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R_~0 =R~0 = Xb= Xa = 3.0 
RX b = RX~. = 1.0 
kl=k2= k~= k, = k~=k~= k,=k~= 1.0 
AB(t)=ratio of molecules formed by the reaction of trans- 

mitter A and transmitter B to T. 
(AB)l~(t)=ratio of molecular conglomerates of N (AB) 

molecules to T. 
(AB)N Rb(t)=ratio of receptor sites for transmitter B com- 

bined with (AB)~v to T. Sites blocked with (AB)N are 
unable to react with transmitter B and hence do not 
assist in bringing about the conductance change which 
leads to the depolarization of control neuron C 2 . 

k~, controls combination rate of transmitter A and transmitter 
B, = 10.0 

k~0, controls the rate for the combination of N A B  molecules 
into complex (AB)~, ----1.0 

kn, controls the decay of AB due to enzyme hydrolysis and/or 
diffusion, =0.005 

k~2, controls the decay of (AB)N due to enzyme hydrolysis 
and/or diffusion, = 0.0002 

k~3, controls combination rate of (AB)~ and receptor sites for 
transmitter B, = 1.0 

kay, long term decay constant of (AB)N Rb or equivalent, = 0.0. 
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Summary. Physical and especially biological systems be- 
have many times in such a way that the methods of linear 
system analysis are not adequate, even when "smMl" signals 
are used. 

This paper presents an approach which has been applied 
sueeesfully in the analysis of certain nonlinear biological sys- 
tems. The method is capable to recognize in these systems the 
linear and nonlinear element~. Furthermore these elements can 
be characterized and a functional sequence can be detected. 
Applications of the method are illustrated for the analysis of 
two biologicM systems and the synthesis of a physical system. 

Introduction 

Linear  i n p u t - o u t p u t  relationships m a y  be a val id 
idealisat ion for physical systems, bu t  biological sys- 
tems exhibi t  more f requent ly  a nonl inear  behavior.  

Nevertheless i t  is common to use techniques of l inear  
system analysis  for the s tudy  of these systems, since 
l inear techniques have general appl icabi l i ty  a nd  are 
quite s traight  forward. I n  contrast ,  the analysis  of a 
nonl inear  system is much more complicated a nd  any  
nonl inear  system m a y  present  a fresh problem to be 
solved on its own terms with a " cus tom des igned"  
approach. I n  some cases, however, more in format ion  
abou t  the system, such as the organizat ion of succes- 
sive stages, can be extracted from a nonl inear  t h a n  
from a l inear  system. 

I n  this paper  a method will be in t roduced tha t  can 
determine the sequence of l inear and  nonl inear  t rans-  
formations in  certain nonl inear  systems. This possi- 
bi l i ty contrasts  with the case of l inear  systems where 
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the sequence of transformations can never be deter- 
mined from the response of the system as a whole. 
We shall outline our method in par t  I of this paper, 
but  we must  emphasize tha t  this is not a general 
approach. Par t  3[I covers the mathematical  t rea tment  
and par t  I I I  describes applications of the method. The 
first two applications deal with the analysis of two 
biological systems, namely ganglion cell responses in 
the goldfish retina, and scalp potentials evoked in man 
by  spatially unstructured visual stimuli. The third ap- 
plication is the synthesis of a physical system --  in 
this case a polarity coincidence correlator. 

I. Outline o] the Method 
3[.1. Linear versus Nonlinear 

A system is defined as linear if the superposition 
principle holds for it. Fourier 's theorem states that  
any periodic signal can be written as a sum of sinusoids, 
each with its own amplitude and phase. Therefore the 
response of a linear system to any type of periodic 
input signal can be camulated when the behavior of 
the system is known as a function of the frequency of 
a sinusoid input signal. This allows the dynamic prop- 
erties of a linear system to be fully described by two 
characteristics only; namely the amplitude charac- 
teristic and the phase characteristic. In  contrast  with 
many  nonlinear systems both characteristics, and 
therefore also the dynamic behavior of a linear system, 
are independent of the amplitude of the input signal. 

All systems for which the superposition principle 
does not hold are nonlinear. In  addition a sinusoidal 
input  to such a system can give rise to an output  signal 
tha t  may  contain frequencies other than the input 
frequency. In  this paper we restrict ourselves to a 
special class of nonlinearities: the zero-memory single 
valued nonlinearities. The response of these non- 
linearities depends only on the amplitude and not on 
the frequency of a (sinusoidal) input signal. A common- 
ly used graphic representation of such a purely ampli- 
tude distorting element is given in Fig. 1. This figure 
shows the distortion produced by  a " l e a k y "  diode 
with characteristic y = / ( x )  to a sinusoidal input 
x(t) = =4 sin o> t. Because the input signal is periodic 
and the nonlinearity is of a single valued type Fourier 's 
theorem can be used to make a harmonic analysis of 
this output  signal. In  general each harmonic component 
in the series will have an amplitude and phase which 
depends on the amplitude of the sine wave input signal. 
This allows zero-memory single valued nonlinearities 
to be classified as follows: 

a) Smooth Static Nonlinearities. These are systems 
for which the function ](x) and all its derivatives are 
bounded continuous functions of x in the range of 
input  amplitudes A (lxl < A). A power series expansion 
of / (x )  is always possible for these systems. This means 
that  if the amplitude of a (sinusoidal) input is de- 
creased, the result is that  the amplitudes of the 
harmonics in the response are reduced in such a way 
tha t  the at tenuation is greater the higher the order 
of the harmonic. In  other words, the output  waveform 
grows more and more like the input sinusoid as the 
amplitude of the input is progressively reduced. These 
systems can therefore be investigated under such con- 
ditions tha t  their behavior is approximately linear, 
i.e. by using "small"  signals. 

b) Essential Static Nonlinearities. These are sys- 
tems for which f(x) or one of its derivatives are dis- 
continuous for one or more values of x, such tha t  
Ixl < A .  H the average value of the input signal takes 
a value of x o, and /(x) or one of its derivatives is 
discontinuous at  x = x 0, then the Fourier expansion 
of the output  signal of the nonlinearity to a sinusoidal 
input includes harmonics whose amplitude spectrum 
is independent of the amplitude of the input signal. 
In practice this means tha t  if the input amplitude is 
progressively decreased then there is no reduction of 
the harmonic content in the output  of this type of 
nonlinearity. 

