@ — P.

It is easily checked that various combinations of
P(r) and Q(r) exist which have the same difference for
any particular r, and which, consequently, amount to
one and the same ¢(r). The point is illustrated in the
first figure. Fig. 1a gives ¢(r) with Ar =18 u, redrawn
from Fig. 7C of Eayrs and Goodhead (1959). Fig. 1b
shows the corresponding functions ¢(0)+ P(r) and
Q (), reconstructed from Figs. 7A and B of the said
paper. The algebraic difference between the two sets
of points for each r is identical to ¢(r). To these data
we shall return in Fig. 4. At the moment it suffices
to add that these are averages of counts on 10 cells.
The number of primary dendrites is estimated as
¢(0)=25.2 while the number of bifurcations P equals
23.1. Therefore, in Fig. 1b the circles start at 5.2 and
zero respectively, and will both ultimately converge to
the value 5.2+ 23.1=28.3. The course is known up
to r=180 p. In Fig. 1¢ a hypothetical case is sketched
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Fig. 1. (a) Mean number of dendrites per cell, ¢(r), present at
a distance r from perkaryon. (b) Mean number of bifurcations
added to the number of primary dendrites, P(r)+ ¢(0), and
mean number of endings, @ (r), within a distance r from peri-
karyon. Data reconstructed from Eayrs and Goodhead (1959)
for pyramidal cells in adult rat sensori-motor cortex. (c) and
(d) As (b) for a hypothetical distribution of bifurcations and
endings such that in both cases ¢(r) as in (a) results. In this
and subsequent figures the abscissa is given in

such that ¢(7) is exactly equal to that in Fig. 1a. This
example has as a peculiarity in that all bifurcations
have occurred before any ending has been present.
Again ¢(0)=5.2, but P=12.1, so that the maximum
value equals 17.3. Even if the number of bifurcations
is equal to P=23.1, shapes of P(r) and @(r) are
imaginable, cf. Fig.1d, such that the difference
equals ¢(r) of Fig. la.

It follows that the statistical properties of a den-
dritic tree are covered largely when giving, in addition
to ¢(r), also P(r) or Q(r) as did Schadé and Van Groe-
ningen (1961), and Coleman and Riesen (1968). Proper-
ly speaking, Eayrs and Goodhead (1959) report re-
dundant information when listing all three functions.
Actually, the trouble arises from two facts: c(r) is
mostly measured with too large a value of Ar, and
the data are averaged over several cells. If Ar is small
enough then the shape of ¢(r) reveals accurately at
what distances a bifurcation or ending has occurred
in the form of unit increments or decrements. How-
ever, demanding small values of Ar, makes the com-
piling work still more painstaking than it is already.
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Perhaps changing over from the classical morpho-
logist’s instrumentation to modern scanning and pat-
tern recognition systems (Glaser and Van der Loos,
1965; Ledley et al., 1966), in combination with stereo-
photograms (Mannen, 1965), opens new perspectives
towards rapid acquisition of sizable amounts of
numerical information on stereometric properties of
dendritic arborizations.

The quantifications enumerated so far give an idea
about the spatial extent of a dendritic plexus, but the
structural constitution remains obscure. That aspect
has been introduced by Jones and Thomas (1962);
they pay attention to the number of generations that
sprout from one primary dendrite, and they count the
number of segments that belong to each generation.
Unfortunately, these authors do not list the metrical
data. As far as we have been able to trace, only Peters
and Bademan (1963) have touched upon both the
topological as well as upon the metrical properties,
when they tabulate the number of segments per order
or generation and the mean lengths of the segments
of each order. Both types of information are pertinent
to a probabilistic description of arborization of nervous
processes. We intend to use these, in the next Section,
as a basis for an attempt to generalize dendritic
branching patterns.

Theoretical Methods

In order to introduce the ingredients for a theoreti-
cal concept, we have used a clear-cut example of Sholl
(1953). His material is otherwise not considered, main-
ly because, as amply explained, the condensation of
the data is not so complete as it might have been.

Fig. 2a is redrawn from Fig. 1 of Sholl (1953). In
diagrams of this kind the directions of the branches
are ignored but the lengths are plotted to scale, after
being corrected, in case of dendrites which do not run
parallel to the plane of section, for an error due to the
fact that the observed lengths are projections of the
true lengths and due to the refractory index of the
mountant. The lengths of the short vertical lines have
no meaning: these merely indicate positions of bi-
furcations. Counting the number of intersections at
distances of Ar= 20 p furnishes ¢(r), drawn in Fig. 2b
as circles and starting with ¢(0) = 6. The total number
of bifurcations up to r, P(r), added to ¢(0), and the
total number of endings up to r, Q(r), are given as
circles in Fig. 2¢. With regard to the total length of
the tree (amounting to 1,650 u) and the total number
of bifurcations (12) this specimen is allotted to the
category of the smaller cells among the thirty in-
vestigated by Sholl (1953). The cell has a simple
branching rule and forms, for this reason, a convenient
starting point to explain the model. Six primary or
first order segments all bifurcate and make up twelve
secondary segments. Half of these are terminal seg-
ments, the others branch once again, so that the total
number of terminal segments amounts to 18, and the
total number of segments to 30. Knowing the pattern
of branching and the total length of the tree, obtained
by adding the lengths of all segments, one may ask
what distribution of segment lengths will account for
the found c(r), P(r) and @(r).

The simplest assumption, along the lines of reason-
ing of Bok (1936), is that all segments are of equal
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Fig. 2. (a) Schematic representation of mode of dendritic
branching ; redrawn from Sholl (1953). (b) Number of dendrites
per cell, ¢(r), present at a distance r from the perikaryon.
(¢) Number of bifurcations added to the number of primary
dendrites, P(r)+c¢(0), and endings, @ (r), within a distance r
from perikaryon. Circles reconstructed from (a). In this and
subsequent figures curves are from theory

length, viz. equal to 1,650 (/30 =055 . Then, c(r)
would be equal to 6 from 0—55 p, abruptly changing
to the value 12 from 55—110 ., and also from 110 to
165 .. From 165 p. on ¢(r) would remain equal to zero.
Obviously this is not so, ¢(r) being more smoothly
and having a more pronounced peak value for r =40 .
Indeed, inspection of Fig. 2a shows a great variety in
segment lengths, ranging from 5—226 p. In view of
this, the next simplest assumption would be that the
segment lengths are exponentially distributed with a
mean of 55 p. Computation learns that the variation
of this distribution is too large, ¢(r) being too flat of
shape, flatter than for instance the dotted curve in
Fig. 2b. In accordance with the actually found dis-
tribution of lengths, we have next assumed a gamma,
distribution of the segment lengths, which is inter-
mediary to the two functions just tried and which,
analytically, is fairly well treatable. Even then the fit
is far from ideal (dotted curve in Fig. 2b).

