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Abstract. The Karhunen-Lo~ve procedure is used to analyze two turbulent channel flow simula- 
tions. In both instances this reveals the presence of propagating plane wave structures in the 
turbulent flows. These waves appear to play an essential role in the local production of turbulence 
via bursting or sweeping events. The envelope of the propagating modes propagates with a speed 
which is equal to the mean velocity at the locus of maximal average Reynolds stress. Despite 
marked differences between the two flows similar results are obtained from each simulation. This 
is suggestive of the existence of universal or near universal features in the turbulent boundary 
layer. An analogy with critical layer mechanisms of transitional flows is discussed. 

1. Introduction 

Lumley (1967) suggested that the Karhunen-Lorve  (K-L)  procedure (called by Lorve (1955) the 
proper orthogonal decomposition) be used to extract coherent structures from turbulent flows. While 
its use for this purpose still needs further development the K - L  procedure is without question an 
ideal means for analyzing the type of data obtained in turbulence experiments, both physical and 
computational. Lumley has further discussed and developed the method in two important publica- 
tions (Lumley, 1970, 1981). A broad program for the use of the K - L  procedure in turbulence 
problems was presented several years ago (Sirovich, 1987). Also the K - L  procedure has been shown 
to be effective in producing a low-dimensional dynamical description of a model problem (Sirovich 
and Rodriguez, 1987). In this same vein, Lumley and coworkers (at Cornell) produced a n  interesting 
and provocative low-dimensional description, based on the K - L  procedure, of wall-bounded turbu- 
lence (Aubry et al., 1988; Armbruster et al., 1988; Stone and Holmes, 1989). In the presentation given 

1 Dedicated to Professor J.L. Lumley on the occasion of his 60th birthday. 
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below we show that the empirical eigenfunctions that arise from the K - L  procedure uncover some 
new phenomena in wall-bounded turbulence. In a recent paper (Sirovich et al., 1990) we performed a 
K - L  analysis on the dataset of a low Reynolds number turbulent channel flow. This analysis was 
shown to produce empirical eigenfunctions having the form of propagating plane waves. These waves 
form an evelope which travels at a velocity corresponding to the location where the Reynolds shear 
stress is a maximum. An analysis of the action of these propagating modes shows their importance in 
the initiation and development of bursting or sweeping events. The channel flow data which was 
analyzed was generated by a direct numerical simulation of the Navier-Stokes equations for a 
relatively coarse grain grid, with a Reynolds number Re, = 80 based on the wall shear velocity, u,, 
and channel half-width, 6. 

The present investigation further develops these ideas with the use of a similar analysis for a 
completely different and independent calculation carried out on a more highly resolved simulation at 
the higher Reynolds number Re, = 125, and a different computational cell size. Both flows, while 
similar, are observed to have fundamental differences which are pertinent to our results and discus- 
sion. Nevertheless, the propagating structures occupy the same central role. 

2. Background 

The analytical approach for the study of turbulence and the dynamics of coherent structures which we 
follow is described by Sirovich (1987), and derives from Lumley's suggestion of using the eigenfunc- 
tions of the two-point velocity correlation tensor to decompose the flow into its relevant modes 
(Lumley, 1967, 1970, 1981). A complete and detailed discussion of the K - L  decomposition, specifically 
applied to turbulent channel flows, is presented elsewhere (Ball et al., 1991). 

The channel flow simulations described in the next section take the flow to be periodic in the 
horizontal plane (x, z). As a result, the empirical eigenfunctions of the velocity correlation take the 
form 

U~)(x, y, z) = Vtq)(y; k ) e  -i(klx+k3z) = V~)(y) exp( - ik ,  x), (1) 

where k = (k 1, 0, k3) with kx = 2r~m/Lx and k a = 2nn/L z. 
computational domain in the streamwise and spanwise 
number, q, reflects the fact that for each k there is a 
eigenfunctions can naturally be regarded as plane waves, 
bounding wall. 