< 
> 
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- - - ~ t  

output 

Fig. 1. A commonly used graphic representation of the response 
of a purely amplitude distorting element, in this ease a diode, 

to a sinusoidal input signal 

1.2. Linearizing 

Since the problem of analysing the second type of 
nonlinearity is not reduced by using " sma l l "  signal 
conditions it was necessary to develop another method. 
I t  turns out tha t  the harmonic content found in the 
response of an essential static nonlinearity to a sinus- 
oidal stimulus can be changed by adding an auxiliary 
input to the input sine wave*. The effect on the re- 
sponse of adding an au~ l i a ry  Gaussian noise to the 
sinusoidal signal is illustrated for an ideal half-wave 
rectifier: (y=-x for x > 0 ;  y----0 for x < 0 )  in the left 
column of Fig. 2. The Fourier series representation of 
the output  signal of this rectifier to an input sinusoid 
x(t) = A  sinw t solely (see Fig. 2a) is: 

A y (t) ---- ---Az -+- -~: sin o~ t 

2A { l~3 CO,~2cot+ ~ c o s 4 o ~ t  +_ 5 ~ c o s 6 w t +  ...t" 

As is evident from this expression, the ratio of the 
amplitudes of the output  harmonics is independent of 
the amplitude of the input sine wave. An auxiliary 
noise added to the sinusoidal input  signal acts as a 
"car r ie r"  whose effect is to shift the amplitude domain 
of the signal sine wave away from the breakpoint in 
the rectifier. On the average the sine wave signal is 
then more often in a region where ](x) is linear 
(Fig. 2b). Therefore the breakpoint is masked more 
and more as the signal to noise ratio is reduced, and 

* "The auxiliary input" must be uncorrelated with the 
sine wave signal and may take quite a number of forms: 
Gaussian noise, sinusoid, triangle etc. 
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the  sys tem gives a progress ively  more s inusoidal  re- 
sponse*.  I f  the  dc -componen t  in the  response is 
neglected,  then  the ave raged  response app rox ima te s  to : 

A 
y (t) = ~ -  sin co t.  

A minor  po in t  is t h a t  the  o u t p u t  of the  fundamen ta l  
componen t  is only  half  the  i n p u t  amp l i t ude ;  this  
or iginates  f rom the  fact  t h a t  the  aux i l i a ry  noise pro- 
duces a shif t  which in this  case is symmet r i ca l  a b o u t  
zero. 

a 

T B=!A 2 

I t 

the  ampl i tude  of the  f u n d a m e n t a l  componen t  (n = 1) 
in the  response of a l inear  rectifier,  while in contras t ,  
the  ampl i tude  of this  componen t  does a l t e r  in a quad-  
ra t ic  rectifier.  F o r  the  la t te r ,  however,  the  amp l i t ude  
of the  second ha rmonic  ( n = 2 )  remains  cons tan t  
(Fig. 3). 

I t  follows f rom this  t h a t  the  re la t ionship  be tween 
on the  one h a n d  the  re la t ive  ampl i tudes  of the  o u t p u t  
harmonics ,  a n d  on the  o ther  h a n d  the  i n p u t  signal  to 
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An linear rectifier 

n ~ !  
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Fig. 2. Left column shows diagrammatically the response of a 
linear half-wave rectifier for a sine wave input signal (a) and 
for a sine wave with added noise (b). Right column figures 
show the linearizing effect of a sine wave auxiliary signal 
(B sin fl t) added to a sine wave stimulus (A sin w t). These out- 
put signals of a half-wave linear rectifier are averaged with a 
CAT computer, whose sweep is triggered by the sine wave 
stimulus (A sin to t) (co = 8 cps; fl = 11 eps). The upper figure 
shows the familiar half-wave rectified sine wave, obtained 
without adding an auxiliary signal, i.e. B = 0. With increasing 
amplitude B the distortion in the response reduces, until for 
B =  2A an almost pure sinusoid is obtained (bottom figure). 
Comparison of upper and bottom figure shows that the ampli- 
tude of the fundamental component in the response is not 
effected by the auxiliary signal. This is characteristic for a 

half-wave linear rectifier 

Fig. 3. 
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(B sin fl t) added to a sinusoidal stimulus (A sin o) t) for a half- 
wave linear and a half-wave quadratic rectifier. The figures 
show, as a function of the signal to "noise" ratio AS/B 2, the 
calculated amplitude ratios Anh/An for different values of n. 
An is the amplitude of the n-th harmonic in the output signal 
for a sinusoidal input; and Anh is the (averaged) amplitude 
of the n-th harmonic in the output for a sinusoidal input plus 
an auxiliary signal. These curves show that the variation in 
the amplitudes of the harmonics with the input signal to 
"noise" ratio enables the determination of the characteristic 

of the rectifier 

I t  can be shown t h a t  the  o u t p u t  of a s ta t ic  non- 
l inea r i ty  is l inear ized no t  only  by  Gauss ian  noise bu t  
also b y  a lmos t  a n y  per iodic  aux i l i a ry  signal,  such as  
sinusoids,  square waves,  t r iangles ,  etc. The r ight  
column of Fig.  2 gives an  example  of how the o u t p u t  
of a ha l f -wave l inear  rect if ier  can be l inear ized b y  
increas ing the  amp l i t ude  B of an  a d d e d  aux i l i a ry  
sinusoid.  

The effect of the  var ious  aux i l i a ry  signals upon  the  
ampl i t udes  of the  o u t p u t  ha rmonics  can be ca lcu la ted  
for different  t ypes  of nonl inear i t ies  (see I I ) .  As could 
be expec ted  the  re la t ion  be tween the ampl i tudes  of the  
o u t p u t  ha rmonics  and  the  s ignal  to  " n o i s e "  ra t io  
depends  on the  charac ter i s t ic  of the  nonl inear i ty .  F o r  
example ,  changing the  amp l i t ude  of the  i n p u t  " n o i s e "  
- -  in th is  case an  aux i l i a ry  sinusoid - -  does no t  affect  

* I t  is not the " raw" response which is linearized but 
the response after time-locked averaging; see II. 