The clue seems to be that the distribution of inter-
mediary segment lengths differs from that of the
terminal segments, the latter being more variable in
length and possessing an additional length. Let ¢ (x)
denote the probability distribution of the intermediary
segment lengths with mean m, and standard deviation
045 let p(y) denote the probability density function of
the additional length y of the terminal segments with
mean m,, and standard deviation ¢,. The mean of the
terminal segments is thus equal to m,+-m, and the
standard deviation to the square root of (¢%-o%). If
it is assumed that all intermediary segment lengths
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are distributed according to a gamma distribution,
and the terminal segments have an extra length that
is exponential distributed, a good agreement between
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Table 1. Distribution of mean number of segments per primary
dendrite by order

experimental data and theory is found, c¢f curves in Order 1 Order2  Order3, ete. ~Sum
Figs. 2b and ¢. The way these have been computed is . _
disgcussed in the Appengix. Interm‘:gmry P 2p,p, 2P1PaPs P
. . men
We wish to state that the assumption of the inter- Seg . o ] -
mediary segments having another mean length than ;[f"erm;:; Lp,  2py(l-po) Ppo(lps) @
the terminal segments is not a mere artifice. It has e 9 PLD
been assessed accurately by Peters and Bademan Lotel ! 2P PiPy +@
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Fig. 3. Number of dendrites per partial tree, ¢(r)/c(0)=C(r),

present at a distance r from perikaryon. Circles in (b) and (d)

after data from Peters and Bademan (1963) for stellate cells in cortex of adult and newborn guinea pigs respectively. Curves
for different distributions of segment lengths

(1963), and by Mungai (1967). However this may be,
we have been led to use that item throughout this
paper.

Elaboration of these outlines for trees with higher
order segments, and when the occurrence of bifurca-
tions is of a probabilistic nature, leads to formulae
for c(r), P(r) and @ (r) which are listed in the Appendix,
and which then refer to average values. It is sometimes
opportune to express the said functions per primary
dendrite, and not per cell; a dash is then added, viz.
¢(r), P(r) and Q(r). Because ¢c(0)+ P=@, it holds
that 1+ P=0@.

Expressions for frequently used additional measures
are listed below. The probability that a primary or
first order dendrite bifurcates is called p,, that it does
not bifurcate 1 — p,. For segments of order n, one has
the probabilities p, and 1— p,. The mean number of
intermediary segments per order per primary dendrite
and their sum P, and the mean number of terminal
segments and their sum @, stated in terms of p,, p,,
etc. are given in Table 1. Reversely, given the number
of segments per order and per primary dendrite, one
can estimate the bifurcation probabilities p,.

If the intermediary segments have a mean length
of m, and the terminal segments mgy-+m, the
mean length per primary segment is given by L=

x>

Pmy+@Q(my+m,) which is also equal toof ¢(r)dr.

14 Kybernetik, Bd. 6

The average length of a segment is obtained by divid-
ing L by the mean number of segments, P+ Q.
The mean length of segments of order = equals:

Pumg+ (1L —py) (my + m,).

The mean distance of an ending relative to the centre
of the cell, a measure used by Eayrs (1955) and referred
to in our Table 3, can be shown to be:

(L+ My, - 9)/@

where
=P+ 2X2p, P+ 3X22P; Papy+ -+

Results

Peters and Bademan (1963), investigating form and
growth of stellate cells in the prepiriform cortex of
newborn and adult (6 month) guinea-pig, have re-
ported very useful data on the mean of 36 cells for
each age. The mean number of primary dendrites per
cell were calculated and found to be closely similar
(6.62 and 6.94), as were the number of segments per
cell (33.80) and 35.68). Also the mean lengths of inter-
mediary segments were about the same (22 1) for both
ages and irrespective of the order of the segments. In
addition, the probability of bifurcation of a segment
decreased roughly geometrically with the order of the
segment (as far as enumerated); thus p,=p} for » up
to four, higher order segments being small in number.
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For both sets of measurements p, was about 0.7; it
means that primary segments bifurcated with a prob-
ability of 70%, secundary segments with 0.72=49%,
ete.

The essential difference between newborn and adult
resided in the mean length of the terminal segments.
Those of the newborn were roughly two times, those
of the adult were three times larger than the inter-
mediary segments. Trying to reconstruct c¢(r) with the
help of these facts, one is faced with the difficulty of
being ignorant about the variability in length of the
segments.
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tribution of segment lengths and the bifurcation prob-
abilities p,, we cannot reconstruct c(r), P(r) and @(r)
directly. From observation of dendritic trees, as seen
in Fig. 2 of Eayrs and Goodhead (1959) which are
redrawings of magnified pictures, it would seem that
the bifurcation probabilities p, decrease with . In
analogy with the findings of Peters and Bademan
(1963), we start from the assumption that p, decreases
geometrically with order n, which proves to fulfil the
purpose for a good deal. From their Table 1 it can be
deduced that P=4.5 so that, with p,=p?, it follows
that p, = 0.797. One gains further the impression that

Table 2. Daia relating to Fig. 5 and 6

Age Adult 30 days 24 days 18 days 12 days
¢(0) = mean number of primary dendrites 5.2 5.3 5.3 5.2 5.4
P = mean number of bifurcations 23.1 194 18.0 8.3 4.7
Mean number of segments 51.4 44.1 41.3 21.8 14.8

L —mean length of dendritic tree (u) 1,880 1,560 1,113 511 224
Mean segment length (1) (experimental) 36.6 35.4 27.0 23.6 15.1
P = mean number of bifurcations per primary 4.5 3.7 34 1.6 0.9
dendrite

p, = bifurcation probability 0.797 0.772 0.763 0.646 0.514
mg(p); opimy=10.6 12.5 same same same same
(L) 5 Oopfryy = 1.0 42.8 40.6 29.0 22.1 7.9
Mean segment length (i) (theoretical) 36.0 35.2 28.9 26.2 17.9

