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Abstract.  The maximum entropy spectral analysis 
(MESA) method is applied to synthetic and observed 
tremor time series using autoregressive processes and 
recordings from the volcanoes Etna (Sicily) and Merapi 
(central Java). The MESA analysis can be used to esti- 
mate power spectra with sharp peaks from short data 
records. If the tremor source process can be modelled 
by an autoregressive process, the MESA method is 
well-suited for determining the coefficients of the un- 
derlying difference equations. As in the standard peri- 
odogram method of power spectrum estimation, a me- 
sagram estimate using record segmentation and MESA 
spectrum averaging reduces the variance of the spectral 
estimator. In combination with periodogram estimates, 
mesagram estimates confirm that the tremor source 
may be modelled as an ensemble of randomly excited 
resonators. Used together, these estimates provide a 
valuable method for short-term monitoring of volcanic 
activity. In addition, they can be applied to the determi- 
nation of new source parameters such as resonator fre- 
quencies, damping coefficients, excitation probabilities, 
correlation of exciting forces, and resonator coupling 
and in the pattern recognition of source types. 

Introduction 

Near many active volcanoes a persistent seismic wave 
field of volcanic tremor can be observed. Figure 1 illus- 
trates some characteristics of tremor in the time and 
frequency domain using observations from Etna (Sici- 
ly). Tremor recordings can be regarded as random time 
series. The long-term power spectrum (analysis interval 
of tens of minutes to several hours) usually shows many 
sharp peaks in the frequency range below 10 Hz. The 
frequencies of the dominant peaks may remain nearly 
constant for a long time indicating a steady-state tremor 
source. During periods of increasing eruptive activity a 
frequency shift of several peaks is usually observed. 
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Transients (wave groups) superimposed on stationary 
tremor and nonstationary intervals such as tremor 
storms (Fig. 11 and Fig. 12) show a similar pattern for 
many volvanoes and can often be correlated with 
changes in the visible volcanic activity. 

The random ground motion of tremor can be 
caused either by wave scattering or a random source. In 
the highly inhomogeneous structure of a volcano, scat- 
tering is expected to be an important process for tremor 
wave propagation. The dominant peak frequencies in 
the power spectrum, however, show only a small de- 
pendence on azimuth and distance from the crater (e.g., 
Riuscetti et al. 1977). This suggests that the peaked 
spectrum is mainly a source and not a path effect. The 
dominant effects of scattered waves on the spectrum 
are probably confined to the frequency range above 10 
Hz. 

Random ground motion can arise from a random 
source in two ways: Superimposed wave groups are ra- 
diated either by an ensemble of many unrelated sources 
(like short period seismic noise) or by a random source 
(like oceanic microseisms produced by fluctuating at- 
mospheric pressure on the ocean). A variety of tremor 
source models of both types have been suggested for 
various depth ranges and states of activity. An overview 
was given by Schick (1988). The basis features of the 
many models which consider fluctuating magma flow 
as the primary source of volcanic tremor can be 
grouped in the resonator model: A weakly damped 
(high-Q) resonator (the magma-filled conduit) is ex- 
cited to acoustic resonances by a random series of 
pulses (random perturbations of the magma conduit 
pressure field). The response (tremor) is represented as 
a random sequence of the superimposed impulse re- 
sponse functions of the resonator. If the spectrum of 
the random input is flat within the bandwidth of the 
resonator (white noise excitation) than the power spec- 
trum of the tremor corresponds to the squared ampli- 
tude response of the resonator. The peak frequency and 
the bandwidth are determined by the physical paramet- 
ers of the resonator (geometry and size of the conduit, 
density and viscosity of the magma, etc.). The peak am- 
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Fig. 1. Two basic properties of volcanic tremor in 
time and frequency domaini quasi-stationary random 
time series with superimposed transients (wave 
groups, pointed) and multipeak power spectrum. Top. 
Section (length 13.7 min) of tremor recording made at 
Torre del Filosofo, Etna (Sicily) 1.4 km from crater on 
11 July 1988. State of activity, normal; broadband 
displacement between 0.05 Hz and 5 Hz 
(Wielandt-Streckeisen seismometer). Bottom. 
Normalized power spectrum. Periodogram estimate 
using record segmentation, Welch windowing, and 
segment overlapping by one-half of segment length. 
The numbers indicate the peak frequencies in Hz. 
tseg, segment length; nseg, number of data sgements; 
(number of analyzed overlapped segments 2 nseg-1); 
fN, Nyquist frequency 

plitude is related to the total power (variance) of the 
driving random process. 