" n o i s e "  ra t io ,  can be used to  de te rmine  the  charac-  
ter is t ics  of the  nonl inear i ty .  There  is of course no need 
to use such an  e labora te  me thod  for mere ly  measur ing  
the  character is t ics  of a s ta t ic  nonl inear i ty .  The power  
of our method ,  as we shall  show below, lies in i ts  
ab i l i t y  to  de te rmine  the  func t iona l  sequence of l inear  
and  nonl inear  t r ans fo rmat ions  in a sys tem which con- 
ta ins  a s ta t ic  nonlinea1~ty. I n  addi t ion ,  the  l inearizing 
phenomena  can be used to de te rmine  the  character is t ics  
of the  var ious  ind iv idua l  elements.  

1.3. L u m p e d  Nonl inea r  Sys tems  

The simple l umped  nonl inear  sys tem shown in 
Fig. 4 will be used to  demons t r a t e  the  l inear iz ing 
method .  This sys tem consists of two l inear  e lements  
[with t rans fe r  funct ions  H10"o2 ) and  Hs(j~o ) respec- 
t ive ly]  which are  sepa ra t ed  b y  a s ingle-valued zero- 
m e m o r y  non l inea r i ty  z ---- ] (y). Given a s inusoidal  signal 
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x(t), then the output  signal y(t) of the first linear 
element Hl(jw ) is also a sinusoid. The relations be- 
tween the amplitudes and phases of the input and 
output  sinusoids are determined only by  the/requency 
of the input sinusoids. On the other hand, the output  
of the type of nonlinear element chosen depends only 
on the amplitude of the input sine wave y (t). Therefore 
the input sinusoid contains two parameters,  for one 
of which (amplitude) the nonlinearity is sensitive and 
for the other of which (frequency) the linear element 
is sensitive. Since these two parameters can be varied 
independently of each other, it is in principle possible 
to determine the individual characteristics of the linear 
and the nonlinear elements. 

input of H 1 (j~) was kept constant. Assume next tha t  
doubling the frequency of the auxiliary signal increased 
the ratio A2h/A e from 0.4 to 0.7. By  comparing these 
data with the linearizing graph it would have been 
found tha t  for example, A~h/Ae=0.4 for (A/B)e= 1 
and A2h/A2:0.7 for (A/B)2=4 at  the input of the 
nonlinearity. Thus, in this hypothetical case, the am- 
plitude of the auxiliary sinusoid would have been re- 
duced by  a factor of 2 as its frequency was raised by 
one octave. This would mean that  the first linear 
element Ht(io) ) had an at tenuation of 6 db/octave in 
the frequency range f l -  2ft. By repeating the proce- 
dure for various frequencies fl the entire amplitude 
characteristic of H 1 (jw) could be obtained. 

~ u~output 

Fig. 4. A nonlinear system consisting of two linear elements 
with transfer functions H x (j w) and H~ (j ~o) respectively, which 
are separated by a single-valued zero-memory nonlinearity 

z=l(y) 

As previously mentioned, when the input signal 
x (t) is sinusoidal, then the input to the nonlinearity is 
also a sinusoid. However, knowledge of the input wave- 
form to the nonlinear element is not sufficient to de- 
termine the characteristic z=/(y) ,  since the ampli- 
tudes of the output  harmonics are still weighted by the 
second linear element He(j~o ). When an auxiliary sine 
wave B sin flt  is added to the sinusoidal input signal, 
then the incoming signal to the nonlinearity consists 
of the algebraic sum of the separate responses of the 
first linear element to the sinusoidal stimulus and the 
supplementary signal. In  general two frequencies (o 
and fl can be selected such that,  when they reach the 
nonlinearity, the ratio of the amplitudes of these two 
sine waves is approximately the same as at the input 
of the whole system. By varying the signal to "no ise"  
ratio, the amplitudes of the output  harmonics of the 
system can be measured as a function of the signal to 
"no ise"  ratio at  the input of the nonlinear element. 
A graph similar to that  shown in Fig. 3 results. The 
shape of the curves in this graph depends only on the 
characteristic of the nonlinearity and not at  all on the 
transfer functions H 1 (jeo) and He(jco ). The character- 
istic /(y) of the nonlinearity can be calculated from this 
graph. If, however, the curves prove to be complicated 
functions, it is preferable to determine first the ampli- 
tude and phase characteristics of the linear element 
Hi(j~o). 

The Amplitude Characteristic Hi(co ) can be de- 
termined from the way in which the linearizing effect 
of the sinusoidal auxiliary signal upon one of the out- 
put  harmonics varies as a function of its frequency ft. 
The sinusoidal input signal must  retain the same fre- 
quency in the successive experiments, so as to keep 
the influence of the transfer function H e (jw) constant. 
Suppose tha t  in the lincarizing experiment described 
above, measurements of the second harmonic had been 
used to determine the amplitude characteristic of the 
first linear element Hl( jw ) and suppose also for sim- 
plicity that  the signal to "no ise"  ratio (A/B) at  the 

y = cos f i t -s in  2 fit y=cos fit+cos 2fit 

�9 2 y 

) (y) 

1.2 

-2 -1 0 
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I 2 
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p (y) 
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-0.2 j 

I I 
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Fig. 5. Amplitude density distribution of a waveform that 
consists of two cosines with equal amplitudes and periodicities 
fl and 2ft. As shown, this distribution is a function of the 
relative phase ~ between the two cosines. Hence, also the 
linearizing effect of this waveform depends on the relative 

phase 

Phase Characteristic, r (w). Only for a linear mini- 
mum-phase shift system are the amplitude and phase 
characteristics in a one to one relation with each other. 
Since considerable phase shifts due to delay are not 
uncommon, especially in biological systems, it may  be 
useful to determine the phase characteristic ~I(C0) Of 
the first linear element. This phase characteristic can 
be determined by using an auxiliary signal which con- 
sists of two sine waves with frequencies/~ and 2ft. Since 
the amplitude characteristic of H 1 (jo~) is available by 
using the method described above the amplitudes of 
the two sine waves, with frequencies fl and 2fl, can be 
chosen in such a way that  they are equal at  the input 
of the nonlinearity. 