If there exists no variation and all segments are
exactly equal to the mean, one finds for the adult
case, by using the data of Table 2 of the cited publica-
tion, a discontinuous ¢(r) as drawn in Fig. 3a. The
last part is dotted because no data are available for
segments of order five or higher. For moderate values
of variation in the mean length, one may try a normal-
ly distributed ¢ (z) and y(y). For my =20y,

oglmy=4/20,

one has the smooth curve in Fig. 3a. In Fig. 3b, ex-
perimentally found values are given as circles, redrawn
from Fig. 2 of Peters and Bademan (1963). The maxi-
mum is lower and the points extend over a greater
distance. However, if the lengths of intermediary and
terminal segments are assumed to possess both a con-
siderably larger spread in length, a good fit is obtained.
The proof is given by the curve in Fig. 3b, where ¢ ()
and v (y) are taken exponential, and m, =20 and
m, =42 u. For the newborn animal similar considera-
tions hold (cf. Fig. 3¢ and d). The curves are computed
for the same parameter values with the exception that
m, =25 u. Again, a reasonable fit is found if the dis-
tributions ¢ (x) and g (y) are exponential.

In a study on the development of the cerebral
cortex in the rat, Eayrs and Goodhead (1959) have
supplied a thoroughly documented and extensive
amount of quantitative information, which besides
to the axon network and the cell/gray coefficient,
related to the basal dendritic field of pyramidal cells
in the sensory motor cortex. The dendrites were
measured on coronal sections and in sections cut tan-
gentially to the cortical surface for newborns and
adults as well as for animals of 6, 12, 18, 24 and 30 days
of age.

We shall first compare the theory and experimental
data for the adult rats. Being ignorant of the dis-

m,=42yu and o,/m,=8/42

the terminal segments are longer than the intermediary
ones, but in terms of the model my and m, are not
known. Only the mean length of the total tree per
cell can be approximately computed from c¢(r), and
is estimated as L=1,880u. We have tried several
ratios of m, and m, such that Pm,+ @ (my+m,)=
1,880 u. The full drawn curve in Fig. 4, giving ¢(r),
and the curves in Tig. 6a representing 1-- P(r)
and Q(r), are computed with ¢ () and y(y) Gaussian,
my=12.5 u and m,=42.8 while g,/m, and ¢,/m,, are
rather arbitrarily set equal to respectively 7.5/12.5
and 1. These values imply that the terminal segments
are about five times as long as the intermediary seg-
ments, on the average. For comparison two other com-
binations are drawn in Fig. 4, namely m,=20.0 . and
m,=29.1y (curve b), and m,=36yu and m,=0
(curve c), thus all segments having the same mean
length; o4/my and a,/m, are kept as before.

Tt is tempting to ask ourselves how the configura-
tion of the dendritic plexus in the adult cortex might
have developed during the various stages of matura-
tion. In doing so, we start from the parameters known
for the adult cells and try to modify their values as
minimally as possible. With regard to the structural
aspects we are tied, without comment, to the total
number of bifurcations which are the smaller the
younger is the animal. In contrast, the number of
primary dendrites remains nearly unchanged from
12 days old animals onwards. There is no indication
that the law of geometrically decreasing p, is not
obeyed, and we have assumed this to be so. For
animals at birth and 6 days old no useful quantitative
data are available as neurons were not impregnated
or because the dendrites extended but a negligible
distance from the perikaryon.

For animals of other ages the values of P and p,
are tabulated in Table 2. As to the spatial factor, an
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Fig. 4. Number of dendrites per tree, ¢ (r), present at a distance »
from perikaryon. Circles reconstructed from Eayrs and Good-
head (1959) for pyramidal cells in adult rat sensori-motor
cortex. Curves for different distributions of segment lengths

important starting-point is formed by the total length
of a tree L, which may be calculated from the graph
of c¢(r) or by a method indicated in the discussion, or
by the mean segment length which is equal to L divided
by the number of segments. One finds a considerable
decrease in mean segment length in comparison with
the adult, cf. Table 2. It is possible that a change in
the mean segment length is due to a change in length
of both intermediary and terminal segments, possibly
in different ratios, or, in our nomenclature, to a change
in m, as well as to one in m,. A change in the length
of the intermediary segments is not a very plausible
assumption to make, as it implies that the sites of
bifurcation would have migrated relative to the peri-
karyon during the maturation process. Moreover, if a
change in m, is allowed within the scope of a pre-
scribed mean segment length, a quantitative agreement
between theory and experiment with regard to funec-
tions in Fig. 4 is difficult to achieve, as computation
has shown us. More probably and in accordance with
the findings of Peters and Bademan (1963), the inter-
mediary segments remain constant in length during
development, once these have been established as
intermediary through the appearance of a bifurcation.

We have investigated this possibility further by
changing, besides p;, only m,. The result for ¢(r) is
shown in Fig.5 and that for 14 P(r) and Q(r) in
Fig. 6, where m,, has diminished as given in Table 3
and such that the mean segment length equals the
estimated values; g,/m, and o,/m, are kept as before.
In its overall appearance the fit in F1gs 5 and 6 would
seem acceptable. Undoubtedly a better agreement be-
tween theory and experiment is obtainable by allowing
small deviations from the law p, = 7.

Analogous data are available from Schadé and
Van Groeningen (1961) for histological parameters in
the middle frontal gyrus of human cerebral cortices
of newborns, infants of 3, 6, 15 and 24 months and
adults. We restrict ourselves to the basal dendrites
of pyramidal cells in layer II1. Pyramidal cells in other
layers (IV and V) and stellate cells were reported to
exhibit similar changes in regard to development. It
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Table 3. Data relating to Fig. 8

Layer Vb Layer I1lc
normal abnormal normal abnormal
@=1+P= 2.47 1.79 1.95 1.55
branching index
Mean exten- 82.6 61.0 63.5 46.6
sion ()
(experimental)
p, = bifurcation 0.629 0.490 0.535 0.400
probability
mg(u); 17.5 same 22.5 same
0p/mgy — 0.6
my(u); 34.8 21.8 11.8 7.5
Op/my =1.0
Mean exten- 82.3 58.3 63.1 48.2
sion ()
(theoretical)
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Fig. 5. Number of dendrites per tree, €(r), present at a distance r

from perikaryon. Data reconstructed from Eayrs and Good-

head (1959) for pyramidal cells in sensori-motor cortex of

adult rats (A), rats of 30 days (0), of 24 days (X ), of 18 days(+)
and of 12 days (@)

can be taken from their Table 2 that the mean segment
length increases from 16 p. for newborns to 63 . for
6 months, thereafter not much changing, namely from
79 p for 24 months to 77 u for adults. For 3 and
15 months no data were given. The number of bifurca-
tions per primary dendrite increases over a larger life-
span: P equals 0.46 for newborns, 2.44 for 6 months,
2.11 for 24 months and 5.37 for adults.