The observed multipeak spectrum results from an 
ensemble of resonators excited by independent or par- 
tially correlated driving forces (resonator-ensemble 
model). The power spectrum P(/) then has the meaning 
of a spectral distribution function of the total radiation 
power. P(f)df can be interpreted as the product "excita- 
tion probability" (average number of pulses per time 
unit) times "mean radiation power" of the resonators in 
the frequency interval ~, f +  df}. 

With the advent of digital broadband seismographs, 
methods developed for other areas of time series analy- 
sis may be applied to the two areas of volcanic tremor 

investigations, i.e., activity monitoring and source pa- 
rameter determination. Maximum entropy spectral 
analysis (MESA) is an effective method for the estima- 
tion of peaked power spectra from short time intervals. 
For monitoring nonstationary tremor such as transi- 
tions from noneruptive to eruptive activity or stationary 
tremor superimposed by signal-shaped events, MESA 
is superior to standard long-term methods of power 
spectral analysis. Assuming it is reasonable to model a 
tremor source as an autoregressive process, MESA esti- 
mates the coefficients of the underlying difference 
equations. The determination of the corresponding 
source parameters may be considered the inversion 
problem of MESA tremor analysis. 
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Fig. 2. Modelling of synthetic tremor with second-order autore- 
gressive AR(2) processing using random numbers as input time 
series. The AR parameters (al, a2) which generate peaked high- 
frequency (H) and low-frequency (L) power spectra (ps) and 

damped sine-wave autocorrelation functions (acf) are located in 
the dotted part of the triangle-shaped stability region for AR(2) 
processes. Length of time series, 500 samples; length of acf, 100 
lags; frequency interval for ps, zero to fN (Nyquist frequency) 
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Maximum entropy spectral analysis of synthetic tremor 

All resonator-type models describe the tremor as the 
output of a randomly excited source for seismic waves. 
The power spectrum P(]) of the recorded tremor is 
given in frequency (/3 domain by 

P( f )  = [H(f)]2 P0 ( j) ,  (1) 

where Po(f) is the source power spectrum of the tremor 
and H(/) is the transfer function of the propagation 
path. A wide class of linear, random processes x, (tre- 
mor) can be represented in discrete form by the differ- 
ence equation of an autoregressive process of order p 
(AR(p) process): 

X t = a l x t _ l  - [ - a 2 x t _ 2  + . . .  - { - a p X t _ p q - F t  , (2) 

where the parameters ak are constants of the system 
(magma-filled conduits) and r, is a purely random 
(white noise) process (fluctuating magma flow). 

The power spectrum of the AR(p) process in Eq. (2) 
is 

2s~ dt 
P q )  = , (3)  p 

I1-  ,~ ak exp( -  2jrikf dt)l z 
k = l  

where sr is the total power of the input sequence r, and 
dt is the sampling interval. The spectrum is continuous 
in the frequency interval 0 ~ f ~ f u  with the Nyquist fre- 
quency fN=l/(2dt). References on theory, analysis, 
and simulation of autoregressive discrete time series 
are, for example, Jenkins and Watts (1969), Box and 
Jenkins (1976), and Priestly (1981). 

Figure 2 shows that a large variety of time series, 
autocorrelation functions, and power spectra can be si- 
mulated using a second-order AR process and a ran- 
dom number generator for the input sequence r, in Eq. 
(2). The AR(2) process describes the movement of a 
randomly excited second-order oscillator, e.g., a pendu- 
lum with damping proportional to the velocity. Given 
the frequency and bandwidth of a spectral peak, an 
AR(2) process can be fitted to the spectrum by deter- 
mining the parameters al and a2 in the subregion for 
peaked spectra within the stability triangle in Fig. 2. 
From al and a2 the resonator parameters eigenfre- 
quency and damping coefficient can be calculated. The 
problem of fitting an ensemble of second-order resona- 
tors to a multipeak power spectrum such as in Fig. 1 
can therefore be solved by overlapping a finite number 
of AR(2) processes. 

