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Abstract. Rapid Distortion Approximations (RDA) may be used to simplify the Reynolds stress 
equations in rapidly distorted flows, as suggested by Dussauge and Gaviglio (1987). These 
approximations neglect diffusive and dissipative terms while retaining the production and pressure 
terms. The retained terms are then modeled as functions of the Reynolds stress tensor and 
gradients of the mean flow. The models for the pressure-strain term as developed by Lumley 
(1978) and Shih and Lumley (1985) are evaluated by comparing the calculated results with 
experimental data for the case of a Mach 2.84 turbulent boundary layer in a 20 ° centered 
expansion. The agreement between computed and experimentally obtained Reynolds stresses was 
found to be encouraging. 

1. Introduction 

When a turbulent boundary layer in a supersonic flow experiences a rapid expansion the turbulence is 
strongly distorted under the action of the pressure gradient, in addition to significant additional strain 
rates due to streamline curvature and dilatation. Conventional calculation techniques cannot be 
expected to predict such flows very satisfactorily. However, a boundary layer in a supersonic flow can 
be distorted very rapidly, and it may be possible to use Rapid Distortion Approximations (RDA) to 
the Reynolds stress equations to predict the evolution of the Reynolds stresses in the boundary 
layer. 

Here, we consider the response of a high Reynolds number turbulent boundary layer with a 
freestream Mach number of 2.84 to a 20 ° centered expansion. The experimental results showed that, 
in a region corresponding to about 3.560 (where 60 is the initial boundary layer thickness), the Mach 
number increased to about 3.63 and the pressure dropped by a factor of about 3.6. RDA were then 
used to calculate the changes in the Reynolds stress tensor, and comparisons with experiment were 
shown to be surprisingly good. 

The analysis presented here is largely based on two earlier works: Dussauge and Gaviglio (1987), 
who applied this type of calculation to a boundary layer in a supersonic expansion, and Jayaram et 

al. (1989), who presented a similar calculation for a boundary layer in a supersonic flow subjected to 
an adverse pressure gradient. 

RDA are simplifications based on the concepts of Rapid Distortion Theory (RDT). RDT was first 
developed by Ribner and Tucker (1952) and Batchelor and Proudman (1954). It is a method for 

1 Dedicated to Professor J.L. Lumley on the occasion of his 60th birthday. 
2 This work was supported by the U.S. Air Force under AFOSR Contract 89-0420. Monitored by Dr. James McMichael. 
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calculating the turbulence in a flow subject to a rapid distortion; that is, a distortion which occurs in 
a time shorter than the typical turbulence time scale. The distortion is assumed to occur too rapidly 
for the turbulence to interact with itself and so is only affected by the history of the distortion. RDT 
leads to a linearization of the equations of motion. The effect of the distortion is found by an 
integration in wave-number space, and the Reynolds stresses are deduced from the resulting Fourier 
components. 

Hunt (1977), Savill (1987), and Dussauge et al. (1989) provide excellent summaries of the develop- 
ments in RDT and its current status. These reviews also highlight the procedure for using RDT ideas 
to simplify the Reynolds stress transport equations such that they can be integrated to give informa- 
tion about evolution of the Reynolds stresses in a boundary layer (RDA). For compressible flows, 
Dussauge and Gaviglio (1987) made additional assumptions to simplify the transport equations 
further and to reduce the number of terms requiring modeling. 

RDA is particularly useful in flows characterized by a weak level of turbulence, Urms/Ure f << 1, which 
interacts weakly with itself but strongly with the mean flow, and by a large turbulence Reynolds 
number ,  UrmsLd/V >> 1, such that there exists a large disparity between the energy-containing motions 
at low wave number and the dissipating motions at high wave number. Here, low wave-number 
energy-containing motions with long time scales dominate the flow dynamics. 

To apply RDT and RDA concepts, the distortion must occur over a time much shorter than the 
characteristic eddy time scale, To << Tt. Clearly, there are regions in a boundary layer where this 
criterion will not be satisfied. Near the wall, turbulence intensities are high; the characteristic 
turbulence time scale may be small and on the order of the distortion time. At the edge of the 
boundary layer in an expansion, the length of the distortion is no longer short and may not be 
considered "rapid." Nevertheless, in the region 0.2 < y/6 < 0.8, the boundary layer may satisfy the 
necessary criteria and the distortion can be taken to be rapid. 

The earlier work by Dussauge and Gaviglio (1987) and Jayaram et al. (1989) demonstrated the 
utility of this approach in supersonic flows. The purpose here is to apply the method in a flow which 
experiences a substantially larger change in Reynolds stress, that is, a distortion which is stronger and 
more severe than previously investigated. Furthermore, we attempt to evaluate the usefulness of the 
pressure-strain models developed by Lumley (1978) and Shih and Lumley (1985) for compressible 
flOWS. 