As before we have assumed ¢ () and y (y) Gaussian,
and p,=p} so that for the adult case p,=0.812.
Changing the ratio of m, and m, by trial and error
a fairly good fit is obtained with M= 25 u, o4/my=
8/25, m,="55.2 and o,/m,=1 as seen in Fig. Ta, c(r)
and in Flg 7b, 1+ P(r) and Q(r). The circles are re-
constructed from Figs. 8 and 9 of Schadé and Van Groe-
ningen (1961) and refer to the corrected data of 12 cells
for each age. The correction relates to the fact that
in 75 p. sections only a part of the neuron is preserved,
because dendrites of an adult pyramidal cell extend
in all directions as far as 400 —500 . from the peri-
karyon. The experimental c(r) seems to possess a
second maximum for r=200, an item that is not
incorporated in the model at least as long as we stick
to a geometrically decreasing probability of bifurcation.
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Adjustment of parameter values to the 24 month
experimental data is effected as previously, by letting
m, decrease to 52.6 1 and p; to 0.695 in accordance
with P=2.11: curves belonging to (@) in Fig.7.
When passing on to the newborn case, by further
decreasing p, to 0.360 corresponding to P=0.46 and
letting m,, approach to zero, one has the dashed curve
in Fig. 7a. Obviously m,, = 0 is not sufficient and also
m,, diminishes. Shortening m, from 25y to 16w and

55— ————~ -
[« s ° 5 ©
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Fig. 6a—e. Numbers of bifurcations added to the numbers of

primary dendrites per partial tree, [c(0) 4 P{r))fe(0)=1+ P(r),

and endings, Q(r)/c(0) =@ (r), within a distance r from peri-

karyon. Circles reconstructed from Eayrs and Goodhead (1959)

for pyramidal cells in sensori-motor cortex of adult rats (a),

rats of 30days (b), of 24 days (c), of 18 days (d) and of
12 days (e)

m, =0 gives a good fit, cf. curves belonging to the
points (e). The mean segment length amounts to
(0.46 x 16 4+ 1.46 x 16)/1.92 which is very close to the
experimentally found value of 16 . Unfortunately,
only two points per curve are known due to the fact
that Ar =25 is large relative to the short extension
of these trees.

Alternatively, one may suggest that the inter-
nediary segments remain equal to m, =25 u, but that
the terminal segments are shorter than these, or m,
negative. Inserting m,= —11.8 y, again corresponding
to a mean segment length of 16 u, can be shown to
give a bad fit.

In studies designed to correlate the histological ab-
normalities arising as a result of experimental cretinism
with changes in adaptive behaviour, Eayrs (1955) has
determined, among other things, the properties of the
dendritic plexus of pyramidal cells in different parts
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of the cortex. In comparison with normal rats of the
same age, it was found that, after daily treatment
from the day of birth on during a period of 24 days,
the number of primary dendrites does not change
significantly, but that the dendrites extend over a
shorter distance and bifurcate less.

In Fig. 8, ¢(r), 1+ P(r) and Q(r) are drawn, valid
for the mean of 10 cells in layers Vb and IIIc (re-
constructed from Fig. 8 of Eayrs, 1955) for normal (0)

1+P(r) and Qir)

| | ]
200 400

[ —

Fig. 7. (a) Number of dendrites per tree, ¢(r), present at a

distance r from the perikaryon. (b) Number of bifurcations

added to the number of primary dendrites, 1+ P(r), and

endings, Q(r), within a distance r from perikaryon. Data re-

constructed from Schadé and Van Groeningen (1961) for py-

ramidal cells in cerebral cortex of adults (0), infants of
24 months (¢) and newborns (@)

and abnormal (e) cells. As the normal case refers to
the same sort of cells in the same cortical area as those
treated in our Fig. 4, the data should be describable
by assuming the segment lengths to be Gaussian dis-
tributed and p, = p?. From the parameter values listed
in Table 3, result the curves corresponding to (0) in
Fig. 8.

If the hypothyroid condition may be interpreted as
a form of retarted growth, it should be possible to
relate the data for the normal and abnormal animals,
besides by an appropriate change in p, (due to another
value for P), by taking my the same while m, has a
smaller value. For the parameter values of Table 3
one finds the other set of curves in Fig. 8, belonging
to (e). Especially the tail of the curve for ¢(r) does
not cover very well the experimental findings. If p,
is taken slightly differing from a geometric law a better
fit can be obtained. The mean distance over which the
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Fig. 8. (a) Number of dendrites per tree, €(r), at a distance » from perikaryon. (b) and (¢) Number of bifurcations added to

the number of primary dendrites, 1-+ P(r), and endings, Q{r), within a distance » from the perikaryon. Data reconstructed

from Eayrs (1955) for pyramidal cells in layer Vb of sensorimotor cortex of normal rats (0) and for hypothyroid ani-
mals(®). (d), (e) and (f) As (a), (b) and (¢) for cells in layer IIT ¢

dendrites extend, or the mean distance of the endings
relative to the perikaryon, are, as the table reveals,
well in accordance with each other.

It is generally accepted that components of an
intact nervous system may fail to develop in a normal
fashion as a consequence of disuse or decreased input.
In contrast to earlier studies, Coleman and Riesen
(1968) found that in cat the effect of dark-rearing
from birth to about six months are rather pronounced
on visual cortex, and result in a reduction in length of
dendritic tree and in a smaller number of bifurcations
for layer IV stellate cells. Functions ¢(r), 14 P(r) and
Q(r) in Fig. 9 (circles) are reconstructed from Fig. 1
of the said publication. The curves are computed with
my=18.0 u. and m,,=53.2 p. while inserting p, as de-
duced from the number of segments of each order.
The reduction in length of the dendritic tree by 78 %
compared with normal litters must be attributed near-
ly entirely to a decrease in the number of bifurcations
(P decreases from 1.73 to 1.51, cf. Figs. 9b and d), as
may be checked from these values. It follows that,
contrary to the previous example concerning hypo-
thyroid rats, the mean segment length hardly differs
for the two cases.