The maximum entropy spectral analysis provides a 
method for the estimation of power spectra for time se- 
ries which can be represented by autoregressive (AR) 
processes. The method was suggested by Burg (1967) 
and was formulated by Andersen (1974) as a very effi- 
cient recursive algorithm. Two volumes with collected 
contributions on the MESA method have been edited 
by Childers (1978) and Haykin (1979). Concise treat- 
ments including Fortran subroutines are given by 
Clearbout (1976), Kanasewich (1981), and Press at al. 

(1986). The application to synthetic and geophysical 
time series was investigated, for example, by Chen and 
Stegen (1974), Gutowski et al. (1975), and Ulrych and 
Bishop (1975). 

The method of Burg (1967) determines the paramet- 
ers of an AR-process of order p directly form the data 
and calculates the power spectrum by applying Eq. (3). 
The MESA method has been found to be very efficient 
in resolving power spectra with sharp peaks from short 
data records. The main shortcomings at present are the 
lack of practical methods for determining a suitable or- 
der p and a variance estimate. The application of 
MESA to tremor data shows that these problems can be 
partially solved by interpreting the MESA short-term 
spectra together with the long-term periodogram spec- 
trum. 

Figure 3 demonstrates the application of MESA to 
a synthetic AR(2) process generated with normally dis- 
tributed random numbers as the input time series. First, 
the order of an optimal autoregressive representation 
for the time series must be determined. Although differ- 
ent criteria have been proposed by various authors 
(e.g., Haykin 1979), the final prediction-error criterion 
suggested by Akaike (1974) is used here. It is based on 
the equivalence between an AR(p) process and a pre- 
diction filter of order p. According to this criterion the 
order m which gives the minimum of an estimator 
called the final prediction error (FPE) in terms of m is 
used as optimal value. In Fig. 3 log[FPE(m)] has a 
break in the curve for the correct order m = 2  and a 
nearly constant value for higher orders. The second-or- 
der MESA spectra for subsequent segments of the time 
series exhibit only small variations in shape, but large 
fluctuations in total power around the true spectrum 
caused by the high sensitivity of the total power to 
small changes of the parameters. The variance of the 
spectral estimate can be reduced by averaging the seg- 
ment spectra. The spectral estimate obtained by sec- 
tioning the time series and averaging the segment 
MESA spectra is called a mesagram. The examples in 
Fig. 3 indicate that for a given order, the mesagram 
tends to the true spectrum and the averaged AR param- 
eter tend to the true values if the number of segments is 
increased. 

Figure 4 illustrates the application of MESA to a 
synthetic autoregressive process of two superimposed 
AR(2) processes with peaked spectra. If the process has 
two separated peaks, the FPE criterion gives the order 
m = 4  and the corresponding two-segment mesagram 
provides a good estimation of the true spectrum. For 
the double-peak case the break point value in the 
FPE(m) curve can no longer resolve the peaks. A higher 
order must be used to resolve the double peak. In gen- 
eral, three intervals can be observed along the m-axis: a 
low-order interval with increasing resolution for in- 
creasing order, an intermediate interval with stable 
spectra, and a high-order interval with unstable spectra 
showing splitting effects with spurious peaks, mainly 
due to round-off errors. The stability of the spectrum in 
terms of the order m and the comparison of the mesa- 
gram spectrum with the long-term periodogram power 
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(mesagram estimate), al ,  a2, parameters of AR(2) process; var, to- 
tal power of AR(2) process; lseg, segment length in samples; p, 
order of synthetic AR process; m, order of MESA estimator; 
mmesa, particular order of m for MESA spectra; nseg, number of 
segments for mesagram estimation; arl, ar2, estimated AR(2) pa- 
rameters (averaged from nseg segments); var', estimated total 
power (averaged from nseg segments) 

spectrum are two empirical criteria for a significance 
check of  spectral peaks. 