As will be shown in I I  the linearizing effect of an 
auxiliary signal is a function of its amplitude density 
distribution. Fig. 5 shows tha t  the amplitude density 
distribution p(y) of the auxiliary signal y(t)= 
sin flt  + sin(2fl t + 4) is a function of the phase ~b be- 
tween the two constituent sinusoids. This means tha t  
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the linearizing effect of the waveform y(t) is also a 
function of the relative phase r between the two 
sinusoids at the input of the static nonlinearity. The 
phase is known at  the input o f / /1  (}eo) and thus the 
phase shift due to this process is also known over one 
octave. By repeating the procedure for various fre- 
quencies/~, the phase characteristic of the H 1 (~eo) can 
be determined from the way in which the amplitude 
of a single harmonic in the output  of the entire system 
varies as a function of the frequencies in the auxiliary 
signal. This is illustrated in Fig. 6 for a hMf-wave linear 
rectifier. The graph illustrates (see also Fig. 3) that  
two sinusoidal auxiliary inputs may  have a smaller 

0 . 5 5  

0 . 5 0  

0.45 

0,40 

A2h 

A 2 

input: A sin m t 
auxiliary signal: B cos [3 t ,  [5 cos(213 t* ~) 

Sffi A 

"~  i I L t i t i I 
0 '  9 0  ~ 180"  2 7 0  ~ 3 6 0  ' 

Fig. 6. Lineariziag effect of an auxiliary signal, which is the 
sum of two sinusoids, upon the second harmonic in the output 
of a linear half-wave rectifier to a sinusoidal input A sin oJ t. 
The figure shows the amplitude ratio of the second harmonic 
A~h/A 2 as a function of the relative phase ~. The dependence 
of this ratio on the relative phase ~ becomes stronger for de- 
creasing signal to "noise" ratio, since the slope of the linear- 
izing curve increases for decreasing values of N (see Fig. 3) 

llnearizing effect than one sinusoidal auxiliary input 
only. This may  occur even when the two sinusoidal 
auxiliaries have a larger peak to peak amplitude than 
a single auxiliary sinusoid. 

The Trans/er Characteristic H~(]o)) can now be de- 
termined by  direct sinusoidal measurement,  i.e. with- 
out an auxiliary signal, since we know the characteris- 
tics of the first frequency dependent element. This 
allows us to keep the input sine wave to the non- 
llnearity constant in amplitude and phase. Since the 
nonlinearity is static, its output  harmonies are then 
also constant in amplitude and phase, independently 
of the frequency of the sinusoidal input  signal�9 There- 
fore the input signal to H2(?'w) is known, and hence 
the transfer function of the second linearity can be 
determined by varying the frequency of the input 
sinusoid x (t) to the entire system�9 

A more elegant method, however, is to obtain the 
crosscorrelogram between the input signal and the re- 
sponse of the whole system�9 With white noise as the 

input signal it can be shown tha t  this crosscorrelogram 
represents the impulse response of the linear elements 
in the system only (Bnssgang, 1952). However, it 
should be noted that  the sequence of the processes 
can not be found by  this method (see also II.3). 

II.  Mathematical Treatment 
The mathematical  t reatment  is restricted to the 

class of nonlinearities for which the Laplace transform 
exists. I t  has been found tha t  many  physical and bio- 
logical systems can be described in terms of this type 
of nonlinearity. 

II.1. General Computation of A n and Anh 
Let in the domain ~ < Re ~ < fl the function F(~) 

be the two-sided Laplace transform of a single valued 
zero-memory nonlinearity y =/(x). Then: 

c+ioo 

1 f F(~)exp(~x)d~, (1) y =  /(x)---- 2uj 
fi --~oo 

with m < e < fl. 
For an input signal x (t) = A cos co t + h (t), where 

h(t) is the auxiliary signal, Eq. (1) becomes: 

e+ioo 

1 f F(~) exp [~ A cos (o t] y(t)-- 2zj  (2) 
C --~OO 

�9 exp [~h(t)] d~. 

By use of the Jacobi-Anger formula: 

exp [~A cosec t] = ~ enIn(A~)cosnwt; (3) 
n ~ 0  

where e,~ is the Neumann factor e o = 1, an----2 (n = 
1, 2 . . . .  ) and I n is the modified Bessel function of the 
first kind. Hence it follows tha t :  

1 (30 

y (t) ---- -2~j-j �9 e~ 

r ~+joo l (4) .[ f F(~)In(A~)exp[~h(t)]d~J eosneot .  
Le --1 oo 

The auxiliary signal h (t) is added in order to linearize 
the harmonics in y (t) which originate from the sinus- 
oidal input  signal�9 The contribution of h (t) to the out- 
put  signal can be reduced by  time-locked averaging 
of y (t). This operation can mathematical ly be expressed 
as the erosscorrelation of the signal y (t) with a periodic 
&function with periodicity wo and whose area amounts 
to T o per period (T o = 2z/wo): 

T 

1 f K r ~ -  y(t) ~ 5 ( t - -mTo--v )d t  (5) 
m ~ 0  

0 

where T = K T o . 
Substitution of Eq�9 (4) in the above expression 

g i v e s  : 
T c + ~  

r ~ (3) = ~oo ~ Y' F(~) & (A ~) ~=o.=o (6) 
0 c - j c ~  

�9 exp [~ h (t)] d~ cos n w 0 t • ~ (t - -  m T O --  T) dr. 
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I f  h (t) is an ergodic signal with a first order amplitude Laplace 
density distribution p (h), its moment  generating func- gives: 
tion M h ($) is : 

+ c o  

M ~ ( ~ ) ~  f e x p ( ~ h ) p ( h ) d h .  
- - o o  

Since h(t) is ergodic, M h (~) can also be expressed as 
a t ime average: 

T 

0 

By a simple limiting operation, the last expression can 
be shown to be equal to:  

�9 1 K 

= K f0exp ro) . 
S u b s t i t u t i o n  of the above expression in Eq. (6) gives: 

~(~)  
c+1oo 

= ~ en f F ( e ) l , ( A e ) M a ( e ) d e c o s n o ~ o ~ .  (7) 
2z~j 

Thus the amplitude Anh of the n-th harmonic 
originating from the sinusoidal input  signal plus ergodie 
auxiliary signal is: 

c+io~ 
_ ea f F(~)I ,~(A~)M~(~)d~"  An~- -  Anh 2n j  a ' (8) 

n----0,1,2 . . . . .  