The projection of the flow, u(x, t), along an eigenfunction 

L x and L~ represent the length of the 
directions. The superscript, or quantum 
hierarchy of modes. Thus the empirical 
with propagation vector parallel to the 

(defined by the complex inner product) is 

a~)(t) = (V~), u) (2) 

which furnishes a time history of the mode and is itself the eigenfunction of the temporal correlation 
(Sirovich, 1987, 1991). Thus, if we represent the actual flow in terms of the empirical eigenfunctions, 

u = E a~)(t)V~ ) = E v~ ), (3) 
q,k q,k 

then v~ J has the form 
vt~) = b~)(t) V~)(y)eitO, t~',-k, x) (4) 

In writing v~ J in the form (4) we anticipate the secular trend in the phase of a~kq)(t) which we find. Thus 
(4) is seen to be a propagating plane wave with direction determined by the wave number vector, k. 
In (4), b~)(t) is the time-dependent portion of the coefficient ark q~ which is left after the secular trend is 
removed. The actual phase or frequency of a~ ) is given by 

(Im(a~)(t))~ 
(3~)(t) = tan -1 \ ~ ] ,  (5) 

while the value of (~)  that appears in (4) is the linear fit to (3~). Looking ahead to the results, the 
value of (3~) is plotted as a dotted line in Figure 6, and in each case a linear trend is clear. 

From (3) we see that the total mean energy in the flow is given by the sum 

E = ((u, u)) = ~ 2~), (6) ¢-?-k 
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where brackets denote an ensemble average, and where 

2~ q' = ((v~), v~))) (7) 

are the energies in the corresponding (orthogonal) modes. The , ~  may be shown to be the eigen- 
values of the aforementioned velocity correlation operator. Thus, the eigenvalues provide a natural 
ordering for each mode in terms of its energy content. 

3. Numerical Simulations 

The steady-state turbulent velocity field for each of the two simulations was obtained by solving the 
Navier -S tokes  equations in rotational form given by 

( d t - - u × t o - - V  p +  + ~ V  u + f  (8) 

subject to the incompressibility condition 

V-u = 0 (9) 

and the boundary conditions 
u = 0  on y=___6; (10) 

u is the velocity, to is the vorticity, p is the pressure (divided by density), R = 1/v (where v is the 
kinematic viscosity), 6 is the channel half-width, and f is a body force. This force is chosen to act like 
a constant pressure gradient which drives the flow to a statistically steady state. 

The equations are solved using pseudospectral techniques in which Chebyshev polynomials are 
used in the wall normal direction and Fourier series are used in the streamwise, x, and spanwise, z, 
directions. That  is, the velocity field is expanded in the following manner: 

u(x, t) = E E fi(m, n, p, t) exp ~ - 2 : r i ( m x +  Tp(y). (11) 
,~=-~t ,=-N ,=1 ( \ L x  

The details of the numerical methods used to solve the above equations for the datasets computed at 
Re, = 80 are somewhat different from those used at Re, = 125. The former was obtained by solving a 
fourth-order equation for the vertical velocity component  and a second-order equation for the vertical 
component  of vorticity. Since operator  splitting is not employed in this method, continuity is satisfied 
exactly after each time step. Details of the method are described in the paper by Kim et al. (1987). An 
operator-splitting or time-splitting scheme is used to obtain the Re, = 125 dataset. A Green's function 
approach developed by Marcus (1984) is used, which is a modification of the Orszag-Kel ls  (1980) 
scheme in which time-splitting errors inherent in that method are significantly reduced by forcing a 
divergence free velocity field at the wall. Details of this latter method are given by Handler et al. 
(1989). 

In Table 1 we summarize differences in resolution and channel dimensions for each simulation. The 
Reynolds numbers Rec and Rem, based on the full channel width 26 and the centerline and mean 
velocities, respectively, are also tabulated. We note that in these low- and moderate-resolution 

Table 1. Comparison of Computational Parameters. 

Dataset Re, = 80 Re, = 125 

Resolution (x, y, z) 24 × 33 x 12 16 x 33 × 64. 
Reo 3004 4256 
Re,,, 2419 3607 
L x (in wall units) 402 625 
L r (in wall units) 160 250 
L z (in wall units) 402 625 
Re~, Dean 15 correlation 2564 4246 
Re,,, Dean is correlation 2190 3648 
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calculations, the streamwise length of the channel is not sufficiently long so that all two-point 
correlations decay to zero at streamwise separations less than the streamwise channel length. Thus in 
these two simulations, the largest flow structures do not completely decay or break up in the time it 
takes them to travel the length of the channel. As a consequence some care needs to be taken when 
interpreting time sequences of velocity data taken at a fixed spatial point since a single flow structure 
with sufficient coherence may appear at the observation point periodically. 