Figure 5 compares the mesagram with the standard 
periodogram approach. The mesagram provides a 
smoother and more stable estimate of  the true spectrum 
by averaging a smaller number of  segments. 

Spectral analysis of volcanic tremor recordings 

Assuming a resonator-ensemble model, the tremor time 
series will depend mainly on two factors. One of  these 
is the number of  resonators, N. The other factor is the 
relationship between the decay times t~ of  the resonator 

impulse response functions and the average time inter- 
vals te between two successive excitations. For N =  1 
and te < to, the overlapping response functions generate 
a continuous wave train. The time series of  a second- 
order resonator can then take on any of  the forms 
shown in Fig. 2. Some outstanding forms are classified 
as "spindles" (e.g., al  = - 1.8, a2 = - 0.9) or as "beating 
tremor" (e.g., al =0.1, a2= -0.9).  For N =  1 and te>C, 
the nonoverlapping response functions will appear as a 
sequence of  transients or wave groups. All these tremor 
forms are observed in recordings, although their con- 
nection with special states of  volcanic activity remains 
an essentially unsolved problem. For N >  1 and both 
cases te > tc or t~ < t~, a time series such as Fig. 1 will be 
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observed. Transients are superimposed on a sequence 
of short-term stationary segments. For N>> 1, the transi- 
tions between these segments will be smeared and the 
tremor will appear as a long-term stationary time se- 
ries. 

Maximum entropy spectral analysis of  quasi-stationary 
tremor using data from Etna (Sicily) 

The quasi-stationary tremor record in Fig. 1 consists of 
a sequence of short-term stationary segments of 5- 
20 sec length, characterized by small variations in the 
instantaneous frequencies and amplitudes. The com- 
plete data file used in the following analysis has a 
length of 40.8 rain. The file was sectioned into 120 seg- 
ments each of 20.4-s length. The MESA spectrum of a 
single segment is called a segment spectrum. Averaging 
a small number (less than about 5) of segment MESA 
specta results in a short-term mesagram. Averaging a 
large number of segment MESA spectra or segment pe- 
riodograms results in a long-term mesagram or in the 
conventional power spectrum, respectively. 

The long-term mesagrams M(f, m) for the complete 
data file estimated for increasing orders m show a close 
relationship to the conventional power spectrum P(D 
(Fig. 6): M(f, m) approaches the shape of the power 
spectrumP(f) with increasing high order m and repre- 
sents smoothed estimates of P(]) at various degrees of 
resolution for increasing low orders. This correspond- 
ence can be used for checking the significance of split 
peaks observed for increasing orders. Furthermore, a 
low-order mesagram estimated from short tremor re- 
cords provides a reasonable activity measure during 
times of highly fluctuating activity. 

The segment MESA spectra in the time-frequency 
domain (Fig. 7) illustrate the two characteristics of the 
resonator model, i.e., narrow spectral peaks and a ran- 
dom excitation pattern along the time axis. Figure 7 
also shows the histogram for the peak frequencies of 
the MESA segment spectra together with the long-term 
spectra from Fig. 6 for the order mmesa = 100. By relat- 
ing each peak in a segment MESA spectrum to a single 
excitation, the histogram describes the excitation prob- 
abilities of the resonators. For an ensemble of resona- 
tors, the radiated power Po(]) in Eq. (1) can be ex- 
pressed as Po(l)df= e(])po(])df, where e(f) and P0(]) are 
the mean values of the excitation probability and the 
radiation power of the resonators in the band {f,f+ df}, 
respectively. Both parameters can be estimated from 
the observed power spectrum P(f) and the histogram of 
the MESA peak frequencies if the medium transfer 
function H(D is known. 

It is possible that two or more spectral peaks in the 
segment MESA spectra or in the short-term mesagrams 
are linked due to the excitation of higher harmonics or 
the coupling of the resonators or driving forces. Figure 
8 shows a collection of two-segment mesagrams ar- 
ranged by increasing complexity. Most of the peaks in 
the long-term power spectrum can be recognized in all 
mesagrams even at low amplitudes. Any single peak or 

combination of peaks can be observed in at least one 
segment with a high amplitude. A correlation seems to 
exist between the peaks in the band around 1 Hz and 
the high-frequency peaks above 4.0 Hz. This can be 
seen also in the tremor record in Fig. 1 where high-fre- 
quency wave groups (frequencies 4-5 Hz) are superim- 
posed on the low-frequency transients (frequencies 
around 1 Hz). Thus, it seems possible to detect corre- 
lated excitations using short-term MESA spectra. To 
corroborate this observation, the correlation analysis of 
a larger tremor record is necessary. 