When h (t) ---- 0; M~ (~) = 1. The amplitudes of the har- 
monics in the output  of a purely sinusoidally driven 
nonlinearity [ (x) are then: 

c + i o ~  

*- f A . - -  2n j  F ( ~ ) I , ( A ~ ) d ~ ;  
- ioo (9) 

n----0,1,2 . . . . .  

11.2. Calculation 
of A,h and A~ for a Few Nonlinearities 

We shall restrict ourselves to a particular class of 
nonlinearities which are discontinuous only at  x = 0. 
I t  is not a fundamental  l imitation to consider only the 
half-wave types of this class of nonlinearities: 

y =  ~, a , x  ~, x ~ O  

y = 0 ,  x < 0 .  

Since the Laplace transform is hnear, one has under 
certain restrictions (Papoulis, 1962) : 

L ~ x ~ = L a, x ~ , 

and the influence of an auxiliary signal upon the sys- 
tem response can be examined for each individual term 
in the power series expansion. Therefore it is sufficient 
to consider the restricted system: 

y = a ,  xL x>=O 

y = 0 ,  x < 0 .  

transformation of the above characteristic 

F(~) = a ,F(v  + 1)/~,+~. (10) 

Substitution in Eq. (9) gives: 

A, I ' ( v+  1) 

The frequency fl of the sinusoidal auxiliary signal 
h (t) = B sin flt  must  be chosen such tha t  for the range 
of values of n and k of practical interest nvo ~ kfl 
(n = 1, 2, 3 . . . .  and k ~-- 1, 2, 3 . . . .  ). Then the output  
harmonics of the nonlinearity tha t  arise from the 
auxiliary signal are of different frequencies to the out- 
put  harmonics evoked by  the sinusoidal stimulus. The 
amplitude density distribution of h(t) is: 

1 
p(h) --  n V ~ = h ~  , [h(t)] ~ B 

p (h) = 0, [h (t)] > B.  

Taking the moment  generating function Mh(~) of p (h) 
and substitution of Mh(~) in Eq. (8) gives: 

e+j~ 
ena, F(v+  1) J In(A~)I~ d$. (12) 

2~ j  ~+i 

Eq. (12) is the Weber-Schafheitlin integral. Calcula- 
tion (see Watson, 1962) gives: 

for A > B 

v n m V \  en a~ F (v + l ) sin (n -- v) ~ " A ( ~  ) 
Anh = 

, -  ~ ; 1 ; N  

and for A < B 

(13) 

= .N~/~B,F (n~ ~ ) e n a~ F(v + 1) sin (n -- v) 
Anh ~- 

~. 2,+~r (1- "--~). r ( , +  ~) 

z ( " ;  , . + ,  , 

(14) 

whilst for A =  B both expressions are identical and 
can be brought into the form: 

s n a, { F(v + 1)}3 sin (n - v) ] -  

where N s = A~/B 2 : the signal to "no ise"  ratio. 

* The symbol 2F1 denotes the hypergeometric function, 
which is defined as: 

r=o r!O')r xL 
where 

/ ' (~+r)  
(e)r = e(~r 1)... (cr r - -  1) = F(~) 
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From Eqs. (11), (13)--(15) the quotient A,hlA n is 
found to be: 

Fl (n - -v  n + ~ .  1 ; ~ )  Ns> 1: Anh " 2 2 " 
A n  - -  2 , , , 

~ = 1 :  A~h F@+I )  

(16) 
N s < l  : An,, __ N ( ~ n - ' ) / ' F ( I + ~ )  

�9 , , . 

Fig. 3 shows for different values of n and as a function 
of the signal to "noise" ratio N s the calculated Anh/A . 
curves for a halfwave linear and a half-wave- quadratic 
rectifier. 

II.3. Correlation Function Method 

As mentioned already in 1.3, the dynamic charac- 
teristics of the linear elements in a system containing 
a static nonlinearity can be measured directly with 
the crosscorrelation method of Bussgang (1952). For 
the nonlinear system of Fig. 4 this method can be 
demonstrated easily as follows: 

The crosscorrelation function r is defined as 
the expectation of the product of the signals x(t) and 
u(t) :  

r = E { ~ ( t )  ~ ( t +  ~)}. 
Using the convolution integral, one finds: 

where h~(v) is the weighting function of the second 
linear element; h2(v ) and H2(jeo ) are related by a 
Fourier transform (see Fig. 4). In  a reduced version 
the theorem of Price (1958) states that for a Gaussian 
variable y -- with zero mean and unity variance --  
passing through a static nonlinearity z = / ( y ) :  

E{x(t) z(t + ~)} = CE {x(t) y(t + v)}, 

where C is a constant determined by the characteristic 
of the nonlinearity. Substitution of the above expres- 
sion gives: 

CO 

r = c f / ~ ( v )  E {x(t)  y (t + ~ - v)} dv. 
0 

With x(t) a white noise (zero mean value and unity 
variance) one finds directly: 

OO 

~ ( t )  = 0 f hdv) h~(~:--v) dv. 
0 

Evidently a sequence of linear processes cannot be 
split up by this method. 

The method of triggered correlation (de Boer and 
Kuyper, 1968) is related to the above described one. 
Their method holds for a nonlinearity of a type that  
takes a sample of one signal x(t) whenever the other 
signal y(t) passes a pre-set threshold. De Boer and 
Kuyper (1968) applied their method succesfully to the 
analysis of spike trains in primary auditory neurons. 
Although this method has also a linearizing effect, in 

its present form it is likewise inappropriate to detect 
a sequence of linear processes. 