The ability of such calculations to replicate natural turbulent flow in a channel thus depends on 
domain length and grid resolution. Inspection of Table 1 shows the domain used in the Re~ = 125 
flow is considerably larger than the domain used in the Re~ = 80 flow. Thus, the effects of the 
periodicity of the domain should bc less significant in the Re~ = 125 calculation. 

Next, we note that the flow obtained from the Re~ = 125 calculation is considered fully developed 
in the sense described by Patel and Head (1969), while the flow at Re~ = 80 is considered continuous. 
Patel and Head concluded that for Rem > 2800 the friction factor varied as the inverse one-sixth 
power of Rem and for Re m > 3000 the logarithmic layer of the mean velocity profile exhibited 
universal constants in the expression (Tennekes and Lumley, 1972) 

u + = rc -i In(y+) + a. (12) 

u +, in (12), represents the mean velocity normalized by the friction velocity, u,, and y+ is the wall 
normal coordinate normalized by the wall scale (Tennekes and Lumley, 1972) 

r 
l+ = --. (13) 

U~ 

In these terms 

Re~ - (14) 
1+ 

is the distance to the centerline in wall units. 
We observe in Table 1 that Rein for the Re~ = 125 calculation falls clearly in the fully developed 

range where a log-layer of universal character should be observed in the velocity profile. For the 
Re, = 80 data, however, Rein < 3000 and is also somewhat below the value for which a power-law 
relation between Rein and the friction factor is observed. These experimental observations appear to 
be confirmed by the results shown in Figure 1 where we find a clear log-layer for the Re~ = 125 data, 
but none for the Re~ = 80 data. 

In Table 1 we have computed Rein and Reo from the Dean (1978) correlation for the Reynolds 
numbers, Re~, represented by each simulation. That is, given an Re~ (which is directly proportional to 
the driving mean pressure gradient), we use the experimental correlation of Dean to predict the mass 
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Distance from wall y+ 
Figure 1. M e a n  veloci ty  profile, u + ( - - -  
Re~ = 125; . . . .  , l aw of the wall). 
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flux through the channel. We see that the simulated and predicted values for Rein and Reo are in 
excellent agreement for the Re~ = 125 flow but that the Reynolds numbers obtained from the Re~ = 80 
dataset are about 6% too large. 

In Figure 2 we compare the root mean square (rms) velocity intensities from each simulation. We 
note that the peak in the intensity of the steamwise component of velocity occurs at a distance of 
about 

y+ ,~ 14, (15) 

from the wall for each dataset, which is in excellent agreement with the experiments of Kreplin and 
Eckelmann (1979). As has been shown by Sreenivasan (1988) there is substantial evidence, over a 
range of Re, that Urms always peaks at y÷ ~ 14. Also the turbulence production -(uv} du+/dy 
appears to exhibit universal behavior and peaks at the same value of y+ ~ 14 (Sreenivasan, 1988). (On 
considering the extremum of this quantity, we can show that it occurs at a location where the mean 

Figure 3. Mean Reynolds shear stress distribution ( - - -  
Re~ = 80; ...... , Re~ = 125). 
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velocity gradient du+/dy is equal to (du+/dy)/2 at the wall. This is located at y+ ~ 12.) The spanwise 
and normal velocity components are also qualitatively similar, with broader peaks slightly further 
from the wall. These are known not to exhibit universal behavior, which is also clear from the 
simulations that are presented here. 