Discussion

It has been argued (Globus and Scheibel, 1967)
that the approach of Bok and Sholl to characterize the
dendritic plexus of neurons had been directed away
from the organization of the individual synaptic con-
nections in favour of a statistical approach to cortical
organization. We would consider the information
gained from submicroscopic observation of fine struc-
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Fig. 9. (a) and (b) Number of dendrites per tree, ¢(r), present
at a distance r from perikaryon. (¢) and (d) Number of bifur-
cations added to the number of primary dendrites, 14 P(r),
and endings, @(r), within a distance r from perkaryon. Circles
reconstructed from Coleman and Riesen (1968) for striate
cortex stellate cells in normal rats, (a) and (b), and in animals

reared in the dark, (c) and (d)

tures as spines and synaptic sites of a few nerve cells,
rather than being of diverging nature, to form a sup-
plementum to the knowledge of gross parameters like
cell packing density, concentration of dendritic and ax-
onalfields, etc., obtained from averaging over many cells.
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The method of virtual concentric spheres introduced
by Sholl (1953) must be regarded as a first attempt to
trace in quantitative-probabilistic terms the distribu-
tion of dendritic branches relative to the perikaryon as
revealed by the number of perforations ¢(r) at a dis-
tance r from the centre. This measure may, to some
extent, provide an anatomical basis for the estimation
of neural connectivity as suggested by Sholl and Uttley
(1953) and utilized by Eayrs (1955), and by Eayrs and
Goodhead (1959). Sholl (1953) proposed an empirically
fitted analytical function for c(r) as c¢(r)/4nri=
aexp(—kr). On formal grounds objections must be
raised because a discrepancy comes to light if one re-
writes ¢(r)=4mnr?a exp(—kr). This expression con-
verges to zero when r approaches zero, whereas it
should reach the value ¢(0), the number of primary
dendrites arising from the cell body. Otherwise the
approximation seems to give a good description of
c(r) for r larger than about 20 . Several authors have
given numerical values for ¢ and k. It enables one to
compute rapidly the mean length of a tree per cell
which can be shown to be equal to L=8nak™3. The
values of L in Table 2 have been obtained in this way.

If dendrites do not unfold symmetrically in all
directions, or if they do but the sections are thin com-
pared with the total extent of the tree, corrections
are needed in order to have a correct estimate of c(r).
Apart from this disadvantage, we have shown with
the help of Fig.1 that knowledge of ¢(r) leaves us
with ambiguities, because more than one mode of bi-
furcation and ending may result in one and the same
shape of c¢(r). A minimum requirement is that also
the distributions of bifurcations P(r) or endings Q(r)
as functions of the radial distance are given.

Even then there remains a shortcoming of said
functions, because these intermingle two fundamental
properties of any spatial branching process, viz. the
topological and metrical aspects. We have explained
that for an adequate description of the mode of rami-
fication, the information concerning the two sorts of
items can better be listed separately. These are largely
covered when one determines the distribution of the
number of segments by order on the one hand, and,
on the other hand, the distribution of segment lengths
of each order. The latter distribution may preferably
be specified further for intermediary and terminal seg-
ments. From these data, one may compute functions
c(r), P(r) and Q({r); the reverse is not possible.

Keeping apart topology and metrics may prove to
be a useful tool to express in quantitative terms, the
degree of morphological specialization of dendritic
fields and the classification of cell populations, for
instance into the groups: isodendritic, allodendritic
and idiodendritic as proposed by Ramdn-Moliner and
Nauta (1966). An additional advantage of such a set-up
is that the method does not presuppose spherical sym-
metry of the tree. Possible preferences for a tree to
spread out in certain directions relative to the pial
surface can better be studied as an independent ad-
ditional property, as was done by Colonnier (1964) for
the visual cortex and by Wong (1967) for the auditory
cortex of the cat.

We have made clear in Figs. 2 and 3 that, if all
segments are equal in length, ¢(r) can be computed
straightforwardly from the distribution of segment
orders and will then show a discontinuous appearance.
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The shape of c¢(r) generally being more smoothed, in-
dicates that the lengths differ from segment to seg-
ment. In fact, to obtain a fit to the experimental data,
large variations in segment lengths have to be assumed.
This may be the reason that Sholl (1956, p. 52) was
not able to find a simple rule for the lengths of seg-
ments.

Still another deviation from the ideal case proves
necessary, namely a division in length of intermediary
and terminal segments. Not many authors have
touched upon this peculiarity explicitly. In our analysis
it has played a major role. In order to account for the
experimental data, we have to assume without ex-
ception that terminal segments are mostly several
times longer than intermediary ones, on the average.
The finding is confirmed by Peters and Bademan
(1963), cf. our Fig. 3, and by Mungai (1967). For in-
stance, from Fig. 7 of the latter publication it can be
ascertained that for 12 stellate cells in the cat’s somatic
sensory cortex about 90% of the intermediary seg-
ments are shorter than 50 ., whereas terminal segment
lengths are widely scattered equiprobably up to 250 w
with offshoots as long as 400 . Apical and basilar
dendrites of pyramids show a similar large difference
between the two sorts of branches.

The unequality of the means of intermediary seg-
ments (denoted by m,) and of terminal segments (de-
noted by my+m,) finds further expression when cells
in the same cortical area, but in animals of different
age, are compared. Peters and Bademan (1963) find
for stellate cells of adult guinea pigs that terminal
segments are about three times as long as intermediary
segments, while for newborns the factor is two, this
constituting the only significant difference between
the two groups of cells. It was noticed, from com-
parison of the number of segments of each order, that
the probability of bifurcation p, decreases geometrical-
ly with the order = of the segments, viz. p, = p} for n
up to 4. Less nicely this bifurcation law is present in
cells analyzed by Jones and Thomas (1962), and by
Coleman and Riesen (1968). The property has been
used with resonable success in Figs. 4 through 9.