I I I. Applications 
Three applications of the linearizing method will 

be presented. The first two deal with the analysis of 
biological systems and the last one illustrates the 
synthesis of a physical system. 

III.1. Rectification in the Goldfish Retina 

A commonly found type of response in the goldfish 
retina originates from phasic ganglion cells. These 
ganglion cells are characterized by their response to 
low frequency stimuli. They give a sustained discharge 
of spikes during either the positive or negative slope 
of a low frequency (0.5 cps) triangularly modulated 
stimulus waveform; to the on or offset of a light 
stimulus they respond with a short burst of spikes. 
The descriptive classification of these responses into 
" o n " ,  "o f f "  and " o n " - " o f f "  types suggests that  the 
distortion in these ganglion cell responses may be due 
to rectifying processes, so that  phasic units might 
provide a useful exercise in applying the principles of 
linearizing. 

stimulus B cps stimulus 8 cps; 60% 

\ f 

L/ ',; 

stimulus only; 5% no background octiv~y 

stimulus (5"/.) plus spontaneous 
auxiliary signal (55"I.) 

,.:;-. .;.~::. ~..:. . . . ,  ~: :i:f"'::~ . . . .  :i-<"::~ :, 
�9 , . . ' ,@~  . . . . .  . ~ . . .  

Fig. 7. The responses demonstrate the linearizing effect of an 
auxiliary signal (first column) and spontaneous spike discharge 
(second column). The circular light spot focused on the retina 
has a dia. of 1.2 mm (first column) and 2.5 mm (second column). 
The number of summations is 300 for Fig. a and 400 for 
Fig. b--d. The calibration bars are 20 spikes/bin. The bin 
duration is 625 ~sec. In Fig. a and c the lowest points re- 
present the zero count level. This holds approximately also 
for Fig. b whereas for Fig. d the lowest address points represent 
a firing rate of the order of 4 spikes/see. The average intensity 
of the stimulus passed through a Wratten 29 filter is ap- 
proximately 1 iLW/cm2. All responses are from red "oH" units 

Fig. 7b shows the effect of adding a 0.5 cps 
triangular auxiliary signal with a modulation depth 
of 55% to a sinusoidal stimulus of frequency 8 cps 
and a modulation depth of 5%. In  contrast with the 
half-wave rectified response found when the stimulus 
is a simple sine wave (Fig. 7 a), an almost pure sinus- 
oidal response is found after addition of the triangular 
auxihary signal. 
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An additional interesting feature is the linearizing 
effect of the neural noise itself. This phenomenon is 
illustrated in Fig. 7c which shows the usual rectified 
response from a red "o f f "  unit to a sinusoidal stimulus 
with a frequency of 8 cps and 60% modulation depth. 
During the experiment the spontaneous discharge rate 
was observed to be increasing. When it reached a 
frequency of 30 spikes per scc an almost linear response 
was obtained even for a stimulus of 60% modulation 
depth (Fig. 7d). 

These data show that  an almost pure sinusoidal 
response can be obtained either by adding an auxiliary 
input to the sine wave stimulus or by spontaneously 
occurring neural noise. Since the amplitude of the 
fundamental component is not much influenced by the 
external or internal noise whereas the second harmonic 
is strongly diminished, the distortions observed in the 
discharge pattern of the phasic ganglion cells to 
"smal l"  signal stimulation are of the type produced 
by a half-wave linear rectifier. 

We also studied the dynamic characteristics of the 
ganglion cell responses and could show that for ex- 
ample a first-order low frequency and third-order high 
frequency attenuation occurs at a functional stage, 
preceding the rectifier (Spekreijse, ]969). 

III .2.  Visually Evoked Scalp Potentials in Man 

The visually evoked EEG potentials that  can be 
recorded in man from the scalp electrodes in the oc- 
cipital region belong to the class of the slow potentials. 
The responses to sinusoidally modulated light often 
show considerable harmonic distortion. One of the most 
striking effects observed for subjects with pronounced 
~-activity (i.e. the frequency preponderence around 
10 cps in the spontaneous EEG) is the appearance of 
a second harmonic component for a stimulus frequency 
of about half the co-frequency. In these same subjects 
the fundamental component dominates in the response 
when stimulating with a frequency near the s-rhythm. 
I t  has been shown that the amplitude of the funda- 
mental component in the response is proportional to 
the modulation depth of the sinusoidal stimulus, up 
to a certain value that depends on the size of the 
visual field, average luminance etc. Such a linear rela- 
tion holds also for the second harmonic in the response 
except for a small deviation at modulation depths ap- 
proaching zero. This deviation can be explained by 
the influence of quantal noise (van der Tweel and 
Spekrcijse, 1969). 

These findings indicate that, just as in the case of 
the spike discharge in the goldfish retina, the distor- 
tions in the human evoked responses can be described 
-- to a first approximation -- as linear rectification. 
This also follows directly from the data given in Fig. 8. 
This figure shows the linearizing effect of sinusoidal 
auxiliary inputs. The hnearizing effect on the second 
harmonic decreases as the frequency of the auxiliary 
input is increased. The amplitude of the fundamental 
frequency in the response, however, is not effected. 
This type of experiment leads to the conclusion that 
high-frequency attenuation occurs before the non- 
linear stage in the human visual evoked response sys- 
tem, The transfer function of this attenuating stage 
has been measured with the method described in I 
and compares favorable with the data found for the 
goldfish retina. 