In Figure 3 the mean Reynolds shear stress, - ( u o ) ,  is shown for each simulation. The distribution 
of the Reynolds stress across the channel is qualitatively similar for both flows, with a fairly sharp and 
pronounced peak in the vicinity of y÷ = 30. This location of maximal Reynolds stress is consistent 
with the results of other studies (Kim et al, 1987; Eckelmann, 1974). (That the level of the Reynolds 
stress is lower for the case Re~ = 80 can be attributed to the lower intensity levels of the vertical 
velocity fluctuations in the near-wall region of the flow with Re~ = 80.) However, Sreenivasan (1988) 
has shown that a wide variety of experiments indicate that the location of peak Reynolds stress grows 
with Re~, as O(Re~/Z). Using an asymptotic argument, given in the Appendix, we can demonstrate that 
-(uv) peaks at 

y ÷ = x//x ~ Re~ ~ 1.58 x / / ~ .  (16) 

This compares well with Sreenivasan's empirical formula of y ÷ = 2 x / ~ -  

4. Empirical Eigenfunctions 

The eigenvalue spectrum for each of the two flows being considered is shown in Figure 4. As 
discussed in Section 2, the total mean energy in the flow is given by the sum of the eigenvalues (6). 
Thus, each eigenvalue, ~ ) ,  gives the fraction of the total energy of the eigenfunction associated with 
it, V~ ). By ordering the eigenvalues from largest to smallest, the number of eigenfunctions, N, needed 
to capture a given percentage of the total flow energy in a finite representation of the flow is 
minimized. The optimal nature of the energy convergence of the K - L  expansion is well-known 
(Sirovich, 1989). 

Each eigenfunction or mode is distinguished by its wave-number vector, k, and quantum number, q. 
Table 2 provides a list of the energy content of the first 15 modes for each flow. (Recall m and n in 
Table 2 are defined by k~ = 2zrm/L~ and k 3 = 2zm/L~.) We note that the modes with zero wave 
number in the streamwise direction, k~ = 0, collectively account for the most significant portion of the 
total energy in each flow. Additionally, the overwhelming majority of the most energetic modes 
individually have k~ = 0 in each flow. The implications of this are discussed later. 

In Figure 5(a) and (b) the y-dependence of the eigenfunction -~3v~) is shown for Re~ = 80 and 
Re~ = 125, respectively. The spatial structure and symmetry properties of the empirical eigenfunctions 
in the channel flow geometry should be noted. We have chosen to present this particular mode 

o ..," 

o= 

o.o"" ~dolt; "lb~o.o "1~o.o "2o~o.o "2~o.o ao~o.b ss~o.o "4b~o.o "45~o.o '5ooo.o Figure 4. Energy convergence of the K - L  expansion ( . -  
Number of modes R e ~  = 80; . . . . . .  , R e ~  = 125). 
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Index 

Table 2. Energy content of the first 15 eigenfuncti0ns. 

Re, = 80 Re~ = 125 

Fraction of Fraction of 
(m, n, q) total energy (m, n, q) total energy 

1 ((3, 1, 1) 0.1300 (0, 3, 1) 0.0428 
2 (0, 2, 1) 0.0874 (0, 1, 1) 0.0399 
3 (0, 3, 1) 0.0732 (0, 4, 1) 0.032'7 
4 (0, 2, 2) 0.0693 (0, 5, 1) 0.028'7 
5 (0, 1, 2) 0.0423 (0, 4, 2) 0.0229 
6 (0, 3, 2) 0.0408 (0, 1, 2) 0.0210 
7 (1, 3, 1) 0.0327 (0, 3, 2) 0.0206 
8 (0, O, 1) 0.0305 (0, 2, 1) 0.0197 
9 (1, 3, 2) 0.0266 (0, 2, 2) 0.0188 

10 (0, 1, 3) 0.0188 (0, 6, 1) 0.0138 
11 (1, 2, 1) 0.0156 (0, 5, 2) 0.0131 
12 (0, O, 2) 0.0147 (1, 3, 1) 0.0125 
13 (1, 2, 2) 0.0137 (1, 2, 1) 0.0095 
14 (0, 1, 4) 0.0121 (1, 4, 1) 0.0084 
15 (0, 2, 3) 0.0120 (1, 5, 1) 0.0083 

because, in each case, it is the most energetic mode for which k 1 :~ 0 (see Table 2). It should be 
observed that the two cases have a different symmetry structure. In fact the (1, 3, 2) mode(not shown) 
at Re, = 80 has the same form as the (1, 3, 1) mode of Re, = 125. The (1, 3, 2) mode at Re, = 125 has 
the same form as in Figure 5(a) and is 21st in the list. Thus a mode crossing has occurred. 