If the tremor source is modelled as an ensemble of 
randomly excited second-order resonators, the tremor 
time series can be represented as a superposition of N 
AR(2) processes, where N is the number of peaks in the 
mesagram for a large order m. The inversion problem 
for the MESA spectra then involves the determination 
of the 2NAR(2) coefficients [alj, a2j, j= 1, N], which are 
related to the m AR parameters of the MESA estima- 
tion process by a set of nonlinear equations. From the 
AR parameters the eigenfrequencies and damping coef- 
ficients of the associated resonators can be calculated. 
One method of inversion is the isolation of a peak by 

�9 bandpass filtering, segmenting the filter output and av- 
eraging the AR parameters for a second-order MESA 
spectrum. Figure 9 illustrates this method for two peaks 
of the power spectrum in Fig. 1. 

Maximum entropy spectral analysis of  beating-tremor 
and tremor storm using data from Merapi (central 
Java) 

Figure 10 shows the application of MESA to a beating 
tremor record observed at the volcano Merapi. The seg- 
ment MESA spectra in the time-frequency domain indi- 
cate that the beating tremor is radiated by the random 
impulsive excitation of a small number of resonators 
with closely adjacent eigenfrequencies around 1.75 Hz. 
In this case the segment spectra have not been averaged 
so that rapid variations of the instantaneously excited 
resonators can still be observed. 

During phases of lava dome building and growth, 
nonstationary tremor storms can be observed. They are 
characterized by increased amplitudes and a "short rise 
time-long decay time" envelope. Figure 11 presents the 
MESA processing for a Merapi tremor storm recorded 
at the stations Labuhan and Kalikuning. The short-term 
mesagrams in the time-frequency domain show com- 

plex fine structure with excellent spatial coherence over 
the entire duration of the tremor storm. Two-dimen- 
sional, time-frequency, cross-correlation analysis yields 
a correlation coefficient of R=0.87. The main maxi- 
mum and the highest side maximum are located at the 
same frequencies for both stations. They are at 2.2 Hz 
and 3.5 Hz, respectively. 

Figure 12 shows the corresponding MESA proc- 
essing for a tremor storm about six times longer in du- 
ration. The spatial coherence is fairly good for low fre- 
quencies and for the large amplitudes at the beginning 
of the storm. The correlation coefficient is R = 0.66. If 
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power spectrum in Fig. 1 (dashed) by band-pass filtering the tre- 
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the spectrum of the station KKN is shifted slightly to- 
ward higher frequencies, a value of R=0.73 is ob- 
tained. Two coherent peaks at 2.2 Hz and 4.1 Hz are 
observed in the time interval containing large ampli- 
tude signals at the beginning of the storm. During the 

last interval of the storm, high frequency peaks (e.g., at 
5.8 Hz and 6.3 Hz) are observed at the station Labuhan 
which is nearer to the crater. These peaks are greatly 
reduced at station Kalikuning, probably due to absorp- 
tion. Further tremor storm recordings must be analyzed 
to determine whether time-frequency mesagrams can be 
used for pattern recognition and source parameter de- 
termination. 

Conclusions 

Considering the tremor source as an ensemble of ran- 
domly excited weakly damped resonators is a useful 
hypothesis for the estimation and interpretation of 
long-term and short-term power spectra. In addition, 
the association of the resonators with magma-filled 
conduits and dikes and of the random excitation proc- 
ess with degassing turbulences in the magma-gas pres- 
sure field is a widely accepted model (McNutt 1989). 
However, the physics of the elementary processes in the 
source remains an essentially unsolved problem involv- 
ing the treatment of the nonlinear fluid dynamics of the 
two-phase magma-gas system under the complicated 
physical and geometrical boundary conditions inside a 
volcano. 