III .3.  Polarity Coincidence Correlator 

The correlation function (~12(T) is a useful tool to 
detect e.g. hidden periodicity within a signal (auto- 
correlation) or to provide a quantitative measure of 
the interdependency between two signals (crosscor- 
relation). The function is defined as: 

§  

~b, 2 ( T ) :  lim ---T [" x(t) y (~+T)d t  (17) T-~cr .! 0 
where T is the independent time-delay variable, T is 
the integration time, and x(t) and y(t) are the two 
signals studied. 

sinusoidal auxiliary signal m=10% 
stim. 5.Scps; m =10 % stim. 11.1cps; m = 10 % 

stimulus ~ stimulus 

5.5cps* ~ 11.1cps* % 
60 cps go cps 

5.5cps* ~ ll.lcps* / ~  
30 cps 60 cps 

I IOHV 
5.Scps~ ~ / ~  
25cps 

111 cps * 
30cps 

5.Scps* 
23 cps 
5.Scps~ 11.1cps* - - ~  
21cps / ~  24cps 

5.5 cps* _ ~  / 
20cps ~ "  ll.lcps* 
5.5 cps~ 15cps 
lOcps 

Fig. 8. Occipital responses to sinusoidally modulated light with 
frequencies of 5.5 cps (left column), and 11.1 cps (right column). 
Added to this sinusoidal stimulus is a sinusoidal auxiliary 
signal with the same modulation depth (A/B~ 1). The left 
column shows that the effect of decreasing the frequency of 
this auxiliary signal is to enhance the linearizing effectiveness 
of the auxiliary signal. This indicates at once that high fre- 
quency attenuation preceeds the distorting stage. Since the 
auxiliary signal has scarcely any influence on the amplitude 
of the fundamental component in the response (right column), 
the distortions in the human evoked responses can be ascribed 

to linear rectification 

In most experiments, on-line measurement of (~12 (T) 
is of main importance and sufficient information can 
be obtained by determining the function at only a 
discrete set (e.g. 50) of fixed delays v. These delay 
units constitute the major difficulty in designing a 
correlator as it is difficult and expensive to build an 
accurate delay line with a large number of taps. I t  
is, however, established that only the sign of the 
signals x(t) and y(t) are sufficient to evaluate ~bl~(v ). 
Thus this technical problem is greatly simplified, since 
the delay line consists of a simple shiftregister. 

The sign of signals can be determined with a clipper. 
Since a chpper belongs to the class of rectifiers (0-th 
order rectifier), the addition of auxiliary signals to 
the input signal linearizes the output signal. This effect 
of auxiliary signals on the correlation function has 
been described for the first time by Vcltman and 
Kwakernaak (1961) and by Jespcrs et al. (1962). 
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Fol lowing the techniques  presented  in this  paper ,  
Fig.  9 shows for different  values  of n and  as a funct ion 
of the  signal to " n o i s e "  ra t io  N the  ca lcula ted  Anh/A n 
curves for an ideal  clipper.  This f igure demons t ra t e s  
t h a t  aux i l i a ry  signals can be d is t inguished b y  the i r  
l inearizing effectiveness.  A measure  for the  l inearizing 
effectiveness of an aux i l i a ry  signal in the  case of an 
a symmet r i c  non l inea r i ty  is:  

L i n =  A,h/AI , N ~ 1. (18) 

Un~2 (Anh/An) 2 

1.0 

0.6 

0.0 

Alh 
A1 

t i I I l I I I I I N 
5 I0 

to A~ih 
A3 

0'0 l : _  , , , "  

-- 0.4 

1.0 

0.6 

0.0 

-0,4 

A S h  - - s i n e  w a v e  
A 5  . . . . . . . . . . . . .  G a u s s i a n  no ise  

. . . . . . .  t r i a n g l e  

5 10 

Fig. 9. Linearizing effect of three auxiliary signals --  Gaussian 
noise, triangular and sine wave --  upon the amplitudes of the 
harmonics in the output of an ideal clipper to a sinusoidal 
input signal. This figure demonstrates that for the given non- 
linearity a triangular auxiliary signal is optimal since for signal 
to noise ratios N ~  ~ only the fundamental component is 

present in the output of the clipper 

I.e. : t h a t  aux i l i a ry  signal  is opt imal ,  which resul ts  in 
a m a x i m u m  value  of Lin for a given signal  to  noise 
ra t io  N (N ~ 1). Based on this  cri terion,  aux i l i a ry  
signals with rec tangu la r  ampl i t ude  dens i ty  d is t r ibu-  
t ions have an op t ima l  l inearizing effect for an  ideal  
clipper�9 This follows also d i rec t ly  f rom Fig.  9, since 
for N < 1 only  the  fundamen ta l  componen t  is p resen t  
a t  the  o u t p u t  of the  clipper,  if a t r i angu la r  aux i l i a ry  

signal - -  which has  a r ec t angu la r  amp l i t ude  distr i-  
but ion  - -  is used. 

These considera t ions  were used in the  design of 
an  on-line po l a r i t y  coincidence corre la tor  t h a t  has been 
bui l t  in our  l abora to ry .  A shif t  register ,  consis t ing of 
flip-flops, acts  as the  de lay  line. A different ly  de layed  
signal  is p resen t  a t  each flip-flop, and  these can be 
t a p p e d  so as to ob ta in  s imul taneous ly  the  required 
number  of delays.  The  au tocor re la t ion  funct ion of a 
s inusoidal  signal,  measured  with  this  correlator ,  is 
p resented  in Fig.  10 as  a funct ion of the  ampl i tudes  

without auxiliary signal 
:�9 :. /. 

. . �9 . 

-:/:-../ "v" - 
with added Gaussian noise 

l "-. A /.. 
%(o /"- "". : ' .  No~ - ;  \ ;  :..; - 2 

"v" "~: '~" \ 

with triangular signal 

~011 (.t,) I \ ...^-. --'-.. ft.. n_.3. - / , , / , / ' ,  2 
"..; -, . , �9 : , .  ... 