A significant feature to observe in these figures is the strong peak in the streamwise component of 
the eigenfunction, V,, in the near-wall region y + <  20. In Figure 5(a) V v exhibits more gradual 
variation through the channel, consistent with the form of the rms intensity of the vertical velocity 
component shown in Figure 2. Furthermore the region of Principal support for both eigenfunctions 
shown in Figure 5(a) and (b) corresponds to the location of the peak velocity intensities shown in 
Figure 2, which has obvious consequences in the representation of the Reynolds stress by the 
eigenfunction expansion (3). 

The dynamical behavior of the mode V ~  for each flow is shown in Figure 6(a) and (b). The time 
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Figure 5. The spatial structure of the (1, 3, 1) eigenfunction: (a) Re, = 80 and (b) Re, = 125 ( , V,; . . . .  , Vv; ...... , Vw). 
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Figure 6. The time-series for the (1, 3, 1) eigenfunetion: (a) Re, = 80 and (b) Re, = 125. The horizontal line is the eigenvalue for 
this mode ( , [a(t+)[2; ...... ,05). 

dependence of each mode is carried by the complex coefficient, a~)(t), which is defined by (2) and 
appears in the eigenfunction expansion (3). In these figures the mode activity is represented by the 
magnitude and phase of a~)(t), which supports the description of the empirical eigenfunctions as plane 
waves. The magnitudes for both flows exhibit a qualitatively similar, chaotic temporal behavior (note 
the finer time resolution for Re, = 125 in Figure 6(b)). As follows from (4) and (7) the mean power for 
each mode is given by its eigenvalue 

( ]b~ )(t)l 2 > -- ( ]a~ )(t)] 2 > = J.~), (17) 

which is also shown in the figure. 
As mentioned earlier, in sharp contrast to the chaotic variation of the magnitude, the phase in both 

cases has a strong secular component resulting in a traveling wave, moving in the direction given by 
its wave-number vector. When differences in the channel dimensions between the two flows Re~ = 80 
and Re~ = 125 are taken into account, the phase speeds for the -1art1) mode shown in Figure 6(a) and 
(b) are nearly identical. This is a fairly remarkable result, considering the many differences between the 
two datasets. 

An examination of the complete set of eigenfunctions for each flow reveals that all modes which 
have a nonzero streamwise wave number also propagate with a characteristic velocity. (The modes 
with kl = 0 are nonpropagating and are termed kinematically degenerate (Sirovich et al., 1990)). To 
picture how these plane waves move, we construct the normal speed locus. For this, the phase speed, 
~o~)/Ikl, for each mode is plotted in the direction k/lkl. Figure 7(a) and (b) shows the normal speed 
locus for the flows Re~ = 80 and Re~ = 125, respectively, using the most energetic propagating modes 
(a greater number of modes has been included in Figure 7(b)). As can be seen the locus in each case is 
well approximated by a circle. The collection of the plane waves based on the normal speed locus 
generates an envelope which locates the most intense signal. (We mention in passing that the 
representation in terms of Chebyshev coefficients also exhibits wave propagation.) 

The wave envelope follows by tracing a straight line perpendicular to the directions given by k/lkJ 
through each point of the locus. These lines are the tangents to the envelope. For the circular locus of 
Figure 7 this results in a single point on the kx-axis, a distance from the origin equal to the diameter 
of the circle. It is found that the circles shown by the solid curves in Figure 7(a) and (b) yield, as the 
speed, the mean velocity at the same y+ location where the Reynolds shear stress is a maximum 
(compare Figures 1 and 3)! The velocity scale is shown on the upper axis in Figure 7. 

When we recall the structure of the eigenfunctions shown in Figure 5(a) and (b), we observe that 
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Figure 7. Normal speed locus: (a) Re~ = 80 and (b) Re~ = 125. 

the eigenfunctions have their principal support in this same general location where I(uv>l is maximal. 
Thus, the plane wave modes are best able to extract energy from the mean flow via the Reynolds 
stress at this location, giving some basis as to why they propagate with the mean velocity at that 
location (see Section 5). We also note that as higher-order modes (with lower energy) are included in 
the construction of the locus, the degree of scatter increases. An examination of the spatial structure 
of these lower-energy modes reveals an increasing number of zero crossings, with a corresponding 
increased region of support. Indeed, as the mode energy becomes small, the eigenfunctions become 
in a sense locally sinusoidal. Consequently, they interact with the mean flow over a larger region of 
the domain, and are less likely to exhibit any particular characteristic velocity. 