The data of Eayrs and Goodhead (1959) on cortical
neurons have been treated by assuming that the mean
length of intermediary segments remains constant and
equal to 12.5 . throughout the maturation process.
In young animals (12 days) the terminal segments are
slightly longer than intermediary segments but in
adults these are about five times as long. The huge
change in this factor is partly obscured when the seg-
ments of all orders and irrespective of being terminal
or not are compared, cf. Table 2. Our suggestion to
separate topological and metrical factors is graphically
clarified in Fig. 10 for cells in animals of 12 and 24 days
and for adults. The picture allows a crucial test of the
concepts developed so far.

Similar remarks refer to the measurements of
Schadé and Van Groeningen (1961) on neurons in the
human brain. From fitting ¢ (r) and P(r) it is deduced
that in newborns all segments have a mean of 16 p,
while about one bifurcation per two primary dendrites
occurs (P =10.46). At 24 months of age, intermediary
segments are estimated as 25 . and terminal segments
three times larger in length. The number of bifurcations
has increased by nearly a factor of five (P=2.11).
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Fig. 10. (a) and (b) Mean number of intermediary and terminal segments of order » per partial tree, as predicted by theory
for cells treated in Fig. 5 and 6, downwards for adult rats, rats of 24 days and rats of 12 days. (c) and (d) Distribution
of lengths of intermediary and terminal segments. Ordinates in % per

The number of bifurcations per cell increases still
further (P = 5.37) towards maturity, but the metrical
measures do not change much after 24 months.

More or less parallel to the study of cells in brains
of normal and adult animals have run investigations
of cells in brains of adults after damage. After surgical
deafferentation following olfactory bulb resection of
6 weeks old rats, Jones and Thomas (1962) found that
pyramidal cells in the plexiform cortex possess the
same number of primary dendrites in comparison with
normal cells but that the number of bifurcations per
cell has diminished by a factor of four, three months
after treatment. Unfortunately, these authors do not
comment in quantitative terms on the spatial measures
of the trees, but from their microprojector-retracings
(their Fig. 3) one may conclude that also the metrical
parameters have undergone a notable change.

Damage of nervous structures in adult monkeys
has been observed by Caveness ef al. (1966) after X-ray
irradiation applied to one side of the cerebral cortex.
The dendritic branching reveals a significant reduction
in the number of bifurcations and the tree length per
cell on the irradiated side between second and fourth
week with a pronounced difference between right and
left side being evident thereafter. From their table it
can be taken that the tree length per cell L decreases
from 2,200 u. to less than 500 y, while the number of
bifurcations P diminishes from roughly 16 to 5. If
the number of primary dendrites ¢(0) is in the usual
range of 5 to 10, one can estimate the number of
segments per cell and find that the mean segment
length reduces by a factor of two. Within the context
of the model it would be highly interesting to have
additional data at our disposal in order to verify
whether the reduction in segment length is due to a
diminution in the terminal segment lengths (m,, smal-
ler) or to an overall change in length measures.

The effect of X-ray irradiation during foetal life
on the histogenesis of the cerebral cortex, and the
morphology of its constituent neurons, has been stud-
ied by Berry and Eayrs (1966). The basal dendritic
plexus of pyramids was investigated after embryos
were radiated on the 17-th through 2l-st days of
gestation. At 30 days post partem c¢(r) was little af-
fected, though in general ¢(0) and P were less than
normal.

The dynamics of growth of the nervous system
during normal ontogenetic development of the rat has
been supplemented by investigations of alteration of
growth of animals reared under thyroid deficiency con-
ditions by Eayrs (1965). He found that, although the
number of primary dendrites of the basal fields of
pyramids remains unchanged in comparison with nor-
mals, the processes are shorter and branch less in
treated individuals. Further, the decay of the dendritic
field density with radial distance does not seem to con-
form to the exponential law, ¢(r)/4zr? =a exp(—kr),
which applies to neurons of normally reared animals.
We have been able to fit the normal case by again
assuming that the bifurcation probabilities are geo-
metrical and that the terminal segments are larger than
the intermediary ones. While the latter seem to have
the same mean length, irrespective of treatment, the
terminal segments are shorter for the hypothyroid
rats. For the cells in abnormal milieu, the fit of ¢(r)
in the tail is less good than for normals. The dis-
similarity corresponds with the remark of Eayrs (1955)
that the tail extends longer than expected for the
normal development. In terms of our model, the de-
crease of m, is not the only factor that counts. We
agree with the said author that from the changes
which take place in the distribution of cell processes
between birth and maturity, it is difficult to say
whether the configuration seen in tissues of hypo-
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thyroid rats represents a retardation or a distortion
of the normal pattern of growth. From our analysis
it would follow that treatment does not amount to
purely a retardation. Next to it, we maintain that
discrimination between alternatives can be enhanced
if the material is analyzed along the lines suggested
above, viz. by evaluating the distribution of segment
orders and lengths.

Adjunct to these experiments, Clendinnen and
Eayrs (1961) have investigated the effect of adminis-
tering growth hormones to rats during gestation. A
hypertrophy of dendritic fields associated with py-
ramidal neurons in layer III of the cerebral cortex is
found. The data can be described analytically by the
model (unpublished results) by assuming again that
p,= Pt and that the intermediary segments have the
same length equal to m,=15yu in both situations,
whereas P and m, are different, that is to say, the
numerical values are now larger for cells in the treated
animals than in normals. For the rest similar remarks
hold as made in the previous paragraph.

Sensory deprivation has been embraced as another
means of setting down the rules that determine the
influences of environmental effects on the outgrowth
of dendritic ramifications. Holloway (1966) compared
stellate cells from the second layer of the visual cortex
of two groups of rats, separated after weaning and
placed either in normal situations (communal life, etc.)
or kept in isolated conditions. The cells in brains of
the former group show richer dendritic branching than
their litter mates of the other category in 11 out of
15 cases after about 85 days. Unfortunately that
author only counts the total number of intersections,
thus the sum of ¢(0)+c¢(4r)+ ---, not ¢(r) proper or
any other parameter.