Recently developed digital broad-band seismomet- 
ers have increased the bandwidth and the dynamic 
range of tremor recordings by several orders of magni- 
tude. The digital data can be analyzed using the power- 
ful methods of digital signal processing. Standard 
methods of time series spectral analysis such as trend 
analysis (Martinelli 1987) and periodogram analysis 
(Riuscetti et al. 1977) describe the average behavior of 
the tremor sources for time intervals of years to hours. 
These methods can therefore be used for the long-term 
monitoring of the volcanic activity. 

Although performed on a limited sample of data, 
this study has proven that the analysis of tremor record- 
ings using the maximum entropy method can provide 
important volcanological insights. 
a) Maximum entropy spectral analysis can be used to 
resolve peaked power spectra and to estimate autore- 
gressive parameters from short time windows in the 
range from 10 seconds to a minute. This follows from 
the close relationship between the long-term conven- 
tional periodogram power spectrum and the various 
representations of MESA spectra such as the long-term 
mesagrams and the histograms of MESA spectra peak 
frequencies. 
b) The mesagram calculated by segmenting the record 
and averaging the MESA segment spectra approaches 
the long-term conventional (periodogram) power spec- 
trum with increasing order and provides smoothed esti- 
mates of this spectrum at various degrees of resolution 
for low orders. If it can be shown empirically that such 
a smoothed estimator of the multipeak power spectrum 
is a measure for the activity of a volcano, the A R  pa- 
rameters of the low-order mesagram can be easily cal- 
culated on-line and monitored. The mesagram can be 
considered a compressed data set to be transmitted and 
stored in place of the complete time series. 
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Fig. 10. Maximum entropy spectral analysis of a beating tremor 
recording. Segment duration, 10 sec; number of segments, 159; 
order of MESA spectra 10. Bottom. Plots of beating tremor with 
gradually increased time resolution for the indicated segments. 
Klathakan, Merapi (central Java) 1.5 km from crater on 23 May 

1987. State of activity, increasing; 1 Hz seismometer with velocity 
transducer. Top. Perspective view and topographical map of the 
segment MESA spectra in the time-frequency domain for succes- 
sive nonoverlapping data segments 

c) The applicat ion of  MESA analysis to a limited data 
set has provided a qualitative confirmation of  the re- 
sonator-ensemble model. The t remor  is a superposi t ion 
of  wavelets radiated by many  randomly excited resona- 
tors. While the long-term power  spectrum describes the 

radiat ion pattern of  the ensemble of  resonators,  the 
short- term MESA spectra reveal the propert ies of  the 
elementary resonators.  By combining long-term peri- 
odogram spectra and short-term MESA spectra, new 
source parameters  such as eigenfrequencies and damp-  
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Fig. 11. Perspective view and topographical map of the short-term 
mesagrams in the time-frequency domain for a Merapi tremor 
storm recorded at the stations Labuhan (LBH; 2.5 km from crater) 
and Kalikuning (KKN; 5.0 km from crater). 13 October 1986. 

State of activity, lava dome growing; 1 Hz seismometer with vel- 
ocity transducer. Segment length, 12.5 sec; number of nonoverlap- 
ping segments for mesagram estimate, 4; oder of MESA spectra, 
100 

ing coefficients of single resonators, excitation proba- 
bilities, resonator coupling, and the correlation of driv- 
ing forces can determined. 

Because the time series investigated were short, the 
application of the MESA method to the short-term 
monitoring of volcanic activity and the determination 
of tremor source parameters has o n l y b e e n  demon- 
strated qualitatively. Furthermore, three unsolved prob- 
lems, i.e., the determination of the tremor wavefield ki- 
nematics, the medium transfer function, and the source 
location, currently prevent the complete interpretation 
of tremor power spectra. Using bandpass filtered tre- 
mor data of a three-component station, polarization 
analysis might reveal dominant azimuths and angles of 
incidence for the various resonator bands. This method 
can also resolve the composition of the tremor wave- 
field in terms of body and surface waves. The tremor 

source locations could then be determined from a net- 
work of three-component stations using polarization 
data and amplitude-distance functions. 
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