In Sirovich e t  al. (1990) we presented evidence that the propagating modes act as triggers for the 
b u r s t s  a n d  s w e e p s  that appear in wall-bounded turbulence (Willmarth, 1975a, b). This we briefly 
summarize here. First we write 

u = u s + u p, (18) 

where u p is the summation over all propagating modes and u s is the summation over all degenerate 
modes. We use the superscript s since these modes correspond to the streaky behavior found in 
turbulent boundary layers (Kline e t  al.,  1967). Roughly 75~o of the energy of the (fluctuating part of 
the) flow resides in u s and the remainder in u p, even though most modes are of the latter class. If we 
express the instantaneous Reynolds stress in these terms, 

- u v  = - u P v P  - uSv s - (uPv  s + uSvP}, (19) 

then we find: 

(1) uSv s is relatively small and slowly varying in time; 
(2) uPv p shows the same temporal behavior as uv  but is extremely small; 
(3) the cross term exhibits large temporal excursions, is relatively large itself, and has the temporal 

behavior of the full simulation. 

Since u p is essential for the recovery of the proper behavior of uv  and since it is small we termed these 
propagating modes the triggers for burst and sweeps. They appear to ignite bursting and sweeping. 

5.  R e m a r k s  a n d  C o n c l u s i o n s  

Inspection of Table 2 shows that the most energetic mode for Re~ = 125 is (0, 3, 1) and hence it has 
three full waves in the z-direction. Moreover, from Table 1 we see that for Re~ = 125 the spanwise 
width of the computational cell is 625 wall units. Therefore the roll size of this mode is roughly 100 
wall units, which is within the generally accepted range for the streak spacing (Sreenivasan, 1988). 
(For Re~ = 80 the situation is less clear.) 

Over the years many other structural forms have been observed, e.g., large eddies (Townsend, 
1966), hairpin vortices (Perry and Chong, 1982), transverse vortices (Praturi and Brodkey, 1978), and 
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so forth. The propagating modes introduced and discussed here are not necessarily independent of 
these, as these themselves are not necessarily independent of each other. We also note from Table 2 
that the most energetic of the triggering modes propagates at roughly 70 ° from the downstream 
direction and the next most energetic at roughly 60 ° . In addition it is important to note that the 
wavelengths of these modes are more or less in resonance with the streak structures themselves. 

We recall that Sreenivasan (1988) has suggested that the region in the neighborhood of peak 
Reynolds stress is analogous to the critical layer of transitional flow. The results of the present study 
support this notion. In fact the importance of the above-mentioned obliquely traveling waves is 
strongly reminiscent of the secondary instability which is essential to the transition process (Herbert, 
1988; Bayly et al., 1988). 

One aspect of this picture, however, remains enigmatic. The location of maximal turbulence 
production, as stated earlier, appears to be universally fixed at y÷ ,~ 14. This location we expect to be 
the source of the bursts and sweeps. However, the triggering mechanism is centered at y + =  
1 .58x / /~  and hence moves away from y + ~  14. (In physical units the actual location of (16) is 
y/6 = O(Re71/2) which moves toward the wall.) Since the length-scale of the triggering mechanism is 
roughly 100 wall units, for Re~ > 104 the connection between the mechanisms becomes tenuous. It 
may of course be the case that at such high Reynolds numbers other mechanisms come into play. 

We close by pointing out that the results of this study offer, at opposite extremes, some new 
possibilities for diminishing Reynolds stresses and enhancing the mixing process. 

A p p e n d i x  

The differential form of the mean momentum equation in the streamwise direction is 

d 1 dZu + 
dy + ( u v )  - Re~ dy 2 " (A.1) 

It should be emphasized that this is an exact expression. We verify, a posteriori, that - ( u v )  peaks for 
y÷T ~ .  Then, since (12) is valid in this limit, and for Re~'f 0% the condition that ( u v )  be stationary 
yields 

d z 1 
- -  - In y+  = 0. (A.2) 
dy +2 K 

This in turn yields (16). See Panton (1991) who has also obtained this result. 
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