The experiment reported here is, as far as the authors are aware, one of few which explore the 
behavior of a turbulent boundary layer in a supersonic expansion, some of the others being the 
studies conducted by Morkovin (1955) and Dussauge and Gaviglio (1987). 

2. A n a l y s i s  

This analysis proceeds along the same lines as given by Dussauge and Gaviglio (1987). A more  
complete presentation of the approximations made here can be found in their paper. 

We begin with the Reynolds stress transport equation written in terms of mass-weighted variables 
(denoted with an overtilde) which takes the form 

D , , ..'7~.., 8t~j . ,~'7/, ~fi* 
N u, uj = - u, Uk ~x~ - uj uk F~x~ (I) 

- - - -  + - - -  (II) ~2 ~xj ~2 axl 

l ( , Sp' U~ ~xi) (III) 
. 

ex (pu;u~ut - f~,uj - f j ,  u~) (IV) 

-~ , j ,  (v) (1) 
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where fii = ~ / P  is the mass-weighted velocity, u~uj = pu~uj/fi is the mass-weighted Reynolds stress 
tensor, fi is the mean density, ~ is the mean pressure, e,~ is the dissipation rate tensor, and fir is the 
viscous stress tensor. For weak turbulence, the mass-weighted velocity, fi, is largely indistinguishable 
from ft. 

Terms (I) and (II) are production terms associated with the interaction of the turbulence with the 
mean velocity field and mean pressure field, respectively. Using an order-of-magnitude analysis, we 
can show that in a rapid distortion these terms will dominate over the diffusive and dissipative terms, 
(IV) and (V). 

We begin by estimating the order of the production terms. Through the distortion, the changes in 
mean velocity and mean density will be represented as AU and Ap. These changes occur over the 
distortion distance, Ld. If we assume mild anisotropy, q '=  u~u~ 1/2 can be used as the appropriate 
turbulence velocity scale. We can now write an order of magnitude expression for the production due 
to the mean velocity gradient: 

• , ,~fij "7~,O~i~q,2AU 
--UiUk ~ -- UjUk OX--~k ~ "  (2) 

Now the production term associated with the mean pressure gradient as it contains a turbulence 
mass flux, p'u~/fi. To derive the order-of-magnitude of this term, we first rewrite it using Morkovin's 
(1962) strong Reynolds analogy (SRA). Briefly, the SRA says that if pressure fluctuations are negligible 
and the flow is adiabatic with negligible total enthalpy fluctuations, 2r~ ~ 0, then 

T' u' 

where T is the absolute temperature and M is the Mach number. This expression can be used to 
rewrite p'u~/fi as 

Ul2 
P ul ,., (7 -- 1)M2~1~ -. 

u 

The pressure gradient is represented as dp/Ox ~ pUAU/Ld and the turbulence mass flux as p'u'/-fi 2 
( ? -  1)M2q'2/pU. Together these terms make up the mean pressure gradient contribution to the 
production, 

p'u~ Op p'u'j t3p ~ I)M2q,2AU 
fi~- t3~ + - ~ -  Ox~ "~ (~ - Ld (3) 

For nonhypersonic flows, the production terms, (II) and (III) will be of the same order. 
Now consider the diffusion term, (IV). There are two contributions to this term, viscous and 

nonviscous. First, it is reasonable to neglect viscous diffusion away from the wall. Second, the 
nonviscous part of term (IV) represents the interaction between turbulence components, that is, the 
interaction of turbulence with itself. Assuming weak turbulence, we can show that the turbulence 
diffusion term will be negligible. Dussauge and Gaviglio (1987) rewrite the turbulence diffusion term 
and assume that the severity of the distortion completely dampens the turbulence such that the 
appropriate diffusion length scale is not the integral scale as expected but rather Ld, the length of the 
distortion. This yields 

t~ U~UjU~ Off ,,~ q,3 + q,a Aft 
OXk u~ujuI+ fi dx~ L~ ~ -  L--~" (4) 

Finally, the dissipation term (V). If the turbulence is weak and interacts weakly with itself, then for 
the time over which the distortion is applied we can expect there to be no significant change in 
dissipation rate. The classical representation of the dissipation rate is adopted here; that is, 

e 0 = q'a ~i.. (5) A,  -'J" 
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A, is the energy-containing length scale since it is these eddies which determine the energy transfer 
(dissipation) rate. 