The influence of sensory deprivation on dendritic
fields of striate cortex stellate cells has been thoroughly
investigated by Coleman and Riesen (1968), when rear-
ing cats in the dark from birth to about six months of
age. Besides noticing a reduction in length of the
dendrites and in the number of bifurcations per neuron,
the cited authors comment that the number of inter-
sections with concentric spheres c¢(r) for distances
larger than 36 p. is less for the experimental animals
than for the normals, but that nevertheless the den-
drites appeared to extend to an approximately equal
distance from the cell body. The phenomenon bears
a close resemblance to the results of Eayrs (1955) for
hypothyroid rats, cf. Fig. 8. We have been able to fit
the data, as shown in Fig. 9, by taking the mean length
of intermediary segments equal to 18.0 u and of the
terminal segments 71.2 u (= 18.0 u 4 53.2 p) for both
the cells of the normal and treated animals. The only
difference thus lying in the bifurcation probabilities p,, .

Our finding of the metrical factors being the same
in both cases seems to be in accordance with the con-
clusion of Coleman and Riesen (1968) that the major
effect of dark-rearing on the dendritic fields is to de-
crease the probability of bifurcation. This was deduced
by the said authors from the observation of the ap-
parently equal maximal extension of the dendritic field
as disclosed by c(r), coupled with the finding that the
mean length increases with their order. The latter fact
is understandable in terms of the model. For many
branching laws for which p, decreases with n and
ultimately tends to zero, as usually happens, segments

M. ten Hoopen et al.: Probabilistic Analysis of Dendritic Branching Patterns of Cortical Neurons

Kybernetik

of low order consist for the greater part of intermediary
segments, while for higher order segments the reverse
holds and most of them are of the terminal category.
The segments of the highest order are, of course, all
terminal. If the terminal segments are longer than
intermediary ones, on the average, as we have deduced
in all cases analyzed so far, it follows that in most
instances the segments (taking intermediary and ter-
minal parts together) will increase in length per order.
In the underlying case this is true also as computation
has shown us. The property, therefore, forms an in-
direct indication for the correctness of the assumption
of different lengths of the two sort of segments.

As to quantitative details we come across a dis-
crepancy between theory and measurements. For lower
order segments the mean lengths are in close agreement
and equal about 20 u. For the model, the 5-th order
segments have a mean length of 71.2 y. for both cases.
For the normal stellate cells the length of these seg-
ments measures more than 90 ., and for cells in the
brain of treated animals, surprisingly, a larger value
of 120w is found. Such a property is readily in-
corporated in the model by assuming that the ad-
ditional length of the terminal segments (m,) and/for
the length of intermediary segments (m,) depend on
their order. The supposition bears some resemblance
to the explanation of Coleman and Riesen {1968), viz.
that the individual dendrites of each order are longer
in the dark-reared individuals because they are les
likely to be interrupted by a bifurcation. It is question-
able whether these sorts of subtle relationships can be
detected reliably with the techniques of analysis now
available and the relatively small numbers of neurons
usually investigated.

The same remark pertains to another extension of
the theory which is represented by the fact that the
number of primary dendrites is nearly the same for
any sort of cell or species, whatsoever the age of the
animal. It might be that part of the primary dendrites
remain latent as to growth and bifurcation, but will
still start branching successively during maturation
until in the adult status the tree is fully grown under
normal conditions, whereas in abnormal circumstances
the outgrowth of the primary dendrites is inhibited to
a certain degree. The hypothesis predicts that for young
or damaged cells there exist partial trees of different
structure for each cell, or, otherwise stated, that c(r)is
made up of different components. Testing requires rath-
er detailed investigation for each primary dendrite and
allows no pooling of data per cell, as is done always.
Meanwhile it suggests an interesting direction for
future research.

Although the present concept, be it in its simplest
form or with additional properties, may reflect more
or less truthfully the real state of affairs with regard
to dendritic growth of cortical neurons, it does so only
at discrete times. A draw-back is that the factor time
is not present as a continuous parameter. Without
further specification it is not possible to recognize how
one stage changes into the next stage. One way to
account for this, within the scheme set forth so far,
is the following. Given the ultimate shape of a tree
at the end of the growing phase, and characterized by
Pn> My and m, one may imagine several modes as to
how the predetermined skeleton will be filled up in
the course of time. We can exclude the possibility
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that a tree grows concentrically with the same velocity
for each end point, otherwise ¢(r) per cell would exhibit
an abrupt drop to zero for a certain value of #, this
discontinuity in ¢(r) moving onwards with age of the
cell. Therefore one must assume that local differences
in the rate of growth occur. This idea is now being
studied. Preliminary results have revealed that a good
fit can be obtained, assuming that the growth rate at
each growing end point is a realization of a stationary
Gaussian random process with delay.

Appendix

To arrive at the curves of Fig. 2 one reasons as follows.
All primary dendrites bifurcating signifies that the mean num-
ber of first order bifurcations between 0 and r is given by

o(0)f 4 dz. (a)

Half of the secundary segments bifurcate and the mean number
of second order bifurcations found between 0 and r is given by

c<0>0f'¢2(z)dz, (1b)

where @, (2) stands for the convolution of ¢(z) with itself, or,
2
$2(2) =0f $ () ¢z — %) dZ.

If it is assumed that the length of a segment is not influenced
by the length of the segment where it originates from, as
found by Sholl (1956, p. 52), it follows that the mean number
of bifurcations P(r) of whatever order in between 0 and r is
equal to the sum of (1a) and (1b). As all primary segments
bifurcate, there are no first order terminal segments and first
order end points. Half the secundary order segments are ter-
minal segments, they number ¢(0). The mean number of second
order end points in between 0 and r is equal to

c<0)0f'¢z<z) dz. (2a)

The number of remaining, third order, terminal segments is
equal to 2¢(0). The mean number of third order endings in
between 0 and r is given by

20(0) [ $s(@) dz, 2b)

where ¢,(z) is the three-fold convolution of ¢(z), or,

4s(2) =0fz¢2(2)¢(z—5) dz.

It follows that the mean number of end points @ (r) of arbitrary
order in between 0 and r is given by the sum of (2a) and (2b).

The mean number of intersections at a distance r from the
perikaryon follows from ¢(r)=c¢(0)+ P(r) — @Q(r).

The dotted curve in Fig. 2b holds for ¢(x)=v(pz)r—1-
exp(—» z){(n—1)! with n=4 and »=0.0727 71, so that the
mean segment length is mg =n/v = 55.0 p.

The total length of the tree equals 30x55.0 p=1,650 .,
while the total number of segments equals 6 + 124 12=30.