Fig. 10. Autocorrelation functions of a sinusoidal signal meas- 
ured with a polarity coincidence correlator. The upper curve 
shows the triangular waveform that is found without auxiliary 
signal added to the sine wave. The middle curve shows the 
linearizing effect of a Gaussian noise; the bottom curve is 
the "real"  autocorrelation function, obtained by adding a 
triangular auxiliary signal to the input sine wave. Comparison 
of the lower two curves shows that the linearizing effectiveness 
of a triangular auxiliary signal exceeds that of Gaussian noise 

of the  two aux i l i a ry  signals t h a t  are  added  to  both  
x (t) and  y ( t ) =  x (t ~ T). The requi red  s ta t i s t i ca l ly  in- 
dependen t  aux i l i a ry  signals wi th  ident ica l  r ec tangu la r  
amp l i t ude  dens i ty  d i s t r ibu t ions  can be cons t ruc ted  
with  a me thod  given by  Peek (1967). The curves in 
Fig.  l0  demons t r a t e  t h a t  for an  aux i l i a ry  i npu t  of suf- 
f ic ient ly  large ampl i tude ,  a po la r i ty  coincidence cor- 
re la tor  can be ut i l ized for measur ing  the real cor- 
re la t ion funct ion r ~ (T). 
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Abstract. The ability of a neuron network to process 
information depends upon the ability of the individual neurons 
to transport impulses and to control the signal transport 
process in other neurons. The transport process for the action 
potential seen at the axon depends upon the excitable charac- 
teristic of the neural membrane. Propagation of signals in the 
dendrites, where synaptic imputs are most likely processed, 
is not clearly understood. Extracellular recordings of dendritic 
systems indicate that the dendrites are partially excitable and 
can conduct spikes. Further, electrical stimulation of the 
reticular formation or specific thalamic nuclei suggest that 
the conduction process can be modified in the dendrites of 
cortical cells. 

A Mode Control model is described which demonstrates 
many of the observed transport and control properties of 
dendrite and axon membrane. The model is based upon a 
simple extension of Fitzhugh's BVP model. Lateral transport 
over the membrane has been introduced by applying Kirch- 
hoff's laws. Reinterpreting the variables, the influence of 
membrane potential, pH, and calcium ions can be identified. 
Modification of the voltage-current characteristic of the 
membrane model can change the axon model to a dendrite 
model. The dendrite model possesses a diffusion equation mode, 
a wave equation mode and a pulse mode. Signals are trans- 
ferred in the wave and pulse mode and blocked in the diffusion 
mode. The dendrite's mode is controlled by the "resting" 
depolarization level. Experimental evidence tends to confirm 
these phenomena. 

I.  Introduction 
The ab i l i ty  of a neuron  ne twork  to process infor- 

ma t ion  depends  upon  the  ab i l i ty  of the  ind iv idua l  
neurons  bo th  to t r a n s p o r t  impulses  and  to  control  this  
t r a n s p o r t  process  a t  o ther  neurons.  Fol lowing Moruzzi 
and  Magoun 's  (1949) work  on the  re t icu la r  a rousa l  
mechanism,  m a n y  inves t iga tors  have  observed t h a t  
the  neura l  s ignal  t ransfe r  process can be control led b y  
neurons  in o the r  regions of the  b ra in  (Hernandez-  
Peon,  Jung ,  Towe, Arden  and  Soderberg).  I t  appea r s  
t h a t  s ignal  t ransmiss ion  a t  the  nerve is contro l led  b y  
modif ica t ion  of the  t empora l  response of the  nerve.  To 
be more specific, the  t empora l  response of the  ne twork  
depends  upon  the  t empora l  response of the  ind iv idua l  
neurons,  so t h a t  re t icu la r  a rousa l  logical ly implies  t h a t  
the  t empora l  response of the  ind iv idua l  neurons  can 
be modified.  As an  example  of the  opposi te  s i tua t ion ,  
the  t e m p o r a l  response of Ra l l ' s  dendr i t ic  membrane  

* The work described in this paper was performed while 
attending the University of California, Berkeley, under a 
National Institutes of Health Traineeship. 

model  cannot  be modif ied because i t  is a l inear  model  
(Rail).  This i nva r i an t  t empora l  response of Rai l ' s  
model  implies  t h a t  the  model  is uncontrol lable .  The 
objec t ive  of this  paper  is to  show t h a t :  

1. Modif icat ion of the  neura l  me mbra ne ' s  t empora l  
response s t rongly  affects signal  t ransmiss ion.  

2. Control  of the  m e m b r a n e ' s  t empora l  response 
can be achieved s imply  and  rea l i s t ica l ly  in a neuron 
model.  

I I .  Temporal Response o] the Neuron and Network 

To de te rmine  how a neuron ne twork  processes an  
inpu t  s t imulus,  i t  appears  necessary to examine  both  
the  spa t ia l  and  t empora l  responses of the  ne twork .  
The spa t ia l  response of the  ne twork ,  i .e. ,  the  spa t ia l  
t r ans fo rma t ion  carr ied out  upon  the i m p u t  s t imulus  
by  the ne twork ,  is de t e rmined  when i t  is known how 
each neuron affects each o ther  neuron  to which i t  is 
connected.  The spa t ia l  response of the  ne twork  then  
describes where an  inpu t  s t imulus  can be sent  in the  
network.  

The t empora l  response of the  ne twork  depends  
upon  the t empora l  response of the  ind iv idua l  neurons  
(including the i r  synapses)  since the  neurons  t r a n s p o r t  
the  signal  impulses.  I t  appea r s  to  be of f u n d a m e n t a l  
significance t h a t  there  are re t icu lar  mechanisms  t h a t  
can modi fy  the  t empora l  response of the  ne twork ,  
which logical ly implies  modif ica t ion  of the  t empora l  
response of the  ind iv idua l  neurons.  

Cort ical  arousal ,  e lec t roanes thes ia  (Tatsuno et al.) 
a n d  the observed va r i ab i l i t y  of evoked  responses to 
ident ica l  s t imuli  (Bremer,  Rosenbl i th)  demons t r a t e  
the  var iable  t empora l  response of the  neuron ne twork  
(see Fig.  1). Other  researchers  have  r epor t ed  ample  
suppor t  for this  pos i t ion:  Nar ikashvi l l i  (1963) has  
shown tha t  unspecific s t imula t ion  in the  t ha l amus  or  
re t icu la r  fo rmat ion  m a r k e d l y  faci l i ta tes  the  axon 
discharges of cort ical  neurons.  K a n d e l  and  Tauc  (1965) 
have  d e m o n s t r a t e d  m u t u a l  fac i l i ta t ion;  a t es t  E P S P  1 
being increased 100 to 400 percent .  Andersen  and  
Lomo (1966) saw smal l  dendr i t ic  spikes invade  the  soma 
only  if ass is ted b y  add i t iona l  depolar iza t ion .  Gran i t  

1 EPSP denotes an Excitatory Post Synaptic Potential. 