Hence, we obtain the criteria needed to neglect dissipation and diffusion. The first is the criterion 
for neglecting dissipation and the next two are the criteria for neglecting diffusion: 

q' L d 
- -  - - < <  1, 
AU A~ 

q' 
- - < <  1, 
AU 

q' Ap 
- - - -  << 1. 
AU p 

(6) 

(7) 

3. M o d e l i n g  o f  the Pressure-Strain  T e r m  

The pressure-strain term (III) in (1) needs to be modeled. Lumley (1978) developed a Poisson equation 
for p' in an incompressible flow by taking the divergence of the Navier-Stokes equations. The 
pressure fluctuations are influenced by two terms; a "rapid" term, which is linear in u', and a 
return-to-isotropy term, which is nonlinear in u'. If we adopt Rotta's hypothesis (1951), the return- 
to-isotropy term would be of the order of the dissipation rate, e, and therefore negligible given (6). 
The pressure which is influenced only by the rapid term is called the rapid pressure. Lumley (1978) 
pointed out that in any distortion of isotropic turbulence, not necessarily rapid, all terms containing 
the rapid pressure instantly become anisotropic. Furthermore, in a true rapid distortion, the Euler 
equations can be linearized and the only remaining influence on p' comes from the rapid term, hence 
its name. 

Dussauge and Gaviglio (1987) adapted Lumley's form of the linearized Euler equations for 
compressible flow. Terms arising from mean compressibility were shown to be negligible, and the 
equation with only the rapid contribution reduces to 

,,_Bu~ dt~ 1 t~T' t~p 
-V2p'  = + @ @ .  (8) 

This result shows that the pressure fluctuations contain contributions from the mean velocity gradient 
and the mean pressure gradient. Since the equation is linear, these contributions can be considered 
separately. 

The pressure gradient term has the same form as in buoyancy problems and can be represented 
using a subsonic model wherein pressure-dilatation effects are neglected. For the mean presure 
gradient contribution, the model by Lumley (1978) was used: 

--~u,--~xj + u j  " v - = - 0 " 3 \ P ~  ?@+ ~ dx, 3 ~ X k  6° " (9) 

The mean velocity gradient contribution needs to be examined more rigorously for compressibility 
influences. By decomposing the mean and fluctuating velocity gradient tensors into isotropic (dilata- 
tion) and deviatoric (symmetric and antisymmetric) parts and assuming solenoidal velocity fluctua- 
tions under Morkovin's hypothesis, Dussauge and Gaviglio (1987) showed that the mean velocity 
gradient contribution to the pressure fluctuations is unaffected by compressibility. Furthermore, in a 
distortion involving only dilatation, it was found that the effect of compressibility could be accounted 

for by simply defining a new variable T~j = Ur~/ff 2/3. Since the mean compressibility does not 
contribute to the pressure fluctuations, the deviatoric parts of the velocity gradient tensor can be 
modeled as in subsonic flows where pressure-dilatation effects are neglected. For the mean velocity 
gradient contribution to the rapid pressure a number of models were available. Here, three models 
were tested due to Lumley (1978), Shih and Lumley (1985), and Launder et al. (1975). The general 
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form of the model was 

1 f ,ap' ,Op'  
- -  ui--axj cqx,),~ + a.,Dj. {aotDt.Su) + K2(a, igi  . + aa./R,g)], (10) ~_~ + u j - -  = q'2[0.4D0 K I ( a . j D ~ ,  + - 

,"~.. ~2 where a u = u i u / q  - 5u/3,  D o is the symmetric mean rate of strain tensor, R 0 is the antisymmetric 
mean rotation rate tensor, and K1 and K 2 a r e  constants which vary depending on the model. 

4. The Experiment 

A turbulent boundary layer was developed on the floor of a 20 cm x 20 cm supersonic blowdown 
wind tunnel. The wind tunnel was operated at a stagnation pressure of 6.9 x 105 N / m  2 and a 
stagnation temperature of 270 K. The freestream Mach number was nominally 2.84, and the wall 
conditions were approximately adiabatic. The incoming boundary layer thickness was approximately 
26 mm, and the Reynolds number based on momentum thickness was 77,600. A 20 ° rearward-facing 
ramp generated a centered expansion fan. 

The mean and turbulence properties of the boundary layer were measured 160 upstream of the 
distortion and 3.560 downstream of the distortion. 

Mean flow measurements showed that the upstream flow was typical of an equilibrium boundary 
layer in supersonic flow (Figures 1 and 3). Downstream measurements indicated a severely distorted 
boundary layer (Figures 2 and 4). Within the range of acceptable values for x and B, no fit for the 
downstream velocity profile to the law of the wall was found when using different compressibility 
transformation. Without a logarithmic region downstream, conventional experimental techniques for 
determining the wall stress could not be used. 