The better fitting, full-drawn, curves in Figs.2b and ¢
are found by assuming that the additional length for each
terminal segment is distributed according to a probability
density function ¢ (y). The expressions for P(r) are not affected
by this.

The mean number of second order endings in between 0
and r is now given by

r ok

c(O)OI 6:(2) 42, (3a)

where
* 2
$2(2) =0fw(2) do(z—7) dZ.

Similarly, the mean number of third order end points in
between 0 and r equals
¥ %
2(:(0)0f &3(2) dz, (3b)

where

fo(e) = oﬁp(é) bolz—7) dZ.

The mean number of endings @(r) in between 0 and r is the
sum of (3a) and (3b).

The full-drawn curves in Figs. 2b and ¢ have been com-
puted for ¢(z)=v»z)r—lexp(—vz)/(n—1)! with =4 and
v=0.177 7%, and p(y) = A exp(— Ay) with 1=0.0185 .

The total length of the tree equals

Pmg+Q(mg-+myp) =12Xx22.6 1+ 18(22.6 .+ 54.1 )
=1,660p.

For partial trees with an arbitrary set of p, one may derive

o 13 r

Plr)=3 21 [T p, [ di(2) dz,
k=1 n=0 @
where p, =1, and
—_ o0 k— r
T =3 (1—pp) 21 [T 1w [ f (B w(e—7) dZ dz,
k=1 n=0 00

where ¢;(z) denotes the k-fold convolution of ¢(z).
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Summary. In the first part of this paper some phenomena
in the nervous system are described, concerning the time
interval structure of the nervous signals. The characteristics
of the neurons are introduced and interpreted. It is shown
theoretically and proved by experiments, that the time
interval distributions in the axons can be appoximated by
gamma-distributions.

In the second part, some experiments with electronic
neuron models are described. It is tried to find a correlation
between the interval distributions of the output signals and
the structure of the systems.

The third part concerns experiments at the cerci of the
cockroach periplaneta americana. From the measured transi-
tion probabilities for various amplitudes, the entropy, the
transinformation rate and the channel capacity of various
nervous channels are calculated.

The average transinformation rate results between 1.5 to
30 bit/sec. The channel capacity is about threefold the trans-
information rate.

1. Einleitung

Im Nervensystem erfolgt die Informationsiiber-
tragung und Verarbeitung durch eine analoge elektri-
sche GroBe: die mittlere Impulsfrequenz. Diese Codie-
rungsart der Information bedingt besondere Auswert-
verfahren und Grenzen. Unter Einbeziehung der
biologischen Randbedingungen werden nachfolgend
theoretisch sowie in Modell- und Tierexperimenten vor
allem diejenigen Eigenschaften neuronaler Daten-
verarbeitung untersucht, die durch die besondere
zeitliche Struktur nervoser Signale bedingt sind. Dar-
tiber hinaus wird der Transinformationsflu} in Nerven-
netzen experimentell bestimmt und die Moglichkeit
von Funktionsbeschreibungen diskutiert. Die elektro-
physiologischen Experimente wurden am Cercus und
den sechs Abdominalganglien der Kiichenschabe (Peri-
planeta americana) durchgefiihrt.

2. Zur zeitlichen Struktur nerviser Signale

2.1. Kennlinien von Neuronen

Ein nachrichtentechnisches System a8t sich im
allgemeinen mit Hilfe von zeitabhingigen Eingangs-
Ausgangsbeziehungen beschreiben. Bei linearen Netz-
werken geniigt zur Kennzeichnung des Systems die
Impulsreaktionsfunktion. Fiir nichtlineare Nerven-
netze ist eine das dynamische Verhalten kennzeich-
nende Beschreibungsfunktion, die eine theoretische
Bestimmung sidmtlicher Eingangs-Ausgangsbeziehun-
gen gestattet, nicht bekannt. Es werden daher zur

Beschreibung von Nervennetzen Kennlinien benutzt
die dynamische Vorginge nicht mit einbeziehen, son-
dern im allgemeinen den eingeschwungenen Zustand
charakterisieren. Ermittelt man Kennlinien abhingig
von verschiedenen Reizbedingungen und zeitabhin-
gigen Parametern, so sind Rickschlisse auf die
dynamischen Eigenschaften des Systems zu gewinnen.
Dariiber hinaus 1aBt sich abschitzen, in welchen
Bereichen Linearisierungen moglich sind.

Aufgrund einer groen Zahl von Messungen sind
der Nervenzelle folgende Eigenschaften und GroBen
zuzuordnen:

1. Das Neuron hat » Eingéinge mit den Eingangs-
grofen (%) ... ¥,(8) und eine Ausgangsgréfie z(f);
beide Groflen beschreiben im allgemeinen Pulsfre-
quenzen.

2. Die EingangsgroBlen y,(f) werden mit Koppel-
faktoren b; bewichtet, die die synaptischen Kontakte
beschreiben, j=1,2 ... n.

3. Oberhalb einer Schwelle 8 ist die Ausgangs-
groBe z(¢) eine Funktion der Summe aller bewichteten
EingangsgroBen.

Aus einer groBeren Zahl von Experimenten ergibt
sich fiar die Neurone folgende Beschreibung [1]:

n
by ) —8
7=1

n
bl 2=t —p—— 4-1) fir 376, ;() =8
2(t) = =t (1)
n
0 fiir >'b; y;(8) <8,
j=1

k und &* sind Konstante.

AuBer durch Ein- und Ausgangssignale wird das
dynamische Verhalten der Nervenzellen durch die ver-
inderlichen Parameter b; und S bestimmt. Die Gréfen
b; sind im allgemeinen durch einen Tiefpal erster
Ordnung mit der Zeitkonstanten v zu beschreiben [2];
dabei wird angenommen, daB fiir simtliche Synapsen
die Zeitkonstanten gleich sind. Die Schwelle 8 schwankt
infolge zellinterner Storungsvorginge stochastisch um
einen Mittelwert. Daraus folgt, daf} eine genauere Be-
schreibung der Nervenzellen einer Verteilung der Puls-
abstdnde am Eingang ¢(t,) eine Pulsabstandsvertei-
lung am Ausgang y(f,) zuordnen mufl, wobei die
Information durch die Zahl der Pulse innerhalb der
von 7 abhdngigen Integrationszeit ¢; dargestellt wird.