Turbulence measurements were made with a normal hotwire at the mean survey locations. The 
constant temperature hotwire anemometer was operated at a high overheat ratio and tuned during 
calibration to have a frequency response in the vicinity of 100 Khz. Data was collected at a rate of 
1 Mhz. The data were analyzed following the procedure outlined in Smits e t  al. (1983), and turbulence 
quantities were found by using the strong Reynolds analogy. A comparison of upstream and down- 
stream turbulence profiles are shown in Figures 5-7. 

The results show that we should be cautious about using the term "relaminarization." The hotwire 
measurements indicate that the relative mass-flux fluctuations remained unchanged from upstream to 
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Figure 1. Comparison between the experimental wall pressure and the computed wall pressure. 
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Figure 3. van Driest (1951) transformed velocity profile up- 
stream of the distortion. 

downstream (Figure 5). The downstream velocity fluctuations and Reynolds stress decreased signifi- 
cantly from their upstream values (Figures 6 and 7). This was also reflected in the relative velocity 
fluctuations. However, the SRA indicates that the relative density fluctuations do not change ap- 
preciably from their upstream values. Since the velocity fluctuations are significantly smaller than the 
density fluctuations, it is clear that downstream the major contribution to (pU)' must come from p' .  
However, this result depends on the validity of the SRA downstream of the distortion. The results of 
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downstream, ©, turbulence intensities, downstream, 0 ,  longitudinal Reynolds stress. 

Dussauge and Gaviglio (1987) in a less severely distorted flow satisfy the SRA, and it may continue 
to hold in the present flow. Further experimental work is required to verify this assumption. 

5. The Computation 

To make the rapid distortion calculation in the boundary layer, a complete characterization of the 
mean flow is necessary to evaluate gradients of mean flow quantities. The gradients are difficult to 
obtain accurately using experimental techniques. If instead we assume that outside the viscous region 
the boundary layer is a rotational perfect fluid flow, then the method of characteristics can be used to 
solve the Euler equations. The boundary-layer profile taken in the upstream undisturbed boundary 
layer was used as the input to the calculation which began at the comer. 

A comparison between the computed flow and the experimental flow at 3.560 downstream of the 
distortion indicates that this method gives a good representation of the mean flow (Figures 1 and 2). 

The evolution of the Reynolds stress tensor was calculated along streamlines originating at different 
heights in the boundary layer, where entropy was assumed constant along a streamline. To model the 
mean pressure gradient production terms, the SRA was used. The computation was performed with 
each of the pressure-strain models, and little variation was found from one model to the next. 
Comparisons were also made between the experimental and computed turbulence profiles. The 
computed profiles presented here are for the Shih and Lumley (1985) model. In the range 0.2 < y/t~ < 
0.8 the agreement was impressive (Figures 8 and 9). However, near the wall, the calculation under- 
predicted the Reynolds stress by as much as 75~. A calculation including only the effect of dilatation 
was also performed. The result was an overprediction of the Reynolds stress in the range 0.2 < y/6 < 
0.8 but still in good agreement with the data indicating the importance of compressibility (Figure 10). 

In the past, investigations of boundary layers in perturbed compressible flows revealed that the 
distortion had little effect on the anisotropy ratio (see, for example, Femando and Smits (1990) for a 
flat plate boundary layer in an adverse pressure gradient and Donovan (1989) for a boundary layer 
with severe concave surface curvature). Figure 11 shows profiles of the anisotropy ratio at various 
locations in a boundary layer subjected to an adverse pressure gradient. Figure 12 shows the 
anisotropy ratio predicted by the rapid distortion calculation for the centered expansion flow studied 
here, indicating there appears to be little change in this case also. 
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Figure 12. Predicted anisotropy profile downstream of the 
distortion, Shih and Lumley (1985) model. 
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6. Conclusions 

The measurements revealed that the boundary layer downstream of the expansion distortion was 
dramatically different from its upstream counterpart. For example, the mean velocity profile did not 
possess a logarithmic region, and the velocity fluctuations decreased dramatically, while the mass-flux 
fluctuations remained initially unchanged. The SRA showed that the change in the mass-flux fluctua- 
tions seems to follow the change in the density fluctuations. 

Within the limits of the rapid distortion approximations, the Reynolds stress equations were 
simplified and used to make predictions of the Reynolds stresses in this flow which were surprisingly 
accurate. The performance of three pressure-strain models was evaluated, and it was found that the 
calculation was mostly insensitive to the model chosen. The influence of dilatation alone was also 
investigated, and the results indicate that the dilatation has the major influence on the Reynolds stress 
evolution. 
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